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Abstract

We study the deterministic spin dynamic of two interacting magnetic moments with anisotropy and dipolar interaction under the

presence of an applied magnetic field, by using the Landau–Lifshitz equation with and without a damping term. Due to different kinds of

interactions, different time scales appear: a long time scale associated with the dipolar interaction and a short time scale associated with

the Zeeman interaction. We found that the total magnetization is not conserved; furthermore, for the non-dissipative case it is a

fluctuating function of time, with a strong dependence on the strength of the dipolar term. In the dissipative case there is a transient time

before the total magnetization reaches its constant value. We examine this critical time as a function of the distance between the magnetic

moments and the phenomenological damping coefficient, and found that it strongly depends on these control parameters.
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1. Introduction

The dynamic of interacting magnetic particles which are
considered as monodomains is important to model devices
for spintronic [1]. The understanding of some magnetic
properties, such as hysteresis loops, magnetization reversal,
zero field cooling (ZFC), and field cooling (FC) behavior,
are fundamental to model a magnetic system to obtain, for
example, magnetic susceptibility or magnetoresistance.
Therefore, a detailed study of a simple interacting magnetic
system is quite important and in order.

The standard approaches to study the dynamics of the
magnetization reversal are the Landau–Lifshitz (LL) [2] or
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the Landau–Lifshitz–Gilbert (LLG) equation [3]. Non-
linear time dependent problems in magnetism have already
been studied in many cases, and an account of the state of
the art can be found in Ref. [4]. A particular case of the
Landau–Lifshitz model, the chaotical behavior of the
magnetic moment for an anisotropic magnetic particle in
a parametric magnetic field (MF), is reported in Ref. [5];
moreover, the nonlinear aspects of a magnetic particle
under circularly polarized field is reported in Ref. [6] and a
perturbation technique in order to solve the LLG equation
is developed in Ref. [7].
From a theoretical point of view, analytical solutions of

the LL or LLG equations are difficult to find due to the
nonlinearity of these equations, and only in few cases they
have been obtained, as for example, in the problem of a
magnetic particle with uniaxial anisotropy in the presence
of an applied MF when the easy axis is parallel to the
external field [8]. Analytical solutions for different orienta-
tions of the easy axis with respect to the MF vector and in
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absence of damping can be found in Refs. [9,10]. When the
magnetic system is subjected to short field pulses such that
its dynamics is fast enough, then the dissipative effects can
be neglected [9]. In this context recently the dynamics of
two interacting magnetic nanoparticles was analyzed in the
presence of an external magnetic filed, in the absence of
damping, in the framework of LL equation [11], and it is
found that the enveloped function of the modulus of total
magnetization is not a constant.

In the present work, we analyze in detail the determi-
nistic behavior of two interacting anisotropic magnetic
particles, via dipole–dipole interaction, in the presence of
an applied MF. We consider different regimens of the
parameters space in order to understand the corresponding
magnetic behaviors. We also analyze the dissipative and
non-dissipative situation. We find that the absolute value
of the total magnetization is not conserved; furthermore,
for the non-dissipative case it is a fluctuating function of
time, with a strong dependence on the strength of the
dipolar term. In the dissipative case, there is a transient
time before the total magnetization reaches its constant
value. Also a scaling law for this transient time as a
function of the distance between the magnetic moments
and the phenomenological damping coefficient is found.
The paper is arranged in the following way: in Section 2 the
theoretical model is described. In Section 3 the numerical
results are discussed. Finally, the conclusions are presented
in Section 4.

2. Theoretical model

Let us consider a system of N magnetic particles and
assume that each particle can be represented by a magnetic
monodomain. The temporal evolution of this system can
be modeled by the LL equation and it can be written as

dmi

dt
¼ �gmi �Hi

eff �
gl
mi

mi � ðmi �Hi
eff Þ, (1)

where mi is an individual magnetic moment with
i ¼ ð1; . . . ;NÞ, g is an effective gyromagnetic ratio, and l
is a phenomenological damping coefficient. The corre-
sponding ith effective field, Hi

eff , is given by

Hi
eff ¼ �rmiH, (2)

where H represents the appropriate Hamiltonian for the
system. At this point we would like to remark that the
structure of Eq. (1) in absence of damping, l ¼ 0, has an
intrinsic relationship with the Nambu’s equation governing
the dynamics for a triplet of canonical variables with two
motion constants [12]. In case of a single magnetic
moment, the triplet of canonical variables is given by m

and the two motion constants are the Hamiltonian and the
magnitude of the magnetic moment.

