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Abstract

We obtain strong laws of large numbers for the number of weak records among the first n observations from a sequence of
nonnegative integer-valued independent identically distributed random variables.

1. Introduction and notation

The theory of records is a well-established topic; see for instance, the books by Arnold et al. (1998) and Nevzorov
(2001). Weak records were introduced in Vervaat (1973) as a modification of records for discrete distributions.
For random variables X1, X2, . . ., let Mn = max{X1, . . . , Xn}; an observation Xn is a record if Xn > Mn−1
and a weak record if Xn ≥ Mn−1. When the random variables Xn are continuous the notions of record and weak
record coincide almost surely (since ties occur with probability zero) but for discrete distributions they may exhibit
quite different behaviours. Weak records have attracted much attention in recent years, starting from the work of
Stepanov (1992). See Aliev (1998), Bairamov and Stepanov (2006), Dembińska and Stepanov (2006), Stepanov et al.
(2003), Wesolowski and Ahsanullah (2001) and Wesolowski and López-Blázquez (2004), among others. In those
papers, attention is placed mainly on weak record values rather than on their counting process.

We are interested here in the asymptotic behaviour of the number of weak records among the first n observations
in a discrete setting. That is, for a sequence {Xn, n ≥ 1} of nonnegative integer-valued independent identically
distributed (iid) random variables, letting In = 1{Xn≥Mn−1} (M0 = −1 by convention), we study the almost sure
limiting behaviour of Nw

n =
∑n

k=1 Ik . Unlike the continuous case, where the indicators Ik of an observation being
a record (or weak record) are independent with P[Ik = 1] = 1/k, the study of the number of weak records in the
discrete case is a difficult task since the independence and distribution-freeness of the indicators Ik are lost. Although
we state our results for integer-valued random variables, it is clear that they apply equally to random variables taking
values on any denumerable set of real numbers, without accumulation points.

Strong laws of large numbers for the number of (ordinary) records in discrete models were given in
Gouet et al. (2001). Key (2005) obtained asymptotic results for the number of records and weak records for a limited
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class of heavy-tailed random variables. Also, a central limit theorem for the number of weak records is contained in
Gouet et al. (2007).

In this paper we obtain strong laws of large numbers for Nw
n , for a fairly complete range of discrete distributions:

heavy-, moderate- and light-tailed (Theorem 2.1) and give examples including the most common distributions
(Section 3). As in the case of ordinary records, the normalizing sequences depend on the tail of the distribution
of Xn . We observe that the number of weak records and the number of ordinary records are asymptotically equivalent
for heavy-tailed distributions whereas they differ significantly as the tail of the distribution becomes lighter (see
Remark 3.1).

We use the following notation. For k ∈ Z+ = {0, 1, 2, . . .}, let pk = P[X1 = k] > 0, yk = P[X1 > k] and
rk = P[X1 = k|X1 ≥ k] = pk/yk−1 (with y−1 = 1), the discrete hazard rate. Notice that yk =

∏k
i=0(1 − ri ). Also,

let F(t) = P[X1 ≤ t] be the distribution function of X1, F−(t) = P[X1 < t] and m(t) = min{ j ∈ Z+ | y j < 1/t},
t > 0.

For two sequences of real numbers {an, n ≥ 1} and {bn, n ≥ 1}, we write an ∼ bn if limn→∞ an/bn = 1. We use
the superscripted arrow

a.s.
−−→ for almost sure convergence of sequences of random variables.

2. Main result

The next result relates Nw
n , the number of weak records among the first n observations X1, . . . , Xn , with partial

sums of minima of certain random variables.

Proposition 2.1. Let Zn = 1− F−(Xn), n ≥ 1, and Sn =
∑n

k=2 min{Z1, . . . , Zk−1}. Then, Nw
n /Sn

a.s.
−−→ 1.

Proof. Let Fn = σ(X1, . . . , Xn) be the σ -algebra generated by X1, . . . , Xn , n ≥ 1 and F0 = {∅,Ω}. Then,
for k ≥ 1, E[Ik |Fk−1] = P[Xk ≥ Mk−1|Fk−1] = 1 − F−(Mk−1) = 1 − F−(max{X1, . . . , Xk−1}) =

min{1− F−(X1), . . . , 1− F−(Xk−1)}.

