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Abstract

An affine graph is a pair (G, �) where G is a graph and � is an automorphism assigning to each vertex of G one of its neighbors. On
one hand, we obtain a structural decomposition of any affine graph (G, �) in terms of the orbits of �. On the other hand, we establish
a relation between certain colorings of a graph G and the intersection graph of its cliques K(G). By using the results we construct
new examples of expansive graphs. The expansive graphs were introduced by Neumann-Lara in 1981 as a stronger notion of the
K-divergent graphs. A graph G is K-divergent if the sequence |V (Kn(G))| tends to infinity with n, where Kn+1(G) is defined by
Kn+1(G) = K(Kn(G)) for n�1. In particular, our constructions show that for any k�2, the complement of the Cartesian product
Ck , where C is the cycle of length 2k + 1, is K-divergent.

Keywords: Clique operator; Affine graphs; Expansivity

1. Introduction

Let G be a graph. The clique graph of G, denoted by K(G), is the intersection graph of the cliques (maximal complete
subgraphs) of G. A main question regarding the clique graph operator K is the study of the behavior of the iterated
application of K. A graph G is K-divergent if the iterations Ki+1(G)=K(Ki(G)), for i�0, generate a family of graphs
whose sizes tend to infinity. On one hand, a graph can be proved to be K-divergent by explicitly computing all its
iterated clique graphs. This approach was used in [4] to prove the K-divergence of the n-dimensional octahedron On

and later, it was used to prove the K-divergence of locally C6 graphs [1] and clockwork graphs [2]. On the other hand,
it is known that clique divergence is preserved by some morphism (retractions [4], coverings [1]). Notions stronger
than K-divergency are rank divergence [3] and expansivity [5].

In this work we provide new families of expansive graphs. This notion, introduced by Neumann-Lara in [5] was
developed in the scope of coaffine graphs. A coaffination � of a graph G �= ∅ is an automorphism of G such that for
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every u ∈ V (G), u �= �(u) and �(u) /∈ N(u). A coaffine graph is a pair (G, �) where G is a graph and � is a coaffine
automorphism of G. For the purpose of this work it is more convenient to deal with the complement of coaffine graphs.
An affine graph is a pair (G, �), where G is a graph and � is an automorphism such that the image of each vertex is
one of its neighbors. Clearly, (G, �) is an affine graph if and only if (G, �) is a coaffine graph.

For (co)affine graphs (G, �) and (H, �), a morphism f : (G, �) → (H, �) is admissible if f ◦ � = � ◦ f . Moreover,
if f is an isomorphism, then we say that (G, �) and (H, �) are isomorphic.

When G is a stable subgraph of H under �(�(G) ⊆ G), we say that (G, �G) is an admissible subgraph of (H, �),
where �G is the restriction of � to G.

A coaffine graph (G, �) is expansive if there exist a sequence n1, n2, . . . of integers, with ni → ∞, and a sequence
(H1, �1), (H2, �2), . . . of coaffine graphs such that:

• Hi = Hi,1 + · · · + Hi,ri ,
1 ri → ∞.

• For all i, (Hi, �i ) is an admissible subgraph of (Kni (G), �ni

K ), where �ni

K is the canonical coaffination of Kni (G)

induced by � [5].

As previously mentioned, the goal of this work is to provide new examples of expansive graphs. Our starting point is
the following result.

Theorem 1 (Neumann-Lara [5]). If (G, �) and (H, �) are affine graphs such that (G + H, � + �) is an admissible
subgraph of (K(G), �K), then (G, �) is expansive, where �K(Q) = �(Q) for all Q clique of G.

Since an edgeless graph is coaffinable we get the following.

Proposition 2. Let (I, �) be an edgeless graph with at least two vertices together with a coaffination, and let (G, �)

be an affine graph. If (G + I, � + �) is an admissible subgraph of (K(G), �K), then (G, �) is expansive.

