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ABSTRACT

We present a Bayesian Voronoi image reconstruction (VIR) technique for interferometric data. Bayesian analysis
applied to the inverse problem allows us to derive the a posteriori probability of a novel parameterization of interfer-
ometric images.We use a variable Voronoi diagram as our model in place of the usual fixed-pixel grid. A quantization
of the intensity field allows us to calculate the likelihood function and a priori probabilities. The Voronoi image is
optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated
interferometric data. Residuals, restored images, and �2 values are used to compare our reconstructions with fixed-
grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a
Bayesian point of view.

Subject headinggs: methods: data analysis — methods: numerical — methods: statistical —
techniques: image processing — techniques: interferometric

Online material: color figures

1. INTRODUCTION

Astronomical interferometric data result from the addition of
instrumental noise to the convolution of the sky image and the
instrumental response. Because of incomplete sampling in the
(u; v)-plane, obtaining sky images from interferometric data is
an instance of the inverse problem and involves reconstruction
algorithms.

The CLEAN method consists of modeling the sidelobe dis-
turbances and subtracting them iteratively from the dirty map
(Högbom 1974). The CLEANmethod works well for low noise
and simple sources. But if the source has many complex features
or if the data is too noisy, CLEAN will do only a few iterations,
returning a noisy image (Högbom 1974). Another shortcoming
is that CLEAN involves some ad hoc parameters (the loop gain,
stopping criteria, clean beam) that bias the final reconstruction,
in the sense that CLEAN can give many different reconstructions
for the same data set.

The maximum entropy method (MEM) finds the image that
simultaneously best fits the data, within the noise level, andmax-
imizes the entropy S. This is done by minimizing

LMEM ¼ �2 �kS; ð1Þ

where, for the case of interferometric data, �2 can be calculated
as

�2 ¼
XNvis

k¼1

V obs
k � V mod

k

�� ��2
�2
k

; ð2Þ

where the sum runs over all the Nvis visibilities, the symbol jjzjj
stands for the modulus of the complex number z, and �k is the
rms noise of the corresponding visibility. From equation (1), k
is a control parameter and the entropy S varies for different im-
plementations (e.g., Narayan & Nityananda 1986). The entropy

is used as a regularizing term in a degenerate inverse problem,
when there are more free parameters than data. Different for-
mulations for S appear in the literature. Some examples areP

i ln (Ii),
P

i Ii ln (Ii),
P

i ln ( pi),
P

i pi ln ( pi), where Ii is the
specific intensity value at pixel i and pi ¼ Ii/

P
i Ii (see Piña &

Puetter 1993 and references therein).
Cornwell & Evans (1985) used MEM in the AIPS VM task.

Their method makes some approximations that diagonalize the
Hessian matrix required to optimize their merit function. They
used an entropy of the form S ¼ �

P
i Ii log (Ii /mi), where the

sum extends over all the pixels i, fI igni¼1 is the model image, and
fmigni¼1 is a prior image. However, the neglect of the sidelobe
contribution to the Hessian may lead the optimization to local
minima that still bear instrumental artifacts. Casassus et al. (2006)
implemented a MEM algorithm based on the conjugate gradient
method, without the use of the Cornwell & Evans approxima-
tion. They used an entropy of the form S ¼ �

P
i Ii log (Ii /M ),

where fIigNi¼1 is themodel image andM is a small intensity value,
i.e., they start with a blank image prior, and M is an intensity
value much smaller than the noise.
Bayesian analysis is a powerful tool for image reconstruction

techniques. In this application, our goal is to find the most proba-
ble image bymaximizing its a posteriori probability. For Bayesian
methods, the a priori and likelihood distributions are needed. To
derive the a priori probability, the definition of an intensity quan-
tum is needed. This quantum represents the minimum measur-
able intensity unit. The intensity in each pixel can be interpreted
as a number of quanta Ii ¼ �qNi, where Ii is the intensity in pixel
i, �q is the quantum size, andNi is the number of quanta in pixel i.
Piña & Puetter (1993) used Bayesian analysis in the Pixon

algorithm. They use a variable model and maximize P(I ;M jD),
that is, the probability of the image I andmodelM given the data
D. In their approach the model used to parameterize the image
is a set of Gaussians which are used to average a pseudo-image.
The pseudo-image starts as a maximum residual likelihood re-
construction and a local Gaussian pixon is assigned to each of
its pixels. The number of pixons, and hence the number of free
parameters, is reduced in each iteration.
Sutton & Wandelt (2006) have used Bayesian analysis for

interferometric data, but used a fixed-pixel grid to parameterize
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the model image. They use Gibbs sampling to determine the pos-
terior density distribution.

The most typical model used in astronomy to represent the
sky brightness distribution consists of a pixel grid. A big dis-
advantage of this grid is that the number of pixels remains fixed
as well as their size. Often, uniform pixel grids involve more free
parameters than are really needed to fit the data.

The purpose of this paper is to explore Bayesian reconstruc-
tion with image models based on Voronoi tessellations in place
of the usual pixelated image. We call this new deconvolution
method ‘‘Voronoi image reconstruction’’ (VIR). The advantage
of using Voronoi models is that it is possible to use a smaller
number of free parameters, as required by Bayesian theory. Our
purpose is not optimal CPU efficiency; we search for the optimal
image and model from a Bayesian point of view.

We used the Cosmic Background Imager (CBI; Padin et al.
2002) to illustrate ourmethod. The CBI is a planar interferometer
array with 13 antennas, each 0.9m in diameter, mounted on a 6m
tracking platform. An example of CBI baselines is shown in
Figure 1. The radius of the hole at the center of the (u; v)-plane
is the reciprocal of the minimum distance between two antennas,
measured in wavelengths. The sidelobes of the CBI are caused
mainly by this central hole in the (u; v) baselines.

