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Abstract

Given a number field K and a subgroup G ⊂ K∗ of the multiplicative group of K , Silverman defined the
G-height H(θ;G) of an algebraic number θ as

H(θ;G) := inf
g∈G,n∈N

{
H

(
g1/nθ

)}
,

where H on the right is the usual absolute height. When G = EK is the units of K , such a height was
introduced by Bergé and Martinet who found a formula for H(θ;EK) involving a curious product over the
archimedean places of K(θ). We take the analogous product over all places of K(θ) and find that it corres-
ponds to H(θ;K1), where K1 is the kernel of the norm map from K∗ to Q∗. We also find that a natural
modification of this same product leads to H(θ;K∗). This is a height function on algebraic numbers which
is unchanged under multiplication by K∗. For G = K1, or G = K∗, we show that H(θ;G) = 1 if and only
if θn ∈ G for some positive integer n. For these same G we also show that G-heights have the expected
finiteness property: for any real number X and any integer N there are, up to multiplication by elements
of G, only finitely many algebraic numbers θ such that H(θ;G) < X and [K(θ) : K] < N . For G = EK ,
all of these statements were proved by Bergé and Martinet.
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1. Introduction

In 1987 Bergé and Martinet [BM1] defined a height function H(θ;EK) on algebraic numbers
θ which was by construction invariant under the action of the group of units EK of a fixed number
field K . They defined

H(θ;EK) := inf
g∈EK,n∈N

{
H

(
g1/nθ

)}
,

where H on the right is the usual absolute height [La2, p. 52]. The choice of root g1/n is imma-
terial since H is invariant under multiplication by roots of unity.

As Silverman suggested (cf. [BM2, p. 156]), EK can be replaced by any multiplicative group
G contained in the algebraic closure Q of the rational field Q. One can then define a G-height
on non-zero algebraic numbers, constant on G-orbits, by

H(θ;G) := inf
g∈G,n∈N

{
H

(
g1/nθ

)}
. (1.1)

One trivially has H(θ;G) = 1 when θn ∈ G for some n ∈ N, but it is not clear to us whether this
is the only kind of orbit with trivial G-height.

Despite the rather ad hoc appearance of the above definitions, Bergé and Martinet [BM1,
BM2] found an explicit formula for H(θ;EK) which is reminiscent of a product expression for
the classical height. Recall [La2, p. 51] that the absolute height H is given by

H(θ) :=
( ∏

2�p�∞

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

))1/[L:Q]
(θ ∈ L∗), (1.2)

where the product over p runs over all places of Q, L is any number field containing θ , and the
product over σ runs over the [L : Q] embeddings of L into the completion Cp of the algebraic
closure of the local field Qp . The field Cp is equipped with a unique absolute value | |p extending
the usual one on Qp . (Usually H is defined as a product over places of L, with suitably normal-
ized absolute values, but the above formulation is equivalent and notationally more convenient
below.)

An alternative expression for H(θ), which treats the archimedean primes separately, is [La2,
p. 53]

H(θ)[L:Q] = NormL/Q

(
d(θ)

) ∏
σ : L→C

max
(∣∣σ(θ)

∣∣∞,1
)
. (1.3)

Here d(θ)−1 is the fractional ideal of L generated by θ and 1, and | |∞ is the usual absolute value
on the complex field C = C∞. Equivalently, d = d(θ) is the denominator ideal of the principal
fractional ideal (θ) = nd−1, with n and d relatively prime integral ideals of L.

To state Bergé and Martinet’s formula giving H(θ;EK), for each archimedean embedding
τ :K → C, order the [L : K] embeddings στ,i :L → C of L extending τ so that



∣∣στ,1(θ)
∣∣∞ �

∣∣στ,2(θ)
∣∣∞ � · · · � ∣∣στ,[L:K](θ)

∣∣∞. (1.4)

Then Bergé and Martinet’s formula reads

H(θ;EK)[L:Q] = NormL/Q

(
d(θ)

) [L:K]∏
i=1

max

( ∏
τ : K→C

∣∣στ,i(θ)
∣∣∞,1

)
. (1.5)

Comparing (1.5) with the expressions (1.2) and (1.3) for the classical height, it is natural
to regard Bergé and Martinet’s height function as an asymmetric version of one that would
treat all places equally. To symmetrize (1.5) about the places, the non-archimedean contribution
NormL/Q(d(θ)) should be replaced by a product over all primes p, the product to be defined at
each p in full analogy with the archimedean piece. Namely, given any place p of Q and θ ∈ L∗,
with K ⊂ L, for each embedding τ :K → Cp order the [L : K] embeddings στ,i :L → Cp of L

extending τ so that

∣∣στ,1(θ)
∣∣
p

�
∣∣στ,2(θ)