In order to use Proposition 2 we will proceed as follows. In Section 2 we give a complete characterization of affine
graphs in terms of their affinations. In Section 3 we present sufficient conditions on (G, �) to satisfy the inclusion
property of Proposition 2: (G + I, � + �) is an admissible subgraph of (K(G), �K). Finally, in Section 4, by using
these results we construct new families of expansive graphs.

2. Affine graphs

In this section we give a characterization of affine graphs.
For an affine graph (G, �), the orbit of a vertex u ∈ V (G) by � is the set

O(u) = {v ∈ V (G): ∃i ∈ Z, �i (u) = v}.
It is clear that the set of orbits is a partition of the set of vertices of G. We define the orbit index of (G, �), denoted
by �(G, �), as the number of orbits induced by � in G. We first study affine graphs with orbit index equals to one. Let
p�2 be an integer and let S be a set of elements in Zp\{0} such that S = −S. The circulant graph Dp(S) of order p
with connection set S, is the graph whose set of vertices is V = Zp and such that ij is an edge of Dp(S) if and only if
j − i mod p ∈ S. In the rest of the paper we assume that all the arithmetic operations are carried out in Zp.

Let Dp(S) be a circulant graph, if 1 ∈ S we say that the graph is unitary. Clearly, for any unitary circulant graph
Dp(S), the automorphism �D(j) = j + 1 is an affination. Hence, (Dp(S), �D) is an affine graph.

Any affine graph (G, �) isomorphic to an affine graph (Dp(S), �D), where Dp(S) is a unitary circulant graph, will
be called a transitively affine graph. Let � be an isomorphism between (G, �) and (Dp(S), �D). Since �=�−1 ◦�D ◦�
and �(Dp(S), �D) = 1 we get that �(G, �) = 1. Therefore, we have proved the forward implication of the following
lemma.

1 G + H = (V (G) ∪ V (H), E(G) ∪ E(H) ∪ {{i, j}: i ∈ V (G), j ∈ V (H)}.



Lemma 3. An affine graph (G, �) is a transitively affine graph if and only if �(G, �) = 1.

Proof. Conversely, let us assume that �(G, �) = 1 and |G| = p. Let u be any vertex of G and let �: Zn → V (G) be
defined by �(i) = �i (u). Since �(G, �) = 1, the function � is a bijection between Zp and V (G). Let S = {�−1(w) −
�−1(v), �−1(v)−�−1(w): wv ∈ E(G)} ⊆ Zp. Then, S=−S and, since u�(u) is an edge of G, we get that 1 ∈ S. Hence,
Dp(S) is a unitary circulant graph. Moreover, � is an isomorphism between Dp(S) and G satisfying � ◦ �D = � ◦ �.
Therefore, (G, �) and (Dp(S), �D) are isomorphic. �

Let U ⊆ V (G) be such that �(U) ⊆ U . Then the pair (G, �)U := (G[U ], �U) is an affine graph which is an
admissible subgraph of (G, �), where G[U ] is the graph induced by U in G and �U is the restriction of � to U.

Corollary 1. Let O be an orbit of the affine graph (G, �). Then, (G, �)O is a transitively affine graph.

Since each orbit of an affine graph is a transitively affine graph, a complete structural description of an affine graph
can be obtained by describing how their orbits are connected.

Let A and B be two disjoint sets. We denote by [A, B] the set of all subsets of A ∪ B with exactly one element of A
and one element of B. When A and B are disjoint subsets of the vertex set of a graph G, we denote by [A, B]G the set
of all edges between A and B in G.

Let ((V1, E1), �1) and ((V2, E2), �2) be two vertex-disjoint affine graphs and let F ⊆ [V1, V2]. We define the
affine-coupling between ((V1, E1), �1) and ((V2, E2), �2) with generator F as the pair

(G, �) := ((V1, E1), �1)‖F ((V2, E2), �2),

where G is the graph given by V (G) = V1 ∪ V2 and

E(G) = E1 ∪ E2 ∪ {{�i
1(u1), �

i
2(u2)}: {u1, u2} ∈ F, u1 ∈ V1, u2 ∈ V2, i ∈ N}

and �(u) = �i (u) if u ∈ Vi with i = 1, 2.

