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Abstract

Let G = (V (G), E(G)) be a unicyclic simple undirected graph with largest vertex degree �. Let Cr be
the unique cycle of G. The graph G − E(Cr ) is a forest of r rooted trees T1,T2, . . .,Tr with root vertices
v1, v2, . . ., vr , respectively. Let

k(G) = max
1�i�r

{max{dist(vi , u) : u ∈ V (Ti )}} + 1,

where dist(v, u) is the distance from v to u. Let μ1(G) and λ1(G) be the spectral radius of the Laplacian
matrix and adjacency matrix of G, respectively. We prove that

μ1(G) < � + 2
√

� − 1 cos
π

2k(G) + 1
,

whenever � > 2 and

λ1(G) < 2
√

� − 1 cos
π

2k(G) + 1
,

whenever � � 4 or whenever � = 3 and k(G) � 4.
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1. Introduction

Let G = (V (G), E(G)) be a simple undirected graph. Let A(G) be the adjacency matrix of
G and let D(G) be the diagonal matrix of vertex degrees. The Laplacian matrix of G is the
matrix L(G) = D(G) − A(G). Both A(G) and L(G) are real symmetric matrices. Moreover,
L(G) is a positive semidefinite matrix and (0, e) is an eigenpair of L(G), where e is the all ones
vector.

Let μ1(G) and λ1(G) be the spectral radius of L(G) and A(G), respectively. It is known that
if H is a subgraph of G then μ1(H) � μ1(G) and λ1(H) � λ1(G).

We recall that the distance dist(u, v), u, v ∈ V (G), is the length of the shortest path in G from
u to v and that the degree d(v), v ∈ V (G), is the number of edges in E(G) that are incident
with v.

Let

� = max{d(v) : v ∈ V (G)}.
A tree is a connected acyclic graph. In [6, 2003], Stevanović proves that for a tree T with largest
vertex degree �,

μ1(T) < � + 2
√

� − 1

and

λ1(T) < 2
√

� − 1.

In [2, 2007], Hu proves that if G is a unicyclic graph then

μ1(G) � � + 2
√

� − 1

with equality if and only if G is the cycle Cn whenever n is even, and

λ1(G) � 2
√

� − 1

with equality if and only if G is the cycle Cn.

From now on, let G be a unicyclic graph with largest vertex degree � > 2. Let Cr be the unique
cycle of G and let v1, v2, . . .., vr be the vertices of Cr . Then, the graph G − E(Cr ) is a forest of
r rooted trees T1,T2, . . .,Tr with root vertices v1, v2, . . ., vr , respectively.

Definition 1. For i = 1, 2, . . ., r, we define

ki = max{dist(vi, u) : u ∈ V (Ti )} + 1

and

k(G) = max{ki : 1 � i � r}.

Let us illustrate this definition with the following example.



756 O. Rojo / Linear Algebra and its Applications 428 (2008) 754–764

Example 1. Let G be the graph

v1

v3

v2

For this graph, � = 5,

k1 = max{d(v1, u) : u ∈ V (T1)} + 1 = 4 + 1 = 5,

k2 = max{d(v2, u) : u ∈ V (T2)} + 1 = 3 + 1 = 4,

k3 = max{d(v3, u) : u ∈ V (T3)} + 1 = 2 + 1 = 3.

Then k(G) = max{5, 4, 3} = 5.

In this paper, we derive the new upper bounds

μ1(G) < � + 2
√

� − 1 cos
π

2k(G) + 1
,

whenever � > 2, and

λ1(G) < 2
√

� − 1 cos
π

2k(G) + 1
,

whenever � � 4 or whenever � = 3 and k(G) � 4.

2. Finding the new upper bounds

We begin this section by recalling some results from [4, 2007] that will play an important role
in this paper.

The level of a vertex in a rooted tree is one more than its distance from the root vertex. A tree
Bk of k levels is a generalized Bethe tree [4] if vertices at the same level have equal degree. Let
Bk be a generalized Bethe tree of k levels. Let B(r)

k be the unicyclic graph obtained from the

union of r copies of Bk and the cycle Cr connecting the r root vertices. We may consider B(r)
k as

a graph of k > 1 levels in which vertices at the same level have equal degree. We agree that the
vertices of Cr are at the level 1. An example of a such graph is
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Example 2

This graph has four levels of vertices in which the vertex degree sequence, from the pendant
vertices to the vertices in C3, is (1, 3, 4, 4).

