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Abstract This article presents a variant of the spectral
turning bands method that allows fast and accurate
simulation of intrinsic random fields with power, spline,
or logarithmic generalized covariances. The method is
applicable in any workspace dimension and is not restricted
in the number and configuration of the locations where the
random field is simulated; in particular, it does not require
these locations to be regularly spaced. On the basis of the
central limit and Berry–Esséen theorems, an upper bound is
derived for the Kolmogorov distance between the distribu-
tions of generalized increments of the simulated random
fields and the normal distribution.
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1 Introduction

The simulation of random fields is currently used in the
geosciences for spatial prediction and uncertainty assess-
ment; see [8] and references therein. The first random field
models considered were stationary and Gaussian, i.e., all

their finite-dimensional distributions are multinormal and
invariant under spatial translation [13, 19, 32, 37]. Application
domains include mineral resources evaluation [28], hydro-
geology [16], and soil sciences [7], among others. The
stationary Gaussian random field model is congenial,
insofar as its statistical properties are fully characterized by
its mean (constant in space) and its covariance function or,
equivalently, its semi-variogram. In practice, the latter is
modeled from a sample semi-variogram calculated from the
available data. In some circumstances, however, this sample
semi-variogram does not have a sill or the data values
exhibit a spatial trend (non-constant mean), which makes the
stationarity assumption questionable [8].

To overcome this problem, intrinsic random fields of
order 0, i.e., random fields with stationary increments, can
be considered. A typical example is the fractional Brownian
sheet (fractional Brownian motion in 1D), for which the
semi-variogram is a power function of the lag distance. In
this respect, many simulation algorithms have been pro-
posed in the past decades, based on midpoint displacement
approaches [25, 52], continuous and discrete spectral
representations [8, 42, 48, 49], wavelet representations [24,
44, 54], dilution of Poisson germs, Poisson hyperplanes and
moving averages [8, 35], summation of fractional white
noise [53], or simulation of locally equivalent stationary
random fields [8, 22, 26]. However, except for simulating a
Brownian motion (Wiener–Lévy process), most of these
algorithms are approximate or are restricted in the workspace
dimension, in the number of locations targeted for simula-
tion, or in their spatial configuration (Table 1).

Fractional Brownian sheets belong to a general family of
random fields for which the generalized increments
(discrete derivatives from order k+1 onward, with k∈N)
are stationary. These fields are known as integrated
processes in time series analysis [3] or intrinsic random
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fields of order k in spatial statistics [39]. Their correlation
structure is characterized by a generalized covariance
function that allows calculating the variance of any
generalized increment. As a particular case, for intrinsic
random fields of order 0, the generalized covariance is the
opposite of the semi-variogram plus an arbitrary constant.
An overview of the theory of intrinsic random fields can be
found in the paper by Matheron [39] and the textbook by
Chilès and Delfiner [8].

Intrinsic random fields of order k are suitable for
modeling regionalized variables with trends (drifts) that
can be represented as polynomial functions of the spatial
coordinates. Let us give a few examples of applications in
the geosciences:

– In geothermal reservoir modeling, temperature and
pressure tend to increase with depth, whereas porosity
and permeability tend to decrease. Accordingly, these
variables cannot be represented by stationary random
fields [9, 50].

– In petroleum reservoir modeling, intrinsic random
fields are useful for representing geometrical character-
istics (e.g., depth of the top of a dome-shaped structure
or anticline trap) or petrophysical properties such as
rock porosity [15, 20].

– In groundwater hydrology, the hydraulic gradient is
often responsible for a trend in the parameters that
characterize an aquifer system (hydraulic head, hydrau-
lic conductivity, transmissivity, total discharge, etc.).
The use of intrinsic random fields is all the more
satisfactory because these random fields provide the
solution of the partial differential equations linking the
hydrogeologic parameters [17, 21, 30, 31, 34].

– Other applications include the non-stationary modeling
of soil properties [4], mineral grades [11], pollutant
concentrations [10], or seafloor depth [5, 12].

