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Abstract

An affine graph is a pair (G, ¢) where G is a graph and ¢ is an automorphism assigning to each vertex of G one of its neighbors. On
one hand, we obtain a structural decomposition of any affine graph (G, o) in terms of the orbits of . On the other hand, we establish
a relation between certain colorings of a graph G and the intersection graph of its cliques K (G). By using the results we construct
new examples of expansive graphs. The expansive graphs were introduced by Neumann-Lara in 1981 as a stronger notion of the
K-divergent graphs. A graph G is K-divergent if the sequence |V (K" (G))| tends to infinity with n, where K" T1(G) is defined by
Kl (G) = K(K™(G)) for n > 1. In particular, our constructions show that for any k > 2, the complement of the Cartesian product
Ck, where Cis the cycle of length 2k + 1, is K -divergent.
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1. Introduction

Let G be a graph. The clique graph of G, denoted by K (G), is the intersection graph of the cliques (maximal complete
subgraphs) of G. A main question regarding the clique graph operator K is the study of the behavior of the iterated
application of K. A graph G is K-divergent if the iterations K' 1 (G) = K (K'(G)), for i >0, generate a family of graphs
whose sizes tend to infinity. On one hand, a graph can be proved to be K-divergent by explicitly computing all its
iterated clique graphs. This approach was used in [4] to prove the K-divergence of the n-dimensional octahedron O,
and later, it was used to prove the K -divergence of locally Cg graphs [1] and clockwork graphs [2]. On the other hand,
it is known that clique divergence is preserved by some morphism (retractions [4], coverings [1]). Notions stronger
than K-divergency are rank divergence [3] and expansivity [5].

In this work we provide new families of expansive graphs. This notion, introduced by Neumann-Lara in [5] was
developed in the scope of coaffine graphs. A coaffination ¢ of a graph G # ) is an automorphism of G such that for
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everyu € V(G),u # o(u) and a(u) ¢ N(u). A coaffine graph is a pair (G, o) where G is a graph and ¢ is a coaffine
automorphism of G. For the purpose of this work it is more convenient to deal with the complement of coaffine graphs.
An affine graph is a pair (G, o), where G is a graph and ¢ is an automorphism such that the image of each vertex is
one of its neighbors. Clearly, (G, ¢) is an affine graph if and only if (G, ¢) is a coaffine graph.

For (co)affine graphs (G, ¢) and (H, ¢), a morphism f: (G, o) — (H, ¢) is admissible if f o = ¢ o f. Moreover,
if fis an isomorphism, then we say that (G, ¢) and (H, ¢) are isomorphic.

When G is a stable subgraph of H under ¢(¢(G) € G), we say that (G, ¢) is an admissible subgraph of (H, ¢),
where ¢ is the restriction of ¢ to G.

A coaffine graph (G, o) is expansive if there exist a sequence n1, no, ... of integers, with n; — oo, and a sequence
(H1, ¢1), (Ha, ¢3), ... of coaffine graphs such that:

e Hi=H;;+- -+ Hi,r,-a] r; — 0Q.
e For all i, (H;, ¢;) is an admissible subgraph of (K" (G), G’;{i), where crrI'{" is the canonical coaffination of K" (G)
induced by o [5].

As previously mentioned, the goal of this work is to provide new examples of expansive graphs. Our starting point is
the following result.

Theorem 1 (Neumann-Lara [5]). If (G, 0) and (H, ¢) are affine graphs such that (G + ﬁ,£+ ) is an admissible
subgraph of (K (G), o), then (G, o) is expansive, where o (Q) = a(Q) for all Q clique of G.

Since an edgeless graph is coaffinable we get the following.

Proposition 2. Let (1 ,_(]5) be an edgeless graph with at least two vertices together with a coaffination, and let (G, o)
be an affine graph. If (G + 1, 0 + ¢) is an admissible subgraph of (K (G), ok), then (G, a) is expansive.

In order to use Proposition 2 we will proceed as follows. In Section 2 we give a complete characterization of affine
graphs in terms of their affinations. In Section 3 we present sufficient conditions on (G, o) to satisfy the inclusion
property of Proposition 2: G+1,06+ ¢) is an admissible subgraph of (K (@), ok). Finally, in Section 4, by using
these results we construct new families of expansive graphs.