As the number of weak records tends to infinity a.s., the conditional Borel–Cantelli lemma (Corollary VII-2-6
of Neveu (1972)) yields Nw

n /
∑n

k=1 E[Ik |Fk−1]
a.s.
−−→ 1, that is Nw

n /
∑n

k=2 min{1 − F−(X1), . . . , 1 − F−(Xk−1)}
a.s.
−−→ 1. �

By Proposition 2.1, the asymptotic behaviour of Nw
n is equivalent to that of the sum of minima Sn . In the

following lemma, we study some properties of the sequence {Zn, n ≥ 1}. In particular, we obtain an explicit
expression for the H function, defined in Proposition A.1, which will be useful in the proof of the main
result.

Lemma 2.1. Let {Zn, n ≥ 1} be as in Proposition 2.1.

(a) The random variables Zn are iid and take values y j−1 with probabilities p j , j ≥ 0. The distribution function of
Zk is G(z) = y j for y j ≤ z < y j−1 and its inverse G←(t) := inf{x ≥ 0 | G(x) ≥ t} = y j−1 for y j < t ≤ y j−1
(that is, G←(1/t) = ym(t)−1).

(b) Let H(y) =
∫ y

0 G←(e−u)eudu, y ≥ 0. For t > 1,

H(log t) =
m(t)∑
k=0

rk/(1− rk)− ρ(t),

where ρ(t) = ym(t)−1(y−1
m(t) − t). Moreover, 0 < ρ(t) ≤ rm(t)/(1− rm(t)).

Proof. (a) It follows directly from the definition of the random variables Zk .

(b) After a change of variable in the integral defining H(y), we obtain



H(log t) =
∫ 1

1/t

G←(x)

x2 dx

= ym(t)−1

∫ ym(t)−1

1/t

dx

x2 +

m(t)−1∑
k=0

yk−1

∫ yk−1

yk

dx

x2

= ym(t)−1(t − y−1
m(t)−1)+

m(t)−1∑
k=0

yk−1(y−1
k − y−1

k−1)

=

m(t)∑
k=0

yk−1 rk/yk − ym(t)−1(y−1
m(t) − t).

The inequalities for ρ(t) follow from ym(t) < 1/t ≤ ym(t)−1. �

We state and prove the main result of the paper. Notice that only in the case limk→∞ rk = 1 (light-tailed
distributions) an extra assumption on rk is needed; more precisely, the ratio (1 − rk−1)/(1 − rk) should tend to 1
rapidly enough.

Theorem 2.1. Let {Xn, n ≥ 1}, be a sequence of iid random variables on the nonnegative integers with pk = P
[X1 = k] > 0, k ∈ Z+ = {0, 1, 2, . . .}.
(a) Let lim supk→∞ rk < 1, then

Nw
n

m(n)∑
k=0

(rk/(1− rk))

a.s.
−−→ 1, (1)

as n→∞. Moreover, if rk → r ∈ [0, 1), then

Nw
n

log n
a.s.
−−→

−r

(1− r) log(1− r)
, (2)

as n→∞, with −0/ log 1 = 1.
(b) Let rk → 1; if there exists α > 1/2 such that

lim
k→∞

kα(rk − rk−1)/(1− rk−1) = 0, (3)

then,

Nw
n

m(n)∑
k=0

(1/(1− rk))

a.s.
−−→ 1, (4)

as n→∞.

Proof. Let {Zn, n ≥ 1} be the sequence defined in Proposition 2.1 and G the distribution function of Z1. Note that,
as pk > 0 for all k ∈ Z+, we have G(y) > 0 for all y > 0; moreover, by Lemma 2.1, H(log n) >

∑m(n)−1
k=0 rk which

tends to infinity as n → ∞, since
∑
∞

k=0 rk = ∞ for any discrete distribution with pk > 0 for all k ∈ Z+. Now, the
idea of the proof is to check (14) and (15) of Proposition A.1 to obtain a strong law of large numbers for Sn defined in
Proposition 2.1

(a) As lim supk→∞ rk < 1, there exists δ > 0 such that 1 − rk > δ for all k ≥ 0. From the definition of G← and
m(t), we obtain, for all t > 0,

1 ≤ tG←(1/t) < ym(t)−1/ym(t) = 1/(1− rm(t)) < 1/δ. (5)

On the other hand, for y > 1, (5) implies

0 <
H(y + log y)− H(y)

H(y)
=

∫ yey

ey G←(1/t)dt∫ ey

1 G←(1/t)dt
<

log y

δy
,

and (14) follows.