In this work we analyze a model consisting of two
interacting magnetic particles, with anisotropy and dipolar
interaction in the presence of an external MF. It is
interesting to note that in real nano-patterned magnetic
media, the magnetic particles have substantial shape
anisotropy due to a large aspect ratio of the in-plane
particle sizes to its thickness, and in general, the influence
of this shape anisotropy is much larger than the effect of
inter-particle dipole interaction, and can be even larger
than the effect of the external MF. The Hamiltonian
describing the model is

H ¼ �
X2
i¼1

ðH �mi þ aiðmi � k̂Þ2Þ þ d�3m1 �m2

� 3d�3ðm1 � n̂Þðm2 � n̂Þ, ð3Þ

where H represents the external MF, ai is the anisotropy
constant, k̂ is a unitary vector in the direction of the easy
axis, d is the fixed distance between the two magnetic
moment, and n̂ is a unitary vector along the direction
joining the two particles. Therefore, the two corresponding
LL equations given in Eq. (1) with the Hamiltonian (3) are

dmi

dt
¼ � gmi � Hþ

ai

2
ðmi � k̂Þk̂� d�3mk þ 3d�3ðmk � n̂Þn̂

� �

�
gl
mi

mi � mi � Hþ
ai

2
ðmi � k̂Þ

��

�d�3mk þ 3d�3ðmk � n̂Þn̂
��
, ð4Þ

where (i,k) ¼ (1,2) such that i6¼k. Note that these equations
have a nonlinear coupling due to the interaction and the
anisotropy terms. Also, the system presents different time
scales depending on the magnitudes of the magnetic
interactions, because they are of different nature. In addi-
tion, because the individual magnetization magnitudes are
constant, the global dynamics of each magnetic moment is
reduced to a spherical surface. Thus, with these constraints
it is useful to employ spherical coordinates r; y;f

� �
,

expressing each magnetic moment by mi ¼ mi r̂. Conse-
quently, system (4) is reduced to four differential equa-
tions, which can be written as

_y
i
¼ � g ðlHy �HfÞ þ

ai

2
mikrðlky � kfÞ

�

þ3d�3mknrðnf þ lnyÞ

�
, ð5aÞ

_f
i
sin yi

¼ � g ðHy þ lHfÞ þ
ai

2
mikrðky þ lkfÞ

�

þ3d�3mknrðny þ lnfÞ
�
. ð5bÞ

We remark that, in general, the right-hand side of Eqs. (5)
are complex functions of the angles, y and f, and we notice
that, in this representation, the dynamics of the individual
magnetic moment is almost uncoupled, since the only term
that couples them is a constant, which is the magnitude of
the magnetization of the other magnetic moment. There-
fore, in order to study qualitatively the dynamical behavior
of the system, we analyze Eqs. (5); however, because the
numerical integration of Eqs. (5) is not trivial due to the
angles are not defined in the extremes of their ranges, for
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full numerical integration we use Cartesian components. In
addition, let us note that if the external field is a static field,
then this system of differential equations is an autonomous
system, and it is possible to use a perturbation technique
for obtaining the appropriate qualitative behavior. In the
following we will examine the particular case of particles
with the same magnitude of their magnetic moments, m1=
m2=m, and the same shape anisotropy constant, a1=
a2=a.

