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Microeconomic public transport models aimed at maximizing social benefits usually consider demand in
an aggregate manner. In this paper we examine the effect of this approach on the optimal values of fre-
quency and vehicle size by comparison with models where demand is described in detail as a matrix of
flows between every station in a single line service. The theoretical analysis and the numerical examples
suggest that the spatially aggregated model underestimates optimal frequency and overestimates vehicle
size.
1. Introduction

Microeconomic models of public transport (usually a single
line) are based on aggregated demand description, that is, total rid-
ership along a line and average journey length (Mohring, 1972;
Jansson, 1980; Jara-Díaz and Gschwender, 2003). This way, aggre-
gation is spatial rather than temporal, as most public transport sys-
tems are designed for representative periods of large demand. The
goal is to maximize social benefit or minimize total costs (consid-
ering both users and operators), finding optimal levels for the deci-
sion variables such as frequency, vehicle size, number of bus stops
and spacing between lines.

Presently, it is feasible to capture more precise demand patterns
in cases where either the payment device or the specialized infra-
structure in buses and stations can provide not only passenger
counts, but also exact identification of the origin and destination
of the passenger journey (Radio Frequency Identification cards
along with wide-range devices on bus doors, cameras, etc.). In this
paper we examine the effects of having different levels of aggrega-
tion regarding demand information in order to explore improve-
ments on the recommendations and conclusions obtained from
classical microeconomic models. Thus, we establish the optimal
conditions for the relevant decision variables (frequency and vehi-
cle size) on a public transport corridor with inelastic demand, in
cases where the demand data is only available at an aggregated le-
vel (at the level of an entire line, or ridership per direction of move-
ment) as well as cases in which it is feasible to obtain more
detailed information on the demand structure, like origin-destina-
tion matrices at the level of bus stops or number of passenger who
board and alight each bus at each stop.
).
In the following section analytical expressions for the optimal
frequency and vehicle size are developed for each case. A theoret-
ical comparison is presented in Section 3 regarding optimal fre-
quencies, and numerical experiments are conducted in Section 4.
We close with some relevant comments, conclusions and further
research in the final section.

2. Single line models with aggregate and disaggregate demand

2.1. Demand description

In what follows, a linear corridor is used as a representation of
a generic public transport system, which can correspond to either
a single isolated bus line or a line inserted within an existing net-
work of fixed topology (number and position of bus routes). The
corridor is one-dimensional, with two terminals (1 and N) and
two directions of circulation: direction 1 from 1 to N and direction
2 from N to 1, as shown in Fig. 1. We assume that passengers ar-
rive randomly to the stations, at a fixed rate, a reasonable
assumption for high frequency corridors (Seddon and Day, 1974;
Danas, 1980). The demand is treated parametrically in the pro-
posed formulations. Our purpose is to find the optimal value for
the design variables (in these developments, optimal frequency f
and vehicle size K) in order to maximize the social welfare of
the system, which in the case of inelastic demand is equivalent
to minimizing the total cost, taking into consideration both users
and operators. Users’ costs will include both waiting and in-vehi-
cle travel time, both of which depend on frequency, the latter be-
cause of the effect of boarding and alighting at stations. As the
location of bus stops along the corridor is given, access time is
not considered.

As mentioned, the major objective of this paper is to compare
the analytical expressions obtained for the optimal design vari-
ables under different demand aggregation levels. First, a model
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Fig. 1. Generic public transport corridor.
based upon aggregated demand is formulated in two versions, one
whereby only the total cycle demand y is know (Model 1 or M1)
and a second model relying on aggregated demand information
per direction of circulation, say y1 and y2 on direction 1 and 2,
respectively (Model 2 or M2). In both cases the average journey
length is assumed to be known. Then, a model relying on disaggre-
gated demand is presented (Model 3 or M3) assuming that a stop-
to-stop OD matrix is available considering N stations in one direc-
tion (N�1 segments), as shown in Fig. 1. Going from station 1 to N
is called direction 1; direction 2 goes from station N to 1.

