A new family of expansive graphs ${ }^{\text {tr }}$, 动㐾

Martín Matamala ${ }^{\mathrm{a}, \mathrm{b}}$, José Zamora ${ }^{\mathrm{a}, \text {, }}$
${ }^{\text {a }}$ Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170-3, Correo 3, Santiago, Chile
${ }^{\mathrm{b}}$ Centro de Modelamiento Matemático Universidad de Chileand UMR 2071-CNRS, Casilla 170-3, Correo 3, Santiago, Chile

Abstract

An affine graph is a pair (G, σ) where G is a graph and σ is an automorphism assigning to each vertex of G one of its neighbors. On one hand, we obtain a structural decomposition of any affine graph (G, σ) in terms of the orbits of σ. On the other hand, we establish a relation between certain colorings of a graph G and the intersection graph of its cliques $K(G)$. By using the results we construct new examples of expansive graphs. The expansive graphs were introduced by Neumann-Lara in 1981 as a stronger notion of the K-divergent graphs. A graph G is K-divergent if the sequence $\left|V\left(K^{n}(G)\right)\right|$ tends to infinity with n, where $K^{n+1}(G)$ is defined by $K^{n+1}(G)=K\left(K^{n}(G)\right)$ for $n \geqslant 1$. In particular, our constructions show that for any $k \geqslant 2$, the complement of the Cartesian product C^{k}, where C is the cycle of length $2 k+1$, is K-divergent.

Keywords: Clique operator; Affine graphs; Expansivity

1. Introduction

Let G be a graph. The clique graph of G, denoted by $K(G)$, is the intersection graph of the cliques (maximal complete subgraphs) of G. A main question regarding the clique graph operator K is the study of the behavior of the iterated application of K. A graph G is K-divergent if the iterations $K^{i+1}(G)=K\left(K^{i}(G)\right)$, for $i \geqslant 0$, generate a family of graphs whose sizes tend to infinity. On one hand, a graph can be proved to be K-divergent by explicitly computing all its iterated clique graphs. This approach was used in [4] to prove the K-divergence of the n-dimensional octahedron O_{n} and later, it was used to prove the K-divergence of locally C_{6} graphs [1] and clockwork graphs [2]. On the other hand, it is known that clique divergence is preserved by some morphism (retractions [4], coverings [1]). Notions stronger than K-divergency are rank divergence [3] and expansivity [5].

In this work we provide new families of expansive graphs. This notion, introduced by Neumann-Lara in [5] was developed in the scope of coaffine graphs. A coaffination σ of a graph $G \neq \emptyset$ is an automorphism of G such that for

[^0]every $u \in V(G), u \neq \sigma(u)$ and $\sigma(u) \notin N(u)$. A coaffine graph is a pair (G, σ) where G is a graph and σ is a coaffine automorphism of G. For the purpose of this work it is more convenient to deal with the complement of coaffine graphs. An affine graph is a pair (G, σ), where G is a graph and σ is an automorphism such that the image of each vertex is one of its neighbors. Clearly, (G, σ) is an affine graph if and only if (\bar{G}, σ) is a coaffine graph.
For (co)affine graphs (G, σ) and (H, ϕ), a morphism $f:(G, \sigma) \rightarrow(H, \phi)$ is admissible if $f \circ \sigma=\phi \circ f$. Moreover, if f is an isomorphism, then we say that (G, σ) and (H, ϕ) are isomorphic.
When G is a stable subgraph of H under $\phi(\phi(G) \subseteq G)$, we say that $\left(G, \phi_{G}\right)$ is an admissible subgraph of (H, ϕ), where ϕ_{G} is the restriction of ϕ to G.
A coaffine graph (G, σ) is expansive if there exist a sequence n_{1}, n_{2}, \ldots of integers, with $n_{i} \rightarrow \infty$, and a sequence $\left(H_{1}, \phi_{1}\right),\left(H_{2}, \phi_{2}\right), \ldots$ of coaffine graphs such that:

- $H_{i}=H_{i, 1}+\cdots+H_{i, r_{i},}{ }^{1} \quad r_{i} \rightarrow \infty$.
- For all $i,\left(H_{i}, \phi_{i}\right)$ is an admissible subgraph of $\left(K^{n_{i}}(G), \sigma_{K}^{n_{i}}\right)$, where $\sigma_{K}^{n_{i}}$ is the canonical coaffination of $K^{n_{i}}(G)$ induced by σ [5].

As previously mentioned, the goal of this work is to provide new examples of expansive graphs. Our starting point is the following result.

Theorem 1 (Neumann-Lara [5]). If (G, σ) and (H, ϕ) are affine graphs such that $(\bar{G}+\bar{H}, \sigma+\phi)$ is an admissible subgraph of $\left(K(\bar{G}), \sigma_{K}\right)$, then (\bar{G}, σ) is expansive, where $\sigma_{K}(Q)=\sigma(Q)$ for all Q clique of \bar{G}.