Notice that due to the dipolar interaction, the total
magnetization for two magnetic interacting particles in the
absence of damping is not stationary [11]; this condition is
also fulfilled in our case. In order to elucidate it, we can
write Eq. (4) in the Gilbert form [3]:

dmi

dt
¼ � gGm

i � Hþ
a
2
ðmi � k̂Þk̂� d�3mk þ 3d�3ðmk � n̂Þn̂

	 


þ lGmi �
dmi

dt
. ð6Þ

The LLG equation (6) is implicit with respect to dmi/dt,
and it can be transformed in the equivalent normalized
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Fig. 1. The magnetization components of e1 as function of time: (a) for m/(d3H

and l ¼ 0.01; and (d) for m/(d3H0) ¼ 1 and l ¼ 0.01. In all figures h ¼ 5ẑ and
Landau–Lifshitz form, where gG ¼ g+l and aG ¼ l/m. In
this way, the dynamic of the total magnetization, M ¼

m1+m2, obeys the equation

dM

dt
¼ Fþ gGM� ðHþ z1ðM � n̂Þn̂þ z2M� ðM � k̂Þk̂Þ

þ lGM�
dM

dt
, ð7Þ

where z1 ¼ 6d�3 and z2 ¼ 2a. Eq. (7) describes the behavior
of an equivalent single magnetic moment, with bi-axial
anisotropy with easy axes n̂ and k̂, in the presence of both
the applied MF and an extra fluctuating term,
F ¼ F m1;m2; _m1; _m2

� �
, which is a function of m1 and m2,

and their corresponding time derivatives. This extra term
can be interpreted as a time dependent fluctuating field by
proper change of units. Moreover, from Eq. (7) it is clear
that the magnitude of the total magnetization is not
conserved but fluctuating in time. Finally, we remark that
the dynamic behavior of the total magnetization of the
system is totally different whether one considers damping
or not. In the next section, we will show this situation.
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3. Numerical results

In order to integrate numerically, Eq. (4), we express
them in a dimensionless form; for this purpose we
introduce the new variables ej ¼ mj=m, h

j
eff ¼ H

j
eff=H0;

and t ¼ t=ðgH0Þ, where H0 is the magnitude of a reference
MF. Let us define the dimensionless total magnetization
system as E ¼ e1+e2. An order four Runge–Kutta
numerical method was used to solve six differential
equations in Cartesian coordinates. The numerical result
is arranged as follows: in Sections 3.1 and 3.2 the non-
anisotropy and anisotropy case are studied, respectively,
for some fixed parameters. In Section 3.3 the non-uniform
effect in the modulus of total magnetization is presented.
Finally, the qualitative behavior of the system is shown in
Section 3.4.

3.1. Non-anisotropic case

In this section, we analyze the case of non-anisotropic
case, that is a ¼ 0. As the first step, the initial conditions
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Fig. 2. The 3D phase diagram of components of e1: (a) for m/(d3H0) ¼ 103 and

and (d) for m/(d3H0) ¼ 1 and l ¼ 0.01. In all figures, h ¼ 5ẑ and a ¼ 0.
for the magnetic moments are selected as follows: e1ð0Þ ¼
ð0:1;�0:1; 0:989949Þ and e2ð0Þ ¼ ð�0:1; 0:1;�0:989949Þ;
notice that these initial conditions are such that the total
magnetization vector vanishes. Besides, the fixed parameter
is chosen to be n̂ ¼ ð0:382; 0; 0:924Þ and h ¼ H=H0 ¼ 5ẑ.
Among many possible cases, we show, firstly: (i) when the
dipolar field (DF) term is more important than the external
MF term and the anisotropy is neglected, and (ii) when the
external MF term is more important than the dipolar term
and the anisotropy is neglected. The numerical values of
the parameters in the DF case is m/(d3H0) ¼ 103, in the MF
case is m/(d3H0) ¼ 1. In the next three figures, the order of
the frames are: DF cases are frames (a) and (c) for l ¼ 0
and l ¼ 0.01, respectively; the MF cases are (b) and (d), for
the same l coefficients.
Fig. 1 shows the time evolution of the three components

of e1. Note that in the non-dissipative case, Figs. 1(a) and
(b), the components have a harmonic and quasi-periodic
behavior, their initial dephasing being preserved; on the
other hand, in the dissipative case, Figs. 1(c) and (d), the
dynamical behavior presents two stages, clearly defined: at
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the beginning of big fluctuations and after that, the
individual components take constant values. Also, from
the frames of Fig. 1, we observe that, because the two kinds
of interactions present in the system, two different time
scales appear, the slower one corresponding to DF.