For the graph B
(r)
k with k > 1, let dk−j+1 be the degree of the vertices at the level j (j =

1, 2, . . ., k). Thus, dk is the degree of the vertices at the level 1, and d1 = 1 is the degree of the
vertices at the level k (pendant vertices). Let

d = (1, d2, . . ., dk).

As usual, let ρ(M) denotes the spectral radius of the matrix M .
In [4], we characterize completely the spectra of the adjacency matrix and Laplacian matrix

of B(r)
k . In particular, we derive results concerning μ1(B

(r)
k ) and λ1(B

(r)
k ), which we give in the

following lemmas.

Lemma 1 [4, Theorem 3, part (c)]. Let r = 2s or r = 2s + 1. Let Lk,s(d) be the k × k symmetric
tridiagonal matrix

Lk,s(d) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
√

d2 − 1√
d2 − 1 d2

√
d3 − 1

√
d3 − 1

. . .
. . .

. . . dk−1
√

dk − 2√
dk − 2 dk − 2 cos 2πs

r

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then ρ(Lk,s(d)) = μ1(B
(r)
k ).
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Lemma 2 [4, Theorem 7, part (d)]. Let Ak,0(d) be the k × k symmetric tridiagonal matrix

Ak,0(d) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

d2 − 1√
d2 − 1 0

√
d3 − 1

√
d3 − 1

. . .
. . .

. . . 0
√

dk − 2√
dk − 2 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then ρ(Ak,0(d)) = λ1(B
(r)
k ).

Keep in mind that G is a unicyclic graph with largest vertex degree � > 2, in which Cr is the
unique cycle of G and that k(G) is as in definition 1. For brevity, we write k instead of k(G). Let
Bk(�) be the generalized Bethe tree with vertex degree sequence

(1, �, �, . . ., �, � − 2),

from the pendant vertices to the root vertex. Then, each tree Ti is an induced subgraph of
Bk(�). Let B(r)

k (�) be the unicyclic graph obtained from r copies of Bk(�) and the cycle Cr

connecting the r root vertices. Therefore, G is an induced subgraph of B(r)
k (�). Consequently

μ1(G) � μ1(B
(r)
k (�)) and λ1(G) � λ1(B

(r)
k (�)).

Observe that the vertex degree sequence for B(r)
k (�) is

d = (1, �, �, . . ., �, �).

We apply Lemma 1 to the graph B
(r)
k (�) to get that the spectral radius of the k × k matrix

Lk,s(�) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
√

� − 1√
� − 1 �

√
� − 1

√
� − 1

. . .
. . .

. . . �
√

� − 2√
� − 2 � − 2 cos 2πs

r

⎤⎥⎥⎥⎥⎥⎥⎦
is equal to μ1(B

(r)
k (�)) and that the spectral radius of the k × k matrix

Ak,0(�) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

� − 1√
� − 1 0

√
� − 1

√
� − 1

. . .
. . .

. . . 0
√

� − 2√
� − 2 2

⎤⎥⎥⎥⎥⎥⎥⎦
is equal to λ1(B

(r)
k (�)).

Therefore in order to find upper bounds on μ1(G) and λ1(G), we search for upper bounds on
ρ(Lk,s(�)) and ρ(Ak,0(�)), respectively.

We recall the following result concerning the spectral radius of a special symmetric tridiagonal
matrix.
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Lemma 3 [3]. The spectral radius of the m × m symmetric tridiagonal matrix

Dm(b) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b

b 0 b

b
. . .

. . .
. . . b

b 0 b

b b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b > 0 (1)

is

ρ(Dm(b)) = 2b cos
π

2m + 1
.

Theorem 4. LetG be a unicyclic graph with largest vertex degree � > 2. Let k(G) as in definition
1. Then

μ1(G) < � + 2
√

� − 1 cos
π

2k(G) + 1
. (2)

Proof. We know that μ1(G) � μ1(B
(r)
k (�)) = ρ(Lk,s(�)). We have

Lk,s(�)=

⎡⎢⎢⎢⎢⎢⎢⎣

1
√

� − 1√
� − 1 �

√
� − 1

√
� − 1

. . .
. . .

. . . �
√

� − 2√
� − 2 � − 2 cos 2πs

r

⎤⎥⎥⎥⎥⎥⎥⎦

�

⎡⎢⎢⎢⎢⎢⎢⎣

1
√

� − 1√
� − 1 �

√
� − 1

√
� − 1

. . .
. . .

. . . �
√

� − 2√
� − 2 � + 2

⎤⎥⎥⎥⎥⎥⎥⎦ = Ek.