We briefly summarize the elements of Bayesian theory that
determine the probability distributions concerning our problem
(x 2). The newmodel based on Voronoi tessellations is described
(x 3), as well as optimization issues involved in our problem (x 4).
We discuss implementation details such as the optimal quantum
size and number of Voronoi polygons (x 5), compare recon-
structions madewithMEM andVIR (x 6), and finally summarize
our results (x 7).

2. BAYESIAN THEORY

An image model is required to parameterize the sky bright-
ness distribution. Themost typical model used in astronomy is a
rectangular grid of uniform pixels. That configuration of pixels
is the modelM, and the distribution of brightness in the model is

called an image I. We search for the image that represents as ac-
curately as possible the visibility data D. The Bayesian image
reconstruction approach, using a fixed model, tries to find the
image that maximizes the probability P(I jD;M ), i.e., find the
most probable image given the data and the model.

Using the Bayes theorem, we obtain

P(I jD;M ) ¼ P(DjI ;M )P(I jM )

P(DjM )
: ð3Þ

Since the data is fixed, P(DjM ) is a constant in the problem
when the model is not considered as a variable. Thus, the fixed
image model optimization problem reduces to

maxIP(I jD;M ) ¼ maxIP(DjI ;M )P(I jM ): ð4Þ

The first term P(DjI ;M ) is called the likelihood and measures
howwell our data represents our image. The second termP(I jM )
is called the image prior and gives the a priori probability of the
image given the model, i.e., how probable is the image given only
the model.

In the case of having a variable model, what we would like to
find is the image and model that maximize P(I ;M jD), i.e., find
the most probable image and model given the data. In this case
we find

P(I ;M jD) ¼ P(I jD;M )P(M jD)

¼ P(DjI ;M )P(I jM )P(M jD)
P(DjM )

¼ P(DjI ;M )P(I jM )P(M )

P(D)
: ð5Þ

Since the data is fixed, P(D) is constant in our problem. As we
cannot privilege one model over another in the absence of image
and data, P(M ) is the same for all models, so it is not important
for our analysis. This way, our optimization problem reduces to

maxI ;MP(I ;M jD) ¼ maxI ;MP(DjI ;M )P(I jM ): ð6Þ

2.1. Probability Distributions

Our data is a set of Nvis observed visibilities fV obs
1 ;V obs

2 ; : : : ;
V

obs
Nvis

g. If we have a certain model M and image I, we obtain
model visibilities fV mod

k g by simulating the interferometric ob-
servations over our image,

V mod
k ¼ V mod(uk ; vk)

¼
Z þ1

�1
A(x; y)I (x; y)exp 2�i(ukxþ vky)½ � dx dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2� y2
p ; ð7Þ

where fuk ; vkg are the coordinates of baseline k in the (u; v)-plane
and A is the primary beam. We thus have a set of Nvis model vis-
ibilities. Assuming that each visibility is independent from the
others and Gaussian noise, the likelihood is

P(DjI ;M ) ¼ P V obs
k

� �Nvis

k¼1

��� V mod
k (I ;M )

� �Nvis

k¼1

� �

¼
YNvis

k¼1

P V obs
k jV mod

k

� 	

¼
YNvis

k¼1

1

2��2
k

e� V obs
k

�V mod
kk k2

=2� 2
k : ð8Þ

Fig. 1.—Coverage in the (u; v)-plane of the CBI in the configuration used for
our simulations.
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To obtain the image prior, P(I jM ), we calculate the statistical
weight of a given distribution of counts (as in Piña & Puetter
1993; Sutton &Wandelt 2006). Consider a model consisting of
n cells. In the case of a traditional image, each pixel would be a
cell. There is a number of N quanta falling into these cells. These
are intensity quanta of some size �q. In the case of a pixelated
image, the intensity in each pixel i would be Ii ¼ �qNi, where Ii
is the intensity in cell i. Each quantum could fall into any of the
n cells, so the total number of possible configuration for the N
quanta will be nN . The probability of the image given the model
is the probability of a certain state fN1;N2; : : : ;Nng that rep-
resents that image, where Ni is the number of quanta in cell i.
Consider a given image configuration defined by a particular
distribution fNig. The image distribution is not changed in the
N ! possible redistributions of counts between cells, provided
eachNi is constant. The

Q
iNi! swaps of counts within each cell

keep the same image configuration. The modelM consists of the
Voronoi diagram and the total number of quanta (i.e., n, the po-
sition of the generators, and N ); thus, the a priori probability is

P(I jM ) ¼ P(fNigjn;N ) ¼ N !

nN
Q

i Ni!
: ð9Þ

As explained above, �q is an intensity quantum. It is also
possible to describe the number of quanta per cell using a flux
quantum �F

i , where i is the index of the cell to which we associ-
ate the quantum. This flux quantum can be expressed in terms of
the intensity quantum as �F

i
¼ �qAi, whereAi is the area of cell i.

In this case, the number of quanta per cell is Ni ¼ Fi/�
F
i , where

Fi ¼ IiAi is the flux of cell i. This leads toNi ¼ Ii/�q, which is the
same expression for Ni obtained using the intensity quantum �q.
Using these cell-dependent flux quanta, the probability of a quan-
tum falling into each cell will be 1/n for every cell, leaving the a
priori probability the same as equation (9).

2.2. MEM and Natural Entropy

In Bayesian theory, for a fixedmodel, the image I can be found
by optimizing the a posteriori probability,

maxIP(I jD;M ) ¼ minI �ln P(DjI ;M )P(I jM )½ �

¼ minI
XNvis

k¼1

V obs
k � V mod

k

�� ��2
2�2

k

� ln
N !

nN
Q

i Ni!


