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Phytoplankton concentration in Lake Kinneret (Israel) has varied up to 10-fold in space and

time, with horizontal patches ranging from a couple of kilometres to a basin scale. Previous

studies have used a 1D model to reproduce the temporal evolution of physical and biogeo-

chemical variables in this lake. The question that arises then is how appropriate is a 1D

approach to represent the dynamic of a spatially heterogeneous system, where there are

non-linear dependencies between variables. Field data, a N-P-Z model coupled to both a 1D

and a 3D hydrodynamic model, a 1D diffusion-reaction equation and scaling analysis are

used to understand the role of spatial variability, expressed as phytoplankton patchiness,

in the modelling of primary production. The analysis and results are used to investigate

the effect of horizontal variability in the forcing and in the free mechanisms that affect the

growth of patterns. The study shows that the use of averaged properties in a 1D approach

may produce misleading results in the presence of localised patches, in terms of both con-

centration and composition of phytoplankton. The reason lies in the fact that the calibration

process of ecological parameters in the 1D model appears to be site and process specific.

That is, it depends on the pattern’s characteristics and the underlying physical processes

causing them. And this is a critical point for the success of numerical simulations under

spatial variability. In this study, it is also shown that a length scale based on diffusion and
growth rate of phytoplankton could be used as a criterion to assess the appropriateness of

the 1D assumption.

such as change in nutrient and light regimes leading to dif-
. Introduction

hytoplankton heterogeneity is a prominent feature of aquatic
cosystems and has been observed ranging in space from cen-

imeters to the basin scale, and in time from seconds to years.
ome of the proposed mechanisms for its formation include:
ccumulation due to flow regimes interacting with the mobil-
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ustralia, Australia. Tel.: +61 8 6488 7561; fax: +61 8 6488 3053.

E-mail address: hillmer@cwr.uwa.edu.au (I. Hillmer).
ity of the species (Franks, 1997; Bee et al., 1998), non-linear
interaction between phytoplankton and zooplankton (Steele
and Henderson, 1992; Vilar et al., 2003), and external forcing
y of Western Australia, 35 Stirling Hwy, Crawley 6009, Western

ferential growth. An important aspect of the appearance of
patches is that they may reflect the formation of niches for
different species as a result of complex spatial variability of
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the underlying environment. These niches control the diver-
sity of the system by allowing coexistence of species and by
affecting, in turn, the diversity of assemblage of higher trophic
levels (Hutchinson, 1961).

The incorporation of spatial heterogeneity may play an
important role in the success of an ecological assessment.
In monitoring campaigns, the sampling strategy should be
designed to capture the scales of any patches (Dutilleul, 1993;
Hillmer and Imberger, 2007b) and a few point samples may
be misleading. When modelling aquatic ecosystems, allowing
for spatial heterogeneity seems to be a key factor in the evolu-
tion of a natural system and its response to external forcing.
Hillmer and Imberger (2007a) showed that capturing the vari-
ability in an open system was essential to assess the effect of a
sewage discharge without the interference of boundary advec-
tive fluxes. Murray (2001) showed that spatial scales become
more important in the response of the ecosystem as the rate of
nutrient input increases; and Brentnall et al. (2003) highlighted
the role of patches and their scales in increasing productivity.

The relevance of spatial variability in biomass growth has
been already recognised; localised high concentration may
be more important than the basin average. Even though
these connections are well established, the use of complex
models to reproduce the behavior of aquatic systems is rare.
Such models require more data to run (Brentnall et al., 2003),
the calibration and interpretation processes are made diffi-
cult by the requirement of intense spatial data sets (Jørgensen,
1994) and run times are normally longer than simpler models.

Spatial heterogeneity is especially important if non-linear
processes occur in the system (Murray, 2001). For example, the
growth rate of a species predicted from the basin-scale aver-
age of all the dependent variables is not necessarily equal to
the average of the actual growth rate computed on a point-by-

point basis. Biogeochemical rates depend on patch properties
and the model calibration process is subject to the temporal
variation of patterns in each study site. Thus, the ecological
parameters are intimately dependent not only on the relevant

Fig. 1 – Bathymetry of Lake Kinneret (35◦30′, 32◦40′N) and sampl
locations of stream inflows and withdrawals (NWC and Deganya
Company and Kinneret Limnological Laboratory (A, D, G, K).
physiological processes, but also on the physical processes
determining patchiness. This is an important issue when a
set of parameters has been chosen to match field data with a
one-dimensional model. As a result, this may yield misleading
values of ecological parameters, and hence of rates of internal
processes. And this, in turn, may lead to misinterpretation of
the dynamic of a system.

In this study, Lake Kinneret is used to investigate the role
of spatial variability and its impact on numerical predictions.
This study is carried out by comparing results from a 1D and
a 3D numerical model. An extensive field-sampling program
in 1999 and 2000 constitutes the basis to study the length and
time scales of patchiness. The numerical results are compared
with the field data to check the performance of the models. An
analytical model derived from scaling analysis and the solu-
tion of a 1D reaction-diffusion equation is used to investigate
and to illustrate the characteristic features of the phytoplank-
ton patterns in the field and in the 3D model. The objective of
this study is by no means to reproduce accurately the field
data. This study rather intends to understand the implica-
tions of using a 1D numerical model to predict phytoplankton
biomass in the presence of spatial variability.