For (15) it suffices to see that (5) implies

nG←(1/n)2(
n∑

k=2
G←(1/k)

)2 <
1/(δ2n)(
n∑

k=2
1/k

)2 ∼
1

δ2n(log n)2 .

Hence, (15) is obtained from the convergence of the series
∑
∞

n=2(n(log n)2)−1. Therefore, from Propositions 2.1 and

A.1, we have Nw
n /H(log n)

a.s.
−−→ 1 and (1) follows from Lemma 2.1 and ρ(n) < 1/δ.

In the case rk → 0, from (5) we obtain tG←(1/t) → 1 as t → 0, so H(log n) ∼ log n. When rk → r ∈ (0, 1),
from Lemma 2.1(b) we have

H(log n) ∼

m(n)∑
k=0

rk

1− rk
∼

r

1− r
m(n).

On the other hand, as r ∈ (0, 1), it is known (see Proposition 3.3 in Gouet et al. (2001)) that m(n) ∼ − log n/ log(1−r)

and (2) follows.
(b) Since condition (3) for α ≥ 1 implies the condition for α < 1, in what follows we suppose α ∈ (1/2, 1).
Let ak = 1/(1− rk). Then, (3) can be written as

kα

(
1−

ak−1

ak

)
→ 0, (6)

so there exists k0 ∈ Z+ such that, for any k > k0,

ak−1 >

(
1−

1
kα

)
ak

and thus,

al >

k∏
i=l+1

(
1−

1
iα

)
ak, (7)

for l = k0, . . . , k − 1. Now, from the elementary inequality log(1 − x) ≥ −2x , for all 0 < x < 1/
√

2, we obtain
log(1− 1/ iα) ≥ −2/ iα , for all i ≥ 2 and, therefore,

n∏
i=k+1

(
1−

1
iα

)
= exp

(
n∑

i=k+1

log
(

1−
1
iα

))
≥ exp

(
−2

n∑
i=k+1

1
iα

)

≥ exp
(
−2

∫ n

k

1
xα

dx

)
= exp

(
−

2(n1−α
− k1−α)

1− α

)
, (8)

for all k ≥ 1.
We begin by checking (15). First, recall from Lemma 2.1(b), that H(log t) =

∑m(t)
k=0 rk/(1 − rk) − ρ(t), with

0 < ρ(t) ≤ rm(t)/(1− rm(t)). From (6) we have ak/ak−1 → 1 and, by Lemma A.1, recalling that rk → 1,

0 <
ρ(t)

m(t)∑
k=0

rk/(1− rk)

≤
rm(t)/(1− rm(t))

m(t)∑
k=0

rk/(1− rk)

→ 0.

Therefore,

H(log n) ∼

m(n)∑
k=0

rk

1− rk
∼

m(n)∑
k=0

ak . (9)



The series in (15) can be written as

∞∑
n=2

nG←(1/n)2(
n∑

k=2
G←(1/k)

)2 =

∞∑
l=1

∑
n:m(n)=l

nG←(1/n)2(
n∑

k=2
G←(1/k)

)2 .

As H(log n) =
∫ n

1 G←(1/x)dx and G← is nondecreasing, we have
∑n

k=2 G←(1/k) ∼ H(log n). Thus, as l →∞,

∑
n:m(n)=l

nG←(1/n)2(
n∑

k=2
G←(1/k)

)2 ∼
∑

n:m(n)=l

ny2
l−1(

l∑
k=2

ak

)2 =
y2

l−1h(l)(
l∑

k=2
ak

)2 , (10)

where h(l) =
∑

n:m(n)=l n. From rk → 1, we obtain h(l) ∼ (y−2
l − y−2

l−1)/2 ≤ rl/y2
l , so the right-hand side of (10) is

bounded above by Ca2
l /A2

l for some C > 0 and all l ≥ 2, with Al =
∑l

k=2 ak . From (7),

an

An
<

an
n∑

k=k0

ak

<
1

n−1∑
k=k0

n∏
i=k+1

(
1− 1

iα

) . (11)

Now, from (8), and letting β = 2/(1− α),

n−1∑
k=k0

n∏
i=k+1

(
1−

1
iα

)
≥ e−βn1−α

n−1∑
k=k0

eβk1−α

≥ e−βn1−α

∫ n−1

k0−1
eβx1−α

dx .