Lemma 4. Let ((V1, E1), �1), ((V2, E2), �2) be two affine graphs and let F ⊆ [V1, V2]. Then, (G, �) := ((V1, E1),

�1)‖F ((V2, E2), �2) is an affine graph.

Proof. It is clear that �(u) is a neighbor of u in G, for each vertex u of G. Since, for i = 1, 2, �i is bijective and so is �.
It remains to prove that � is a morphism. Since � coincides with �i on Vi , i = 1, 2, we only need to consider the image
under � of an edge v1v2 in G with vi ∈ Vi , i = 1, 2. By definition of the affine-coupling there are an integer j and an
element u1u2 ∈ F such that �j

i (ui) = vi , i = 1, 2. Therefore, �(v1)�(v2) = �j+1
1 (u1)�

j+1
2 (u2) and then �(v1)�(v2) is

an edge of G. �

Let (G, �) be an affine graph with �(G, �)�2. We say that two orbits O1, O2 of � are adjacent if [O1, O2]G �= ∅.
We prove that the affine graph (G, �)O1∪O2 is the affine-coupling of (G, �)O1‖F (G, �)O2 , for some set F.

Lemma 5. Let (G, �) be an affine graph with �(G, �)�2. Let O1, O2 be two adjacent orbits of G. Then, there exists
a set F ⊆ [O1, O2]G such that the affine graph (G, �)O1∪O2 is the affine-coupling (G, �)O1‖F (G, �)O2 .

Proof. By definition, (G, �)O1∪O2 = (H, �O1∪O2), where H is the graph induced by O1 ∪ O2 in G. Let u ∈ O1 be and
let F be the set of all edges in [O1, O2]G incident with u. Let (H ′, �O1∪O2) be the affine-coupling (G, �)O1‖F (G, �)O2 .
Then, we only have to prove that H ′ = H . As V (H) = V (H ′), we prove that E(H) = E(H ′). On one hand, since �
is an automorphism and F ⊆ E(H), we get E(H ′) ⊆ E(H). On the other hand, the edges in the graph induced by
Oi are included in E(H ′), for i = 1, 2. Moreover, every edge v1v2 ∈ E(H) withvi ∈ Oi , i = 1, 2, is associated with
the edge uu′ ∈ F , where u′ = �−j (v2) and �j (u) = v1, for some integer j. This shows that v1v2 ∈ E(H ′). Therefore
E(H) ⊆ E(H ′). �

Since the set of orbits of an affine graph is a partition of the set of vertices of the graph, each edge belongs to an
affine-coupling of two orbits. Hence a relevant information is given by the connections between the orbits. Let (G, �)



be an affine graph, its orbit-graph is the graph H� where each orbit of G is a vertex of H� and two vertices are adjacent
if and only if their corresponding orbits are adjacent too. We know that for each orbit u of G the affine graph (G, �)u is a
transitively affine graph. Moreover, from Lemma 5 we know that each edge e of H� is associated with a set of edges Fe.
Hence, each affine graph G can be completely described by the triple (H�, D�, F�), where D� ={(G, �)u: u ∈ V (H�)}
and F� = {Fe: e ∈ E(H�)}. Conversely, for a graph H, a family D = {(Du, �u)}u∈V (H) of transitively affine graphs
and a family F = {Fe}e∈E(H) of generators, we define the affine construction ((V , E), �) := �(H, D, F ) as follows:
V = {(i, u): i ∈ V (Du), u ∈ V (H)} and the function � is the common extension of all the affine functions �u, u ∈
V (H) : �(i, u) := �u(i).The set E is such that for every edge e = uv ∈ E(H) the affine graph ((V , E), �)V (Du)∪V (Dv)

is the affine-coupling (V (Du), �u)‖Fe (V (Dv), �v).
From Lemma 5 it is not difficult to see that �(H, D, F ) is an affine graph. Moreover, given an affine graph (G, �)

it follows that (G, �) is isomorphic to �(H�, D�, F�). Therefore, we have proved the following theorem which is a
characterization of the affine graphs.