In the models we describe next, the following parameters are
assumed known and fixed:

L: Length of the corridor [km].
Rk: Bus movement travel time under normal service between

stations k and k+1, including acceleration and deceleration times
at bus stops [min].

b: Marginal passenger boarding time [s/pax].
kkl: Trip rate between stations k and l [pax/h] (used for M3). This

demand is assumed fixed over the studied period, defining a trip
matrix of the form:
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Additionally, for M3 also, the following functions need to be defined
for the formulation of the cost functions:

Passenger boarding rate at station k, whose destination is
among stations l1 and l2 inclusive [pax/h]: kþk ðl1; l2Þ ¼

Pl2
l¼l1

kkl

Passenger alighting rate at station k, whose destination is
among stations l1 and l2 inclusive [pax/h]: k�k ðl1; l2Þ ¼

Pl2
l¼l1

klk

Thus, from these functions we can define the following
quantities:

Passenger boarding rate at station k, direction 1: k1þ
k � kþk

ðkþ 1;NÞ ¼
PN

l¼kþ1kkl

Passenger alighting rate at station k, direction 1: k1�
k � k�k

ð1; k� 1Þ ¼
Pk�1

l¼1 klk

Passenger boarding rate at station k, direction 2: k2þ
k � kþk

ð1; k� 1Þ ¼
Pk�1

l¼1 kkl

Passenger alighting rate at station k, direction 2: k2�
k ¼ k�k

ðkþ 1;NÞ ¼
PN

l¼kþ1klk

We assume that the boarding process dominates over the
alighting process, and therefore, in the model only the first phe-
nomenon (quantified through the parameter b) is considered.

From these definitions, we can relate the demand defined in the
context of the three models as follows:

y ¼ y1 þ y2 ¼
XN

k¼1

k1þ
k þ k2þ

k

� �
: ð1Þ

Besides, the vehicle arrival distribution to the stations is crucial for
a correct computation of the passenger waiting time, which de-
creases as the headways become more regular. Following Delle Site
and Filippi (1998), two possible bus arrival patterns to stations are
considered, namely scheduled service (regular headways) and ran-
dom bus arrivals (Poisson process). The former is associated with
systems with low variability in both running and passenger transfer
times at bus stops, for instance special bus segregated corridors
with efficient transfer operations at stops. In this case the average
waiting time turns out to be half of the headway. Random arrivals
are characteristic of networks with high variability in running times
(poorly controlled bus systems); in this case the expected waiting
time is equal to the average headway.

Recalling that the pursued objective is to minimize the total
system cost expression with respect to the relevant design vari-
ables (frequency and vehicle size), next we define analytically
the different cost components considered for the three models,
from both the users and operator standpoints. The former com-
prises the waiting and in-vehicle time costs while the latter com-
prises two operational cost expressions associated with distance
and time, respectively.

2.2. Users’ costs

The waiting time cost (Cw) is the product between the total ex-
pected waiting time experienced by all customers and the subjec-
tive value of waiting time (Pw). If x is an auxiliary binary variable
(equals to 1 if buses arrive Poisson, 0 if buses arrive at constant
headway, as discussed earlier) we can compute the waiting time
cost component as follows:

Cw ¼ Pw
1þ x

2
y
f
; ð2Þ

where f is the operational frequency, computed as the inverse of the
headway. Expression (2) applies to all models, regardless of the de-
mand aggregation level applying expression (1).

The in-vehicle time cost (Cv) is the product between the total ex-
pected in-vehicle time and the subjective value of the in-vehicle
time (Pv).Unlike the waiting time component Cw, Cv adopts a differ-
ent form depending on the demand aggregation level. For the M1
model, in-vehicle travel time is expressed as a fraction of the total
cycle time, i.e. the ratio between the average journey length l and
the total route length 2 L (Mohring, 1972; Jansson, 1980; Jara-Díaz
and Gschwender, 2003). On the other hand, for the M2 model, it is
possible to split this component per direction, as the average jour-
ney length on direction i (namely li) of journey over the route
length (L). Moreover, the cycle time tc is computed as the sum of
the running time by direction (denoted as Ri) and the total dwelling
time at stations (computed as the total expected passenger board-
ing time). The latter component is computed as the product be-
tween the average number of passengers boarding a vehicle, yi/f,
and the marginal boarding time. Analytically, for M1:

Cv ¼ Pv
l

2L
R1 þ R2 þ b

y
f

� �
y: ð3Þ

For M2:

Cv ¼ Pv
l1

L
R1 þ b

y1

f

� �
y1 þ

l2

L
R2 þ b

y2

f

� �
y2

� �
: ð4Þ

For M3 no approximation is needed; travel time tkl for each OD pair
(k,l) is given by

tkl ¼

Pl�1

i¼k
Ri þ b

k1þ
i
f

� 	
if k < l

Pk
i¼lþ1

Ri�1 þ b
k2þ

i
f

� 	
if l < k

8>>><
>>>:

ð5Þ

Then, multiplying (5) times kkl, adding over all OD pairs and multi-
plying by Pv. the total in-vehicle travel time cost is obtained in mon-
etary units. Analytically,



Cv ¼ Pv

XN

k¼1

XN

l¼kþ1

Xl�1

i¼k

Ri þ b
k1þ

i

f

 !" #
kkl

(

þ
XN

k¼1

Xk�1

l¼1

Xk

i¼lþ1

Ri�1 þ b
k2þ

i

f

 !" #
kkl

)
: ð6Þ
2.3. Operator cost

In this computation we take into account two components for
the operator cost, as some items are better represented on a tem-
poral basis (e.g. labor) and others over a spatial basis (running cost,
maintenance, etc.). Following Jansson (1980) and Oldfield and Bly
(1988), a linear dependency on the vehicle capacity K is assumed
for the operator cost functions. Let us denote c(K) as the cost per
vehicle-hour ($/veh-h) and c,(K) as the cost per vehicle-kilometer
($/veh-km). Analytically,

cðKÞ ¼ c0 þ c1K c0ðKÞ ¼ c00 þ c01K: ð7Þ

Therefore, the operator cost can be expressed as

Co ¼ cðKÞF þ c0ðKÞvF; ð8Þ

where v is the commercial speed and F is the fleet size given by fre-
quency f times cycle time tc discussed in Section 2.2. Thus, (8) can
be rewritten as a function of tc and f as follows:

Co ¼ cðKÞftc þ 2c0ðKÞfL: ð9Þ

Finally,

Co ¼ f cðKÞ R1 þ R2 þ b
y
f

� �
þ 2c0ðKÞL

� �
; ð10Þ

which applies for the three models.
2.4. Optimal value of the frequency and the vehicle capacity

The total cost minimization problem comprises the joint mini-
mization of both users’ and operators’ costs, encompassing Eqs.
(2), (3), (4), (6) and (10). In order to find the optimal value of the
variables f and K, first order conditions (FOC) are applied. The vehi-
cle capacity is adjusted in order to accommodate the demand of
the most loaded segment along the corridor, qmax, which can be
easily obtained from the OD matrix in M3. For models M1 and
M2, this value must be assumed to be known (or accurately esti-
mated). Then, by defining a safety factor g e (0,1] in order to have
reserve capacity to absorb the randomness in the demand, and
computing K = qmax/gf, the FOC yield the following values for the
optimal frequency for M1, M2 and M3, respectively:
f � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe

1þx
2 yþ Pvb l

2L y2 þ c1
qmax
g by

c0ðR1 þ R2Þ þ 2c00L

s
; ð11Þ

f � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe

1þx
2 yþ Pvb

l1
L y2

1 þ
l2
L y2

2

� 	
þ c1

qmax
g by

c0ðR1 þ R2Þ þ 2c00L

vuut
; ð12Þ

f � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe

1þx
2 yþ Pvb

PN
k¼1

PN
l¼kþ1kkl

Pl�1
i¼kk

1þ
i þ

PN
k¼1

Pk�1
l¼1 kkl

Pk
i¼lþ1k

2þ
i

� 	
þ c1

qmax
g by

2 c0
PN�1

k¼1 Rk þ c00L
� 	

vuuut : ð13Þ
An expression similar to (11) was previously found by Jansson
(1980). Instead of assuming known the maximum load qmax, the
author uses the average load ( l

2L y) amplified by a factor greater
than 1, in order to have enough capacity to accommodate demands
above the average. Notice that in real systems, the operators nor-
mally have a good estimation of the value of qmax regardless of
the aggregation level of the demand, which validates the three
expressions.

3. Analytical comparison

By looking at expressions (11), (12) y (13), we can observe that
the only difference in the optimal frequency values appears in the
term associated with the in-vehicle travel time within the square
root because in-vehicle time cost is quadratic with the demand.
Therefore, the relevant comparison involves

l
2L

y2; ð11aÞ

l1

L
y2

1 þ
l2

L
y2

2; ð12aÞ

XN

k¼1

XN

l¼kþ1

kkl

Xl�1

i¼k

k1þ
i þ

XN

k¼1

Xk�1

l¼1

kkl

Xk

i¼lþ1

k2þ
i :: ð13aÞ

Note first that in systems where the stop time at stations is fixed
(b = 0), the three formulae (Eqs. (11)–(13)) provide the same result.
On the other hand, by writing the average journey time length as a
function of the disaggregated quantities we obtain

l1 ¼
L

y1ðN � 1Þ
XN

k¼1

XN

l¼kþ1

kklðl� kÞ;

l2 ¼
L

y2ðN � 1Þ
XN

k¼1

Xk�1

l¼1

kklðk� lÞ;

l ¼ L
ðy1 þ y2ÞðN � 1Þ

XN

k¼1

XN

l¼kþ1

kklðl� kÞ þ
XN

k¼1

Xk�1

l¼1

kklðk� lÞ
" #

:

First, we focus our analysis in models M1 and M2. Let us define Di as
the total distance traveled along direction i, that is, Di = liyi that
yields

D1 ¼
L

ðN � 1Þ
XN

k¼1

XN

l¼kþ1

kklðl� kÞ;

D2 ¼
L

ðN � 1Þ
XN

k¼1

Xk�1

l¼1

kklðk� lÞ:

Then (11a) and (12a) can be rewritten as follows:

l
2L

y2 ¼ D1 þ D2

2L
ðy1 þ y2Þ;

l1
L

y2
1 þ

l2

L
y2

2 ¼
D1

L
y1 þ

D2

L
y2:

After some algebraic work, comparing these two expressions is
equivalent to analyzing the sign of the expression (y1–
y2)(D2�D1).Then, expression (11) will be larger than (12) if either
(y1 > y2)K(D2 > D1) or (y1 < y2)K(D2 < D1), which is equivalent to
say that the traveled distance is the largest on the smallest demand
direction of movement. On the other hand, if the largest demand
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Fig. 2. Load profile, Los Pajaritos corridor.

Table 2
OD matrix, Los Pajaritos corridor

From/To 1 2 3 4 5 6 7 8 9 10

1 600 189 165 64 44 342 605 726 395
2 3620 11 10 4 3 20 35 42 23
3 790 38 5 2 1 10 18 22 12
4 1585 75 82 0 0 2 4 5 3
5 281 13 14 14 2 13 24 29 16
6 186 9 10 9 8 13 22 27 15
7 264 13 14 13 12 9 12 14 8
8 2631 125 135 130 117 86 107 36 19
9 337 16 17 17 15 11 14 18 67
10 4425 211 228 218 197 144 180 232 200

Table 1
Summary of the assumed model parameters

Parameter Value

N 10
Running time between station (min) 1
Distance between stations (km) 0.5
Subjective value of waiting time ($/h) 2700
Subjective value of travel time ($/h) 900
c0 (CLP/h) 1800
c1 (CLP/h-seat) 30
c00 (CLP/km) 400
c01 (CLP/km-seat) 1
Boarding time b (s/pax) 5
Safety factor g 0.9

The currency CLP is Chilean Pesos (US $ 1 � CLP 500).
direction matches the largest traveled distance (which is a very rea-
sonable intuitive assumption), the most aggregated model (expres-
sion (11)) underestimates the optimal frequency compared with
that obtained from the model that differentiates both directions be-
hind expression (12).

Now, let us compare formulae (12a) and (13a), i.e. M2 and M3.
By writing (12a) in a disaggregated way we have:

l1

L
y2

1 þ
l2
L

y2
2 ¼

D1

L
y1 þ

D2

L
y2

¼
XN

k¼1

k1þ
k

 ! XN

k¼1

XN

l¼kþ1

kkl
l� k

N � 1

 !

þ
XN

k¼1

k2þ
k

 ! XN

k¼1

Xk�1

l¼1

kkl
k� l

N � 1

 !

The previous expression must be compared against (13a). A priori, it
seems not possible to perform any comparison between both
expressions under a generic situation. In order to approach to the
solution, let us to examine some interesting particular cases. First,
let us examine the case of equal trip rates in each direction, that is

kkl ¼
k1 if k < l

k2 if k > l

�

In such a case, (12a) and (13a) yield the same result given by

N2ðN2 � 1Þ
12

ðk2
1 þ k2

2Þ: ð14Þ

Moreover, expression (11a) becomes

N2ðN2 � 1Þ
24

ðk1 þ k2Þ2: ð15Þ

Note that (15) is always lower or equal than (14). Besides, in this
case the average length of trip is the same in both directions.