 �

¼ minI
1

2
�2 � S; ð10Þ

wherewe have defined the natural entropy S ¼ ln N !/ nN
Q

iNi!Þ�ð½ .
Sutton & Wandelt (2006) call the term ln N !/

Q
iNi!Þ�ð½ the mul-

tiplicity prior. In the limit of large Ni,

S ’ N ln
N

n
�
X
i

Ni ln Ni; ð11Þ

and it can be seen that the Bayesian method is very similar to
MEM in the sense thatwe are adjusting the image to the datawhile
maximizing an entropy of the form of equation (11). VIR uses
the natural entropy as a regularizing term.

3. A NEW IMAGE MODEL BASED
ON VORONOI DIAGRAMS

AVoronoi diagram is a division of the Euclidian plane into n
regions Vi defined by n points xi (called sites or generators) such
that every coordinate x in the space belongs to Vi if and only if
jjx� xijj < jjx� xjjj 8 j 6¼ i. The result of the above definition
is a set of polygons defined by the generators. Figure 2 shows an

example of a Voronoi diagram. For further details on Voronoi
diagrams see Okabe et al. (1992).
We propose a two-dimensional Voronoi diagram in place of the

usual pixelated, uniform grid image as our model.We associate an
intensity Ii to each of these polygons. The advantage of using a
Voronoi diagram is that we can use just as many cells (i.e., free pa-
rameters) as the data requires. Our optimization parameters will
be the position of each generator xi ¼ (xi; yi), and the intensity at
each cell, Ii.
With our new modelM consisting of n generators (3n param-

eters, xi, yi, and Ii for each generator), we can vary the number of
free parameters as required by the optimization problem.We can
see in equation (10) that the entropy S increases as the number of
cells n decreases.

4. OPTIMIZATION

The optimization problem can be seen as a maximization of
the a posteriori probability maxI ;MP(I ;M jD) or, equivalently, as a
minimization of themore convenientmerit functionL ¼ 1

2
�2 � S.

The conjugate gradient method (CG) is often used for minimiza-
tion problemswhere derivatives can be easily calculated.Although
it is usually fast in convergence, CG has the problem of converg-
ing on local minima depending on the initial condition. The use of
other optimization algorithms is postponed to future work.
The CGmethod searches parameter space using the gradient of

the function to be minimized. The derivatives of this function are

@L

@x
¼ 1

2

@�2

@x
� @S

@x
; ð12Þ

@�2

@x
¼ 2

XNvis

k¼1

1

�2
k

Re V mod
k � V obs

k

� 	�@V mod
k

@x

� 
; ð13Þ

where x is any of the optimization parameters (xi, yi, or Ii). The de-
rivatives of the visibilities with respect to the position xi ¼ (xi; yi)
of the ith generator are

@V mod
k

@xi
¼
X
j2 Ji

�
(Ii � Ij)

;
X

ljpixel l�aij

Al�tl(Mxtl þ bx)e
(tlc2þs0c1)


; ð14Þ

@V mod
k

@yi
¼
X
j2 Ji

�
(Ii � Ij)

;
X

ljpixel l�aij

Al�tl(Mytl þ by)e
(tlc2þs0c1)


; ð15Þ

Fig. 2.—Example of Voronoi diagram.
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where Ii is the intensity in cell i, Ji is a set of the indices of the
polygons adjacent to Vi, aij is the edge which divides polygons
Vi and Vj, l sums over the pixels which intersect aij, and A is the
CBI primary beam. For further details see Appendix A.

The derivative of the visibilities with respect to the intensity
of each cell Ii is

@V mod
k

@Ii
¼ sin (�uk�x) sin (�vk�y)

�2ukvk

X
pixels l�Vi

Ale
2�i(ukxlþvk yl);

ð16Þ

where kk ¼ (uk ; vk) is the baseline corresponding to the pair of
antennas k, �x and �y are the pixel width and height, respec-
tively, and the sum extends over all the pixels inside Vi.

The entropy only depends of the intensities Ii, so @S/@xi ¼
@S/@yi ¼ 0, then (see Appendix A2)

@S

@Ii
¼ 1

�q

XN
k¼1

1

k
� ln n�

XNi

k¼1

1

k

 !
: ð17Þ

5. VIR DESIGN AND IMPLEMENTATION

We have designed and implemented in C++ VIR with six
modules which include algorithms for: (1) the generation of the
Voronoi diagram; (2) calculation of model visibilities; (3) calcu-
lation of the merit function L to be optimized as well as its de-
rivatives; (4) fitting a Voronoi diagram to an image; (5) the CG
method; and (6) the optimization of the number of polygons.

VIR uses the CGmethod from Press et al. (1992) and searches
for the position and intensities of the Voronoi polygons, xi; yi; Ii,
that minimize our merit function L. The CGmethod modifies the
intensities and also moves the positions of the Voronoi gener-
ators. This causes the shape of the Voronoi polygons to change as
well. A general problem with CG is that it usually converges on
local minima. For VIR in particular, although Voronoi polygons
intensities adjust quite fine, the positions of the generators are
difficult to modify substantially. The VIR parameter space is
smooth enough in intensity space to converge to a good solution.
But the parameter space in cell generator positions is very struc-
tured, and CG is quickly stuck on local minima.

Due to the fact that CG easily falls into local minima, we
needed a good approximation for the initial Voronoi diagram.
For this purpose we used a pixelated version of the Bayesian
algorithm, where the model was a uniform grid. We decided to
do a pure�2 (maximum likelihood [ML]) reconstruction and use
the fifth CG iteration as our starting image. We chose this partic-
ular iteration because on inspection the modeled images were
still smooth. Pure �2 reaches convergence with noisy images,
where the true image is unrecognizable. We then fitted a Voronoi
diagram to the image (see Appendix B) and ran CG using the
positions and intensities of the generators as our free parameters,
which led to our final reconstruction. Truncation to a level of
10�5 quanta was used to enforce positivity.