Since an edgeless graph is coaffinable we get the following.
Proposition 2. Let (I, ϕ) be an edgeless graph with at least two vertices together with a coaffination, and let (G, σ) be an affine graph. If $(\bar{G}+I, \sigma+\phi)$ is an admissible subgraph of $\left(K(\bar{G}), \sigma_{K}\right)$, then (\bar{G}, σ) is expansive.

In order to use Proposition 2 we will proceed as follows. In Section 2 we give a complete characterization of affine graphs in terms of their affinations. In Section 3 we present sufficient conditions on (G, σ) to satisfy the inclusion property of Proposition 2: $(\bar{G}+I, \sigma+\phi)$ is an admissible subgraph of ($\left.K(\bar{G}), \sigma_{K}\right)$. Finally, in Section 4, by using these results we construct new families of expansive graphs.

2. Affine graphs

In this section we give a characterization of affine graphs.
For an affine graph (G, σ), the orbit of a vertex $u \in V(G)$ by σ is the set

$$
O(u)=\left\{v \in V(G): \exists i \in \mathbb{Z}, \sigma^{i}(u)=v\right\} .
$$

It is clear that the set of orbits is a partition of the set of vertices of G. We define the orbit index of (G, σ), denoted by $\eta(G, \sigma)$, as the number of orbits induced by σ in G. We first study affine graphs with orbit index equals to one. Let $p \geqslant 2$ be an integer and let S be a set of elements in $\mathbb{Z}_{p} \backslash\{0\}$ such that $S=-S$. The circulant graph $D_{p}(S)$ of order p with connection set S, is the graph whose set of vertices is $V=\mathbb{Z}_{p}$ and such that $i j$ is an edge of $D_{p}(S)$ if and only if $j-i \bmod \mathrm{p} \in \mathrm{S}$. In the rest of the paper we assume that all the arithmetic operations are carried out in \mathbb{Z}_{p}.

Let $D_{p}(S)$ be a circulant graph, if $1 \in S$ we say that the graph is unitary. Clearly, for any unitary circulant graph $D_{p}(S)$, the automorphism $\sigma_{D}(j)=j+1$ is an affination. Hence, $\left(D_{p}(S), \sigma_{D}\right)$ is an affine graph.
Any affine graph (G, σ) isomorphic to an affine graph $\left(D_{p}(S), \sigma_{D}\right)$, where $D_{p}(S)$ is a unitary circulant graph, will be called a transitively affine graph. Let φ be an isomorphism between (G, σ) and ($\left.D_{p}(S), \sigma_{D}\right)$. Since $\sigma=\varphi^{-1} \circ \sigma_{D} \circ \varphi$ and $\eta\left(D_{p}(S), \sigma_{D}\right)=1$ we get that $\eta(G, \sigma)=1$. Therefore, we have proved the forward implication of the following lemma.

$$
{ }^{1} G+H=(V(G) \cup V(H), E(G) \cup E(H) \cup\{\{i, j\}: i \in V(G), j \in V(H)\} .
$$

Lemma 3. An affine graph (G, σ) is a transitively affine graph if and only if $\eta(G, \sigma)=1$.
Proof. Conversely, let us assume that $\eta(G, \sigma)=1$ and $|G|=p$. Let u be any vertex of G and let $\phi: \mathbb{Z}_{n} \rightarrow V(G)$ be defined by $\phi(i)=\sigma^{i}(u)$. Since $\eta(G, \sigma)=1$, the function ϕ is a bijection between \mathbb{Z}_{p} and $V(G)$. Let $S=\left\{\phi^{-1}(w)-\right.$ $\left.\phi^{-1}(v), \phi^{-1}(v)-\phi^{-1}(w): w v \in E(G)\right\} \subseteq \mathbb{Z}_{p}$. Then, $S=-S$ and, since $u \sigma(u)$ is an edge of G, we get that $1 \in S$. Hence, $D_{p}(S)$ is a unitary circulant graph. Moreover, ϕ is an isomorphism between $D_{p}(S)$ and G satisfying $\phi \circ \sigma_{D}=\sigma \circ \phi$. Therefore, (G, σ) and $\left(D_{p}(S), \sigma_{D}\right)$ are isomorphic.

Let $U \subseteq V(G)$ be such that $\sigma(U) \subseteq U$. Then the pair $(G, \sigma)_{U}:=\left(G[U], \sigma_{U}\right)$ is an affine graph which is an admissible subgraph of (G, σ), where $G[U]$ is the graph induced by U in G and σ_{U} is the restriction of σ to U.

Corollary 1. Let O be an orbit of the affine graph (G, σ). Then, $(G, \sigma)_{O}$ is a transitively affine graph.
Since each orbit of an affine graph is a transitively affine graph, a complete structural description of an affine graph can be obtained by describing how their orbits are connected.

Let A and B be two disjoint sets. We denote by $[A, B]$ the set of all subsets of $A \cup B$ with exactly one element of A and one element of B. When A and B are disjoint subsets of the vertex set of a graph G, we denote by $[A, B]_{G}$ the set of all edges between A and B in G.

