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Abstract

Let 9 = (V(9), E(%)) be a unicyclic simple undirected graph with largest vertex degree 4. Let %, be
the unique cycle of 4. The graph ¥ — E (%) is a forest of r rooted trees 7 |, 7 », ..., 7 » with root vertices
v, V2, ..., Ur, respectively. Let

k(%) = 1m_alx {max({dist(v;,u) :u € V(I D} +1,

s

where dist(v, u) is the distance from v to u. Let (%) and A (%) be the spectral radius of the Laplacian
matrix and adjacency matrix of ¥, respectively. We prove that

T
G) < A+2v/4-1 _—
wi(9) <4+ Coszk({é)Jrl’
whenever 4 > 2 and

rM(D) <2/ A4 — lcos —

2k(9) +1°
whenever 4 > 4 or whenever 4 = 3 and k(¥%) > 4.
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1. Introduction

Let 9 = (V(%), E(9)) be a simple undirected graph. Let A(%) be the adjacency matrix of
% and let D(%) be the diagonal matrix of vertex degrees. The Laplacian matrix of ¥ is the
matrix L(%9) = D(9) — A(9). Both A(9) and L(%) are real symmetric matrices. Moreover,
L(%) is a positive semidefinite matrix and (0, e) is an eigenpair of L(%), where e is the all ones
vector.

Let £1(%) and 11 (%) be the spectral radius of L(%) and A(9), respectively. It is known that
if # is a subgraph of & then w1 () < n1(%9) and A (H) < A1(9).

We recall that the distance dist(u, v), u, v € V (%), is the length of the shortest path in & from
u to v and that the degree d(v), v € V(9), is the number of edges in E(%) that are incident
with v.

Let

A =max{d(v) : v € V(%)}.

A tree is a connected acyclic graph. In [6, 2003], Stevanovié proves that for a tree . with largest
vertex degree 4,

wi(7) < A+2/4—-1
and
M(T) <2/4—1.
In [2, 2007], Hu proves that if ¢ is a unicyclic graph then
ni (@) <A+2/4-1
with equality if and only if ¥ is the cycle %, whenever n is even, and
(%) <241

with equality if and only if ¥ is the cycle €.
From now on, let 4 be a unicyclic graph with largest vertex degree 4 > 2. Let €, be the unique

cycle of 4 and let vy, v, .. .., v, be the vertices of €. Then, the graph ¥ — E (%) is a forest of
r rooted trees 7 1, 7 o, ..., 7 , with root vertices v1, v2, . .., U, respectively.
Definition 1. Fori =1, 2, ..., r, we define

k; = max{dist(v;, u) :u € V(I )} + 1
and

k(9) =max{k; : 1 <i <r}.

Let us illustrate this definition with the following example.
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Example 1. Let ¢ be the graph

For this graph, 4 = 5,

ki=max{d(vi,u) :ue V(I D}+1=4+1=5,
ky=max{d(vp,u) :u € V(I2)}+1=3+1=4,
k3= max{d(v3,u) :ueV(I3)}+1=2+1=3.

Then k(%) = max{5, 4, 3} = 5.
In this paper, we derive the new upper bounds

T
Y A+20/4—1 _
ni(9) < A4+2v Coszk(%)Jrl

whenever 4 > 2, and

T
(%) < 24— Tcos ———.
1) < @) + 1

whenever 4 > 4 or whenever 4 = 3 and k(%) > 4.
2. Finding the new upper bounds

We begin this section by recalling some results from [4, 2007] that will play an important role
in this paper.

The level of a vertex in a rooted tree is one more than its distance from the root vertex. A tree
By of k levels is a generalized Bethe tree [4] if vertices at the same level have equal degree. Let
2B\ be a generalized Bethe tree of k levels. Let 93,(:) be the unicyclic graph obtained from the

union of r copies of %} and the cycle %, connecting the r root vertices. We may consider %,((r) as
a graph of k > 1 levels in which vertices at the same level have equal degree. We agree that the
vertices of &, are at the level 1. An example of a such graph is
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Example 2

This graph has four levels of vertices in which the vertex degree sequence, from the pendant
vertices to the vertices in €3, is (1, 3, 4, 4).

For the graph .@,((r) with k > 1, let dy_ 41 be the degree of the vertices at the level j(j =
1,2, ..., k). Thus, di is the degree of the vertices at the level 1, and di = 1 is the degree of the
vertices at the level k (pendant vertices). Let

d=(1,dy,...,dy).
As usual, let p(M) denotes the spectral radius of the matrix M.
In [4], we characterize completely the spectra of the adjacency matrix and Laplacian matrix

of .%,((r). In particular, we derive results concerning /i (@,(:) ) and A; (ﬂ,((r)
following lemmas.

), which we give in the

Lemma 1 [4, Theorem 3, part (¢)]. Let r = 2s orr = 2s + 1. Let Ly (d) be the k x k symmetric
tridiagonal matrix

1 Jdy — 1
Ja =1 d V& =1
Lis(d) = d3 —1

dr—1 N dk —22
V=2 di —2cos £

Then p(Lis(d)) = 1 (#).