An important issue to consider is the size of the quantum �q.
Sutton & Wandelt (2006) treat �q as a free parameter. But, as
we now explain, �q was held constant in this implementation of
VIR. We treat the number of quanta per cell as a continuous
variable in order to use the CG method. Entropy is maximized
at �q ¼ 1, where, for a given configuration of intensities fIig,
N ¼ 0 and S ¼ 0. For every other value of N, the entropy will
be negative. This means that even for large �q, the intensities
Ii ¼ �qNi can have reasonable values (using smallNi). Figure 3

shows S as a function of N for 51 Voronoi generators and three
different intensity distributions using the model tessellation of
Figure 4c. We considered: (1) the VIR intensities of Figure 4c;
(2) a uniform intensity distribution image (Ni ¼ N /n 8 i); and
(3) a spike where all N are only in one cell (Ni ¼ N , Nj ¼ 0 8
j 6¼ i). The curves of Figure 3 are obtained by keeping the in-
tensities fixed and modifying �q in order to obtain different N.
It can be seen in Figure 3 that the entropy is maximized atN ¼ 0,
independently of the intensities fIig of the model, where the
optimal value of �q ¼ 1 is achieved if the number of quanta per
cell is treated as a continuous variable. If the number of quanta
per cell were discrete variables, as in Sutton &Wandelt (2006),
the choice of a big �q would admit only zero values for every
cell. Otherwise, if one or more quanta fell in a given cell, the in-
tensity of that cell would diverge as �q for arbitrarily large �q,
causing a big �2 value. Therefore, in our continuous optimiza-
tion the intensity quantum must be determined a priori.

In the Bayesian description of the entropy we count events
that fall in each cell. It seems reasonable to take the noise level
as the minimum value of intensity we can distinguish. So, �q

should approximate the estimated thermal noise in the naturally
weighted dirty map. The definition of the weighted dirty map
(e.g., Briggs et al. 1999) is

ID(x; y) �
Z 1

�1

Z 1

�1
W (u; v)V (u; v)e�2�i(uxþvy)du dv; ð18Þ

W (u; v) ¼ 1P
k wk

X
k

wk�(u� uk ; v� vk); ð19Þ

where the sums extend over all visibilities, wk are the weights
given to visibility k, and � is the two-dimensional Dirac delta
function. Propagating the thermal noise, we get for the standard
deviation of the dirty map

�D
rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k w

2
k �

2
k

(
P

k wk )
2

s
; ð20Þ

where �k are the visibilities’ standard deviations. To take into
account model pixels correlated by the interferometer beam, we
should multiply the previous expression by Nbeamð Þ1/2, where

 

 

Fig. 3.—Entropy values for different N, n ¼ 51, and keeping fIig fixed. This
is achieved by varying �q. (a) VIR reconstruction intensities. (b) Uniform inten-
sities distribution, Ni ¼ N /n 8 i. (c) Only one cell has all the quanta, Ni ¼ N ,
Nj ¼ 0 8 j 6¼ i.
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Nbeam is the number of pixels inside a beam pattern. This leads
to

�rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k w

2
k �

2
k

(
P

k wk )
2

s ffiffiffiffiffiffiffiffiffiffiffi
Nbeam

p
: ð21Þ

For natural weights, �2
k ¼ 1/wk ,

�rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NbeamP

k wk

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NbeamP
k 1=�

2
k

s
: ð22Þ

We calculated the noise with natural weighting,wk ¼ 1=�2
k , be-

cause this is the weight we give to each individual visibility data
in the optimization of the merit function.

Once we have the value of �q we search for the optimal num-
ber of cells n. In Figure 5 we plot the optimal merit function for
different n and �q. These reconstructions were made over a sim-
ulation of CBI observations on a mock sky image (Fig. 4a). We
averaged over 100 reconstructions with different realizations of
Gaussian noise. The average curves shown in Figure 5 start with

n ¼ 10 and end with n ¼ 100 for even n. One single reconstruc-
tion for all n took about two hours using an AMD Athlon 64
XP 3000 processor with 1 GB of DDRRAM at 333MHz, so the
300 reconstructions took about 25 CPU days, but we distributed
the work in six computers, so it took about five real days in total.
It can be seen that for a signal-to-noise ratio (S/N) of �52, on
average, the optimal number of polygons n is between 50 and
55.When �q is diminished to 1/10ð Þ�rms, on average, the optimal
merit function is found at n close to 30. For �q ¼ 10�rms, the
optimal n is found between 80 and 90. It can be seen that as we
increase the value of �q we reach lower values for our function,
as discussed above. Furthermore, the optimal number of poly-
gons increases.

6. EXAMPLE RECONSTRUCTION

6.1. Mock Data Set

The mock sky image we used for simulations is a 256 ; 256
image consisting of three Gaussians and a rectangle. Figure 4a
shows this image on a 128 ; 128 pixel field. Pixels are 0:750 ;
0:750, while the CBI’s primary beam is of 450 FWHM (60 pixels),

Fig. 4.—Comparison of MEM and VIR reconstruction techniques for a S/N of�52. (a) True image. (b) Dirty map. (c) VIR reconstruction with its polygons drawn.
(d ) VIR reconstruction. (e) Dirty map of the VIR reconstruction residuals. ( f ) Restored image for the VIR model. (g) MEM reconstruction. (h) Dirty map of the MEM
reconstruction residuals. (i) Restored image for the MEM model. [See the electronic edition of the Journal for a color version of this figure.]
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so most of the emission lies under the beam. We simulated a
CBI observation of 3620 visibilities over this image and added
Gaussian noise to the visibilities in order to reach a S/N of�52.
This S/N was calculated by taking the maximum intensity from
the dirty map using natural weights and using the noise �D

rms (see
eq. [20]). Simulation of the CBI observations is performed with
theMockCBI program (T. Pearson2000, private communication),
which calculates the visibilities V (u; v) on the input images I(x; y)
with the same uv sampling as a reference visibility data set (eq. [7]).
Thus,MockCBI creates the visibility data set that would have been
obtained had the sky emission followed the true image. Figure 4b
shows the dirty map calculated over these simulated visibilities
using the DIFMAP package (Shepherd 1997). The CBI’s primary
beam is drawn as a dashed circle. The secondary sidelobes due
to the central discontinuity in uv coverage can be distinguished in
Figure 4b at a level comparable to the true emission.