2. Affine graphs

In this section we give a characterization of affine graphs.
For an affine graph (G, o), the orbit of a vertex u € V(G) by ¢ is the set

Ow)={veV(G):Tielodu=nu).

It is clear that the set of orbits is a partition of the set of vertices of G. We define the orbit index of (G, o), denoted
by n(G, o), as the number of orbits induced by ¢ in G. We first study affine graphs with orbit index equals to one. Let
p>2 be an integer and let S be a set of elements in Z,\{0} such that § = —S. The circulant graph D ,(S) of order p
with connection set S, is the graph whose set of vertices is V = Z, and such that ij is an edge of D, (S) if and only if
J —imodp € S. In the rest of the paper we assume that all the arithmetic operations are carried out in Z .

Let D,(S) be a circulant graph, if 1 € S we say that the graph is unitary. Clearly, for any unitary circulant graph
D (S), the automorphism op(j) = j + 1 is an affination. Hence, (D, (S), op) is an affine graph.

Any affine graph (G, ¢) isomorphic to an affine graph (D, (S), op), where D (S) is a unitary circulant graph, will
be called a transitively affine graph. Let ¢ be an isomorphism between (G, ¢) and (D, (S), op). Since 6 = o loapog
and n(D,(S), op) = 1 we get that n(G, ) = 1. Therefore, we have proved the forward implication of the following
lemma.

'G+H=(V(G)UVH), EG) UEH)U{{i, j)i e V(G),je V(H)}.



Lemma 3. An affine graph (G, o) is a transitively affine graph if and only if n(G, o) = 1.

Proof. Conversely, let us assume that 7(G, ¢) = 1 and |G| = p. Let u be any vertex of G and let ¢: Z,, — V(G) be
defined by ¢ (i) = o' (u). Since (G, o) = 1, the function ¢ is a bijection between Z,and V(G). Let S = {(;5_1 (w) —
q’)‘l(v), ¢_1(v)—¢_l(w): wv € E(G)} € Z,.Then, S=—S§ and, since ug (1) is anedge of G, we getthat 1 € S. Hence,
D, (S) is a unitary circulant graph. Moreover, ¢ is an isomorphism between D, (S) and G satisfying ¢ o op =0 0 ¢.
Therefore, (G, o) and (D,(S), op) are isomorphic. []

Let U € V(G) be such that ¢(U) € U. Then the pair (G, o)y = (G[U], oy) is an affine graph which is an
admissible subgraph of (G, ¢), where G[U] is the graph induced by U in G and oy is the restriction of ¢ to U.

Corollary 1. Let O be an orbit of the affine graph (G, a). Then, (G, 0) ¢ is a transitively affine graph.

Since each orbit of an affine graph is a transitively affine graph, a complete structural description of an affine graph
can be obtained by describing how their orbits are connected.

Let A and B be two disjoint sets. We denote by [A, B] the set of all subsets of A U B with exactly one element of A
and one element of B. When A and B are disjoint subsets of the vertex set of a graph G, we denote by [A, B]g the set
of all edges between A and B in G.

Let ((V1, E1),01) and ((V2, E»), 02) be two vertex-disjoint affine graphs and let F C [V, V2]. We define the
affine-coupling between ((V1, E1), a1) and ((V2, E2), 02) with generator F as the pair

(G, 0) == ((V1, E1), o) r((Va, E2), 02),
where G is the graph given by V(G) = V1 U V; and
E(G)=E1 U E2U{{o} (1), oy (u2)}: (w1, uz} € Fuy € Visuz € Va,i € N}

and o(u) =0 (u) ifu € V; withi =1, 2.

Lemma 4. Let (V1, E1), 01), (Va, E2), 62) be two affine graphs and let F  [Vy, V»]. Then, (G, 0) := ((V1, E1),
a)|lr((Va, E2), 02) is an affine graph.

Proof. It is clear that g(u) is a neighbor of u in G, for each vertex u of G. Since, fori =1, 2, g; is bijective and so is a.
It remains to prove that ¢ is a morphism. Since ¢ coincides with ¢; on V;, i = 1, 2, we only need to consider the image
under o of an edge vivy in G with v; € V;, i =1, 2. By definition of the affine-coupling there are an integer j and an
element uuy € F such that a{ (u;) =v;, i =1, 2. Therefore, a(vi)a(v2) = a{“(ul)aéﬂ(ug) and then a(vi)a(vy) is
anedge of G. [

Let (G, o) be an affine graph with (G, ¢) >2. We say that two orbits Oy, O, of ¢ are adjacent if [O1, O] # 0.
We prove that the affine graph (G, ¢) g,u0, is the affine-coupling of (G, 0), | F(G, ) o,, for some set F.