Fig. 2 shows the parametric trajectory of e1 in the phase
space. Note that in the frames (a) and (b) the shape of the
surface has holes centered on an axis, which is rotated with
respect to z-axis; these holes and the corresponding centers
are manifestations of the interaction. In the dissipative
case, frames (c) and (d), the shape of the surfaces change
roughly; in the DF case the phase diagram is a quasi-sphere
with some holes and the MF is a semi-sphere. In both cases
there are attractor points.

3.2. Anisotropic case

Now we go through the cases when the anisotropy field
is more important than the DF and the external field. In
order to analyze the effect of the anisotropy, we suppose
that k̂ ¼ ŷ. The equations are solved for two different case
of dissipation, l ¼ 0 and 0.01, and the dipolar parameter
m/(d3H0) ¼ 1, with the same initial conditions of Section
3.1. Fig. 3 shows z component of the first magnetic moment
e1z as function of time for different values of h with two
cases of anisotropy constants (a) a ¼ 2 and (b) a ¼ 6. We
note that for conservative (non-dissipative) case (a) and (b)
when the MF is smaller than the anisotropy the dynamics is
oscillatory and the periods decrease when the anisotropy
increases; however, when the MF increases the dynamical
behavior of e1z begins to be more complex, in fact, for h ¼ 5
it is chaotic. On the other hand, for the dissipative system
(l ¼ 0.01) the dynamical behavior of e1z changes drastically
with respect to the conservative system. Actually, after a
certain time interval, e1z goes to a steady value, which
increases when the MF grows. From a dynamical system’s
point of view, this phenomenon is an attractor point. Fig. 4
shows the 3D parametric trajectory of e1 in the phase space
at and for conservative (a) and dissipative dynamics (b),
and we note that in the first case there is a chaotic behavior
and in the second case the system reaches an attractor.

3.3. Non-uniform magnetization effect

In this section we analyze the effect of dipolar inter-
action on the evolution of the magnitude of the total



ARTICLE IN PRESS

-1.0

-0.5

0.0

0.5

1.0

ex
1

-1.0

-0.5

0.0

0.5

1.0

ey
1

-1.0

-0.5

0.0

0.5

1.0

e z1

-1.0

-0.5

0.0

0.5

1.0

ex
1

-1.0

-0.5

0.0

0.5

1.0

ey
1

-0.5

0.0

0.5

1.0

e z1

Fig. 4. 3D phase diagram of components of e1 at m/(d3H0) ¼ 1, h ¼ 5ẑ (a)
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magnetization. Fig. 5 shows the modulus of total
magnetization as function of time for different situations.
In particular, Fig. 5(a) is for DF and Fig. 5(b) is for MF
when the dissipative effect is not present. It appears clear
from these frames that, as a consequence of the dipolar
term, the magnitude of the total magnetic moment is not a
conserved quantity. In the DF case we found that the
magnitude of the total magnetization is a periodic function
of time, and in the MF case we detect that it has a quasi-
periodic structure. Thus, if we increase the DF we can
change the functional form of the total magnetic moment
with respect to the time at a fixed MF. Finally, Fig. 5(c)
corresponds to DF and Fig. 5(d) corresponds to MF, for
l ¼ 0.01. In analogy with the non-dissipative case, the total
magnetization is not conserved and according to the
relative importance of each interaction, the system evolves
at different time scales. However, in this case we found
that there occur two different stages in the functional
form of the magnetization with respect to the time. Firstly,
the magnetization is a fluctuating function of the time,
and in the final step it remains constant. When the dipolar
term is the most important one, we observe that the
magnitude of the total magnetization has a local maxi-
mum at t ¼ 0.05, then it decreases and after a local
minimum it increases again and takes the highest cons-
tant value, which corresponds precisely to the highest
value allowed by the theory, that is, the sum of the two
individual magnetic moments. In the MF case we observe
that the total magnetization magnitude presents rapid
fluctuations before reaching the same constant highest
value. Notice that the time behavior of the total
magnetization strongly depends on the interaction type
strengths. The great dissimilarity of the non-dissipative
case with respect to the dissipative one is that in the
latter the total magnetization attains a constant value
after some time, which depends on the interaction strength
ratio.
Regarding the dissipative case, it is interesting to ana-