758 O. Rojo / Linear Algebra and its Applications 428 (2008) 754—764

Lemma 2 [4, Theorem 7, part (d)]. Let Ak o(d) be the k x k symmetric tridiagonal matrix

0 dr — 1
Jdr — 1 0 Jdz —1
Ago(d) = V3 —1
0 Vi — 2
Vi — 2 2

Then p(Ago(d) = A1 (#).

Keep in mind that ¥ is a unicyclic graph with largest vertex degree 4 > 2, in which &, is the
unique cycle of ¢ and that k(%) is as in definition 1. For brevity, we write k instead of k(%). Let
Br(A) be the generalized Bethe tree with vertex degree sequence

(LA A, .. A, A—=2),

from the pendant vertices to the root vertex. Then, each tree 7 ; is an induced subgraph of
B (A). Let ﬂ,(:)(A) be the unicyclic graph obtained from r copies of % (4) and the cycle €,
connecting the r root vertices. Therefore, ¢ is an induced subgraph of ,%((r)
w1(9) < ma (B (4)) and 11(9) < 2 (B (4)).

Observe that the vertex degree sequence for 93,(:) (4) is

(4). Consequently

d=(1,4,4,...,4,4).
We apply Lemma 1 to the graph .93’,(:)(41) to get that the spectral radius of the k x k matrix

1 vAa4—1
4—1 A 4—1

Lis(4) = VA1

A A—2
NV A—Zcos@
(r)

is equal to w1 (%, ' (4)) and that the spectral radius of the k x k matrix

0 A—1
A—1 0 VA4 -1
Apo(4) = A—1
0 A—2
A—2 2

is equal to 1| (%,(:)(A)).

Therefore in order to find upper bounds on 1£1(%) and A1 (%), we search for upper bounds on
p(Li s(4)) and p(Ak,0(4)), respectively.

We recall the following result concerning the spectral radius of a special symmetric tridiagonal
matrix.
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Lemma 3 [3]. The spectral radius of the m x m symmetric tridiagonal matrix

0 b
b 0 b
b
D, (b) = , b>0 (D
b 0 b
s
D,, (b)) =2b .
P (D (b)) C0S2m+1

Theorem 4. Let G be a unicyclic graph with largest vertex degree A > 2. Let k(%) as in definition
1. Then

m1(%) <4424 —1cos

T

2k(%) +1° @

Proof. We know that i1 (%) < j11(8Y”(4)) = p(Ly s(4)). We have

M1 VA4 -1
A—1 A VA =1
Lis(4)= vAa—-1
A A—2
L VA =2 A—ZCosz’rT—S
! NV
A—1 A A—1
< Va4 -1 = Ef.
A A—2
L A—=2 A42

Since the spectral radius of an irreducible nonnegative matrix increases when any of its entries
increases [8], we have

p(Li,s(4)) < p(Ep). 3)
The matrix E; has the LL” -decomposition

Ex=LLT,
where L is the lower bidiagonal matrix
1
VA-1 1
L= 4—-1
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Then Ej is a positive definite and the matrices E; = LLT and Ec = LT L have the same eigen-
values [9]. From this fact and (3), we obtain

p(Lis(4) < p(Ep). “)
Computing the product LT L, we obtain
A Va4 -1
V4 -1 A A—1
Ep = NZE=S
A—-1 24/4 =2
24/4 =2 4
We have
Er=diag{4, 4, ..., A}
0 A—1
A—1 0 a4 -1
+ A—1
-1 24/ 4 =2

24 =2 4 -4
=diag{4, 4, ..., A} + Fy,

where
0 A—1
A—1 0 A—1
Fp = 4—1
-1 24 =2
24 =2 4—4
From (1),
0 VA4 -1
A—1 0 A—1
Di(WA—-1) = A—1
0 A—1
Va4 -1 A—1
We define
Gr=Dy(vA4—-1)— F
0 0
0
- 0 0
0 1 JA—=1-2J4=-2

NA—=1=24-2 VJA4—-1—-44+4
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Since 4 > 3, one can prove that the submatrix

1 JA—1-2/4-2
NA=1=2JA-2 —44+A4+J/4-1

is a positive definite matrix. Hence Gy is positive semidefinite matrix. Since Fy is an irreduc-

ible nonnegative matrix, there exists unitary eigenvector x = [x!  xI'] > 0 such that x” Fyx =

0o (Fy) [8]. Therefore x, # 0 and

x' Dr(VA = Dx=x" Fix + x' Gix

= p(Fr)
T 1 JA-1-2J4=2
RN AT —2JA=2 —d+4a+J4-1 |7
> p(Fp).

Then
p(Fr) < X' Dy(VA=Dx < p(De(vVA=1)).
From Lemma 3, the spectral radius of Dy_1(~/4 — 1) is

b4
p(Dr(v/ 4 —1)) =2+/4 — 1cos T

Therefore

o(Fy) < 23/A — 1 cos 2/;1 .