Lemma S. Let (G, o) be an affine graph with n(G, ¢) >22. Let O1, Oz be two adjacent orbits of G. Then, there exists
aset ' C [0y, O2]g such that the affine graph (G, 0) 0,00, is the affine-coupling (G, 0) o, | F(G, 0) ¢,

Proof. By definition, (G, 0)o,u0, = (H, 60,u0,), Where H is the graph induced by O1 U O3 in G. Letu € O be and
let F be the set of all edges in [0}, O2]¢ incident with u. Let (H', 00,u0,) be the affine-coupling (G, 0o, IF(G, 0)o,.
Then, we only have to prove that H' = H. As V(H) = V(H’), we prove that E(H) = E(H’). On one hand, since ¢
is an automorphism and F € E(H), we get E(H') € E(H). On the other hand, the edges in the graph induced by
O; are included in E(H'), for i = 1, 2. Moreover, every edge vivy € E(H) withv; € O;, i = 1, 2, is associated with
the edge uu’ € F, where u’ = 6~/ (v3) and ¢/ (u) = vy, for some integer j. This shows that vjvs € E(H’). Therefore
EH)C EH. O

Since the set of orbits of an affine graph is a partition of the set of vertices of the graph, each edge belongs to an
affine-coupling of two orbits. Hence a relevant information is given by the connections between the orbits. Let (G, o)



be an affine graph, its orbit-graph is the graph H; where each orbit of G is a vertex of H, and two vertices are adjacent
if and only if their corresponding orbits are adjacent too. We know that for each orbit u of G the affine graph (G, o), isa
transitively affine graph. Moreover, from Lemma 5 we know that each edge e of H,; is associated with a set of edges F,.
Hence, each affine graph G can be completely described by the triple (Hy, Dy, Fy), where Dy ={(G, 0),:u € V(Hy)}
and Fy = {F.:e € E(Hy)}. Conversely, for a graph H, a family D = {(Dy, 64)},cy ) of transitively affine graphs
and a family F' = {F,},c gy of generators, we define the affine construction ((V, E), o) := A(H, D, F) as follows:
V ={G,u):i € V(D,),u € V(H)} and the function ¢ is the common extension of all the affine functions g, u €
V(H) : a(i, u) := 0,(i).The set E is such that for every edge e = uv € E(H) the affine graph ((V, E), o)y (p, uv(p,)
is the affine-coupling (V (D), 6,) |l F,(V(Dy), 6y).

From Lemma 5 it is not difficult to see that A(H, D, F) is an affine graph. Moreover, given an affine graph (G, o)
it follows that (G, o) is isomorphic to A(Hy, Dy, Fy). Therefore, we have proved the following theorem which is a
characterization of the affine graphs.

Theorem 6. Let G be a graph. (G, o) is an affine graph if and only if there exist a graph H, a family of transitively
affine graphs D = {(Dy, 6u)},cvmy and a family of generators F = {Fe},cpmy such that (G, o) is isomorphic to
A(H, D, F).

3. Locally bijective coloring

In this section we obtain sufficient conditions on affine graphs to satisfy the inclusion property of Proposition 2. These
conditions will lead us to define a new class of graphs containing the complements of the n-dimensional octahedra and
some cycles known to be K-divergent. Unfortunately, not every graph in this class is an affine graph.

A (proper) vertex coloring c of a graph G = (V, E) is locally bijective if each color appears exactly once in the closed
neighborhood of each vertex. Clearly, each monochromatic set defined by a locally bijective coloring is a dominating
set and it is easy to see that all have the same size. Hence, if ¢ uses p colors, then |G| = rp, where r is the size of each
monochromatic set and the graph is (p — 1)-regular. For some values of » and p we characterize the locally bijectively
colorable graphs.

Lemma 7. Let G be a graph. If G admits a locally bijective coloring with p colors then:

(1) |G| = pifand only if G = K, the complete graph on p vertices.

(2) p=1ifand only if G has no edges.

(3) p=2ifand only if G = O,, the complement of the r-dimensional octahedron, with r = |G|/2.
(4) p=3ifandonlyif G is the vertex-disjoint union of cycles of length 3k, k € N.