lyze in more detail what happens in the transition from
the fluctuating regime to the stage where the total
magnetization takes its highest stationary constant value.
We call critical time tc the shortest time at which this
transition occur, that is, EðtcÞ ¼ EstðminðtÞÞ, Est being the
stationary value of E, and it mainly depends on the inter-
magnetic moments distance d and the damping term l.
Notice that according to Eq. (7), when the anisotropy is
not taken into account, the total magnetization can be
interpreted as an individual magnetic moment with
uniaxial anisotropy, whose strength is proportional to the
distance d�3 and a fluctuating term. In this way, basically
the meaning of the critical time is that at tc the fluctuations
are not important any longer with respect to the effective
anisotropy, z1, and then the total magnetic moment is
conserved.
Fig. 6 shows tc as a function of l for different values of

m/(d3H0) at a ¼ 0. We note that in general when l
decreases, the critical time also increases. Moreover, we
can observe that tcðl! 0Þ ! 1, in agreement with the
non-dissipative case, where the dynamical behavior of the
total magnetization modulus has an oscillatory behavior
[11]. Based on our numerical results, we suggest that the
fluctuating function, F, in Eq. (7) has the structure
F ¼ nYðt� tcÞ, Y(q) being the Heaviside distribution and
n a vector function of the parameters. Finally, from Fig. 7
we note that tc is almost steady as a function of the
anisotropic constant for short distance.
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3.4. Initial condition explorations

In the preceding sections, we have always used the same
initial conditions in order to highlight some important
aspects of the different dynamic behavior of the system. In
this section we use a set of initial conditions in nearby
neighborhoods, to show that the dynamics of the system,
for parameters fixed, is robust, i.e., different initial
conditions, generally, lead to the same dynamical behavior.
It is mainly because the effective field does not depend
explicitly on time and we are not in the chaotic regime.
Fig. 8 shows the phase diagrams of x–y component of e1

with different initial conditions for different situations,
such that from frame (a) to (c) the dynamics is conservative
and from (d) to (e) the dynamics is dissipative. We can
observe that in Fig. 8(a) it is shown that the behavior is
periodic, and in Figs. 8(b) and (c) the orbits are elliptic, the
main difference between them being that with different
initial conditions the shape of the ellipses changes. Also,
from frame (d) to (e), the system has an attractor point
with different transient dynamics.
1
x

0) ¼ 103, k̂ ¼ ẑ and n̂ ¼ ŷ at: (a) l ¼ 0, h ¼ 0:1ẑ and a ¼ 0.1; (b) l ¼ 0,

¼ 0.1(1,1,1) and a ¼ 0.1; (e) l ¼ 0.01, h ¼ 0.1(1,1,1) and a ¼ 0.1; and (f)



ARTICLE IN PRESS
4. Conclusions

The spin dynamic of two interacting magnetic moments
using Landau–Lifshitz equation considering anisotropy
and dipole–dipole interaction under the presence of an
applied MF was analyzed. Due to the two kinds of
interactions present in the problem, two time scales arise: a
long time scale associated with the dipolar interaction and
a short time scale associated with the Zeeman interaction.
The dynamical behaviors of non-dissipative and dissipative
system are quite different. In the non-dissipative case, the
modulus of the total magnetization of the system is always
a fluctuating function of time, but in the dissipative case the
total magnetic moment has a critical time when it reaches
the saturation value; and this time strongly depends on the
control parameters of the system. In particular, it increases
when the phenomenological damping parameter decreases.
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