∣∣
p

� · · · � ∣∣στ,[L:K](θ)
∣∣
p
, (1.6)

and define

fK(θ) :=
( ∏

2�p�∞

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

))1/[L:Q]
. (1.7)

One readily verifies that fK(θ) is independent of the choice of field L containing K(θ) and that
it shares elementary properties of the classical height function:

fK(θ) = fK

(
θ−1), fK

(
θn

) = (
fK(θ)

)n
(n ∈ N).

Having symmetrized about the places of Q to obtain a new function fK on Q∗, one is lead
to wonder what it might represent. When K = Q, definition (1.7) reduces to the classical height,
since then the ordering (1.6) plays no real role in (1.7). For other K it takes some effort to see
what fK measures. If we take θ ∈ K∗, (1.2) and (1.7) yield

fK(θ)[K:Q] = H
(
NormK/Q(θ)

)
(θ ∈ K∗). (1.8)

One is thus lead to suspect that fK is connected with the kernel K1 of the norm map from K∗
to Q∗.

Theorem 1. The function fK defined in (1.7) above coincides with the K1-height:

fK(θ) = H
(
θ;K1) := inf

g∈K1, n∈N

{
H

(
g1/nθ

)}
(θ ∈ Q∗).

Furthermore, H(θ;K1) = 1 if and only if θn ∈ K1 for some positive integer n.



We also prove the finiteness property required of any respectable height function: for any real
number X and any integer N , the conditions H(θ;K1) < X and [K(θ) : K] < N are satisfied by
finitely many orbits θK1 in Q∗/K1.

Our proof of Theorem 1 suggests that a variation of fK should also have a simple interpreta-
tion. Namely, in definition (1.7) we can shift the product over p into the maximum and let

gK(θ) :=
( [L:K]∏

i=1

max

( ∏
2�p�∞

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
, 1

))1/[L:Q]
. (1.9)

The product formula

∏
2�p�∞

∏
σ : L→Cp

∣∣σ(θ)
∣∣
p

= 1 (θ ∈ L∗) (1.10)

shows that gK(θ) = 1 if θ ∈ K∗. We shall prove

Theorem 2. The function gK defined in (1.9) above coincides with the K∗-height. Furthermore,
H(θ;K∗) = 1 if and only if θn ∈ K∗ for some positive integer n.

Again, there are finitely many orbits θK∗ in Q∗/K∗ satisfying H(θ;K∗) < X and
[K(θ) : K] < N .

To prove Theorems 1 and 2 we establish a more general result in which K∗ is replaced by the
S-units of K , and K1 by the S-units of norm 1. Here S is any set, finite or infinite, of places of Q

containing ∞. When S consists of the single place ∞, we recover Bergé and Martinet’s formula
(1.5). When S consists of all places of Q, we obtain Theorems 1 and 2. Our proof for finite S

largely follows Bergé and Martinet’s proof of the case S = {∞}. The case of infinite sets S is
obtained as a limit of the finite ones.

It would be interesting to estimate the number of orbits θK1 having θ in a fixed extension
L/K and K1-height under a given large bound. When S is finite, the S-variant of this question
can probably be solved using the geometry of numbers, as in [Sch] and [dM]. The corresponding
asymptotic estimates should involve discriminants, S-unit regulators and class numbers. The case
of infinite S seems quite different. For example, if L = K = Q[√−1] and S = {all places of Q},
formula (1.8) shows that the problem is equivalent to estimating the cardinality

Card
{
α ∈ Q∗ ∣∣ H(α) < X, α = x2 + y2 for some x, y ∈ Q

}
of the set of rational numbers which are sums of two rational squares and have height below a
given large bound X.

This paper is organized as follows. In Section 2 we give a formula for G-heights when G

is a suitable subgroup of K∗. In Section 3 we use this formula to show that H(θ;G) = 1 only
when θn ∈ G for some n ∈ N. In Section 4 we use a compactness argument to prove a finiteness
property for these G-heights.