Since the spectral radius of an irreducible nonnegative matrix increases when any of its entries
increases [8], we have

ρ(Lk,s(�)) � ρ(Ek). (3)

The matrix Ek has the LLT -decomposition

Ek = LLT ,

where L is the lower bidiagonal matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
� − 1 1

√
� − 1

. . .

. . . 1√
� − 2 2

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Then Ek is a positive definite and the matrices Ek = LLT and Ẽk = LT L have the same eigen-
values [9]. From this fact and (3), we obtain

ρ(Lk,s(�)) � ρ(Ẽk). (4)

Computing the product LT L, we obtain

Ẽk =

⎡⎢⎢⎢⎢⎢⎢⎣

�
√

� − 1√
� − 1 �

√
� − 1

√
� − 1

. . .
. . .

. . . � − 1 2
√

� − 2
2
√

� − 2 4

⎤⎥⎥⎥⎥⎥⎥⎦ .

We have

Ẽk =diag{�, �, . . ., �}

+

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

� − 1√
� − 1 0

√
� − 1

√
� − 1

. . .
. . .

. . . −1 2
√

� − 2
2
√

� − 2 4 − �

⎤⎥⎥⎥⎥⎥⎥⎦
=diag{�, �, . . ., �} + Fk,

where

Fk =

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

� − 1√
� − 1 0

√
� − 1

√
� − 1

. . .
. . .

. . . −1 2
√

� − 2
2
√

� − 2 4 − �

⎤⎥⎥⎥⎥⎥⎥⎦ .

From (1),

Dk(
√

� − 1) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

� − 1√
� − 1 0

√
� − 1

√
� − 1

. . .
. . .

. . . 0
√

� − 1√
� − 1

√
� − 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

We define

Gk =Dk(
√

� − 1) − Fk

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0
. . .

. . .
. . . 0 0

0 1
√

� − 1 − 2
√

� − 2√
� − 1 − 2

√
� − 2

√
� − 1 − 4 + �

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Since � � 3, one can prove that the submatrix[
1

√
� − 1 − 2

√
� − 2√

� − 1 − 2
√

� − 2 −4 + � + √
� − 1

]
is a positive definite matrix. Hence Gk is positive semidefinite matrix. Since Fk is an irreduc-
ible nonnegative matrix, there exists unitary eigenvector x = [

xT
1 xT

2

]
> 0 such that xT Fkx =

ρ(Fk) [8]. Therefore x2 /= 0 and

xT Dk(
√

� − 1)x = xT Fkx + xT Gkx

= ρ(Fk)

+ xT
2

[
1

√
� − 1 − 2

√
� − 2√

� − 1 − 2
√

� − 2 −4 + � + √
� − 1

]
x2

> ρ(Fk).

Then

ρ(Fk) < xT Dk(
√

� − 1)x � ρ(Dk(
√

� − 1)).

From Lemma 3, the spectral radius of Dk−1(
√

� − 1) is

ρ(Dk(
√

� − 1)) = 2
√

� − 1 cos
π

2k + 1
.

Therefore

ρ(Fk) < 2
√

� − 1 cos
π

2k + 1
.

Consequently

λ1(Ẽk)=� + λ1(Fk) (5)

<� + 2
√

� − 1 cos
π

2k + 1
.

From (4) and (5), we get

ρ(Lk,s(�)) < � + 2
√

� − 1 cos
π

2k + 1
.

Since μ1(G) � μ1(B
(r)
k ) = ρ(Lk,s(�)) and k = k(G), the upper bound (2) is proved. �

At this point, it is convenient to recall some other known results on symmetric tridiagonal
matrices [1,5,7].

Lemma 5. 1. The characteristic polynomials, qj (λ), of the j × j leading principal submatrix of
the k × k symmetric tridiagonal matrix

Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

b2
. . .

. . .
. . .

. . .
. . .

. . . ak−1 bk−1
bk−1 ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)
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satisfy the three-term recursion formula

qj (λ) = (λ − aj )qj−1(λ) − b2
j−1qj−2(λ)

with q0(λ) = 1 and q1(λ) = λ − a1.

2. If all codiagonal entries bi (i = 1, 2, . . ., k − 1) in (6) are nonzero, the recursion polynomial
qj (j = 0, 1, . . ., k) has j real simple zeros. For 1 � j � k − 1, they strictly interlace those of
qj+1.

Theorem 6. LetG be a unicyclic graph with largest vertex degree � > 2. Let k(G) as in definition
1. Then

λ1(G) < 2
√

� − 1 cos
π

2k(G) + 1
, (7)

whenever � � 4 or whenever � = 3 and k(G) � 4.