Consequently

M(EQ) =4+ 1 (Fr) (5)

<A +2+/4—1cos il .
2k + 1

From (4) and (5), we get
p(Lgs(4)) <4424 —1cos

T
2k 4+1°

Since 111(%) < 1(B) = p(Lx (1)) and k = k(%), the upper bound (2) is proved. [J

At this point, it is convenient to recall some other known results on symmetric tridiagonal
matrices [1,5,7].

Lemma 5. 1. The characteristic polynomials, q (1), of the j x j leading principal submatrix of
the k x k symmetric tridiagonal matrix

(a1 b
b1 ar b2
by
Ox = o (©6)

ax—1  br—1
b1 a
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satisfy the three-term recursion formula
qgiA) = —aj)gj-1(1) — b?_lquz()»)
with qo(A) = L and g1 (\) = A — ay.

2. Ifall codiagonal entriesb; (i = 1,2, ...,k — 1) in (6) are nonzero, the recursion polynomial
qj(j=0,1,...,k) has j real simple zeros. For 1 < j < k — 1, they strictly interlace those of
qj+1-

Theorem 6. Let G be a unicyclic graph with largest vertex degree A > 2. Let k(%) as in definition
1. Then

s
X](g) < 2VA — 1cos m, (7)

whenever A > 4 or whenever A = 3 and k(9) > 4.

Proof. We know that A{(%) < )»1(93,(:)(41)) = p(A,0(4)). Suppose 4 > 5. Then

0 Va4 =1
A—1 0 4—1
Ak 0(4) = VA -1
0 4-2
| A—-2 2
0 4—1 7
VA —=1 0 A4—1
< A1 =Dy(VA-1)
0 4—1
| A—1 A—1]
with strict inequality in position (k — 1, k). Therefore
7T
Ak.0(4 Di(WA4—-1))=2/4-1 .
p(Aro(d) < p(Dr(v/ ) =2V c0s >y

Thus the bound (7) is proved for 4 > 5. It remains to study the cases 4 = 3 and 4 = 4. For j =
1,2,...,k, leta;(A) and d;(A) be the characteristic polynomials of the j x j leading principal
submatrices of Ay o(4) and D (/4 — 1), respectively. Observe thata (1) and d (1) are identical
polynomials (j = 1,2, ...,k — 1), and that a;(X) and di(A) are the characteristic polynomials
of Ak 0(4) and Dr(+/4 — 1), respectively. From Lemma 5, part 1, we have

ar(A) = (A = Dag—1(A) — (4 = 2)ag—(X) (8)
and
dr(A) = (A — VA = Dag—1(A) — (4 = Dag—2(X). 9

From (8) and (9), we obtain

ar(A) —di(A) = (VA =1 =2)ar1(A) + ar—2(2). (10)
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From Lemma 5, part 2, we may write

ar() = (A —a)A —az) (A — 1) (A — ag),
where

O < Q] < -+ <oy <o

are the zeros of the polynomial a;(A). Let A = p(Dy(+/4 — 1)). Then, 4 is the largest zero of
di(A). Since, from Lemma 3,
A =24 —1cos il ,
2k + 1

to show (7) it is sufficient to prove that 4 > «j. Let 81 be the largest zero of the identical
polynomials di—1(X) and ax—1(A). Since the zeros of these polynomials strictly interlace the
zeros of the polynomials a (1) and di (X)), we obtain that oy < B1 < a1 and 81 < 4. Therefore
ay < A, ap—1(4) > 0 and

ap(A)=(4 —a1)(4 — a2)- - (4 — oax—1)(4 — ag)
where P > 0. Thus, to show that 4 > o it is sufficient to prove that a;(4) > 0. From (9) and
(10),

(4 —~A = Dag-1(4) — (4 — Dag-2(4) =0

and
ar(4) = (WA =1 —=2)a_1(4) + ax—2(4).
Then
ap(A) = <«/A —1-2+ A_A— _Al_1> ar_1(A). (11)

Let 4 = 4. From (11)

24/3cos 72— — /3
an(A) = (f—2+ V3 cos e f) ar—1(4)
23 23 T
:( 3 -2+ 3 COS2k+])ak_1(A)

WV

24/3 2+4/3
(Tf -2+ T\/_cos %) ax—1(4)

> 0.08a,—1(4) > 0.

Letnow A4 =3 and k > 4. From (11)

242 L — /2
ar(4) (f—2+ V2c05 iy [)aklu)

2

V2 T
(7 —2+«/§cos Y 1>ak1(A)
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V2

> — —2+\/§cosz ag_1(4)
2 9
> 0.03a;_1(4) > 0.

The proof is complete. [l

Remark 1. The bound (7) does not hold for 4 = 3 if k(9) = 2 or k(%) = 3. In fact, to four
decimal places, the spectral radius of

!
Aro® = | 2}

is 2.4142 and 2+/2 cos % = 2.2882, and the spectral radius of

0 V2 0
A303)= |2 0 1
| 0 1 2

is 2.5616 and 2+/2 cos % = 2.5483.
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