One of the outstanding problems in the theory of heights is that of finding lower bounds for
H(θ) when θ is not a root of unity [GH]. Any lower bound found for the heights considered here
would have applications to this problem since



H(θ) � H(θ;EK) � H
(
θ;K1) � H(θ;K∗), (1.11)

as follows from definition (1.1) and the inclusions {1} ⊂ EK ⊂ K1 ⊂ K∗. If θ has a small height,
Smyth [Sm] proved that θ and θ−1 are algebraically conjugate units. If we let K := Q(θ + θ−1)

and L := Q(θ), then L/K is a quadratic extension. For this kind of K and θ , Theorem 2 shows
that equality holds throughout (1.11).

2. fK and gK are G-heights

In this section we show fK(θ) = H(θ;K1) and gK(θ) = H(θ;K∗), as claimed in Theorems 1
and 2. It proves convenient to take a set S of rational places containing p = ∞ and deal with S-
versions of Theorems 1 and 2. We do not require S to be finite. On Q∗ define the functions fK,S

and gK,S by

fK,S(θ)[L:Q] := NormL/Q

(
dS(θ)

) ∏
p∈S

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
(2.1)

and

gK,S(θ)[L:Q] := NormL/Q

(
dS(θ)

) [L:K]∏
i=1

max

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
, (2.2)

where L is a number field containing K(θ), the στ,i are ordered just as before by (1.6), and
dS = dS(θ) is the S-ideal denominator of θ . More precisely, if d = ∏

p pep is the factorization of
d in (1.3) into powers of prime ideals of L, then dS = ∏

p∩Z/∈S pep . Note that [La2, pp. 53–54]

NormL/Q(dS) =
∏
p/∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

)
. (2.3)

When S consists of all places of Q, we omit the subscript S and continue to write fK and gK

instead of fK,S and gK,S . Let KS denote the S-units of K and K1
S the kernel of the norm map

from KS to Q∗,

KS := {
α ∈ K

∣∣ |τ(α)|p = 1 for all p /∈ S and for all embeddings τ :K → Cp

}
,

K1
S := KS ∩ ker(NormK/Q). (2.4)

Theorem 3. The functions fK,S and gK,S defined in (2.1) and (2.2) above coincide with the K1
S -

and KS -heights, respectively:

fK,S(θ) = H
(
θ;K1

S

) := inf
g∈K1

S ,n∈N

{
H

(
g1/nθ

)}
(2.5)

and

gK,S(θ) = H(θ;KS) := inf
g∈KS,n∈N

{
H

(
g1/nθ

)}
. (2.6)



Proof. We first show that it suffices to consider finite sets S. Indeed, a straight-forward argument
working directly from the definition (1.1) of G-heights shows

H(θ;KS) = inf
S′⊂S

{
H

(
θ;KS′

)}
, H

(
θ;K1

S

) = inf
S′⊂S

{
H

(
θ;K1

S′
)}

,

where the infima are taken over finite subsets S′ of S. To prove an analogous statement for
fK,S(θ) and gK,S(θ), let

S̃ = S̃(θ) := (
S ∩ {

p
∣∣ 2 � p < ∞,

∣∣σ(θ)
∣∣
p

> 1 for some σ :L → Cp

}) ∪ {∞}.

Then S̃ is finite and fK,S(θ) = fK,S̃(θ), gK,S(θ) = gK,S̃(θ), as one sees from definitions (2.1)
and (2.2). These formulas can be rewritten using (2.3) as

fK,S(θ)[L:Q] =
( ∏

p/∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

)) ∏
p∈S

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
(2.7)

and

gK,S(θ)[L:Q] =
( ∏

p/∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

)) [L:K]∏
i=1

max

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
.

Hence, if S1 ⊂ S2,

fK,S1(θ)

fK,S2(θ)
=

∏
p∈S2−S1

∏
σ : L→Cp

max(|σ(θ)|p,1)∏
p∈S2−S1

∏[L:K]
i=1 max(

∏
τ : K→Cp

|στ,i(θ)|p,1)
� 1,

where the last inequality follows from

max

(∏
i

ai ,1

)
�

∏
i

max(ai,1) (ai > 0). (2.8)

Thus

fK,S(θ) = fK,S̃(θ) = inf
S′⊂S̃

{
fK,S′(θ)

} = inf
S′⊂S

{
fK,S′(θ)

}
.

Since an analogous statement holds for gK,S , in proving Theorem 3 we may assume that S is
finite.