Proof. The sufficient conditions come from the fact that a (p — 1)-regular graph which admits a locally bijective
coloring uses p colors. The necessary conditions are proved as follows:

(1) The only graph with p vertices and (p — 1)-regular is the complete graph on p vertices.

(2) If there is only one color, then the graph has no edges.

(3) If there are two colors, then each vertex has exactly one neighbor. Hence, the set of edges of G is a perfect matching
of G. Therefore, G = O,.

(4) Let c be a locally bijective coloring with three colors. Then G is a 2-regular graph. Hence, it is the disjoint
union of cycles. Since ¢ induces a locally bijective coloring with three colors in each cycle, its size is a multiple
of3. O

Besides the fact that a graph admitting a locally bijective coloring is not necessarily an affine graph we can prove
the following.

Theorem 8. Let G be a K3-free graph. If G admits a locally bijective coloring ¢ with p colors, 2< p<|G|/3, then
Gk + I, is an induced subgraph of K(G), where G is a subgraph of K (G) isomorphic to G.



Proof. Let .# be the set of monochromatic sets defined by c. By the choice of p the set .# has at least two elements
and each of its elements has size |G|/p > 3. Moreover, the size of the neighborhood of each vertex is p — 1 > 1. Every
monochromatic set is a maximal independent set, so it is a clique in G.Hence .4 € V(K(G)). Since the elements of
M are pairwise disjoint, the set .# induces in K (G) an independent set [ p» of size p.

For each vertex v € V(G) we define the set MV := M (v)\{v} U N (v), where M (v) is the (unique) element in .#
containing v. Let G ¢ be the intersection graph of the family {M": v € V(G)}. We shall prove that G ¢ is an induced
subgraph of K (G) isomorphic to G: We prove that M? is a clique of G and that MV N M* #  if and only if uv is not
an edge of G.

To prove that M? is a clique in G we show that it is a dominating independent set of G. Since G is K3-free the
set N (v) is an independent set. Since for each w € N (v) the vertex v is the only neighbor of w with color ¢(v), no
neighbor of v is adjacent with other vertex in M (v). Then MV is an independent set of G. We now show that M is a
dominating set of G. Since N (v) # (J, the vertex v has a neighbor in M". Let z # v, z ¢ M" be a vertex. Since c is a
locally bijective coloring and z ¢ N (v), the vertex z has a neighbor in M (v)\{v} € M". Hence M" is a dominating set.
Therefore G g is an induced subgraph of K (G).

We now prove that G g is isomorphic to G, by showing that MV N M* # ¢ if and only if u and v are not adjacent
in G. Let us assume first that # and v are not adjacent. Since each monochromatic set has at least three elements, if
M (u) = M (v), then there is a vertex w € M (u)\{u, v}. Hence w € M* N M".

Let us assume that M (1) # M (v). Then, v ¢ M (u) and thereisa w € M (u) N N(v), w # u. Hence w € MV N M".

Conversely, let us suppose that # and v are adjacent in G. Since G is K3-free N (u) N N (v) = . Moreover, N (v) N
M u) = {u}, N(u) N M(v) = {v} and M (u) N M(v) = @. Therefore, M¥ N M* = ). Then G is isomorphic to G.

It is clear that for every u € V(G) and every M € .4/, M* N M # . Then G + I, is an induced subgraph of
K(G). O

In order to relate Theorem 8 with Proposition 2 we must provide an affination o on G, such that (G g + I p> @) is an
admissible subgraph of (K(G), og), where ¢ is the restriction of g g to V(Gg)U V(p).

Let (G, o) be an affine graph. A coloring ¢ considered as a morphism from V (G) onto K, is an admissible coloring
of (G, o) if there exists a permutation 7 of the vertices of K, such that c o ¢ = 7 o c. It is easy to see that the image of
a monochromatic set under an admissible coloring is a monochromatic set.

From Theorem 8 and Proposition 2 we get the following corollary.

Corollary 9. Let (G, 0) be an affine graph with G a K3-free graph and |G| 22. If (G, o) admits an admissible locally
bijective coloring ¢ with at most |G|/3 colors, then (G, o) is expansive.

Proof. Let p be the number of colors used by c. As an affine graph has at least one edge, 2< p<|G|/3. By
Theorem 8, the graph Gr+1 p is an induced subgraph of K (G).