Let $\left(\left(V_{1}, E_{1}\right), \sigma_{1}\right)$ and $\left(\left(V_{2}, E_{2}\right), \sigma_{2}\right)$ be two vertex-disjoint affine graphs and let $F \subseteq\left[V_{1}, V_{2}\right]$. We define the affine-coupling between $\left(\left(V_{1}, E_{1}\right), \sigma_{1}\right)$ and $\left(\left(V_{2}, E_{2}\right), \sigma_{2}\right)$ with generator F as the pair

$$
(G, \sigma):=\left(\left(V_{1}, E_{1}\right), \sigma_{1}\right) \|_{F}\left(\left(V_{2}, E_{2}\right), \sigma_{2}\right),
$$

where G is the graph given by $V(G)=V_{1} \cup V_{2}$ and

$$
E(G)=E_{1} \cup E_{2} \cup\left\{\left\{\sigma_{1}^{i}\left(u_{1}\right), \sigma_{2}^{i}\left(u_{2}\right)\right\}:\left\{u_{1}, u_{2}\right\} \in F, u_{1} \in V_{1}, u_{2} \in V_{2}, i \in \mathbb{N}\right\}
$$

and $\sigma(u)=\sigma_{i}(u)$ if $u \in V_{i}$ with $i=1,2$.
Lemma 4. Let $\left(\left(V_{1}, E_{1}\right), \sigma_{1}\right),\left(\left(V_{2}, E_{2}\right), \sigma_{2}\right)$ be two affine graphs and let $F \subseteq\left[V_{1}, V_{2}\right]$. Then, $(G, \sigma):=\left(\left(V_{1}, E_{1}\right)\right.$, $\left.\sigma_{1}\right) \|_{F}\left(\left(V_{2}, E_{2}\right), \sigma_{2}\right)$ is an affine graph.

Proof. It is clear that $\sigma(u)$ is a neighbor of u in G, for each vertex u of G. Since, for $i=1,2, \sigma_{i}$ is bijective and so is σ. It remains to prove that σ is a morphism. Since σ coincides with σ_{i} on $V_{i}, i=1,2$, we only need to consider the image under σ of an edge $v_{1} v_{2}$ in G with $v_{i} \in V_{i}, i=1$, 2. By definition of the affine-coupling there are an integer j and an element $u_{1} u_{2} \in F$ such that $\sigma_{i}^{j}\left(u_{i}\right)=v_{i}, i=1$, 2. Therefore, $\sigma\left(v_{1}\right) \sigma\left(v_{2}\right)=\sigma_{1}^{j+1}\left(u_{1}\right) \sigma_{2}^{j+1}\left(u_{2}\right)$ and then $\sigma\left(v_{1}\right) \sigma\left(v_{2}\right)$ is an edge of G.

Let (G, σ) be an affine graph with $\eta(G, \sigma) \geqslant 2$. We say that two orbits O_{1}, O_{2} of σ are adjacent if $\left[O_{1}, O_{2}\right]_{G} \neq \emptyset$. We prove that the affine graph $(G, \sigma)_{O_{1} \cup O_{2}}$ is the affine-coupling of $(G, \sigma)_{O_{1}} \|_{F}(G, \sigma)_{O_{2}}$, for some set F.

Lemma 5. Let (G, σ) be an affine graph with $\eta(G, \sigma) \geqslant 2$. Let O_{1}, O_{2} be two adjacent orbits of G. Then, there exists a set $F \subseteq\left[O_{1}, O_{2}\right]_{G}$ such that the affine graph $(G, \sigma)_{O_{1} \cup O_{2}}$ is the affine-coupling $(G, \sigma)_{O_{1}} \|_{F}(G, \sigma)_{O_{2}}$.

Proof. By definition, $(G, \sigma)_{O_{1} \cup O_{2}}=\left(H, \sigma_{O_{1} \cup O_{2}}\right)$, where H is the graph induced by $O_{1} \cup O_{2}$ in G. Let $u \in O_{1}$ be and let F be the set of all edges in $\left[O_{1}, O_{2}\right]_{G}$ incident with u. Let $\left(H^{\prime}, \sigma_{O_{1} \cup O_{2}}\right)$ be the affine-coupling $(G, \sigma)_{O_{1}} \|_{F}(G, \sigma) O_{O_{2}}$. Then, we only have to prove that $H^{\prime}=H$. As $V(H)=V\left(H^{\prime}\right)$, we prove that $E(H)=E\left(H^{\prime}\right)$. On one hand, since σ is an automorphism and $F \subseteq E(H)$, we get $E\left(H^{\prime}\right) \subseteq E(H)$. On the other hand, the edges in the graph induced by O_{i} are included in $E\left(H^{\prime}\right)$, for $i=1,2$. Moreover, every edge $v_{1} v_{2} \in E(H)$ with $v_{i} \in O_{i}, i=1,2$, is associated with the edge $u u^{\prime} \in F$, where $u^{\prime}=\sigma^{-j}\left(v_{2}\right)$ and $\sigma^{j}(u)=v_{1}$, for some integer j. This shows that $v_{1} v_{2} \in E\left(H^{\prime}\right)$. Therefore $E(H) \subseteq E\left(H^{\prime}\right)$.