We now recall some formulas for the classical height. A useful S-version of (1.3) is (cf. [La2,
p. 53]):

H(γ )[L:Q] = NormL/Q

(
dS(γ )

) ∏
p∈S

∏
σ : L→Cp

max
(∣∣σ(γ )

∣∣
p
,1

)
(γ ∈ L∗). (2.9)

Since H(γ ) = H(γ −1), a more symmetric form of (2.9) is



H(γ )2[L:Q] = NS(γ )
∏
p∈S

∏
σ : L→Cp

max
(∣∣σ(γ )

∣∣
p
,
∣∣σ(γ )

∣∣−1
p

)
(γ ∈ L∗), (2.10)

where NS(γ ) := NormL/Q(dS(γ )dS(γ −1)).
In calculating H(g1/nθ) in (2.5), we will avoid passing to an extension field of L containing

g1/n by using H(g1/nθ) = (H(gθn))1/n. Note also that dS(θn) = (dS(θ))n and dS(θ) = dS(gθ)

for g ∈ KS . Hence,

H
(
g1/nθ

)2[L:Q] = H
(
gθn

)2[L:Q]/n

= NS(θ)

( ∏
p∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣n
p

∣∣σ(g)
∣∣
p
,
∣∣σ(θ)

∣∣−n

p

∣∣σ(g)
∣∣−1
p

))1/n

= NS(θ)
∏
p∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p

∣∣σ(g)
∣∣1/n

p
,
∣∣σ(θ)

∣∣−1
p

∣∣σ(g)
∣∣−1/n

p

)
. (2.11)

We will also need a symmetric form of fK,S . From (2.7) and the product formula (1.10),

fK,S(θ)[L:Q]

=
( ∏

p/∈S

∏
σ : L→Cp

∣∣σ(θ)
∣∣
p

max
(
1,

∣∣σ(θ)
∣∣−1
p

))

·
∏
p∈S

[L:K]∏
i=1

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p

max

(
1,

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣−1
p

)

=
( ∏

p/∈S

∏
σ : L→Cp

max
(∣∣σ (

θ−1)∣∣
p
,1

)) ∏
p∈S

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,[L:K]−i

(
θ−1)∣∣

p
,1

)

= fK,S

(
θ−1)[L:Q]

. (2.12)

In the next to last step we changed from στ,i to στ,[L:K]−i because the ordering determined by θ

in (1.6) is the reverse of that determined by θ−1. From (2.1) and (2.12) we obtain the symmetric
form we sought:

fK,S(θ)2[L:Q] = NS(θ)
∏
p∈S

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣−1
p

)
. (2.13)

Similar calculations yield

gK,S(θ)2[L:Q] = NS(θ)

[L:K]∏
i=1

max

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,
∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣−1
p

)
. (2.14)

Comparing (2.5), (2.6) and (2.11) with (2.13) and (2.14), we see that the following lemma com-
pletes the proof of Theorem 3.



Lemma 1. Let S be a finite set of places of Q, including ∞, let L/K be an extension of number
fields and let θ ∈ L∗ determine an ordering of the embeddings στ,i :L → Cp as in (1.6). Then

inf
g∈K1

S ,n∈N

{∏
p∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p

∣∣σ(g)
∣∣1/n

p
,
∣∣σ(θ)

∣∣−1
p

∣∣σ(g)
∣∣−1/n

p

)}

=
[L:K]∏
i=1

∏
p∈S

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣−1
p

)
, (2.15)

and similarly

inf
g∈KS,n∈N

{ ∏
p∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p

∣∣σ(g)
∣∣1/n

p
,
∣∣σ(θ)

∣∣−1
p

∣∣σ(g)
∣∣−1/n

p

)}

=
[L:K]∏
i=1

max

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,
∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣−1
p

)
. (2.16)

Note that the only difference between the left-hand sides of (2.15) and (2.16) is that the infi-
mum is taken over different g’s. When S consists of the single place ∞, the above result is due
to Bergé and Martinet [BM2, pp. 165–166]. In this case both KS and K1

S coincide with the units
of K . Lemma 1 explains the curious ordering involved in the products defining fK,S and gK,S .

Proof. Following Bergé and Martinet, we shall prove the lemma by translating it to a convexity
question in a finite-dimensional real vector space. We shall first prove (2.15). Let

V :=
⊕
p∈S

V (p), V (p) :=
⊕

σ : L→Cp

Rσ ,

where Rσ is a copy of R. We write elements a ∈ V as a = (ap,σ ) and also as a = (ap,στ,i
), where

the στ,i are the σ ’s in some order described below. Define the logarithm map

L= LL,S :L∗ → V, L(θ)p,σ := log
∣∣σ(θ)

∣∣
p
,

and let VL := RL(L∗) ⊂ V be the closure of the image of L∗ under L. By the approximation
theorem [La1, pp. 35–36], VL consists of those a ∈ V such that for all p ∈ S, ap,σ = ap,σ ′
whenever σ and σ ′ determine the same absolute value on L.