Theorem 6. Let G be a graph. (G, �) is an affine graph if and only if there exist a graph H, a family of transitively
affine graphs D = {(Du, �u)}u∈V (H) and a family of generators F = {Fe}e∈E(H) such that (G, �) is isomorphic to
�(H, D, F ).

3. Locally bijective coloring

In this section we obtain sufficient conditions on affine graphs to satisfy the inclusion property of Proposition 2. These
conditions will lead us to define a new class of graphs containing the complements of the n-dimensional octahedra and
some cycles known to be K-divergent. Unfortunately, not every graph in this class is an affine graph.

A (proper) vertex coloring c of a graph G= (V , E) is locally bijective if each color appears exactly once in the closed
neighborhood of each vertex. Clearly, each monochromatic set defined by a locally bijective coloring is a dominating
set and it is easy to see that all have the same size. Hence, if c uses p colors, then |G| = rp, where r is the size of each
monochromatic set and the graph is (p − 1)-regular. For some values of r and p we characterize the locally bijectively
colorable graphs.

Lemma 7. Let G be a graph. If G admits a locally bijective coloring with p colors then:

(1) |G| = p if and only if G = Kp, the complete graph on p vertices.
(2) p = 1 if and only if G has no edges.
(3) p = 2 if and only if G = Or , the complement of the r-dimensional octahedron, with r = |G|/2.
(4) p = 3 if and only if G is the vertex-disjoint union of cycles of length 3k, k ∈ N.

Proof. The sufficient conditions come from the fact that a (p − 1)-regular graph which admits a locally bijective
coloring uses p colors. The necessary conditions are proved as follows:

(1) The only graph with p vertices and (p − 1)-regular is the complete graph on p vertices.
(2) If there is only one color, then the graph has no edges.
(3) If there are two colors, then each vertex has exactly one neighbor. Hence, the set of edges of G is a perfect matching

of G. Therefore, G = Or .
(4) Let c be a locally bijective coloring with three colors. Then G is a 2-regular graph. Hence, it is the disjoint

union of cycles. Since c induces a locally bijective coloring with three colors in each cycle, its size is a multiple
of 3. �

Besides the fact that a graph admitting a locally bijective coloring is not necessarily an affine graph we can prove
the following.

Theorem 8. Let G be a K3-free graph. If G admits a locally bijective coloring c with p colors, 2�p� |G|/3, then
GK + Ip is an induced subgraph of K(G), where GK is a subgraph of K(G) isomorphic to G.



Proof. Let M be the set of monochromatic sets defined by c. By the choice of p the set M has at least two elements
and each of its elements has size |G|/p�3. Moreover, the size of the neighborhood of each vertex is p − 1�1. Every
monochromatic set is a maximal independent set, so it is a clique in G. Hence M ⊆ V (K(G)). Since the elements of
M are pairwise disjoint, the set M induces in K(G) an independent set Ip, of size p.

For each vertex v ∈ V (G) we define the set Mv := M(v)\{v} ∪ N(v), where M(v) is the (unique) element in M
containing v. Let GK be the intersection graph of the family {Mv: v ∈ V (G)}. We shall prove that GK is an induced
subgraph of K(G) isomorphic to G: We prove that Mv is a clique of G and that Mv ∩ Mu �= ∅ if and only if uv is not
an edge of G.