Since the set of orbits of an affine graph is a partition of the set of vertices of the graph, each edge belongs to an affine-coupling of two orbits. Hence a relevant information is given by the connections between the orbits. Let (G, σ)
be an affine graph, its orbit-graph is the graph H_{σ} where each orbit of G is a vertex of H_{σ} and two vertices are adjacent if and only if their corresponding orbits are adjacent too. We know that for each orbit u of G the affine graph $(G, \sigma)_{u}$ is a transitively affine graph. Moreover, from Lemma 5 we know that each edge e of H_{σ} is associated with a set of edges F_{e}. Hence, each affine graph G can be completely described by the triple ($H_{\sigma}, D_{\sigma}, F_{\sigma}$), where $D_{\sigma}=\left\{(G, \sigma)_{u}: u \in V\left(H_{\sigma}\right)\right\}$ and $F_{\sigma}=\left\{F_{e}: e \in E\left(H_{\sigma}\right)\right\}$. Conversely, for a graph H, a family $D=\left\{\left(D_{u}, \sigma_{u}\right)\right\}_{u \in V(H)}$ of transitively affine graphs and a family $F=\left\{F_{e}\right\}_{e \in E(H)}$ of generators, we define the affine construction $((V, E), \sigma):=\Lambda(H, D, F)$ as follows: $V=\left\{(i, u): i \in V\left(D_{u}\right), u \in V(H)\right\}$ and the function σ is the common extension of all the affine functions $\sigma_{u}, u \in$ $V(H): \sigma(i, u):=\sigma_{u}(i)$.The set E is such that for every edge $e=u v \in E(H)$ the affine graph $((V, E), \sigma)_{V\left(D_{u}\right) \cup V\left(D_{v}\right)}$ is the affine-coupling $\left(V\left(D_{u}\right), \sigma_{u}\right) \|_{F_{e}}\left(V\left(D_{v}\right), \sigma_{v}\right)$.
From Lemma 5 it is not difficult to see that $\Lambda(H, D, F)$ is an affine graph. Moreover, given an affine graph (G, σ) it follows that (G, σ) is isomorphic to $\Lambda\left(H_{\sigma}, D_{\sigma}, F_{\sigma}\right)$. Therefore, we have proved the following theorem which is a characterization of the affine graphs.

Theorem 6. Let G be a graph. (G, σ) is an affine graph if and only if there exist a graph H, a family of transitively affine graphs $D=\left\{\left(D_{u}, \sigma_{u}\right)\right\}_{u \in V(H)}$ and a family of generators $F=\left\{F_{e}\right\}_{e \in E(H)}$ such that (G, σ) is isomorphic to $\Lambda(H, D, F)$.

3. Locally bijective coloring

In this section we obtain sufficient conditions on affine graphs to satisfy the inclusion property of Proposition 2 . These conditions will lead us to define a new class of graphs containing the complements of the n-dimensional octahedra and some cycles known to be K-divergent. Unfortunately, not every graph in this class is an affine graph.
A (proper) vertex coloring c of a graph $G=(V, E)$ is locally bijective if each color appears exactly once in the closed neighborhood of each vertex. Clearly, each monochromatic set defined by a locally bijective coloring is a dominating set and it is easy to see that all have the same size. Hence, if c uses p colors, then $|G|=r p$, where r is the size of each monochromatic set and the graph is $(p-1)$-regular. For some values of r and p we characterize the locally bijectively colorable graphs.

Lemma 7. Let G be a graph. If G admits a locally bijective coloring with p colors then:
(1) $|G|=p$ if and only if $G=K_{p}$, the complete graph on p vertices.
(2) $p=1$ if and only if G has no edges.
(3) $p=2$ if and only if $G=\overline{O_{r}}$, the complement of the r-dimensional octahedron, with $r=|G| / 2$.
(4) $p=3$ if and only if G is the vertex-disjoint union of cycles of length $3 k, k \in \mathbb{N}$.

Proof. The sufficient conditions come from the fact that a ($p-1$)-regular graph which admits a locally bijective coloring uses p colors. The necessary conditions are proved as follows:
(1) The only graph with p vertices and ($p-1$)-regular is the complete graph on p vertices.
(2) If there is only one color, then the graph has no edges.
(3) If there are two colors, then each vertex has exactly one neighbor. Hence, the set of edges of G is a perfect matching of G. Therefore, $G=\overline{O_{r}}$.
(4) Let c be a locally bijective coloring with three colors. Then G is a 2 -regular graph. Hence, it is the disjoint union of cycles. Since c induces a locally bijective coloring with three colors in each cycle, its size is a multiple of 3 .

Besides the fact that a graph admitting a locally bijective coloring is not necessarily an affine graph we can prove the following.