2. Site description

Lake Kinneret, Israel, has a surface area of 174 km2, and an
average depth of 24 m (Pollingher and Berman, 1975). It is pear-
shaped, with the deepest point in the middle and a gentle
slope on the western and southern shores (Fig. 1a). The lake
is monomictic; temperature stratification begins in April, and
persists through spring, summer and autumn, with turnover
in January (winter). The Jordan River supplies ca. 60% of the

inflowing water and ca. 70% of the nutrient loading. Its flow
peaks in late winter and declines to a minimum in summer
(June, July and August; Mero, 1978). In addition to this river,
there are several small freshwater and thermohaline streams

ing stations. (a) Contours referenced to mean sea level, and
) and (b) sampling station locations of the Mekorot Water
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ituated around the shore of the lake (Fig. 1a), which, in addi-
ion to runoff, comprise the remaining inflows.

The phytoplankton assemblage and biomass in Lake Kin-
eret varies seasonally (Berman et al., 1992). The most
oticeable is the dinoflagellate Peridinium gatunense which

orms a typical, intense and high-biomass bloom in spring
f most years. Other bloom-forming species have been the
iatom Aulacoseira granulata (which blooms in winter of some
ears), the colony-forming coccid cyanobacterium Microcystis
eruginosa, and in recent years also nitrogen fixing cyanobacte-
ia such as Aphanizomenon ovalisporum and Cylindrospermopsis
uspis which bloom in summer-fall (Zohary, 2004a). In addi-
ion to those bloom-forming species, the lake hosts a diverse
ssemblage of non-blooming species, mostly nanoplank-
onic species belonging to the Chlorophytes, Cyanobacteria,
iatoms, Cryptophytes and Dinoflagellates. The phytoplank-

on distribution varies spatially, especially during Peridinium
looms; patches of P. gatunense ranging from 0.5–2 km in diam-
ter (Berman and Rodhe, 1971) to basin scale (Pollingher and
erman, 1975) have been reported.

The Kinneret zooplankton consists of predatory
axa (adult copepods, predatory rotifers), large herbi-
ores/macrozooplankton (cladocerans, copepodites) and
mall herbivores or ‘microzooplankton’ (copepod nauplii,
ost rotifers, ciliates, heterotrophic flagellates) (Hambright

t al., 2007).

. Methods

.1. Field data

he Kinneret Limnological Laboratory (KLL) of the Israel
ceanographic & Limnological Research has collected water
uality data as part of a routine monitoring program. KLL has
upplied data for ammonium (NH4), nitrate (NO3), total dis-
olved phosphorus (TDP), soluble reactive phosphorus (SRP),
otal nitrogen and total phosphorus at weekly intervals on
iscrete-depth water samples collected from stations A, D
nd G, and also fortnightly from station K (Fig. 1b). Nutri-
nt concentrations were determined by methods outlined in
PHA (1992). Phytoplankton cell counts were conducted fort-
ightly on Lugol-preserved water samples from 10 discrete
epths at station A. The Utermohl (1958) method was used
s described by Zohary (2004a). In addition to the above mon-
toring data from KLL, the Mekorot Water Company supplied
utrient (NH4, NO3, TDP, SRP, total nitrogen, total phosphorus)
nd chlorophyll data from Lake Kinneret collected monthly
t 33 stations until April 2000 and fortnightly at 16 stations
fterwards (Fig. 1b).

.2. Numerical models

he Computational Aquatic Ecosystem Dynamics Model
CAEDYM) is coupled with the 3D hydrodynamic model, Estu-
ry and Lake Computer Model (ELCOM), and with the 1D

ydrodynamic model, Dynamic Reservoir Simulation Model

DYRESM). In this way, the coupled models simulate the hydro-
ynamic, nutrient cycles and food web dynamics in the lake

n 3D and 1D.
3.2.1. 1D hydrodynamic model
DYRESM is a pseudo 1D Lagrangian layer model that simulates
vertical variations, where 3D processes are accounted for with
parametric descriptions (Yeates and Imberger, 2004). The hori-
zontal layers have uniform properties and their thickness vary
between user-defined limits (Imberger and Patterson, 1990).
The surface layer mixing is the result of wind stirring, convec-
tive overturn and wind shear, while internal mixing depends
on the value of the Lake Number (Imberger and Patterson,
1990). The inflows are modelled by adding the input to the
appropriate layer, with the specified temperature, salinity and
water quality.

3.2.2. 3D hydrodynamic model
The 3D model, ELCOM, solves the hydrostatic, Boussinesq,
Reynolds-averaged Navier Stokes and scalar transport equa-
tions with an eddy-viscosity approximation for horizontal
turbulence (Hodges et al., 2000). ELCOM uses a conserva-
tive ULTIMATE QUICKEST scheme for scalar transport, an
Euler-Lagrange scheme for advection of momentum, and a
semi-implicit method for free surface evolution (Laval et al.,
2003). Following Laval et al. (2003), a filter is applied to correct
for vertical mixing due to numerical diffusion. In this case,
the filter is calibrated using field data. For these simulations,
ELCOM-CAEDYM is run on a grid of 400 m × 400 m × 1 m and a
time step of 5 min.