Since
∫ y

0 eβx1−α
dx ∼ eβy1−α

yα/2 as y → ∞, we have
∫ n−1

k0−1 eβx1−α
dx ≥ (n − 1)αeβ(n−1)1−α

/3, for large enough n.

Moreover, n1−α
− (n − 1)1−α

≤ 1/(n − 1)α → 0. Therefore, for large n,

n−1∑
k=k0

n∏
i=k+1

(
1−

1
iα

)
≥

(n − 1)αeβ((n−1)1−α
−n1−α)

3
≥

nα

4

so, from (11),

an/An < 4n−α (12)

and the convergence of the series in (15) is deduced from
∑
∞

n=1 n−2α <∞, since α ∈ (1/2, 1).
To check (14), note that (9) implies H(log n + log log n)/H(log n) ∼ Am(n log n)/Am(n), so (14) is equivalent to

(Am(n log n) − Am(n))/Am(n)→ 0. Now, for large n,

Am(n log n) − Am(n)

Am(n)

=
1

Am(n)

m(n log n)∑
k=m(n)+1

ak

<
1

Am(n)

m(n log n)∑
k=m(n)+1

am(n)

k∏
i=m(n)+1

(1− 1/ iα)

<
am(n)(m(n log n)− m(n))

Am(n)

m(n log n)∏
i=m(n)+1

(1− 1/ iα)

< 4
m(n log n)− m(n)

m(n)α
eβ(m(n log n)1−α

−m(n)1−α)

≤ 4
m(n log n)− m(n)

m(n)α
eβ

m(n log n)−m(n)

m(n)α



where the first inequality follows from (7), the third from (8) and (12) and the last one since m(n) is increasing. Thus,
(14) is proved if we show that

m(n log n)− m(n)

m(n)α
→ 0,

for α ∈ (1/2, 1). By (7) and (8),

an <
ak0

n∏
i=k0+1

(1− 1/ iα)

< ak0 eβn1−α

.

Since yn−1/yn = an , we obtain yn−1 < ak0 eβn1−α
yn and there exists some C > 0 such that, for all n > k0,

yn > yk0ak0−n
k0

exp

(
−β

n∑
k=k0+1

k1−α

)
> exp

(
−Cn2−α

)
,

where the last inequality follows from α ∈ (1/2, 1). Therefore, for large n,

1
n

> ym(n) > exp
(
−Cm(n)2−α

)
,

which implies log log n < log C + (2− α) log(m(n)). Then, there exists C ′ > 0 such that

log log n

log(m(n))
< C ′ (13)

for all n ≥ 3. On the other hand, it is known that rk → 1 implies m(n log n) − m(n) − 1 < γ log log n, for some
γ > 0 and all large enough n, (see page 789 of Gouet et al. (2005)). Thus, by (13),

m(n log n)− m(n)

m(n)α
<

γ log log n + 1
m(n)α

<
γ C ′ log(m(n))+ 1

m(n)α
→ 0

and (14) is proved. Now (4) follows from Propositions 2.1 and A.1. �

3. Examples

Example 3.1 (Zeta Distribution). An example of discrete distribution with rk → 0 is the Zeta distribution (pk =

C(k + 1)−a, k ∈ Z+, a > 1). We obtain, from Theorem 2.1(a),

Nw
n

log n
a.s.
−−→ 1.

Example 3.2 (Geometric and Negative Binomial Distributions). The geometric distribution with parameter p (pk =

pqk, k ∈ Z+, p ∈ (0, 1), q = 1 − p) has rk = p for all k ≥ 0. For the negative binomial distribution
(pk = (−1)k

(
−a
k

)
paqk , for k ∈ Z+, p ∈ (0, 1), q = 1 − p and a > 1) it is shown in Vervaat (1973) that

p − (a − 1)q/k ≤ rk ≤ p so rk → p. In both cases, we obtain

Nw
n

log n
a.s.
−−→ −p/(1− p) log(1− p)

from Theorem 2.1(a).