Theorem 8. Let G be a K_{3}-free graph. If G admits a locally bijective coloring c with p colors, $2 \leqslant p \leqslant|G| / 3$, then $\bar{G}_{K}+I_{p}$ is an induced subgraph of $K(\bar{G})$, where \bar{G}_{K} is a subgraph of $K(\bar{G})$ isomorphic to \bar{G}.

Proof. Let \mathscr{M} be the set of monochromatic sets defined by c. By the choice of p the set \mathscr{M} has at least two elements and each of its elements has size $|G| / p \geqslant 3$. Moreover, the size of the neighborhood of each vertex is $p-1 \geqslant 1$. Every monochromatic set is a maximal independent set, so it is a clique in \bar{G}. Hence $\mathscr{M} \subseteq V(K(\bar{G}))$. Since the elements of \mathscr{M} are pairwise disjoint, the set \mathscr{M} induces in $K(\bar{G})$ an independent set I_{p}, of size p.

For each vertex $v \in V(G)$ we define the set $M^{v}:=M(v) \backslash\{v\} \cup N(v)$, where $M(v)$ is the (unique) element in \mathscr{M} containing v. Let \bar{G}_{K} be the intersection graph of the family $\left\{M^{v}: v \in V(G)\right\}$. We shall prove that \bar{G}_{K} is an induced subgraph of $K(\bar{G})$ isomorphic to \bar{G} : We prove that M^{v} is a clique of \bar{G} and that $M^{v} \cap M^{u} \neq \emptyset$ if and only if $u v$ is not an edge of G.

To prove that M^{v} is a clique in \bar{G} we show that it is a dominating independent set of G. Since G is K_{3}-free the set $N(v)$ is an independent set. Since for each $w \in N(v)$ the vertex v is the only neighbor of w with color $c(v)$, no neighbor of v is adjacent with other vertex in $M(v)$. Then M^{v} is an independent set of G. We now show that M^{v} is a dominating set of G. Since $N(v) \neq \emptyset$, the vertex v has a neighbor in M^{v}. Let $z \neq v, z \notin M^{v}$ be a vertex. Since c is a locally bijective coloring and $z \notin N(v)$, the vertex z has a neighbor in $M(v) \backslash\{v\} \subseteq M^{v}$. Hence M^{v} is a dominating set. Therefore \bar{G}_{K} is an induced subgraph of $K(\bar{G})$.

We now prove that \bar{G}_{K} is isomorphic to \bar{G}, by showing that $M^{v} \cap M^{u} \neq \emptyset$ if and only if u and v are not adjacent in G. Let us assume first that u and v are not adjacent. Since each monochromatic set has at least three elements, if $M(u)=M(v)$, then there is a vertex $w \in M(u) \backslash\{u, v\}$. Hence $w \in M^{u} \cap M^{v}$.

Let us assume that $M(u) \neq M(v)$. Then, $v \notin M(u)$ and there is a $w \in M(u) \cap N(v), w \neq u$. Hence $w \in M^{v} \cap M^{u}$.
Conversely, let us suppose that u and v are adjacent in G. Since G is K_{3}-free $N(u) \cap N(v)=\emptyset$. Moreover, $N(v) \cap$ $M(u)=\{u\}, N(u) \cap M(v)=\{v\}$ and $M(u) \cap M(v)=\emptyset$. Therefore, $M^{v} \cap M^{u}=\emptyset$. Then \bar{G}_{K} is isomorphic to \bar{G}.
It is clear that for every $u \in V(G)$ and every $M \in \mathscr{M}, M^{u} \cap M \neq \emptyset$. Then $\bar{G}_{K}+I_{p}$ is an induced subgraph of $K(\bar{G})$.

In order to relate Theorem 8 with Proposition 2 we must provide an affination σ on G, such that ($\left.\bar{G}_{K}+I_{p}, \phi\right)$ is an admissible subgraph of $\left(K(\bar{G}), \sigma_{K}\right)$, where ϕ is the restriction of σ_{K} to $V\left(\bar{G}_{K}\right) \cup V\left(I_{p}\right)$.

Let (G, σ) be an affine graph. A coloring c considered as a morphism from $V(G)$ onto K_{p} is an admissible coloring of (G, σ) if there exists a permutation π of the vertices of K_{p} such that $c \circ \sigma=\pi \circ c$. It is easy to see that the image of a monochromatic set under an admissible coloring is a monochromatic set.

From Theorem 8 and Proposition 2 we get the following corollary.
Corollary 9. Let (G, σ) be an affine graph with G a K_{3}-free graph and $|G| \geqslant 2$.If (G, σ) admits an admissible locally bijective coloring c with at most $|G| / 3$ colors, then (\bar{G}, σ) is expansive.

Proof. Let p be the number of colors used by c. As an affine graph has at least one edge, $2 \leqslant p \leqslant|G| / 3$. By Theorem 8, the graph $\bar{G}_{K}+I_{p}$ is an induced subgraph of $K(\bar{G})$.