In Lake Kinneret, horizontal transport in the surface layer
has been found to be dominated by internal wave motions over
scales of days. For longer periods, horizontal shear dispersion
due to wind forcing was the dominant mechanism (Stocker
and Imberger, 2003). The combination of these processes
yielded a horizontal dispersion coefficient of 17.1 m2 s−1 over
the stratified period (Stocker and Imberger, 2003). This value
is applied in ELCOM from April to December when the water
column is stratifying and stratified. When the water column
is mixed (January to March), the mechanism that contributes
to enhance the dispersion coefficient no longer exists and
a reduced value is expected. For this period, the dispersion
coefficient is set to 0.2 m2 s−1 for a grid cell of 400 m (Okubo,
1971).

3.2.3. Ecological model
The ecological model is based on the ‘N-P-Z’ (nutrient-
phytoplankton-zooplankton) type, but it also includes com-
prehensive descriptions of carbon, nitrogen, phosphorus,
oxygen and silica. CAEDYM is a complex model and only a
brief description is given here; more information can be found
in Bruce et al. (2006).

The model includes a range of biological state variables
including 5 phytoplankton, 3 zooplankton and 1 group of
heterotrophic bacteria. The five groups of phytoplankton
modelled in this study are ‘Peridinium’ (the dinoflagellate P.
gatunense), ‘Microcystis’ (M. aeruginosa), ‘N2-fixing cyanobac-
teria’ (A. ovalisporum and C. cuspis), ‘nanophytoplankton’, and
‘diatoms’ (Aulacoseira granulate). The phytoplankton dynamics
is characterised by growth, mortality, excretion, respiration,

grazing, settling and resuspension. Growth is limited by nitro-
gen, phosphorus and light (and silica in the case of diatoms).
The model uses a dynamic intracellular store for nitrogen and
phosphorus that regulates the growth rate. Phytoplankton is



modelled as carbon converted into chlorophyll using constant
C:Chla ratios (=67, 150, 27, 45 and 32 mg C (mg Chla)−1 for Peri-
dinium, Microcystis, N2-fixing cyanobacteria, nanoplankton
and diatoms, respectively). The vertical migration and set-
tling is defined differently for each group. Peridinium and
Microcystis have the capacity to move vertically along the
water column. Their vertical migration is regulated by the
need for light and nitrogen (Kromkamp and Walsby, 1990). N2-
fixing cyanobacteria and nanoplankton follow Stoke’s law that
allows for changes in intracellular density. The diatoms group
is assigned a constant settling velocity.

Three groups of zooplankton, defined by their ecological
role, are configured. They are the predators, large herbi-
vores, and microzooplankton. Each zooplankton group is
characterised by a feeding (predation or grazing), mortality,
respiration, egestion (fecal pellets) and excretion component.
Each group is assigned a feeding preference for each of the 5
phytoplankton groups, the other zooplankton groups, detrital
material and bacteria. The predators feed on all of the other
zooplankton groups while the large herbivores graze mainly
the nanoplankton. The microzooplankton consumes particu-
late organic carbon and bacteria.

The organic and inorganic forms of carbon, nitrogen,
phosphorus and silica cycles are modelled as both filter-
able and particulate pools. In general terms, the processes
affecting nutrients are: dissolved sediment fluxes, particle
resuspension, particle settling, organic particle decomposi-
tion, dissolved organic mineralisation, adsorption/desorption
of dissolved inorganic nutrient to inorganic particles, mortal-
ity and excretion from aquatic flora and fauna, autotrophic
uptake of dissolved inorganic nutrients and respiration by
algae, zooplankton and bacteria. Atmospheric gas exchange
between dissolved carbon dioxide and the atmosphere is also
explicitly modelled.

The parameters for the ecological model were obtained
both from experimental analysis on phytoplankton (Zohary,
2004b) and zooplankton (Hambright et al., 2007) in Lake Kin-
neret, and from the literature. The following parameters were
measured experimentally for some or all of the 5 phytoplank-
ton groups simulated: phosphorus uptake kinetics parameters
(turnover time, maximum uptake rate, bioavailable P), growth
rate as a function of water temperature and related param-
eters (optimum temperature, maximum temperature, Q10),
cellular quotas of C, N, P, Chl a, dry weight and wet weight.
In situ nitrification rates were measured using 15N. Measure-
ments of bacterial abundance, size and biomass, production
and respiration rates were also conducted. The ecological
parameters used in this study were set after a sensitivity anal-
ysis of the parameters was carried out using the 1D model
simulations over a 2-year period (1997–1998; M. Hypsey, per-
sonal communication, 2006; Zohary et al., 2006).

3.2.4. Models set-up
The simulations are carried out for a period of 160 days, start-
ing in November 1999; from the end of the stratified period
to the onset of the stratification period in spring. The same

inflow and meteorological data and initial conditions for all
the variables needed are used in both models (1D and 3D).
The simulations are carried out with only one inflow, the Jor-
dan River. The Mekorot data are used for the initial conditions,
after averaging them over the sampling stations. Temperature
data collected at station A is used to initialize the model runs.
Meteorological data from Tabha, 1 km offshore from KLL, is
used to force the free surface. The same ecological parame-
ters are also applied in the simulations with the 1D and 3D
hydrodynamic model.