For a ∈ VL let

‖a‖1 :=
∑
p,σ

|ap,σ |, q(a) := inf
w∈QL(K1

S)

{‖a + w‖1
} = inf

w∈RL(K1
S)

{‖a − w‖1
}
. (2.17)

Thus, q(L(θ)) is the logarithm of the left-hand side of (2.15). Since q is a continuous function
of a, in proving that it is given by the logarithm of the right-hand side of (2.15), we may restrict a
to a dense subset of VL. In particular, we will assume that ap,σ �= ap,σ ′ for all pairs of embeddings
σ,σ ′ :L → Cp inducing distinct absolute values on L.



Eq. (2.15) is implied by

q(a) =
[L:K]∑
i=1

∑
p∈S

∣∣∣∣ ∑
τ : K→Cp

ap,στ,i

∣∣∣∣ (a ∈ VL), (2.18)

where for each p and τ the σ ’s restricting to τ on K have been re-christened στ,i and ordered so
that

ap,στ,1 < ap,στ,2 < · · · < ap,στ,[L:K] . (2.19)

Note that if τ and τ ′ induce the same absolute value on K , then ap,στ,i
= ap,στ ′,i because we are

assuming a ∈ VL.
The main point of the proof of (2.18) is to show that

Fa(w) := ‖a − w‖1 (2.20)

is a convex function of w ∈ RL(K1
S) which has a constant value ca on a non-empty open set

Y ⊂ RL(K1
S). It then follows that the minimum of this function is ca, i.e. q(a) = ca. (Indeed,

given any y ∈ Y and w ∈ RL(K1
S), pick λ < 1 near enough to 1 that y + (1 − λ)(w − y) still

belongs to the open set Y and λ > 0. Then

Fa(y) = Fa
(
y + (1 − λ)(w − y)

) = Fa
(
λy + (1 − λ)w

)
� λFa(y) + (1 − λ)Fa(w),

whence the inequality claimed.)
The convexity of Fa(w), even for w ranging over the whole of V , is clear from the convexity

of the ordinary absolute value function. The open set Y is defined by y = (yp,στ,i
) ∈ Y if and only

if y ∈ RL(K1
S) and

ap,στ,kp
< yp,στ,1 < ap,στ,kp+1 (p ∈ S, τ :K → Cp), (2.21)

with the indices kp determined as follows. If the expression
∑

τ ap,στ,i
, which is monotone in-

creasing in i, changes sign as i varies from 1 to [L : K], then kp is defined by∑
τ

ap,στ,kp
< 0 <

∑
τ

ap,στ,kp+1 (p ∈ S).

As remarked at the beginning of the proof, we need only consider strict inequalities since we
may restrict a to a dense open subset of VL. If

∑
τ ap,στ,i

> 0 for all i (i.e.
∑

τ ap,στ,1 > 0),
we let kp = 0. Likewise, if for all i we have

∑
τ ap,στ,i

< 0 (i.e.
∑

τ ap,στ,[L:K] < 0), we let
kp = [L : K]. In these two extreme cases we agree to omit any condition involving indices out of
the range 1 � i � [L : K], for example in (2.21).

For any w ∈ L(K∗), we naturally have wp,στ,i
= wp,στ,1 for 1 � i � [L : K]. Thus, (2.21) and

the ordering (2.19) imply ap,στ,i
< yp,στ,i

for i � kp , while ap,στ,i
> yp,στ,i

for i > kp . Note also
that any w = (wp,στ,i

) ∈ RL(K1
S) satisfies∑

wp,στ,1 = 0 (p ∈ S). (2.22)

τ



This follows from the definition of K1
S and

log
∣∣NormK/Q(γ )

∣∣
p

=
∑

τ : K→Cp

log
∣∣στ,1(γ )

∣∣
p

(γ ∈ K∗) (2.23)

(see (2.4) and [La1, p. 39]).
We may now calculate Fa(y) in (2.20) for y ∈ Y :

Fa(y) =
∑
p∈S

∑
τ : K→Cp

( kp∑
i=1

(yp,στ,1 − ap,στ,i
) +

[L:K]∑
i=kp+1

(ap,στ,i
− yp,στ,1)