For each vertex v in G, let $M(v)=c^{-1}(c(v))$ and $M^{v}=M(v) \backslash\{v\} \cup N(v)$ be defined as in the proof of Theorem 8. Then $\bar{G}_{K}+I_{p}$ is the intersection graph of the set $\left\{M^{v}, M(v): v \in V(G)\right\}$, where \bar{G}_{K} and I_{p} are associated to the sets $\left\{M^{v}: v \in V(G)\right\}$ and $\{M(v): v \in V(G)\}$, respectively.
We now prove that $\sigma_{K}\left(V\left(\bar{G}_{K}\right) \cup V\left(I_{p}\right)\right) \subseteq V\left(\bar{G}_{K}\right) \cup V\left(I_{p}\right)$. Since c is an admissible coloring, there is a permutation π of K_{p} such that for each vertex v in G we have $\sigma\left(c^{-1}(c(v))\right)=c^{-1}(\pi(c(v)))=c^{-1}(c(\sigma(v)))$. Therefore, $\sigma_{K}(M(v))=$ $\sigma(M(v))=M(\sigma(v))$, for each vertex v in G. Hence, $\sigma_{K}\left(V\left(I_{p}\right)\right) \subseteq V\left(I_{p}\right)$. Moreover, $\sigma_{K}\left(M^{v}\right)=\sigma\left(M^{v}\right)=M^{\sigma(v)}$, since $\sigma(N(v))=N(\sigma(v))$ for every vertex v in G. Hence, $\sigma_{K}\left(V\left(\bar{G}_{K}\right)\right) \subseteq V\left(\bar{G}_{K}\right)$. Finally from Proposition 2 we conclude that (\bar{G}, σ) is expansive.

4. Applications

4.1. Cartesian product of cycles

We first show a direct application of Corollary 9 . Let $k \geqslant 2$ and let C be a cycle of length $p=2 k+1$. Let C^{k} be the Cartesian product of C with itself k times given by $V\left(C^{k}\right)=(V(C))^{k}$ and two vertices $u=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ are adjacent if and only if for some $1 \leqslant i \leqslant k, u_{i} v_{i} \in E(C)$ and $u_{j}=v_{j}$ for all $j \neq i$. Clearly, $\left|C^{k}\right| \geqslant 2$.

The function $\sigma(u)=u+e_{1}$ is an affination for C^{k}, where e_{i} is the i th canonical vector of $\mathbb{Z}_{2 k+1}^{k}$. Then, $\left(C^{k}, \sigma\right)$ is an affine graph. Moreover, the closed neighborhood of $\mathbf{0}=(0, \ldots, 0)$ in C^{k}, denoted by $N[\mathbf{0}]$, is the set $\left\{\mathbf{0}, \pm e_{1}, \ldots\right.$, $\left.\pm e_{k}\right\}$ and for each vertex u in C^{k} its closed neighborhood is given by $N[u]=u+N[0]$. Hence C^{k} is K_{3}-free.

Proposition 1. For all $k \in \mathbb{N}, k \geqslant 2$ the graph $\left(\overline{C^{k}}, \sigma\right)$ is expansive.
Proof. We shall prove that $c\left(v_{1}, \ldots, v_{k}\right)=\sum_{i=1}^{k} i v_{i}$ is a coloring of $\left(C^{k}, \sigma\right)$ satisfying the conditions of Corollary 9 . Since we are working in \mathbb{Z}_{p}, the function c is a coloring with p colors. Moreover, since $k \geqslant 2$ and $p \geqslant 5$ we get $\left|C^{k}\right|=p^{k} \geqslant 3 p$. Hence, $p \leqslant\left|C^{k}\right| / 3$. It remains to show that c is an admissible locally bijective coloring.

Since $c\left(\pm e_{i}\right)= \pm i$ and $c(N[0])=\mathbb{Z}_{p}$ and, since c is linear, $c(N[v])=c(v)+c(N[0])=c(v)+\mathbb{Z}_{p}=\mathbb{Z}_{p}$, so c is a locally bijective coloring of C^{k}. Moreover, the permutation $\pi(u)=u+1$ defined on K_{p} satisfies $c \circ \sigma=\pi \circ c$. Hence, c is an admissible coloring. Therefore, by Corollary $9,\left(\overline{C^{k}}, \sigma\right)$ is expansive.

4.2. General constructions

In the sequel we shall discuss how to use Theorem 6 to construct expansive graphs. In view of Corollary 9, the idea is to choose a graph H, a family D of transitively affine graphs and a family of generators F such that the affine construction $(G, \sigma):=\Lambda(H, D, F)$ admits an admissible locally bijective coloring c and G is K_{3}-free.

Let $p \geqslant 5$ be an integer and let S_{p} be given by $\{1, p-1\}$ when p is odd and given by $\{1, p / 2, p-1\}$ when p is even. Notice that $S_{p}=-S_{p}$ and $1 \in S_{p}$.