6.2. MEM Reconstruction

The VIRmethod was compared with the MEM algorithm de-
scribed in Casassus et al. (2006). To fit the model image to the
observed visibilities, MEM calculates the model visibilities
required by its merit function LMEM. The model visibilities are
those obtained by a simulation of CBI observations had the sky
followed the model image. The free parameters of our MEM
model are the pixels in the model 64 ; 64 image. The model func-
tional we minimize is LMEM ¼ �2 � kS, with the entropy S ¼
�
P

i Ii log Ii/M , where M is a default pixel value well below
the noise level and fIigNi¼1 is the model image. We started with
the fifth iteration of a pure �2 reconstruction (k ¼ 0) as the initial
condition for the CG minimization. This is the same ML initial
condition used in our VIR method. Figure 4g shows the recon-
structed image using k ¼ 100/�rms andM ¼ 10�2�rms inset on a
larger 128 ; 128 image.3

6.3. VIR Reconstruction

TheMEM algorithm described above requires the prior assign-
ment of the k andM parameters as well as the entropy formula. In

contrast, our VIR algorithm is free from such arbitrary param-
eters (provided the optimal �q is indeed equal to �rms). For our
VIR method, we only need to find the number of polygons to be
used. In order to find the optimal number of polygons we recon-
structed with different numbers of generators in a range covering
each natural number from n ¼ 6 to 100. We found a minimum at
n ¼ 51. Figure 5 summarizes this search. The whole search for
a particular realization of noise took about 10 hr on the AMD
Athlon64XP3000processorwith 1GBofDDRRAMat 333MHz.
The VIR reconstruction using 51 polygons is shown in Figure 4c,
where the Voronoi cells have also been drawn. Figure 4d shows
the same model but without drawing the Voronoi mesh.

6.4. Results

The quality of each reconstruction can be assessed by visual
inspection, comparing the VIR andMEMmodel images with the
true image. The MEM model looks similar to the true image but
is noisy. The density of Voronoi generators in the VIR model is
greater where there is more emission in the true image, approx-
imating the true image with only a few polygons. We calculated
�2
im ¼

P
i (I

mod
i � I truei )2, where I mod

i is the intensity at pixel i of
the model image (MEM or VIR), I truei is the intensity at pixel i of
the true image, and the sum extends over all pixels in the images.
�2
im gives a measure of how well the model fits the true image. It

can be seen in Table 1 that theVIR reconstruction has a better�2
im

than MEM, showing that the VIR model is closer to the true im-
age than the MEM model.

Figures 4e and 4h show the VIR and MEM model residuals.
Residual images are the dirty map of the residuals of the visibil-
ities, calculated over the optimal model visibilities. It can be noted
in Figure 4e that the VIR residuals are very good, showing only
noise. On the other hand, in the MEM residuals (Fig. 4h) the
object shape can clearly be distinguished as well as the CBI’s
sidelobes. The object seems to be more compact in the model
than in its MEM residuals; as expected, these residuals are con-
volved with the synthetic beam.

Restored images are shown in Figures 4f and 4i. These images
are obtained by convolving the models with a Gaussian point-
spread function (PSF) given by DIFMAP and adding the dirty
map of the residual visibilities. In Figures 4f and 4i it can be
assessed that VIR produces improved restored images relative
to MEM. The VIR restored image is similar to that expected
given the instrumental noise; it approximates the true image
convolved with a Gaussian PSF plus a uniform noise level. In
the MEM restored image, on the other hand, the CBI sidelobes
can still be distinguished.

The number of optimization parameters in MEM are 64 ;
64 ¼ 4096, while the VIR method has only 51 triplets [cell’s
(x; y) position and intensity], i.e., 153 free parameters. This
smaller number of parameters causes the Bayesian entropy to
be greater than the pixelated version, obtaining a smaller value
for our merit function L to be minimized.

Table 1 also shows �2/ndata values, where ndata is the number
of data points (3620 ; 2 in our case). A good reconstruction
should have a �2/ndata value close to 1. It can be seen that the

3 We choose to display the sky images in a larger field than the domain of
free parameters; larger fields are required to highlight secondary sidelobes.

Fig. 5.—Merit function L for different �q and number of polygons n. The lines
are averages taken over 100 different realizations of noise for each n. (a) Recon-
structions made using �q ¼ 1/10ð Þ�rms. (b) Reconstructions made using �q ¼
�rms. (c) Reconstructions made using �q ¼ 10�rms. (d ) L as a function of n for a
practical application of VIR to the simulated visibilities used in the reconstruc-
tions of Fig. 4. In this practical application, the minimum L was found at n ¼ 51
and is indicated by a vertical line.

TABLE 1

Comparison between MEM and VIR Reconstructions

Reconstruction �2 �2/ndata L �2
im

MEM.................................... 7354.85 1.016 12192.6 0.001608

VIR....................................... 7221.04 0.997 3753.28 0.001396
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VIR model gives a value of �2/ndata closer to 1 than the MEM
reconstruction.