3.3. Patches: analytical model

Patchiness of phytoplankton can occur with different patterns
and length scales depending on the underlying physical mech-
anisms that affect their evolution. For instance, bands of dense
concentration of organisms are characteristic of internal wave,
while sharp transitions may be generated by fronts (Chiffings
and McComb, 1981; Franks, 1997). Several studies, using con-
stant growth rate (KiSS model; Kierstead and Slobodkin, 1953;
Hillmer and Imberger, 2007a) and non-linear dynamic pop-
ulation (Steele and Henderson, 1992; Brentnall et al., 2003),
have shown the role of diffusion and biological processes in
determining the length scale of the patterns, as their relative
importance varies.

In order to investigate the underlying mechanisms respon-
sible for patchiness in Lake Kinneret and to assess the role of
the biogeochemical and dispersive processes, the analytical
solution of the 1D diffusion-reaction equation is used. The 1D
equation is:

∂C

∂t
= ∂

∂x

(
k

∂C

∂x

)
+ �(x, t)C (1)

where x is the spatial coordinate, t the time, C the phytoplank-
ton concentration, k is the diffusion coefficient (e.g. m2 s−1)
and � is the net growth rate (e.g. s−1). The analytical solution
of this equation, in a still water column, after applying scaling
analysis, and with the initial condition defined by a Dirac delta
function, is given by (Hillmer and Imberger, 2007a):

C∗(�, �) = M∗
√

4��
exp

(
− (�)2

4�

)
exp(�) (2)

where � = x/L, � = t/T and C* = C/C0 are the scaled variables and
C0 (�g Chla L−1) is the maximum concentration. The charac-
teristic length and time scales have been chosen as L = (k/�)1/2

and T = 1/� respectively. The slug of mass, M* = M/C0, is intro-
duced initially at the origin. This solution shows the evolution
of a phytoplankton patch subject to the interaction between
diffusion and growth rate.

In this study, the boundary of a patch of phytoplankton is
defined arbitrarily as the distance at which the concentration
is 30% of the maximum concentration in the patch. An effec-
tive radius of the patch is calculated as the square root of the
area of a closed contour associated with the boundary con-
centration (30% of the maximum). The concentration gradient
within the patch is then obtained by estimating an effective
radius for different specific concentrations in the patch, after
subtracting the background concentration.
The analytical solution obtained (Eq. (2)) is then compared
with the phytoplankton concentration of horizontal patches
observed in the field and in the 3D simulation. This is done
by applying a least-squares fit of the analytical solution to the



Fig. 2 – Spatial distribution of chlorophyll concentration
averaged over the upper 10 m of the water column. (a) 31
October 1999, (b) 1 February 2000, (c) 1 May 2000 and (d) 18
July 2000. Data were collected from the field-sampling
s
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oncentration gradient of the patches. This analytical solution
s evaluated at � = 1, the time equal to the growth time scale,
/�. A value of 17 m2 s−1 for the dispersion coefficient is used
or data between April and December. For the rest of the time,
he coefficient is estimated as a function of the scales of the
atches (Okubo, 1971). A patch-averaged net growth rate is
btained in the field and in the model as a result of the least-
quares fitting process.

. Results and discussion

.1. Spatial patterns

everal mechanisms may explain the origin of phytoplankton
atches in Lake Kinneret (Fig. 2). For instance, field obser-
ations showed that during winter the Jordan River inflow
s diverted westwards after entering the lake and continues
outhwards along the western shore of the lake. This behav-
or of the flow is due to the action of the Coriolis forcing that
enerates a counterclockwise circulation in the lake (Serruya,
974). 3D simulations with a conservative tracer corroborated
his behavior (not shown). Thus, the Jordan River acting as a
ource of nutrients enhances the productivity along the west-
rn side during the late winter months. Another factor that
ay favor heterogeneous conditions is light. Light is a limiting

actor for growth when the depth of the mixed surface layer
s larger than the trophogenic depth. In this case, the phyto-

lankton assemblage does not have sufficient light for growth
s they are mixed down in the water column (Huisman et al.,
999; Ptacnik et al., 2003). In this lake, light appeared more
vailable near the western shore of the lake where the surface
layer was consistently shallower due to the westerly winds.
Motile species are also likely to cause patchy conditions, since
their movement capabilities make them less susceptible to
vertical shear and thus feel a smaller rate of horizontal disper-
sion. In summary, the effect of the Jordan River, the spatially
variable light limitation and the presence of motile species
represent sources of spatial variability of phytoplankton in
this lake.

Field data and 3D numerical results, averaged over the
upper 10 m of the water column, are analysed to determine
the characteristic length scale of the patterns and to identify
the main processes involved in their evolution. The results of
the least-squares fit using Eq. (2) show that the concentration
curves of the patches, obtained from the analytical solution,
field data and numerical data, coincide. This indicates that the
evolution of the patches studied is similar and governed by
the same processes. Thus, from this analysis, the horizontal
dispersion coefficient and the rate of phytoplankton growth
appear to control the size of the patches, whereas, as men-
tioned above, different mechanisms may influence the degree
of patchiness and the geographic location within the lake.