For each vertex v in G, let M (v) = ¢~ (c(v)) and M? = M (v)\{v}U N (v) be defined as in the proof of Theorem 8.
Then Gg + I p is the intersection graph of the set {M", M (v):v € V(G)}, where Gy and [ p are associated to the sets
{M":v € V(G)} and {M (v): v € V(G)}, respectively.

We now prove that o (V(Gg)UV(I,)) € V(Gg)UV(I,). Since c is an admissible coloring, there is a permutation
nof K, such that for each vertex v in G we have a(c ! (c(v))) =c ™ (n(c(v))) =~ (c(a(v))). Therefore, ax (M (v)) =
(M (v)) =M (o(v)), for each vertex v in G. Hence, o (V (1)) € V(I,). Moreover, ox (M") =a(M") = M°® since
a(N (v)) = N(a(v)) for every vertex v in G. Hence, ox(V(Gg)) C V(EK). Finally from Proposition 2 we conclude
that (G, o) is expansive. [

4. Applications
4.1. Cartesian product of cycles

We first show a direct application of Corollary 9. Let k>2 and let C be a cycle of length p = 2k + 1. Let C* be
the Cartesian product of C with itself k times given by V(Ck) = (V(C))k and two vertices u = (uy, ua, ..., uy) and

v = (v1,v2, ..., ) are adjacent if and only if for some 1<i <k, u;v; € E(C) and u; = v; for all j # i. Clearly,
Ik >2.



The function (1) = u + e is an affination for C¥, where ¢; is the ith canonical vector of Z’ikﬂ. Then, (C¥, o) is
an affine graph. Moreover, the closed neighborhood of 0 = (0, ..., 0) in Ck, denoted by N[0], is the set {0, £eq, ...,
+er} and for each vertex u in CF its closed neighborhood is given by N[u] = u + N[0]. Hence C* is
Ks-free.

Proposition 1. Forall k € N, k >2 the graph (E, 0) is expansive.

Proof. We shall prove that c(vy,...,vr) = Zle iv; is a coloring of (CK, o) satisfying the conditions of
Corollary 9. Since we are working in Z,,, the function c is a coloring with p colors. Moreover, since k>2 and p>5
we get |C¥| = pk>3p. Hence, p <|C¥|/3. It remains to show that ¢ is an admissible locally bijective coloring.

Since c¢(=£e;) = £i and ¢(N[0]) = Z, and, since c is linear, c(N[v]) = c(v) + c¢(N[0]) =c(v) + Z, =Z),s0cisa
locally bijective coloring of CX. Moreover, the permutation 7(u) = u + 1 defined on K p satisfies ¢ o 6 =m o c. Hence,
¢ is an admissible coloring. Therefore, by Corollary 9, (C, ¢) is expansive. []

4.2. General constructions

In the sequel we shall discuss how to use Theorem 6 to construct expansive graphs. In view of Corollary 9, the
idea is to choose a graph H, a family D of transitively affine graphs and a family of generators F such that the
affine construction (G,o) := A(H,D,F) admits an admissible locally bijective coloring ¢ and G is
Ks-free.

Let p >5 be an integer and let S, be given by {1, p — 1} when p is odd and given by {1, p/2, p — 1} when p is even.
Notice that S, = =S, and 1 € §).

Let H be a graph. Let D = D(p, S)p) be givenby D := {(Dy, 0,,):u € V(H)}, where (Dy, 6,) = (Dp(S)), op), for
eachu € V(H). Let Z ={Z,v), Zw,u): uv € E(H)} be a family of subsets of Z, such that Z, vy = —Zy ).

Let T'be an orientation of H. We define the set of generators F (%, T) by F, := {(0, v)(j, u): j € Z,u)}, where the
orientation of the edge e in T'is (v, u).

Let (G,0) = A(H, D, F(Z,T)). Then V(G)=Z, x V(H) and ¢(i, u) = (i + 1, u), for each vertex (i, u) in G.
From the definition of the affine construction we know that (i, v)(j, u) € E(G) if and only if (0, v)(j —i,u) € E(G)
if and only if (i — j, v)(0,u) € E(G). Since Z, y) = —Z(,u) We deduce that (G, o) only depends on H, D and Z.
We denote it by A(H, D, F(Z)). Moreover, the set of neighbors of a vertex (i, u) in G is given by {(j,v):j — i €
Ziuwys v € Ny} U{(j ) j —i € Sp).