)

=
[L:K]∑
i=1

∑
p

∣∣∣∣∑
τ

ap,στ,i

∣∣∣∣ +
∑
p

(
2kp − [L : K])∑

τ

yp,στ,1 =
[L:K]∑
i=1

∑
p

∣∣∣∣∑
τ

ap,στ,i

∣∣∣∣. (2.24)

Note that the result is indeed independent of y ∈ Y .
To finish the proof of (2.15), we must still show that Y is not empty. To this end, we give

an explicit description of RL(K1
S). The Dirichlet S-unit theorem [La1, p. 104] characterizes the

larger space RL(KS). Indeed, a simple dimension count shows that w = (wp,στ,i
) ∈ RL(KS) if

and only if the following three conditions hold

• wp,στ,i
= wp,στ,1 for all p ∈ S, τ :K → Cp, 1 � i � [L : K], (2.25)

• wp,στ,1 = wp,στ ′,1 whenever τ and τ ′ define the same absolute value on K, (2.26)

•
∑
p∈S

∑
τ : K→Cp

wp,στ,1 = 0. (2.27)

From (2.23) one checks that elements w ∈ RL(K1
S) are characterized by (2.25), (2.26) and (2.22).

Hence Y contains the explicitly given point y = (yp,στ,i
) defined for 1 � i � [L : K] by

yp,στ,i
:= ap,στ,kp

− sp,kp

sp,kp+1 − sp,kp

(ap,στ,kp+1 − ap,στ,kp
)

(
1 � kp < [L : K]),

where

sp,j :=
∑

τ : K→Cp

ap,στ,j

(
1 � j � [L : K]),

while in the two extreme cases

yp,στ,i
:= ap,στ,1 − sp,1

[L : K] (kp = 0),

yp,στ,i
:= ap,στ,[L:K] − sp,[L:K]

[L : K]
(
kp = [L : K]).

This concludes the proof of (2.15).
The proof of (2.16) is very similar, the main difference being that (2.22) is replaced by (2.27).

Instead of kp we define k as the index at which
∑ ∑

ap,σ changes sign. Thus
p τ τ,i



∑
p∈S

∑
τ :K→Cp

ap,στ,k
< 0 <

∑
p∈S

∑
τ : K→Cp

ap,στ,k+1 .

Again, k = 0 or k = [L : K] means that there is no sign change, i.e.∑
p∈S

∑
τ : K→Cp

ap,στ,1 > 0 (k = 0),
∑
p∈S

∑
τ : K→Cp

ap,στ,[L:K] < 0
(
k = [L : K]).

We replace Y ⊂ RL(K1
S) by X ⊂ RL(KS) defined by x = (xp,στ,i

) ∈ X if and only if

ap,στ,k
< xp,στ,1 < ap,στ,k+1 (p ∈ S, τ :K → Cp).

The set X contains the point x = (xp,στ,i
) defined by

xp,στ,i
:= ap,στ,k

− sk

sk+1 − sk
(ap,στ,k+1 − ap,στ,k

) if 1 � k < [L : K],

where

sj :=
∑
p∈S

∑
τ :K→Cp

ap,στ,j

(
1 � j � [L : K]),

while in the two extreme cases

xp,στ,i
:= ap,στ,1 − s1∑

p

∑
τ 1

if k = 0,

xp,στ,i
:= ap,στ,[L:K] − s[L:K]∑

p

∑
τ 1

if k = [L : K].

One then finds for x ∈ X,

Fa(x) =
∑
p

∑
τ

(
k∑

i=1

(xp,στ,1 − ap,στ,i
) +

[L:K]∑
i=k+1

(ap,στ,i
− xp,στ,1)

)

=
[L:K]∑
i=1

∣∣∣∣∑
p

∑
τ

ap,στ,i

∣∣∣∣ + (
2k − [L : K])∑

p

∑
τ

xp,στ,1 =
[L:K]∑
i=1

∣∣∣∣∑
p

∑
τ

ap,στ,i

∣∣∣∣,
from which (2.16) follows. �
3. Trivial values of fK and gK

In this section we identify elements with fK,S(θ) = 1 or gK,S(θ) = 1 (see definitions (2.2)
and (2.3)). We first characterize roots of elements of K by their absolute values.