In the field, the size of the patches varies approx. between
4.5 and 9 km without any seasonal trend (Table 1). This lack
of seasonal variation is attributed to the correspondence
between low values of growth rate and diffusion coefficient,
during the non-stratified period, and high values of growth
rate and diffusion coefficient, during the stratified period
(Berman and Pollingher, 1974; Serruya, 1975). The 3D simu-
lation shows patches varying from 1.5 to 7 km, with smaller
patches during the non-stratified period. This analysis yielded
an almost constant growth rate during the simulation period
(Table 1). Overall, the results show that the 3D model is able to
capture the scale of the patterns by properly reproducing the
role of horizontal diffusion and biogeochemical processes in
their formation.

The results show that the size of the patches, Lp, from both
the field and the 3D model are one to three times L = (k/�)1/2,
the length scale at which diffusion balances the growth rate
(Table 1). Thus, it could be stated that patches from the
field and the simulations have a very similar characteristic
length scale, proportional to the square root of the diffusivity
(∼k1/2; Table 1; Fig. 3). This parameter can be used to estimate
the response of a system to a perturbation by distinguish-
ing different kind of patterns’ evolution. For instance, when
k/� → (basin scale)2, a patch generated by an external forcing
would be eventually limited by the basin scale. In contrast,
when k/� � (basin scale)2, a patch would tend to grow locally
in a confined area. Hence, L can be used as a criterion to
validate the assumption of the one dimensionality of phyto-
plankton patchiness: if L is much larger than the basin scale,
the system is expected to be characterised by a homogeneous
horizontal concentration. In the case of Lake Kinneret, the 1D
assumption, valid when k/� � (basin scale)2, does not appear
to be appropriate. However, the potential impact of applying
this assumption on modelled evolution of the phytoplank-
ton biomass is assessed in the next sections. The comparison

between a 1D and a 3D model is used to address the issue
of differences in the patterns’ behavior imposed by the rela-
tionship between horizontal diffusion and phytoplankton
growth.



Table 1 – Characteristic of patches in the field and in the 3D model

Sampling time k (m2 s−1) Lp (km) � (d−1) T (d) r2 L (km)

Field data
31/10/1999 17 8.6 0.11 9.1 0.98 3.7
31/10/1999 17 4.4 0.43 2.3 0.99 1.8
28/11/1999 17 7.7 0.41 2.4 0.98 1.9
2/1/2000 17 9.3 0.06 16.7 0.98 4.9
1/2/2000 6.3 7.9 0.07 13.9 0.97 2.7
28/2/2000 6.8 7.8 0.05 20.4 0.97 3.5
4/4/2000 17 4.6 0.40 2.5 1 1.9
1/5/2000 17 7.9 0.12 8.3 0.99 3.5

3D model
12/12/1999 17 7.2 0.15 6.7 1 3.1
31/12/1999 17 7.1 0.12 8.3 0.998 3.5
16/1/2000 2.3 3.4 0.22 4.5 0.92 1.0
8/2/2000 0.9 1.5 0.23 4.3 0.98 0.6
19/3/1999 1.7 2.6 0.19 5.3 0.97 0.9
22/3/1999 17 2.7 1.40 2.9 0.99 1.0
31/3/1999 17 6.0 0.19 5.3 0.98 2.8

ch, � i
ion to

grows higher in the 1D than in the 3D model, and by March
the dinoflagellate clearly dominates in the 1D simulation.

In the 1D model, the total chlorophyll (Chl a), averaged over
the 10 m surface layer, remains constant with time (after the
k represents the diffusion coefficient, Lp represents the size of the pat
coefficient (obtained from the least-squares fit of the analytical solut
in the 3D numerical results), and L is the characteristic length scale.

4.2. Comparison of results between the 1D and 3D
numerical models

4.2.1. Chlorophyll concentration
Phytoplankton biomass in Lake Kinneret is generally dom-
inated by the dinoflagellate P. gatunense in spring (Berman
and Pollingher, 1974). But from November 1999 to October
2000, the phytoplankton biomass appears to consist mainly of

nanoplankton, with Peridinium as the second group, accord-
ing to KLL data (not shown). The numerical results from both
models, volume-averaged over the upper 10 m of the water
column, maintain overall the dominance of nanoplankton

Fig. 3 – Comparison of patch characteristics from field data
and 3D simulation using a 1D diffusion-reaction equation
on: 31 Oct 1999 (�, field data), 12 Dec 1999, (©, model
results), 1 Feb 2000 (�, field data), 8 Feb 2000 (�, model
results), 4 April 2000 (�, field data) and day 22 March 2000
(�, model results).
s the growth rate, T is the growth time scale (1/�), r2 is the correlation
the concentration gradient of the patches observed in the field and

and Peridinium over the other phytoplankton groups (Fig. 4).
However, the results show some difference between the two
models, especially after Feb. In this second half of the sim-
ulation period, the biomass of nanoplankton and Peridinium
Fig. 4 – Comparison of phytoplankton biomass between
simulations with 1D (dotted line) and the 3D (thick line)
models. (a) nanophytoplankton, (b) Peridinium, (c)
Microcystis, (d) N2-fixing cyanobacteria and (e) diatom.