7. CONCLUSIONS

We have introduced a Bayesian Voronoi image reconstruction
(VIR) technique for interferometric data where the image is rep-
resented by a Voronoi tessellation in place of the usual pixelated
image. The advantage of Voronoi models is that we can use a
smaller number of free parameters, as required by the Bayesian
analysis of a discretized intensity field. Our purpose is not op-
timal CPU efficiency; we search for the optimal image andmodel
from a Bayesian point of view. The free parameters of our model
are the Voronoi generators’ positions (xi; yi) and intensities Ii.
The following points summarize our work:

1. We discretized the intensity field in order to calculate a
priori probabilities.We defined a quantum intensity value �q such
that Ii ¼ �qNi, where Ii is the intensity at cell i and Ni is the
number of quanta in cell i.

2. We calculated the analytical derivatives required by the
conjugate gradient and cross-checked them by finite differences.
Because the parameter space in cell generator positions is very
structured, the positions of the Voronoi generators are difficult to

change. As an initial condition we took a Voronoi tessellation
adjusted to an interrupted maximum likelihood reconstruction.
3. We simulated a CBI observation over a true image and re-

constructed sky images from this mock visibility data set using
MEM and VIR.
4. We defined the value of �q as the estimated noise of the

dirty map and searched for the optimal number of Voronoi poly-
gons for our example data set.
5. We finally compared the MEM and VIR models, residuals,

and restored images. The VIR model is closer to our true image
than the MEM model. Residuals and restored images are also
better in VIR than inMEM.We found that VIRmodel visibilities
give a better fit to the data thanMEM, in the sense that�2 is closer
to its expected value.

We are grateful to Tim Pearson for advice on FFTs and the
use of MOCKCBI. G. F. C. and S. C. acknowledge support from
FONDECYT grant 1060827 and from the Chilean Center for
Astrophysics FONDAP 15010003. We are also grateful to Giorgio
Krstvlovic for advice on Appendix A.

APPENDIX A

DERIVATIVES

Our merit function for minimization is

L ¼ 1

2

XNvis

j¼1

V mod
k � V obs

k

�� ��2
�2
k

� ln
N !

nN
Q

n
i¼1Ni!


 �
ðA1Þ

¼ 1

2
�2 � S: ðA2Þ

So, the derivative of L with respect to any variable x is

@L

@x
¼ 1

2

@�2

@x
� @S

@x
: ðA3Þ

A1. CALCULATION OF THE DERIVATIVES OF �2

The �2 derivatives with respect to any variable x can be obtained as

@

@x

1

2
�2 ¼ @

@x

1

2

XNvis

k¼1

V mod
k � V obs

k

�� ��2
�2
k

 !

¼
XNvis

k¼1

1

�2
k

Re V mod
k � V obs

k

� 	
Re

@V mod
k

@x


 �
þ Im V mod

k � V obs
k

� 	
Im

@V mod
k

@x


 �� 
; ðA4Þ

where it is necessary to calculate the model visibilities’ derivatives with respect to x.

A1.1. Calculation of @V mod
k /@Ii

In our Voronoi tessellation representation of the sky image

V (k) ¼
XNV

i

Ii

Z
Vi

A(x)e2�ikxdx; ðA5Þ
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where NV is the number of polygons, Vi is polygon i, and Ii is its intensity. We neglected the 1� x2 � y2ð Þ1/2 term which is close to 1,
but it can easily be included in A(x). After derivation and defining fk (x) � A(x)e2�ikkx, we obtain

@V mod
k

@Ii
¼
Z Z

Vi

fk(x)d
2x; ðA6Þ

¼ sin (�uk�x) sin (�vk�y)

�2ukvk

X
pixels l�Vi

Ale
2�i(ukxlþvk yl ); ðA7Þ

’�x�y
X

pixels l�Vi

Ale
2�i(ukxlþvkyl) ðA8Þ

for small �x and �y.

A1.2. Calculation of @V mod
k /@xi and @V mod

k /@yi

To evaluate @Vk /@xi we move the generator xi an infinitesimal quantity �x parallel to the x̂-axis as in Figure 6. We calculate

@Vk

@xi
¼ lim

�x!0

�V

�x
; ðA9Þ

where �Vk ¼ Vk(x1; : : : ; xi þ dx; : : : ; xNV
)� Vk (x1; : : : ; xi; : : : ; xNV

).
It can be seen in Figure 6 that when moving the generator xi, the only polygons modified are Vi and its neighbors. Using this,

equation (A5) leads to

�Vk ¼ I 0i

Z
V 0
i

fk(x)dx� Ii

Z
Vi

fk(x)dxþ
X
j2 Ji

I 0j

Z
V 0
j

fk(x)dx� Ij

Z
Vj

fk (x)dx

" #
; ðA10Þ

whereVi is the polygon generated by xi beforemoving,V 0
i is the same polygon after moving xi, Ji is the set of indices of the polygons that

are neighbors to Vi, and J 0
i is the set of indices of the polygons that are neighbors to V 0

i .
It can be seen in Figure 6 that

Vi ¼ (Vi \ V 0
i ) [ (Vi n Vi \ V 0

i ); V 0
i ¼ (Vi \ V 0

i ) [ (V 0
i n Vi \ V 0

i ); ðA11Þ
Vj ¼ (Vj \ V 0

j ) [ (V 0
i \ Vj); V 0

j ¼ (Vj \ V 0
j ) [ (Vi \ V 0

j ); ðA12Þ

so equation (A10) is

�Vk ¼ (I 0i � Ii)

Z
V 0
i\Vi

fk(x)dxþ
X
j2 Ji

(I 0i � Ij)

Z
V 0
i\Vj

fk (x)dxþ (I 0j � Ii)

Z
Vi\V 0

j

fk(x)dx

" #
: ðA13Þ

Fig. 6.—Voronoi tessellation before and after translating the site xi by dx. Voronoi generators are represented with dots. The solid lines are the polygons beforemoving
xi. The dotted lines represent the new polygons after varying xi.
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In our case the cells’ intensities do not depend on the position of the generators, so we obtain