Proof. We know that λ1(G) � λ1(B
(r)
k (�)) = ρ(Ak,0(�)). Suppose � � 5. Then

Ak,0(�) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

� − 1√
� − 1 0

√
� − 1

√
� − 1

. . .
. . .

. . . 0
√

� − 2√
� − 2 2

⎤⎥⎥⎥⎥⎥⎥⎦

�

⎡⎢⎢⎢⎢⎢⎢⎣

0
√

� − 1√
� − 1 0

√
� − 1

√
� − 1

. . .
. . .

. . . 0
√

� − 1√
� − 1

√
� − 1

⎤⎥⎥⎥⎥⎥⎥⎦ = Dk(
√

� − 1)

with strict inequality in position (k − 1, k). Therefore

ρ(Ak,0(�)) < ρ(Dk(
√

� − 1)) = 2
√

� − 1 cos
π

2k + 1
.

Thus the bound (7) is proved for � � 5. It remains to study the cases � = 3 and � = 4. For j =
1, 2, . . ., k, let aj (λ) and dj (λ) be the characteristic polynomials of the j × j leading principal
submatrices of Ak,0(�) and Dk(

√
� − 1), respectively. Observe that aj (λ) and dj (λ) are identical

polynomials (j = 1, 2, . . ., k − 1), and that ak(λ) and dk(λ) are the characteristic polynomials
of Ak,0(�) and Dk(

√
� − 1), respectively. From Lemma 5, part 1, we have

ak(λ) = (λ − 2)ak−1(λ) − (� − 2)ak−2(λ) (8)

and

dk(λ) = (λ − √
� − 1)ak−1(λ) − (� − 1)ak−2(λ). (9)

From (8) and (9), we obtain

ak(λ) − dk(λ) = (
√

� − 1 − 2)ak−1(λ) + ak−2(λ). (10)
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From Lemma 5, part 2, we may write

ak(λ) = (λ − α1)(λ − α2)· · ·(λ − αk−1)(λ − αk),

where

αk < αk−1 < · · · < α2 < α1

are the zeros of the polynomial ak(λ). Let � = ρ(Dk(
√

� − 1)). Then, � is the largest zero of
dk(λ). Since, from Lemma 3,

� = 2
√

� − 1 cos
π

2k + 1
,

to show (7) it is sufficient to prove that � > α1. Let β1 be the largest zero of the identical
polynomials dk−1(λ) and ak−1(λ). Since the zeros of these polynomials strictly interlace the
zeros of the polynomials ak(λ) and dk(λ), we obtain that α2 < β1 < α1 and β1 < �. Therefore
α2 < �, ak−1(�) > 0 and

ak(�)=(� − α1)(� − α2)· · ·(� − αk−1)(� − αk)

=(� − α1)P,

where P > 0. Thus, to show that � > α1 it is sufficient to prove that ak(�) > 0. From (9) and
(10),

(� − √
� − 1)ak−1(�) − (� − 1)ak−2(�) = 0

and

ak(�) = (
√

� − 1 − 2)ak−1(�) + ak−2(�).

Then

ak(�) =
(√

� − 1 − 2 + � − √
� − 1

� − 1

)
ak−1(�). (11)

Let � = 4. From (11)

ak(�) =
(√

3 − 2 + 2
√

3 cos π
2k+1 − √

3

3

)
ak−1(�)

=
(

2
√

3

3
− 2 + 2

√
3

3
cos

π

2k + 1

)
ak−1(�)

�
(

2
√

3

3
− 2 + 2

√
3

3
cos

π

5

)
ak−1(�)

> 0.08ak−1(�) > 0.

Let now � = 3 and k � 4. From (11)

ak(�) =
(√

2 − 2 + 2
√

2 cos π
2k+1 − √

2

2

)
ak−1(�)

=
(√

2

2
− 2 + √

2 cos
π

2k + 1

)
ak−1(�)
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�
(√

2

2
− 2 + √

2 cos
π

9

)
ak−1(�)

> 0.03ak−1(�) > 0.

The proof is complete. �

Remark 1. The bound (7) does not hold for � = 3 if k(G) = 2 or k(G) = 3. In fact, to four
decimal places, the spectral radius of

A2,0(3) =
[

0 1
1 2

]
is 2.4142 and 2

√
2 cos π

5 = 2.2882, and the spectral radius of

A3,0(3) =
⎡⎣ 0

√
2 0√

2 0 1
0 1 2

⎤⎦
is 2.5616 and 2

√
2 cos π

7 = 2.5483.
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