Let H be a graph. Let $D=D\left(p, S_{p}\right)$ be given by $D:=\left\{\left(D_{u}, \sigma_{u}\right): u \in V(H)\right\}$, where $\left(D_{u}, \sigma_{u}\right)=\left(D_{p}\left(S_{p}\right), \sigma_{D}\right)$, for each $u \in V(H)$. Let $\mathscr{Z}=\left\{Z_{(u, v)}, Z_{(v, u)}: u v \in E(H)\right\}$ be a family of subsets of \mathbb{Z}_{p} such that $Z_{(u, v)}=-Z_{(v, u)}$.

Let T be an orientation of H. We define the set of generators $F(\mathscr{Z}, T)$ by $F_{e}:=\left\{(0, v)(j, u): j \in Z_{(v, u)}\right\}$, where the orientation of the edge e in T is (v, u).
Let $(G, \sigma)=\Lambda(H, D, F(\mathscr{Z}, T))$. Then $V(G) \cong \mathbb{Z}_{p} \times V(H)$ and $\sigma(i, u)=(i+1, u)$, for each vertex (i, u) in G. From the definition of the affine construction we know that $(i, v)(j, u) \in E(G)$ if and only if $(0, v)(j-i, u) \in E(G)$ if and only if $(i-j, v)(0, u) \in E(G)$. Since $Z_{(u, v)}=-Z_{(v, u)}$ we deduce that (G, σ) only depends on H, D and \mathscr{Z}. We denote it by $\Lambda(H, D, F(\mathscr{Z}))$. Moreover, the set of neighbors of a vertex (i, u) in G is given by $\{(j, v): j-i \in$ $\left.Z_{(u, v)}, v \in N_{H}(u)\right\} \cup\left\{(j, u): j-i \in S_{p}\right\}$.

Let $c: V(G) \rightarrow \mathbb{Z}_{p}$ be given by $c(i, u)=i$, for every $(i, u) \in V(G)$. Note that if c is a coloring of G, then the permutation $\pi(i)=i+1$ makes c admissible.

The function c assigns to the neighbors of vertex (i, u) colors in $\left(i+S_{p}\right) \cup \bigcup_{v \in N_{H}(u)}\left(i+Z_{(u, v)}\right)$. If $\left\{Z_{(u, v)}: v \in N_{H}(u)\right\}$ is a partition of $\mathbb{Z}_{p} \backslash\left(S_{p} \cup\{0\}\right)$, then c assigns to each neighbor of the vertex (i, u) a different color in $\mathbb{Z}_{p} \backslash\{i\}$. In this case, as $c(i, u)=i$, the function c is an admissible locally bijective coloring of G.

Let p, k be integers with $p \geqslant 5$ and $k \leqslant p-4$. A family $\mathscr{Z}=\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ of subsets of \mathbb{Z}_{p} is a local p-cover if \mathscr{Z} is a partition of $\mathbb{Z}_{p} \backslash\left(S_{p} \cup\{0\}\right)$ and for each $i=1, \ldots, k$, the set Z_{i} is sparse that is, $\forall j \in \mathbb{Z}_{p}, j \in Z_{i} \Rightarrow j+1 \notin Z_{i}$.

By instance, if p is an even integer, then $Z_{1}=\{2,4, \ldots, p-2\} \backslash\{p / 2\}$ and $Z_{2}=\{3,5, \ldots, p-3\} \backslash\{p / 2\}$ are sparse sets, and $\left\{Z_{1}, Z_{2}\right\}$ is a local p-cover.

A family $\mathscr{Z}=\left\{Z_{(u, v)}, Z_{(v, u)}: u v \in E(H)\right\}$ is a p-cover of H if for every $u \in V(H)$ the subfamily $\left\{Z_{(u, v)}: v \in N_{H}(u)\right\}$ is a local p-cover and for each $u v \in E(H), Z_{(u, v)}=-Z_{(v, u)}$.

Theorem 10. Let $p \geqslant 5$ be an integer and let H be a K_{3}-free graph with at least three vertices. Then the complement of $\Lambda(H, D, F(\mathscr{Z}))$ is expansive, where \mathscr{Z} is any p-cover of H.

Proof. Let $(G, \sigma)=\Lambda(H, D, \mathscr{Z})$. We have already proved that the function $c(i, v):=i$ is an admissible locally bijective coloring of (G, σ). Since H is K_{3}-free and each set in \mathscr{Z} is sparse, the graph G is K_{3}-free too. Since $5 \leqslant p \leqslant|G| /|H|$ and $|H| \geqslant 3$, by Corollary 9 we conclude that (\bar{G}, σ) is expansive.

In the next lemmas we provide concrete p-covers for some classes of regular graphs.

Lemma 11. Let p, k be integers with $p \geqslant 5$. Let H be a k-regular graph having a proper k-edge coloring c^{\prime} with colors $\{1,2, \ldots, k\}$. Let $\mathscr{Z}=\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ be any local p-cover.