�Vk ¼
X
j2 Ji

(Ii � Ij)

Z
V 0
i\Vj

fk(x)dx�
Z
Vi\V 0

j

fk (x)dx

" #( )
: ðA14Þ

It can be seen in Figure 6 that to obtain �Vk we must integrate only over the shaded regions. For this purpose, for each region
between xi and xj we define a coordinate system

ŝ ¼ �cos � jx̂þ sin � jŷ; t̂ ¼ sin � jx̂þ cos � jŷ; ðA15Þ

where � j is the angle formed by the �x̂-axis and the edge aij between xi and xj (see Fig. 7). Using this change of coordinates, the
integral over the region of interest is

Z
V 0
i\Vj

fk (x; y)dx dy ¼
Z
V 0
i\Vj

fk(s; t)ds dt: ðA16Þ

Let xi ¼ (xi; yi) be the position of the i cell’s generator, xj ¼ (xj; yj) one of its neighbor, and x0i ¼ (xi þ �x; yi) the site’s position
after moving it a quantity �x. We define x0 � (x0; y0) as the point in the intersection of the segment formed by xi and xj and its
respective edge aij. In the same way, we define x00 ¼ (x00; y

0
0) as the point in the intersection of the segment formed by x0i and xj and its

respective edge a0ij. It can be seen in Figure 7 that x0 ¼ (xi þ xj)/2, x
0
0 ¼ x0 þ �/2, and y00 ¼ y0 ¼ ( yi þ yj)/2.

The edge aij is defined in the new coordinate system by

s¼ s0 ¼ �x0 cos � j þ y0 sin � j: ðA17Þ

In the same way, the edge a0ij is defined in the original coordinate system by

y ¼ m(x� x00)þ y0; ðA18Þ

where

m � xi þ �x � xj

yj � yi
: ðA19Þ

We can define the same line in our new coordinate system as

s¼ m0t þ b0; ðA20Þ

Fig. 7.—Change of coordinates from (x; y) to (s; t).
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where

m0 � � cos � j þ m sin � j

sin � j � m cos � j

; ðA21Þ

b0 � �mx 00 þ y0

sin � j � m cos � j

: ðA22Þ

This can be approximated to first order in �x as

m0 ’ �xMx; ðA23Þ
b0 ’ s0 þ �xBx; ðA24Þ

where

Mx �
sin2� j

yj � yi
¼ sin � j cos � j

xi � xj
; ðA25Þ

Bx �
sin � j

yj � yi
(s0 cos � j þ xi) ¼

cos � j

xi � xj
(s0 cos � j þ xi): ðA26Þ

The integral in equation (A14) using our new coordinate system will be

I ¼
Z
V 0
i\Vj

fk(x)dx�
Z
Vi\V 0

j

fk (x)dx ðA27Þ

¼
Z Z a 0

ij

aij

A(x)e2�i(uxþvy)dx dy: ðA28Þ

If we use A(x) in the (s; t) coordinate system as a pixelated image, equation (A28) will be

I ¼
X

l�pixels of ai

Al

Z t2
ijl

t1
ijl

Z m 0tþb 0

s0

e2�i ux(s;t)þvy(s;t)½ �ds dt; ðA29Þ

where t1ijl and t2ijl are the t-coordinates at the beginning and end of the portion of the edge aij that intersects pixel l. Developing the
previous expression,

I ¼
X
l

Al

Z t2
ijl

t1
ijl

Z m 0tþb 0

s0

e2�i u(�s cos � jþt sin � j)þ v(s sin � jþt cos � j)½ �ds dt ðA30Þ

’
X
l

Al

�c2
e2�i(s0c1þt̄ijlc2)�ijl�x; ðA31Þ

where we defined

c1 � �u cos � j þ v sin � j; ðA32Þ
c2 � u sin � j þ v cos � j; ðA33Þ

�ijl � (Mxt̄ijl þ Bx) sin (�c2�tijl)þ i
Mx

2

sin (�c2�tijl)

�c2
��tijl cos (�c2�tijl)

� 
; ðA34Þ

t̄ijl �
t1ijl þ t2ijl

2
; ðA35Þ

�tijl �
t2ijl � t1ijl

2
: ðA36Þ

In the calculation above we integrated over the fraction of the edge that falls inside pixel l and then summed these integrals over the
whole edge ai. It is also possible to approximate the integral of equation (A30) as

R
t2
ijl

t1
ijl

g(t)dt ¼ g( t̄ijl)�tijl , which is equivalent to taking
the limit over the integral I of equation (A31), lim�tijl!0I , obtaining

I ¼
X
l

Al�tijl(Mxt̄ijl þ Bx)e
2�i( t̄ijlc2þs0c1)�x: ðA37Þ
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We found by direct evaluation that the difference between equations (A37) and (A31) is negligible, so for simplicity, we use equa-
tion (A37). Introducing equation (A37) in equation (A14), we obtain

�Vk ¼ �x
X
j2 Ji

�
(Ii � Ij)

X
l

Al�tijl(Mxt̄ijl þ Bx)e
2�i(t̄ijl c2þs0c1)


; ðA38Þ

so according to equation (A9), the derivative of the k visibility with respect to the position x of polygon i is

@Vk

@xi
¼ lim�x!0

�V

�x
; ðA39Þ

¼
X
j2 Ji

�
(Ii � Ij)

X
l

Al�tijl(Mxt̄ijl þ Bx)e
2�i(t̄ijlc2þs0c1)


: ðA40Þ

Similarly, for the derivative with respect to the position y of the ith polygon we obtain

@Vk

@yi
¼
X
j2 Ji

�
(Ii � Ij)

X
l

Al�tijl(Myt̄ijl þ By)e
2�i(t̄ijl c2þs0c1)


; ðA41Þ

where

My �
cos2� j

xi � xj
¼ sin � j cos � j

yj � yi
; ðA42Þ

By �
sin � j

yj � yi
(s0 sin � j � yi) ¼

cos � j

xi � xj
(s0 sin � j � yi): ðA43Þ

A2. CALCULATION OF THE DERIVATIVES OF S

We defined our entropy as

S ¼ ln
N !

nN
Q

n
i¼1Ni!