Fig. 5 – Temporal evolution of total chlorophyll over the
10-m surface layer expresses as: (a) volume-averaged (thick
line), minimum (thin line) and maximum (dotted line)
calculated for the 3D model, (b) volume-averaged (thick
line), minimum (thin line) and maximum (dotted line)
calculated for the 1D model and (c) comparison between the
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olume-averaged 1D model (dotted line), volume-averaged
D model (thick line) and field data (©).

pin-up of the model) until March (Fig. 5a). Afterwards, the Chl
begins to increase due to the increase in the biomass of

eridinium and Microcystis (see Fig. 4b and c). These species
roduce a vertical gradient as it can be concluded from the
ifference between maximum, mean and minimum Chl a

n the upper 10 m of the water column. In the 3D simula-
ion, two periods can be observed (Fig. 5b). During Nov and
ec, the average concentration of Chl a remains stable (after

he spin-up of the model) with a low variability expressed as
hlamax/Chlamin < 3, where Chlamax and Chlamin are the max-

mum and minimum Chl a concentration in the upper 10 m of
he surface layer. During the second period (Jan to April), Chl
has a peak concentration in January that coincides with the

ncrease in the nutrient input from the Jordan River. Then, the

ean concentration decreases again to reach a new lower sta-

le value, while the variability, Chlamax/Chlamin, increases to
8. Unlike the 1D simulation, the increase of the Peridinium and
icrocystis when the stratified period begins is not observed.

ig. 6 – Vertical temperature structure at station A. Comparison b
imulation.
From Fig. 5c, it is possible to observe that the predicted mean
chlorophyll concentration is similar for both models, and also
compare well with field data (monthly averaged over the 10 m
surface layer) for the first two months. For the remaining
months, however, these three data sets clearly diverge.

4.2.2. Factors affecting the difference in chlorophyll in the
models
To gain insight into the reasons for the difference in Chl a
between the two models, other physical, biological and chem-
ical variables are analysed. In terms of the hydrodynamics,
since the 1D model only simulates vertical variations, the
only possible comparison between the two models is by inves-
tigating the temperature vertical structure. In addition, the
nutrient concentration in the water column and the physi-
ological condition of the phytoplankton is investigated. These
variables are volume-averaged over the 10 m surface layer.

4.2.2.1. Vertical temperature structure. Comparison between
the vertical temperature profile of the 1D simulation and of
the station A in the 3D simulation (see Fig. 1 for location)
shows that both models present a similar temporal evolu-
tion, with some differences during March and April, when the
thermocline deepens and the surface temperature increases
(Fig. 6b and c). Although these differences could lead to differ-
ent turbulent conditions, and hence, affect the development
of Peridinium (Pollingher and Zernel, 1981; Thomas and Gibson,
1990), this factor does not seem to provide a satisfactory
explanation for the divergence in the Chl a concentration. In
addition, both models’ result agree well with field data from
station A (Fig. 6).

4.2.2.2. Nutrient concentration in the water column. The sim-
ulated concentration of ammonium (NH4) and nitrate (NO3)
from both models and field data, all averaged over the 10
m surface layer, follow a similar trend (Fig. 7). In contrast,
the concentration of phosphorus (PO4), averaged over the
10 m surface layer, is larger in the 1D than in the 3D sim-

ulation during Nov and Dec, although they become similar
during the Jordan River inflow period (Fig. 8). Both numeri-
cal results yield values of phosphorus (PO4) between 1 and
2 orders of magnitude smaller than the observed in the field

etween (a) field data, (b) 3D simulation and (c) 1D



Fig. 7 – Comparison between numerical results from the 1D
(thin line) and the 3D (thick line) simulations for
ammonium (NH4) and nitrate (NO3) averaged over the

upper 10 m of the water column. The symbol © represents
field data averaged monthly of the spatial sampling.

data. Discrepancies on the phosphorus data between field and
numerical results have also been obtained in previous stud-
ies. Bruce et al. (2006), using a different configuration for the

coupled DYRESM-CAEDYM (1D model), also obtained a poorer
match in the phosphorus data than in the rest of the variables
when replicating the field data. In this regard, the quality of
the phosphorus analysis by Mekorot at low concentrations in

Fig. 8 – Temporal evolution of the phosphate concentration
in the lake and phosphate from the input. (a) Comparison
between numerical results from the 1D (thin line) and the
3D model (thick line) for phosphate (PO4) averaged over the
10 m surface layer. The symbol © represents field data
averaged monthly over the spatial sampling arrangement.
(b) Input of (PO4) from the Jordan River.
the surface waters has been questioned. Hence, for the pur-
pose of this study the results obtained here are considered
acceptable. In any case, the low concentration of PO4 suggests
that it is cycled rapidly through the biota in the water column.