- If $k \leqslant\lceil p / 2\rceil-2$ and $Z_{i}=-Z_{i}$, for $i=1, \ldots, k$, then $\left\{Z_{(u, v)}=Z_{C^{\prime}(u v)}, Z_{(v, u)}=Z_{c^{\prime}(u v)}: u v \in E(H)\right\}$ is a p-cover for H.
- If $H=(A \cup B, E)$ is bipartite and $p \geqslant k+4$, then $\left\{Z_{(u, v)}=Z_{c^{\prime}(u v)}, Z_{(v, u)}=-Z_{c^{\prime}(u v)}: u \in A, v \in B, u v \in E\right\}$ is a p-cover for H.

Proof. Since \mathscr{Z} is a local p-cover, the conclusion comes from the fact that in both cases $Z_{(u, v)}=-Z_{(v, u)}$, for each $u v \in E(H)$.

Let H be a $2 k$-regular graph. From a result of Petersen [6], the graph H can be splitted in k edge-disjoint 2 -factors (vertex-disjoint union of cycles) H_{1}, \ldots, H_{k}. For $i=1, \ldots, k$, let O_{i} be the orientation of H_{i} obtained by orienting cyclically each cycle of H_{i}.

Lemma 12. Let p, k be integers with $p \geqslant 5$ and $k \leqslant\lceil p / 2\rceil-2$. Let H be a $2 k$-regular graph. Let $\mathscr{Z}=\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ be a partition of $\{2,3, \ldots,\lceil p / 2\rceil-1\}$, with Z_{i} a sparse set, for $i=1, \ldots, k$. Let $i=1, \ldots, k$ and let $u v \in E\left(H_{i}\right)$. Let $Z_{\left(u^{\prime}, v^{\prime}\right)}=Z_{i}$ and $Z_{\left(v^{\prime}, u^{\prime}\right)}=-Z_{i}$, where $\left(u^{\prime}, v^{\prime}\right)$ is the orientation of $u v$ in O_{i}. Then, $\left\{Z_{(u, v)}, Z_{(v, u)}: u v \in E(H)\right\}$ is a p-cover for H.

Proof. Clearly, for each $u v \in E(H)$, the sets $Z_{(u, v)}, Z_{(v, u)}$ are sparse, and $Z_{(u, v)}=-Z_{(v, u)}$. We show that for each vertex u of H, the set $\left\{Z_{(u, v)}: v \in N_{H}(u)\right\}$ is a local p-cover. For each $i=1, \ldots, k$, the vertex u has two neighbors w and w^{\prime} in H_{i} such that (w, u) and $\left(u, w^{\prime}\right)$ belong to O_{i}. Hence, $Z_{\left(u, w^{\prime}\right)}=Z_{i}$ and $Z_{(u, w)}=-Z_{i}$. Therefore,

$$
\begin{aligned}
\bigcup_{v \in N_{H}(u)} Z_{(u, v)} & =\bigcup_{i=1}^{k}\left(Z_{i} \cup-Z_{i}\right) \\
& =\left\{2, \ldots,\left\lceil\frac{p}{2}\right\rceil-1\right\} \cup\left\{p-2, \ldots, p-\left(\left\lceil\frac{p}{2}\right\rceil-1\right)\right\} \\
& =\{2, \ldots, p-2\} \backslash\left\{\frac{p}{2}\right\} .
\end{aligned}
$$

We conclude that $\left\{Z_{(u, v)}, Z_{(v, u)}: u v \in E(H)\right\}$ is a p-cover of H.

References

[1] F. Larrión, V. Neumann-Lara, Locally C_{6} graphs are clique divergent, Discrete Math. 215 (1-3) (2000) 159-170.
[2] F. Larrión, V. Neumann-Lara, On clique divergent graphs with linear growth, Discrete Math. 245 (1-3) (2000) 139-153.
[3] F. Larrión, V. Neumann-Lara, M.A. Pizana, Graph relations, clique divergence and surface triangulations, J. Graph Theory 51 (2006) 110-122.
[4] V. Neumann-Lara, On clique-divergent graphs, in: Problèmes Combinatoires et Théorie des Graphes, Orsay, France, 1978, pp. 313-315.
[5] V. Neumann-Lara, Clique divergence in graphs, algebraic methods in graph theory, Coll. Math. Soc. Jànos Bolyai 25 (1981) 563-569.
[6] J. Petersen, Die Theorie der regularen Graphen, Acta Math. 15 (1891) 193-220.

[^0]: 2t Partially supported by FONDAP on applied Mathematics, Fondecyt 1010442, Iniciativa Científica Milenio ICM P01-005 and CNPq under PROSUL project Proc. 490333/2004-4.
 H2th An extended abstract of this paper was presented at GRACO2005 (2nd Brazilian Symposium on Graphs, Algorithms, and Combinatorics) and appeared, under a different title, in Electronic Notes in Discrete Mathematics 19 (2005) 357-363.

 * Corresponding author.

 E-mail addresses: mmatamal@dim.uchile.cl (M. Matamala), jzamora@dim.uchile.cl (J. Zamora).