 �
ðA44Þ

¼ ln (N !)� N ln (n)�
Xn
i¼1

ln (Ni!) ðA45Þ

¼ ln �(N þ 1)½ � � N ln (n)�
Xn
i¼1

ln �(Ni þ 1)½ �; ðA46Þ

where Ni ¼ Ii/�q is the number of quanta in cell i, N ¼
P

i Ni, and � is the Gamma function. It can be seen that this function does not
depend on the position of the Voronoi generators, so

@S

@xi
¼ @S

@yi
¼ 0: ðA47Þ

 

  

 

  

Fig. 8.—Verification of the derivatives. The solid line shows analytical derivatives, and dots show numerical approximations. Left: @L/@xi. Right: @L/@Ii. The polygon
identifier i is indicated on the x-axis.
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Fig. 9.—Examples of polynomial fits, used to determine numerical derivatives of the optimization function L for a particular generator. Dots represent L vs. the
polygon displacement � in x, and the solid line shows the fourth-order polynomial fit to L. A vertical line is drawn at � ¼ 0, where the derivatives were calculated. Top:
Generator number 37, with a satisfactory polynomial fit.Middle: Generator number 36, the curve is not a good fit at � ¼ 0. Bottom: Generator number 18, the curve is not a
good fit because L shows an abrupt variation near � ¼ 0, which is due to the proximity of another generator.



Using Weierstrass’s definition of the Gamma function

�(z) ¼ z�1e��z
Y1
n¼1

1þ z

n

� ��1

e z=n
� 

;

where � is Euler’s constant, we can obtain

@ ln �(zþ 1)½ �
@z

¼ �� þ
Xz
n¼1

1

n
; ðA48Þ

so the derivative of S with respect to Ii is

@S

@Ii
¼ 1

�q

XN
k¼1

1

k
� ln n�

XNi

k¼1

1

k

 !
: ðA49Þ

A3. FINITE-DIFFERENCE CROSS CHECK ON THE DERIVATIVES

Numerical calculation of the derivatives by finite differences is not very accurate, in particular for the position of the generators.
Finite-difference derivatives are calculated as @L/@x ¼ L(xþ � )� L(x)½ �/�, where � is a small displacement of x. In the case of the
positions of the generators, if � is too small, the pixelization of the Voronoi diagram (needed to obtain the model visibilities) will not
change after the displacement �. On the other hand, if � is too big, the generator displacement may cause the function to change
abruptly, as explained below. That is why we calculated the analytical expression for the derivatives.

To verify that our derivatives are correctly calculated and programmed, we compared our analytical result with a numerical cal-
culation. We created a Voronoi tessellation of 50 polygons with random positions and intensities and calculated the analytical and nu-
merical derivatives using the parameters fxi; yi; Iig. For the case of @L/@xi and @L/@yi, this numerical cross-check consists of moving
each Voronoi generator a quantity � from�0.1 to 0.1 with an interval of 10�3 in units of the total size of the square image. We evaluate
the merit function L at each position interval, thus obtaining two sequences fLig2 ; 102

i¼1 . We then fitted a fourth-order polynomial to the
curve defined by each sequence fLig and calculated the derivative of the polynomial at � ¼ 0. For the case of @L/@Ii we varied the in-
tensity of cell i from��q to �q and did the same approximation to a fourth-order polynomial and calculated its derivative. Figure 8 shows
this cross-check for @L/@xi and @L/@Ii. Although the derivatives are similar, they are not exactly the same for @L/@xi. This is caused by
the polynomial coarseness fit, as explained below.

Figure 9 shows the curve fit for @L/@xi for three different generators (generator numbers 37, 36, and 18, respectively). It can be seen
in Figure 9 that the polynomial fit adjusts quite well to the function values for polygon number 37, so in Figure 8 both derivatives are
the same. On the contrary, for polygons number 36 and 18, the fitted polynomial does not resemble the function L at � ¼ 0, causing a
slight difference in their derivatives in Figure 8. For polygon number 18 the polynomial does not fit the curve at all. This is the main
problem of using a numerical approximation for the derivatives of fxig; when two polygons are closer than �, the generator
displacement causes the function L to change abruptly (see Fig. 10).

Fig. 10.—Translation of a generator close to another. Left: Before moving generator xi, polygon i, the darker polygon in the image, is on the left. Right: After moving
generator xi by a displacement of �, polygon i is on the right of polygon j. When displacing generator xi, the diagram changes considerably, with a concomitant abrupt
variation in L.
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It can be seen that the analytical and numerical derivatives in Figure 8 are almost the same. As explained above, differences are
produced because there are cases where the polynomials do not fit well to the variations of themerit function L (for example, when two
generators are too close). In an accurate calculation it is necessary to use the analytical derivatives.

APPENDIX B

FITTING AVORONOI TESSELLATION TO AN IMAGE

Oncewe have a reasonable reconstruction for a pixelated image, wewould like to fit a Voronoi tessellation to it in order to have a good
initial starting point for the CG. This is done in an incremental way.

We start with a mesh consisting of only one polygon. We calculate the error per polygon as

e2i ¼
X
l

Ii � I iml
� 	2

; ðB1Þ

where the sum runs over all the pixels that fall inside polygon i, Ii is the intensity of that polygon, and I
im
l is the intensity of pixel l in the

image to be fitted. In each iteration we add a new polygon inside the one with the greatest error. The new generator is inserted in the
position of the pixel that has the most different intensity value with respect to the mesh intensity.
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