Lemma 2. Let L/K be an extension of number fields and let α ∈ L. Then αn ∈ K for some
positive integer n if and only if for all rational places p (2 � p � ∞), for all embeddings τ :
K → Cp , and for all pairs of embeddings σ, σ ′ :L → Cp extending τ , we have∣∣σ(α)

∣∣
p

= ∣∣σ ′(α)
∣∣
p
. (3.1)

Proof. One implication is clear: if αn ∈ K , then (3.1) holds after replacing α by αn. Hence (3.1)
itself holds. To prove the converse, take α �= 0 and let

α′ := α[L:K]

NormL/K(α)
.

Then (3.1) implies that |σ(α′)|p = 1 for all places p and all embeddings σ :L → Cp . Hence α′
is a root of unity, whence the lemma. �

We now characterize trivial values of gK,S .

Proposition. Let θ be a non-zero algebraic number and let S be any set of places of Q with
∞ ∈ S. Then gK,S(θ) = 1 if and only if θn ∈ KS for some positive integer n.

In particular, gK(θ) = 1 if and only if θn ∈ K∗ for some positive integer n, as claimed in
Theorem 2.

Proof. Let L = K(θ) and assume gK,S(θ) = 1. By the ordering defined in (1.6),∣∣στ,i(θ)
∣∣
p

�
∣∣στ,i+1(θ)

∣∣
p

(p ∈ S), (3.2)

for all embeddings τ : K → Cp and all indices i (1 � i < [L : K]). In particular, for 1 � i <

[L : K], ∏
p∈S

∏
τ :K→Cp

∣∣στ,i(θ)
∣∣
p

�
∏
p∈S

∏
τ : K→Cp

∣∣στ,i+1(θ)
∣∣
p
. (3.3)

Note that (3.3) would be strict if (3.2) were strict for a single p and τ . From gK,S(θ) = 1,
(2.2) and (2.3) we have

1 =
( ∏

p/∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

)) [L:K]∏
i=1

max

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
,

whence ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p

� 1
(
1 � i � [L : K]), (3.4)

and



∣∣σ(θ)
∣∣
p

� 1 (p /∈ S, σ :L → Cp). (3.5)

The product formula (1.10) yields

( ∏
p/∈S

∏
σ : L→Cp

∣∣σ(θ)
∣∣
p

) [L:K]∏
i=1

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p

)
= 1.

From this, (3.4) and (3.5) we conclude

∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p

= 1
(
1 � i � [L : K])

and

∣∣σ(θ)
∣∣
p

= 1 (p /∈ S, σ :L → Cp). (3.6)

It follows that we have equality in (3.3) for all i. As remarked above, this implies |στ,i(θ)|p =
|στ,i+1(θ)|p for all p ∈ S, τ and i. By (3.6), |σ(θ)|p = |σ ′(θ)|p trivially holds for p /∈ S,
σ,σ ′ :L → Cp . Lemma 2 now implies θn ∈ K∗ for some positive integer n. From (3.6) we
see that actually θn ∈ KS , as claimed.

To prove the converse, note that θn ∈ K∗ implies |στ,i(θ)|p = |στ,j (θ)|p for 1 � i, j �
[L : K], and hence ∏

τ : K→Cp

∣∣στ,i(θ)
∣∣
p

= ∣∣NormL/Q(θ)
∣∣1/[L:K]
p

.

If in addition, θn ∈ KS , then

gK,S(θ)[L:Q] =
( ∏

p/∈S

∏
σ :L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

)) [L:K]∏
i=1

max

( ∏
p∈S

∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)

= max

( ∏
p∈S

∣∣NormL/Q(θ)
∣∣
p
,1

)
= max

( ∏
2�p�∞

∣∣NormL/Q(θ)
∣∣
p
,1

)
= 1, (3.7)

where the last steps follow from the assumption that θn is an S-unit and from the product formula
for Q. �

We now deduce a characterization of trivial values of fK,S .

Corollary. fK,S(θ) = 1 if and only if θn ∈ K1
S for some positive integer n.

In particular, fK(θ) = 1 if and only if θn ∈ K1 for some positive integer n, as announced in
Theorem 1.