Let us now see the case in which the number of stations equals
three (N = 3). In this case, (12a) and (13a) become, respectively (by
simplicity, we analyze only direction 1):

ðk12 þ k13 þ k23Þ
k12

2
þ k13 þ

k23

2

� �
; ð12bÞ

k12ðk12 þ k13Þ þ k13ðk12 þ k13 þ k23Þ þ k2
23: ð13bÞ

The comparison then is reduced to

2k12k23 þ k13k23; ð12cÞ
k2

12 þ k2
23 þ k12k13: ð13cÞ

Then, the relative value of the trip rates k will determine the value
of the optimal frequencies. Two particular cases:

(a) If k12 = k23, (12c) is equivalent to (13c) and both optimal fre-
quencies turn out to be the same.

(b) If k13 = k23 � k1 and k23 � k2, then if k1 > k2, (12c) is larger
than (13c) and consequently (12) is larger than (13); the
other case is analogous.

Therefore, we cannot establish a priori a ranking among optimal
frequencies obtained from the different models. That ranking
mostly depends upon the value of the matrix cells. It seems that
matrix heterogeneity increases the probability of getting different
values for the optimal frequencies from the various proposed mod-
els, which suggests that the concentration of trips is a relevant is-
sue when comparing the analytical recommendations obtained
from the different aggregation level models. In the next section,
we complement these analytical insights with the conclusions
from some numerical examples.
4. Numerical comparison

In this section we conduct some numerical computations of the
optimal design variables (frequency, vehicle and fleet size) ob-
tained by applying the different demand aggregation models
(M1, M2 and M3). We concentrate our analysis on two numerical
cases. One is the study of a public transport corridor in Santiago,
Chile, called Los Pajaritos, from where we have origin-destination
demand matrix for the most demanded morning peak hour on a
typical day of operation (MTT, 1998). Los Pajaritos is a corridor of
7 km., with 9 segments and 10 stations along each direction. The
second example is the experiment proposed by Delle Site and Filip-
pi (1998), where also a detailed station to station origin destination
demand matrix is available. The matrices used in both examples
were properly generated from real data of affluence at the level
of stations. In both examples, the assumed parameters are those
shown in Table 1 next.

Example 1. Los Pajaritos Corridor. The morning peak hour OD
matrix and the associated load profile are shown in Table 2 and
Fig. 2, respectively. Load imbalance between both directions of
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Fig. 3. Load profile, Delle Site and Filippi (1998) example.

Table 3
Optimal design variables, Los Pajaritos corridor

Model Operation Cw (CLP/min) Cv (CLP/min) Co (CLP/min) Ctot (CLP/min) Frequency (veh/h) Fleet size (veh) Cap veh (pax/veh)

M1 Scheduled 2152 42.594 23.784 68.530 215 94 74
M2 1876 40.500 25.834 68.210 247 103 64
M3 1876 40.500 25.833 68.209 247 103 64

M1 Poisson 4022 41.525 24.755 70.302 230 98 69
M2 3561 39.775 26.701 70.037 260 107 61
M3 3561 39.775 26.700 70.036 260 107 61
movement is evident. Results are summarized in Table 3. Models
M2 and M3 show similar results while M1 clearly underestimates
not only the optimal frequency but also the optimal fleet size.

Example 2. Delle Site and Filippi (1998). The morning peak hour
OD matrix and its load profile are shown in Table 4 and Fig. 3. In
this case, demand imbalance between directions is concentrated
in only a group of stations. Results for M1, M2 and M3 are summa-
rized in Table 5, which shows that optimal frequency increases
with the level of demand of information available, suggesting that
lesser information will result in an underestimation of the optimal
frequency. The fleet size remains unchanged. As the difference
among models only happens in travel time, Table 6 shows the
results of a sensitivity analysis increasing both travel time value
Pv to 1800 $/h and travel time between stations to 3 min (which
could represent a scenary of traffic congestion), in order to amplify
the weight of the in-vehicle time in the total cost function. The dif-
ference in optimal frequency becomes larger and the optimal fleet
size is now different for the three models.
Table 4
OD matrix Delle Site and Filippi (1998), example

From/to 1 2 3 4 5 6 7 8 9 10

1 29 14 64 4 3 3 1 1 25
2 14 15 70 4 4 3 1 1 27
3 5 5 49 3 3 2 1 0 19
4 8 7 4 18 15 12 4 3 111
5 74 63 35 0 5 4 1 1 37
6 4 4 2 0 0 5 2 1 50
7 1 1 0 0 0 3 20 16 636
8 8 6 3 0 0 26 5 7 262
9 16 14 7 0 0 58 11 0 77
10 13 11 6 0 0 47 9 0 10