Example 3.3 (Alternating Geometric). For an example of nonconverging failure rates, we consider the distribution
corresponding to the number of tails before the first head in a sequence of tosses with two alternating coins; that is, a
coin with probability of heads po ∈ (0, 1) is used for odd tosses and another coin with probability of heads pe ∈ (0, 1)

is used for even tosses. We have p2k = qk
o qk

e po and p2k+1 = qk+1
o qk

e pe, k ≥ 0 (with qo = 1 − po, qe = 1 − pe) so



r2k = po and r2k+1 = pe, k ≥ 0. It is easy to see that m(n) ∼ −2 log n/ log qoqe (Example 3 in Gouet et al. (2005))
and

m(n)∑
k=0

rk

1− rk
∼

bm(n)/2c∑
i=0

r2i

1− r2i
+

bm(n)/2c∑
i=0

r2i+1

1− r2i+1
∼ −

(
po

qo
+

pe

qe

)
log n

log qoqe
,

where b.c denotes the largest integer less than or equal to its argument. Then, Theorem 2.1(a) yields

Nw
n

log n
a.s.
−−→ −

po/qo + pe/qe

log qoqe
.

Example 3.4 (Poisson Distribution). Let X have Poisson distribution with parameter λ > 0 (that is pk = e−λλk/k!,
for k ∈ Z+). It can be found in Vervaat (1973) that

λ

k + 1
−

(
λ

k + 1

)2

≤ 1− rk ≤
λ

k + 1
.

Thus, rk → 1 and there exists C > 0 such that (rk − rk−1)/(1 − rk−1) < C/k so condition (3) holds with α = 3/4.
Moreover, ak = 1/(1 − rk) ∼ k/λ and m(n) ∼ log n/ log log n so

∑m(n)
k=0 ak ∼

1
λ

∑m(n)
k=0 k ∼ 1

2λ
(log n/ log log n)2.

Thus, by Theorem 2.1(b), we obtain

Nw
n

(log n/ log log n)2
a.s.
−−→

1
2λ

.

Remark 3.1. It is interesting to compare Nw
n with the counting process of ordinary records Nn =

∑n
k=1 1{Xk>Mk−1},

whose behaviour was analyzed in Gouet et al. (2001). For heavy-tailed distributions (those with rk → 0) such as the
Zeta distribution, Nw

n and Nn are asymptotically equivalent, since Nn/ log n
a.s.
−−→ 1. In the case of distributions with

rk → r ∈ (0, 1) (such as the geometric or negative binomial distributions), Nn/ log n
a.s.
−−→ −r/ log(1 − r) so the

number of records also grows at a logarithmic speed, but with a smaller constant.
For light-tailed distributions (with rk → 1) the number of weak records grows at a higher speed than the number

of records. In fact, under (3), Proposition 3.4(ii) of Gouet et al. (2001) implies Nn/m(n)
a.s.
−−→ 1 while the normalizing

sequence for Nw
n is

∑m(n)
k=0 (1/(1 − rk)), with 1/(1 − rk)→ ∞. In the the particular case of the Poisson distribution

we have Nn/(log n/ log log n)
a.s.
−−→ 1 whereas Nw

n is normalized by 1
2λ

(log n/ log log n)2.
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Appendix

Proposition A.1. Let {Yn, n ≥ 1} be a sequence of iid nonnegative random variables with common distribution
function G such that G(t) > 0 for all t > 0 and Sn =

∑n
i=1 min{Y1, . . . , Yi }. Let G←(t) = inf{x ≥ 0 | G(x) ≥ t},

for 0 ≤ t < 1 and H(y) =
∫ y

0 G←(e−u)eudu, for y ≥ 0. If limy→∞ H(y) is finite, then Sn grows a.s. to a finite limit.
Otherwise, if limy→∞ H(y) = ∞,

H(y + log y)

H(y)
→ 1 as y→∞ and (14)

∞∑
n=2

nG←(1/n)2[
n∑

i=2
G←(1/ i)

]2 <∞, (15)



then
Sn

H(log n)

a.s.
−−→ 1.

Proof. See Corollaire 4 of Deheuvels (1974).

Lemma A.1. Let {bn, n ≥ 1} be a sequence of positive terms such that bn → ∞ and bn/bn−1 → 1. Then
bn/

∑n
i=1 bi → 0.

Proof. Let ε > 0 and take N ∈ N such that bn − bn−1 < εbn , for all n ≥ N . Then, for n ≥ N ,

bn − b0 =

n∑
i=1

(bi − bi−1) ≤ bN − b0 + ε

n∑
i=N+1

bi ≤ bN − b0 + ε

n∑
i=1

bi ,

and the conclusion follows. �
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