To prove that Mv is a clique in G we show that it is a dominating independent set of G. Since G is K3-free the
set N(v) is an independent set. Since for each w ∈ N(v) the vertex v is the only neighbor of w with color c(v), no
neighbor of v is adjacent with other vertex in M(v). Then Mv is an independent set of G. We now show that Mv is a
dominating set of G. Since N(v) �= ∅, the vertex v has a neighbor in Mv . Let z �= v, z /∈ Mv be a vertex. Since c is a
locally bijective coloring and z /∈ N(v), the vertex z has a neighbor in M(v)\{v} ⊆ Mv . Hence Mv is a dominating set.
Therefore GK is an induced subgraph of K(G).

We now prove that GK is isomorphic to G, by showing that Mv ∩ Mu �= ∅ if and only if u and v are not adjacent
in G. Let us assume first that u and v are not adjacent. Since each monochromatic set has at least three elements, if
M(u) = M(v), then there is a vertex w ∈ M(u)\{u, v}. Hence w ∈ Mu ∩ Mv .

Let us assume that M(u) �= M(v). Then, v /∈ M(u) and there is a w ∈ M(u) ∩ N(v), w �= u. Hence w ∈ Mv ∩ Mu.
Conversely, let us suppose that u and v are adjacent in G. Since G is K3-free N(u) ∩ N(v) = ∅. Moreover, N(v) ∩

M(u) = {u}, N(u) ∩ M(v) = {v} and M(u) ∩ M(v) = ∅. Therefore, Mv ∩ Mu = ∅. Then GK is isomorphic to G.
It is clear that for every u ∈ V (G) and every M ∈ M, Mu ∩ M �= ∅. Then GK + Ip is an induced subgraph of

K(G). �

In order to relate Theorem 8 with Proposition 2 we must provide an affination � on G, such that (GK + Ip, �) is an
admissible subgraph of (K(G), �K), where � is the restriction of �K to V (GK) ∪ V (Ip).

Let (G, �) be an affine graph. A coloring c considered as a morphism from V (G) onto Kp is an admissible coloring
of (G, �) if there exists a permutation � of the vertices of Kp such that c ◦ � = � ◦ c. It is easy to see that the image of
a monochromatic set under an admissible coloring is a monochromatic set.

From Theorem 8 and Proposition 2 we get the following corollary.

Corollary 9. Let (G, �) be an affine graph with G a K3-free graph and |G|�2. If (G, �) admits an admissible locally
bijective coloring c with at most |G|/3 colors, then (G, �) is expansive.

Proof. Let p be the number of colors used by c. As an affine graph has at least one edge, 2�p� |G|/3. By
Theorem 8, the graph GK + Ip is an induced subgraph of K(G).

For each vertex v in G, let M(v) = c−1(c(v)) and Mv = M(v)\{v} ∪ N(v) be defined as in the proof of Theorem 8.
Then GK + Ip is the intersection graph of the set {Mv, M(v): v ∈ V (G)}, where GK and Ip are associated to the sets
{Mv: v ∈ V (G)} and {M(v): v ∈ V (G)}, respectively.

We now prove that �K(V (GK)∪V (Ip)) ⊆ V (GK)∪V (Ip). Since c is an admissible coloring, there is a permutation
� of Kp such that for each vertex v in G we have �(c−1(c(v)))=c−1(�(c(v)))=c−1(c(�(v))). Therefore, �K(M(v))=
�(M(v))=M(�(v)), for each vertex v in G. Hence, �K(V (Ip)) ⊆ V (Ip). Moreover, �K(Mv)=�(Mv)=M�(v), since
�(N(v)) = N(�(v)) for every vertex v in G. Hence, �K(V (GK)) ⊆ V (GK). Finally from Proposition 2 we conclude
that (G, �) is expansive. �

4. Applications

4.1. Cartesian product of cycles

We first show a direct application of Corollary 9. Let k�2 and let C be a cycle of length p = 2k + 1. Let Ck be
the Cartesian product of C with itself k times given by V (Ck) = (V (C))k and two vertices u = (u1, u2, . . . , uk) and
v = (v1, v2, . . . , vk) are adjacent if and only if for some 1� i�k, uivi ∈ E(C) and uj = vj for all j �= i. Clearly,
|Ck|�2.