4.2.2.3. Phytoplankton physiological condition. The physiologi-
cal condition of the phytoplankton is studied by analysing the
phosphorus limitation function used in the ecological model,
averaged over the upper 10 m of the water column. Phospho-
rus is chosen since this is the main limiting nutrient for the
main phytoplankton group (nanoplankton and Peridinium).
The limitation function is given by:

f (P) =
(

IPmax

IPmax − IPmin

)(
IP − IPmin

IP

)
(3)

where IP is the internal phosphorus concentration, and IPmax

and IPmin are the higher and lower parameters for the internal
phosphorus concentration set in the ecological model. This
limitation function varies from 0 to 1, and the higher its value
the less limited the phytoplankton is due to phosphorus. Dur-
ing Nov and Dec, both the mean and the maximum value for
the limitation function in the 3D model are equal or lower
than the mean value obtained from the 1D model (Fig. 9). This
situation is reflected in the total chlorophyll; mean and max-
imum values from the 3D model are equal or lower than the
1D results. The lower phosphorus availability in the 3D model
seems to be accounted for by the lower phosphorus concen-
tration during this period (Fig. 8).

During the remaining months (Jan–Apr), the situation is
clearly different. Phosphorus from the Jordan River is incor-
porated in the system producing an abrupt increase in the
averaged limitation function in both models (Fig. 9). The impli-
cations of this increase are only apparent in the chlorophyll
concentration of the 3D simulation (Fig. 5). In this case, the
Chl a increases is due to the response of the nanoplankton,
since the biomass of Peridinium is not affected. After this peak,
the mean limitation function decreases in both phytoplank-
ton groups, and in both models. However, a high maximum
limitation function remains in the 3D simulation. The results
also shows that both group of phytoplankton present different
physiological conditions, with nanoplankton the most phos-
phorus limited in both models, and thus the more susceptible
to changes in phosphorus availability. A comparison between
conservative tracer and phosphorus behavior obtained from
the 3D simulation (not shown) shows that the nutrients enter-
ing the system are taken up very fast, before being dispersed,
which make them unavailable to the rest of the lake. This
results in a localised effect that is especially evident in the
nanoplankton behavior. Thus, the input from the river leads
to an increase in the limitation function (or a decrease in phos-
phorus limitation) that explains the behavior of the maximum
and mean limitation function described previously.

4.2.3. Patterns in the system
To understand the dynamic of the formation of patches, their
characteristics are analysed in terms of the physiology of

the phytoplankton constituting them. The spatial correlation
coefficient between the chlorophyll concentration and the
phosphorus limitation function, obtained from the 3D simu-
lations, is calculated to assess their relationship (Fig. 10). Both



Fig. 9 – Phosphorus limitation function in the 10-m surface layer. Volume-averaged (thick line), minimum (dotted line) and
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iomass and limitation function are volume-averaged over the
pper 10 m of the water column. In particular, nanoplankton
nd Peridinium biomass, as the main phytoplankton groups,
nd their phosphorus limitation functions are analysed. In the
ase of nanoplankton, the results show that, except from Dec
o middle Jan (after the spin-up period) when the correlation
eaches very low values, patches with higher chlorophyll con-
entration are associated with higher limitation function, or
quivalently, lower internal phosphorus limitation. The low
orrelation, during Dec and Jan, indicates that nutrients are
ot an important factor and patches arise by other mecha-
isms, whereas the increase in nutrients due to the Jordan
iver seems to have generated the increase in Chl a. As for
eridinium, the situation is completely different (Fig. 10); there

s a low and negative correlation between internal availabil-
ty of phosphorus and Peridinium biomass during most of the
imulation period. This implies, again, that there are other
actors, rather than phosphorus, triggering the generation of

ig. 10 – Temporal evolution of the correlation coefficient
etween phytoplankton biomass and its limitation function
alculated from the 3D simulation. Nanoplankton is
epresented by a thick line and Peridinium by a thin line.
e-averaged calculated from the 1D numerical results (thin

patches (for instance, their motility), even though the increase
in the phosphorus input from the river affected the Peridinium
evolution, to some extent, as the evolution of the limitation
function suggested.

In summary, the Chl a from the two models shows overall
similar trends, although there are some differences, especially
in the second half of the simulation period. During the first
period (Nov–Jan), the effect of the internal cycling is more
important than the effect of the external input. Also, there
are no major patches in terms of concentration or variabil-
ity. Therefore, the observed differences could be attributed
mainly to intrinsic differences, that is, to differences in the
internal processes in the models due to spatial variations in
the lake given by the set-up. These differences, however, could
be considered low in practical terms, and also considering the
uncertainties associated with some ecological parameters in
the model. In the second period, the nutrient input becomes
more important. The input from the Jordan River proves to be a
source of patchiness, increasing the degree of heterogeneities
in terms of variability, that added to the intrinsic differences
observed between the two models in the first period, results in
a higher divergence between the 1D and the 3D results. In this
study, we focus on the second source of differences expressed
as phytoplankton patchiness.