Table 5
Optimal design variables Delle Site and Filippi (1998), example

Model Operation Cw (CLP/min) Cv (CLP/min) Co (CLP/min) C

M1 Scheduded 1538 2563 2910 7
M2 1491 2536 2975 7
M3 1425 2499 3074 6

M1 Poisson 2344 2354 3560 8
M2 2302 2341 3610 8
M3 2240 2324 3688 8

Table 6
Modified optimal design variables Delle Site and Filippi (1998), example

Model Operation Cw (CLP/min) Cv (CLP/min) Co (CLP/min) C

M1 Scheduled 1545 11.857 3869 1
M2 1471 11.773 4000 1
M3 1375 11.662 4194 1

M1 Poisson 2460 11.496 4541 1
M2 2384 11.453 4646 1
M3 2278 11.392 4806 1
In both numerical examples, the optimal frequencies and fleet
sizes obtained from M1 were systematically smaller than those ob-
tained from M2 and M3; and these latter yield different results for
the fleet size in the second example only. We developed several
other numerical experiments reproducing the identified analytical
conditions in Section 3, whereby (11) is higher than (12), or (12) is
higher than (13), in which the results for the optimal frequencies
did not differ significantly. Therefore, as a general rule, it seems
that the better represented is transit demand, the larger the opti-
mal frequency and the smaller vehicle size. This makes even more
dramatic Jansson’s (1984) observation regarding the underestima-
tion of optimal frequency and overestimation of vehicle size when
users’ costs are not taken into account, considering that he was
using an M1 type model. Both the analytical developments and
tot (CLP/min) Frequency (veh/h) Fleet size (veh) Cap veh (pax/veh)

011 31 13 45
002 32 13 44
998 34 13 42

258 41 16 35
253 42 16 34
252 43 16 33

tot (CLP/min) Frequency (veh/h) Fleet size (veh) Cap veh (pax/veh)

7.271 31 31 45
7.244 33 33 43
7.231 35 35 40

8.497 39 38 36
8.483 40 39 35
8.476 42 41 34



the numerical examples suggest that the larger the cost associated
with in-vehicle travel time, the more likely is that the various
aggregated models predict different (smaller) values for the opti-
mal frequencies.

5. Conclusions

In this paper we have examined the advantages of having de-
tailed demand information when using classical public transport
microeconomic models. We have established the optimal condi-
tions for frequency on a public transport corridor with inelastic de-
mand, in cases where the demand data is only available at an
aggregated level (at the level of an entire line, or ridership per
direction of movement) as well as cases in which it is feasible to
obtain more detailed information on the demand structure, like
origin-destination matrices at the level of bus stops or number of
passenger who board and alight each bus at each stop.

We have developed two analyses, one which is purely analytical
and another based on the result of applying the different aggrega-
tion level models to two examples in which real public transport
data for peak periods are available. From the analytical part we
clearly identified those terms in the optimal frequency expression
that generates the differences among the models. However, con-
clusions with respect to the ranking among frequencies obtained
in each model could only be established from the analysis of the
empirical results, which show that the better represented is transit
demand, the larger the optimal frequency and the smaller vehicle
size. For a more intuitive explanation of the phenomenon, note
that in the aggregate model one assumes an average load on the
bus that applies throughout the route, along with an average
amount of delay per stop to let people get on and off. But in fact,
most people ride on the section of the route along which most peo-
ple board, and therefore suffer more than would be expected from
delay coming from their fellow passengers getting on and off. That
amplification of dwell time delay – captured by M3 – pushes the
optimal solution toward higher frequency and smaller buses, so
that riders suffer less from the on and off delays caused by their fel-
low riders. This reinforces Jansson’s (1984) and Jara-Díaz and
Gschwender (2003) observation regarding the underestimation of
optimal frequency and overestimation of vehicle size when users’
costs are not taken into account properly. The larger the cost asso-
ciated with in-vehicle travel time, the more likely is that the vari-
ous aggregated models predict different (smaller) values for the
optimal frequencies.

The analysis presented here motivates a deeper analysis of the
analytical expressions, and also and more importantly, more
numerical examples to validate our conclusions by discarding
some possible cases that could be imposed numerically in the ana-
lytical developments, but not very likely to occur in reality. Overall,
however, our results suggest that the underestimation of optimal
frequency and overestimation of vehicle size when not accounting
for users’ costs fully is even more important than predicted by
Jansson (1984).
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