The function �(u) = u + e1 is an affination for Ck , where ei is the ith canonical vector of Zk
2k+1. Then, (Ck, �) is

an affine graph. Moreover, the closed neighborhood of 0 = (0, . . . , 0) in Ck , denoted by N [0], is the set {0, ±e1, . . . ,

±ek} and for each vertex u in Ck its closed neighborhood is given by N [u] = u + N [0]. Hence Ck is
K3-free.

Proposition 1. For all k ∈ N, k�2 the graph (Ck, �) is expansive.

Proof. We shall prove that c(v1, . . . , vk) = ∑k
i=1ivi is a coloring of (Ck, �) satisfying the conditions of

Corollary 9. Since we are working in Zp, the function c is a coloring with p colors. Moreover, since k�2 and p�5
we get |Ck| = pk �3p. Hence, p� |Ck|/3. It remains to show that c is an admissible locally bijective coloring.

Since c(±ei) = ±i and c(N [0]) = Zp and, since c is linear, c(N [v]) = c(v) + c(N [0]) = c(v) + Zp = Zp, so c is a
locally bijective coloring of Ck . Moreover, the permutation �(u) = u + 1 defined on Kp satisfies c ◦ � = � ◦ c. Hence,

c is an admissible coloring. Therefore, by Corollary 9, (Ck, �) is expansive. �

4.2. General constructions

In the sequel we shall discuss how to use Theorem 6 to construct expansive graphs. In view of Corollary 9, the
idea is to choose a graph H, a family D of transitively affine graphs and a family of generators F such that the
affine construction (G, �) := �(H, D, F ) admits an admissible locally bijective coloring c and G is
K3-free.

Let p�5 be an integer and let Sp be given by {1, p − 1} when p is odd and given by {1, p/2, p − 1} when p is even.
Notice that Sp = −Sp and 1 ∈ Sp.

Let H be a graph. Let D = D(p, Sp) be given by D := {(Du, �u): u ∈ V (H)}, where (Du, �u) = (Dp(Sp), �D), for
each u ∈ V (H). Let Z = {Z(u,v), Z(v,u): uv ∈ E(H)} be a family of subsets of Zp such that Z(u,v) = −Z(v,u).

Let T be an orientation of H. We define the set of generators F(Z, T ) by Fe := {(0, v)(j, u): j ∈ Z(v,u)}, where the
orientation of the edge e in T is (v, u).

Let (G, �) = �(H, D, F (Z, T )). Then V (G)�Zp × V (H) and �(i, u) = (i + 1, u), for each vertex (i, u) in G.
From the definition of the affine construction we know that (i, v)(j, u) ∈ E(G) if and only if (0, v)(j − i, u) ∈ E(G)

if and only if (i − j, v)(0, u) ∈ E(G). Since Z(u,v) = −Z(v,u) we deduce that (G, �) only depends on H, D and Z.
We denote it by �(H, D, F (Z)). Moreover, the set of neighbors of a vertex (i, u) in G is given by {(j, v): j − i ∈
Z(u,v), v ∈ NH (u)} ∪ {(j, u): j − i ∈ Sp}.

Let c: V (G) → Zp be given by c(i, u) = i, for every (i, u) ∈ V (G). Note that if c is a coloring of G, then the
permutation �(i) = i + 1 makes c admissible.

The function c assigns to the neighbors of vertex (i, u) colors in (i+Sp)∪⋃
v∈NH (u)(i+Z(u,v)). If {Z(u,v): v ∈ NH (u)}

is a partition of Zp\(Sp ∪ {0}), then c assigns to each neighbor of the vertex (i, u) a different color in Zp\{i}. In this
case, as c(i, u) = i, the function c is an admissible locally bijective coloring of G.

Let p, k be integers with p�5 and k�p − 4. A family Z= {Z1, Z2, . . . , Zk} of subsets of Zp is a local p-cover if
Z is a partition of Zp\(Sp ∪{0}) and for each i = 1, . . . , k, the set Zi is sparse that is, ∀j ∈ Zp, j ∈ Zi ⇒ j + 1 /∈ Zi .