Proof. Assume fK,S(θ) = 1. The elementary inequality (2.8) shows that fK,S(θ) � gK,S(θ).
Hence gK,S(θ) = 1 and, by the proposition, θn ∈ KS . A calculation analogous to (3.7), but now
with the product over p ∈ S outside the maximum, shows that for θn ∈ KS ,

fK,S(θ)[L:Q] =
∏

2�p�∞
max

(∣∣NormL/Q(θ)
∣∣
p
,1

) = H
(
NormL/Q(θ)

)
. (3.8)

This, together with the assumption fK,S(θ) = 1, shows that NormL/Q(θ) = ±1. Hence θ2n ∈ K1
S ,

as claimed.
The converse claim in the corollary follows from (3.8). �
We note that when θ ∈ KS , we may take L = K in (3.8). This proves (cf. (1.8))

fK,S(θ)[K:Q] = H
(
NormK/Q(θ)

)
(θ ∈ KS).

4. Finiteness

In this section we prove a finiteness property of G-heights for G = KS or G = K1
S . Namely,

we now show that for any real number X and any integer N there are, up to multiplication by ele-
ments of G, only finitely many algebraic numbers θ such that H(θ;G) < X and [K(θ) : K] < N .
Once again, we do not assume that S is a finite set.

We first carry out the argument for G = K1
S . Let L = K(θ). For the purpose of proving the

finiteness property, we can take [L : Q] to be fixed. By Theorem 3 and (2.7)

H
(
θ;K1

S

)[L:Q]

=
( ∏

p/∈S

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

)) ∏
p∈S

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
. (4.1)

We note that a non-trivial contribution to the right-hand side of (4.1) from any prime p �= ∞
yields at least a factor of p1/[L:Q]!, since [L : Q]! is certainly a common multiple of all possible
absolute ramification indices of primes of L. Let

T = TX,N := {
p

∣∣ p < X[L:Q][L:Q]!} ∪ {∞}, S̃ := S ∩ T .

The advantage of S̃ over S is that the former is a finite set of places. Since we are assuming that
H(θ;K1

S) < X, we have |σ(θ)|p � 1 and |στ,i(θ)|p � 1 if p /∈ T . Thus,

H
(
θ;K1

S

)[L:Q] =
∏

p/∈S,p∈T

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

) ∏
p∈S̃

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)

=
∏
p/∈S̃

∏
σ : L→Cp

max
(∣∣σ(θ)

∣∣
p
,1

) ∏
p∈S̃

[L:K]∏
i=1

max

( ∏
τ : K→Cp

∣∣στ,i(θ)
∣∣
p
,1

)
= H

(
θ;K1)[L:Q]

. (4.2)

S̃



As S̃ is finite, we can assume not only that [L : K] is fixed, but also that the splitting pattern in
K and L of all places above p ∈ S̃ is fixed. Thus, using the notation of the proof of Lemma 1,
the vector space VL = RL(L∗), its subspace RL(K1

S̃
) and the full lattice L(K1

S̃
) ⊂ RL(K1

S̃
) can

all be fixed. Here L= LL,S̃ : L∗ → ⊕
p∈S̃ V (p).

In the proof of Theorem 3 (see (2.13) and (2.24)) we established

H
(
θ;K1

S̃

)2[L:Q] = NS̃(θ) e‖L(θ)+x‖1

for some x ∈ RL(K1
S̃
), with NS̃(θ) as defined after (2.10). Note that NS̃(θ) = NS̃(θε) for any

ε ∈ KS̃ . By compactness of the quotient space RL(K1
S̃
)/L(K1

S̃
), any x ∈ RL(K1

S̃
) can be written

as x = L(ε) + y, where ε ∈ K1
S̃

, y ∈ RL(K1
S̃
) and ‖y‖1 < A, where A is independent of θ and L

(‖ ‖1 is the 1-norm defined in (2.17)). Hence

H
(
θ;K1

S̃

)2[L:Q] = NS̃(θ) e‖L(θ)+L(ε)+y‖1 = NS̃(θε) e‖L(θε)+y‖1 � NS̃(θε) e‖L(θε)‖1−‖y‖1

� NS̃(θε)e‖L(θε)‖1 e−A = H(θε)2[L:Q]e−A, (4.3)

where in the last step we used (2.10) and Q(θε) ⊂ K(θ) = L.
It follows from (4.2) and (4.3) that H(θε) < X exp(A/(2[L : Q])). By Northcott’s finiteness

theorem for the classical height [La2, p. 59], [HS, p. 177], θε can be only one of finitely many
algebraic numbers. Since ε ∈ K1

S̃
⊂ K1

S , we have proved our finiteness claim for K1
S -heights.

The proof of the corresponding finiteness property for KS -heights is nearly identical. One
need only shift the product over p ∈ S in (4.1) into the maximum, observe that L(KS̃) is a full
lattice inside RL(KS̃) and proceed exactly as above.
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