4.3. Effect of different mechanisms of constraints in
phytoplankton biomass distribution: 1D vs. 3D

The occurrence of patches requires two conditions: a forcing
mechanism and a free mechanism for the growth of patterns.
The forcing mechanism refers to an external forcing or
perturbation that generates the differential concentration.
The free mechanism controls the evolution of the patches; for
instance, dispersion. The dispersive processes, acting against
the formation of patterns, are balanced by the phytoplankton

growth to maintain the patches. The 3D and 1D approaches
differ radically in the way that forcing and free mechanisms
are modelled horizontally. In the 1D approach, forcing is
represented as if it was spatially uniform. In the case of



Fig. 11 – Effect of patches in modelled phytoplankton
concentrations. (a) Temporal evolution of the difference in
total chlorophyll between the 1D and the 3D model in the
10-m surface layer and (b) intensity of variability
(Chlmax/Chlmax) in the 3D model results in the 10-m surface
layer as a function of the difference in total chlorophyll
between the 1D and the 3D model in the 10 m surface layer.

The symbol (–) represents the mean of the background
difference.

diffusion, it is represented as if it acted rapidly enough to stop
patches from forming. The implications of this lack of hor-
izontal heterogeneity in the 1D approach for phytoplankton
biomass are investigated by analysing the extent of variability
in the system as a function of the difference between the Chl
a from the 1D and 3D simulations (Fig. 11a). Low differences
between the two models (<2 �g (Chla) L−1) correspond to low
variability (Chlamax/Chlmin < 5). Differences between the two
models from 2 to 6 �g (Chla) L−1 correspond to a variability
between 5 and 28. And high differences between the two
models (6–10 �g (Chla) L−1) are associated with medium
variability varying from 5 to 15.

The difference, as explained before, during the low vari-
ability period is attributed to intrinsic differences between
the models, and yields a value of 1.5 �g (Chla) L−1. This value
is calculated during Dec when the concentrations showed a
stable behavior. It is assumed that this value represents the
background or intrinsic difference during the rest of the sim-
ulation (Fig. 11b). During the period with high variability, i.e.
from Jan to March, when the difference may be associated
only with the heterogeneity caused by the nutrient input, the
mean difference in concentration of chlorophyll between the
1D and the 3D model is 2.5 �g (Chla) L−1 (above the intrinsic
difference calculated). This represents a reduction in concen-
tration of almost 30% over the 1D results. During the last
period, a mean difference in concentration of 5 �g (Chla) L−1 is
observed, representing a 40% reduction over the 1D results. In
this case, though, the difference originates from the capability
of the motile species (Peridinium) to migrate and grow in the 1D
model, by taking advantage of the changes in the temperature

and stratification. The 3D model could not reproduce this situ-
ation as the nutrient-limited physiological condition is much
higher and thus the phytoplankton is unable to recover even
under favorable physical conditions.
5. Conclusions

It is shown that the horizontal diffusion plays a key role in the
evolution of patches in Lake Kinneret. The input from the Jor-
dan River is a strong source of patchiness, while the motility
of phytoplankton is shown to combat horizontal shear disper-
sion and thus leads to smaller size patches.

Differences in the representation of forcing and free mech-
anisms of patterns’ growth may lead to different results when
modelling phytoplankton abundance and temporal dynam-
ics. Results from the 3D and the 1D approach applied in
Lake Kinneret present differences (30%) in the basin scale
averaged chlorophyll concentration, using the same ecolog-
ical model parameters. Results suggest that the variability
due to the formation of marked patches plays a role in these
differences. Although these differences may not be consid-
ered dramatic for the simulation period of this study, they
highlight the fact that the 1D and 3D models diverge. This
divergence, as it was shown, becomes evident during the
period when patches presented more variability due to a
very localised input source. In addition, an important point
that needs to be considered is that this divergence could
increase as the simulation is extended. And this could lead
to totally different scenarios, not only with different Chl a
concentration but also different phytoplankton composition,
as it is observed during the last month of the simula-
tion.

As mentioned before, the question that arises is how
appropriate is a 1D model to study the dynamic of a het-
erogeneous system. This question is especially relevant in
the presence of phytoplankton patches in the system, where
differential physiological and biogeochemical characteristics
interact with non-linear processes. Under these conditions,
the biomass average is not necessarily linearly related to the
averaged environment. The results in this study indicate that,
even though a 1D model may satisfactorily reproduce the
vertical temperature characteristic in a lake, this is no guar-
antee that such a model is satisfactory for simulating the
ecological behavior. Satisfactory results may not be achieved,
unless the ecological parameters are calibrated for each con-
dition imposed by physical processes. In other words, the
choice of ecological parameters appears to depend on the
pattern’s dynamics, e.g. not only on the formation, evolution
and properties of the patterns but also on the variation of
the underlying physical processes causing them. This implies
that the calibration process in a 1D approach is both site
and processes specific; it implicitly incorporates the effect of
the presence of patchiness, caused by physical factors, into
the physiological description of the state variables in the 1D
ecological model. Clearly, such a procedure is good for interpo-
lating lake behavior, but will produce poor results when used
to extrapolate the ecological response of a lake to a new type
of forcing.

Finally, in this study the length scale given by (k/�)1/2

appeared as a criterion to estimate the capability of the sys-

tem to generate patches and assess the appropriate approach.
However, the differential concentration that may result from
the patches generation required a 3D model simulation to
assess the quantitative impact on the total biomass.
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