By instance, if p is an even integer, then Z1 = {2, 4, . . . , p − 2}\{p/2} and Z2 = {3, 5, . . . , p − 3}\{p/2} are sparse
sets, and {Z1, Z2} is a local p-cover.

A familyZ={Z(u,v), Z(v,u): uv ∈ E(H)} is a p-cover of H if for every u ∈ V (H) the subfamily {Z(u,v): v ∈ NH (u)}
is a local p-cover and for each uv ∈ E(H), Z(u,v) = −Z(v,u).

Theorem 10. Let p�5 be an integer and let H be a K3-free graph with at least three vertices. Then the complement
of �(H, D, F (Z)) is expansive, where Z is any p-cover of H.

Proof. Let (G, �)=�(H, D,Z). We have already proved that the function c(i, v) := i is an admissible locally bijective
coloring of (G, �). Since H is K3-free and each set in Z is sparse, the graph G is K3-free too. Since 5�p� |G|/|H |
and |H |�3, by Corollary 9 we conclude that (G, �) is expansive. �

In the next lemmas we provide concrete p-covers for some classes of regular graphs.



Lemma 11. Let p, k be integers with p�5. Let H be a k-regular graph having a proper k-edge coloring c′ with colors
{1, 2, . . . , k}. Let Z = {Z1, Z2, . . . , Zk} be any local p-cover.

• If k��p/2� − 2 and Zi = −Zi , for i = 1, . . . , k, then {Z(u,v) = Zc′(uv), Z(v,u) = Zc′(uv): uv ∈ E(H)} is a p-cover
for H.

• If H = (A ∪ B, E) is bipartite and p�k + 4, then {Z(u,v) = Zc′(uv), Z(v,u) = −Zc′(uv): u ∈ A, v ∈ B, uv ∈ E} is a
p-cover for H.

Proof. Since Z is a local p-cover, the conclusion comes from the fact that in both cases Z(u,v) = −Z(v,u), for each
uv ∈ E(H). �

Let H be a 2k-regular graph. From a result of Petersen [6], the graph H can be splitted in k edge-disjoint 2-factors
(vertex-disjoint union of cycles) H1, . . . , Hk . For i = 1, . . . , k, let Oi be the orientation of Hi obtained by orienting
cyclically each cycle of Hi .

Lemma 12. Let p, k be integers with p�5 and k��p/2�−2. Let H be a 2k-regular graph. Let Z={Z1, Z2, . . . , Zk}
be a partition of {2, 3, . . . , �p/2� − 1}, with Zi a sparse set, for i = 1, . . . , k. Let i = 1, . . . , k and let uv ∈ E(Hi). Let
Z(u′,v′) = Zi and Z(v′,u′) = −Zi , where (u′, v′) is the orientation of uv in Oi . Then, {Z(u,v), Z(v,u): uv ∈ E(H)} is a
p-cover for H.

Proof. Clearly, for each uv ∈ E(H), the sets Z(u,v), Z(v,u) are sparse, and Z(u,v) = −Z(v,u). We show that for each
vertex u of H, the set {Z(u,v): v ∈ NH (u)} is a localp-cover. For each i = 1, . . . , k, the vertex u has two neighbors w
and w′ in Hi such that (w, u) and (u, w′) belong to Oi . Hence, Z(u,w′) = Zi and Z(u,w) = −Zi . Therefore,

⋃
v∈NH (u)

Z(u,v) =
k⋃

i=1

(Zi ∪ −Zi)

=
{

2, . . . ,
⌈p

2

⌉
− 1

}
∪

{
p − 2, . . . , p −

(⌈p

2

⌉
− 1

)}

= {2, . . . , p − 2}\
{p

2

}
.

We conclude that {Z(u,v), Z(v,u): uv ∈ E(H)} is a p-cover of H. �
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