Let ¢: V(G) — Z, be given by c(i, u) =1, for every (i,u) € V(G). Note that if ¢ is a coloring of G, then the
permutation 7(i) =i + 1 makes ¢ admissible.

The function c assigns to the neighbors of vertex (i, u) colorsin (i —i—Sp)UUUE,\,H ) (+Zw,v) I{Zyvy:v € Np(u)}
is a partition of Z,\ (S, U {0}), then c assigns to each neighbor of the vertex (i, u) a different color in Z,\{i}. In this
case, as c(i, u) =i, the function ¢ is an admissible locally bijective coloring of G.

Let p, k be integers with p>5 and k<p — 4. A family & ={Z;, Z», ..., Z;} of subsets of Z, is a local p-cover if
Z is a partition of Z,\ (S, U{0}) and foreachi =1, ..., k, the set Z; is sparse thatis,Vj € Z,, j € Z; = j+1¢ Z;.

By instance, if p is an even integer, then Z1 ={2,4, ..., p —2]\{p/2}and Z, = {3, 5, ..., p — 3}\{p/2} are sparse
sets, and {Z1, Z»} is a local p-cover.

Afamily ' ={Z vy, Zwu):uv € E(H)}isa p-cover of Hif forevery u € V (H) the subfamily {Z(, y): v € Ny (1)}
is a local p-cover and for each uv € E(H), Zy,v) = —Z(v,u)-

Theorem 10. Let p>5 be an integer and let H be a K3-free graph with at least three vertices. Then the complement
of A(H, D, F(%)) is expansive, where & is any p-cover of H.

Proof. Let (G, 0)=A(H, D, %). We have already proved that the function c(7, v) := i is an admissible locally bijective
coloring of (G, ). Since H is K3-free and each set in & is sparse, the graph G is K3-free too. Since 5< p<|G|/|H|
and |H| >3, by Corollary 9 we conclude that (G, o) is expansive. [

In the next lemmas we provide concrete p-covers for some classes of regular graphs.



Lemma 11. Let p, k be integers with p > 5. Let H be a k-regular graph having a proper k-edge coloring ¢’ with colors
{1,2,...,k}. Let & ={Z1, Z>, ..., Z} be any local p-cover.

o Ifk<[p/21—2and Z; =—Z;,fori =1, ...k, then {Zy vy = Zc'wvys Zw,u) = Ze' vy uv € E(H)} is a p-cover
for H.

o IfH=(AUB, E)isbipartite and p >k +4, then {Z, vy = Zc'(wvys Zw,u)y = —Zewvy: 4 € A,v € B,uv € E}isa
p-cover for H.

Proof. Since Z is a local p-cover, the conclusion comes from the fact that in both cases Z(, ) = —Z(y,4), for each
uv e E(H). O

Let H be a 2k-regular graph. From a result of Petersen [6], the graph H can be splitted in k edge-disjoint 2-factors
(vertex-disjoint union of cycles) Hi, ..., Hy. Fori =1, ..., k, let O; be the orientation of H; obtained by orienting
cyclically each cycle of H;.

Lemma 12. Let p, k be integers with p>5 and k < [p/2] —2. Let H be a 2k-regular graph. Let Z ={Z1, Z», ..., Z}}
be a partition of {2, 3, ..., [p/2] — 1}, with Z; a sparse set,fori=1,...,k.Leti=1, ...,k andletuv € E(H;). Let
Zw vy =Ziand Zqy vy = —Z;, where (u’, V') is the orientation of uv in O;. Then, {Z vy, Zwu:uv € E(H)}isa
p-cover for H.

Proof. Clearly, for each uv € E(H), the sets Z. vy, Z(v,4) are sparse, and Z, v) = —Z(y,4). We show that for each
vertex u of H, the set {Z(, ,): v € Ny (u)} is a localp-cover. For eachi =1, ..., k, the vertex u has two neighbors w
and w’ in H; such that (w, u) and (1, w’) belong to O;. Hence, Z, ) = Z; and Z(,,v) = —Z;. Therefore,

U Z(u.v) = O(Zi U-—2;)
veNg (u) i=1
e 2 ol (1)

14
—(2.....p-2 {—}
{ P =20\ 3
We conclude that {Z (), Z,u):uv € E(H)}is a p-coverof H. [J
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