This work deals with the simulation of d-dimensional
isotropic intrinsic random fields for which the generalized
covariance is either a power function of the lag distance,
i.e., a function C such that:

8h 2 Rd ;C hð Þ ¼ �1ð Þkþ1 hj jα ð1Þ

with a∈R+
* and k∈N such that 2k<a<2k+2, or a function

of the form:

8h 2 Rd ;C hð Þ ¼ �1ð Þkþ1 hj j2k ln hj jð Þ ð2Þ
with k∈N. The case when k=1 and d=2 corresponds to the
well-known thin plate spline function. For this reason, the
function defined in Eq. 2 will be referred to as the spline
generalized covariance with index k. The case when k=0 is
also called logarithmic or “de Wijsian” generalized covari-
ance in the statistical and geostatistical literature [2, 8, 38].
To the best of the authors’ knowledge, only the power,
spline, and logarithmic generalized covariance models (as
well as their linear combinations) have been used in the
practice of intrinsic random fields of order k.

The proposed simulation algorithm will be developed so
as to fulfill the following requirements:

1. No restriction on the workspace dimension (d).
2. No restriction on the number and spatial configuration

of the locations where the random field has to be
simulated.

3. Efficiency in terms of time complexity and memory
requirement.

Table 1 Properties of current algorithms for simulating fractional Brownian sheets with Hurst coefficient H in Rd

Simulation algorithm Workspace
dimension

Accurate reproduction of
semi-variogram?

Normally distributed
increments?

Restrictions

Midpoint displacement 1 Noa Yes
Wavelet representations 1 No No
Dilution of Poisson germs 1 Noa No
Poisson hyperplanes d Noa No
Continuous spectral representations with
truncation of low frequencies

d No No

Discrete spectral representations d Yes Yes Regularly spaced
locations

Moving average 1 Noa Yes Idem
Summation of fractional white noise 1 Yes Yes Idem
Circulant-embedding approaches d Yes Yes Idem
Choleski decomposition of covariance matrix d Yes Yes <5,000 locations
Mixture of locally equivalent random fields
with triangular covariances

1 Yes No H≤0.5

a These algorithms are accurate when H=0.5 and d=1, a case that corresponds to the classical Brownian motion (Wiener-Lévy process).
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4. Accurate reproduction of the generalized covariance
(without approximation).

5. Distribution of generalized increments close to normal.

This algorithm is designed in accordance with the
principle of the turning bands method [8, 39]. It consists
in performing a set of independent one-dimensional
simulations and then combining them to produce one d-
dimensional simulation. This approach only requires the
one-dimensional simulations to possess a power or spline
generalized covariance model, as provided by the turning
bands operator. Accordingly, the problem of simulating
intrinsic random fields in a one-dimensional space is
examined first (Section 2); the extension to multi-dimensional
spaces using the turning bands method is then considered
(Section 3).

2 Simulating random fields with power and spline
generalized covariances in R

2.1 Intrinsic random fields with power semi-variograms

This subsection deals with the simulation of a one-
dimensional intrinsic random field Ya,1={Ya,1(x): x∈R}
that has a power semi-variogram with exponent a∈]0,2[:

8x; xþ h 2 R; 1
2
var Ya;1 xð Þ � Ya;1 xþ hð Þ� � ¼ hj ja;

or, equivalently, a generalized covariance of the form
h ! � hj ja for any real number h. To solve the simulation
problem, let us consider a random field of the following
form:

8x 2 R; Ya;1 xð Þ ¼ θa;1 Rð Þ cos 2pR xþ φð Þ ð3Þ

where φ is a uniform random variable on [0,2p[ and R is an
independent positive random variable with probability
density function fa . This expression can be viewed as an
extension of traditional spectral approaches to simulating
stationary random fields [36, 37, 46, 47], as explained in
Appendix. Functions θa,1 and fa will be chosen so that Ya,1
has the required semi-variogram. For any real numbers x
and x′, one has

Ya;1 xð Þ � Ya;1 x0ð Þ ¼ 2 θa;1 Rð Þ sin pR x0 � xð Þ½ � sin pR xþ x0ð Þ þ φ½ �
ð4Þ

As φ has a uniform distribution on [0,2p[ and is indepen-
dent of R, the increment Ya,1(x)−Ya,1(x′) has a zero mean
and a variance equal to

E Ya;1 xð Þ � Ya;1 x0ð Þ� �2n o
¼ E 2 θ2a;1 Rð Þ sin2 pR x0 � xð Þ½ �

n o
:

This variance only depends on x′−x; hence, Ya,1 has
second-order stationary increments. Its semi-variogram at
lag h is

gYa;1 hð Þ ¼ E θ2a;1 Rð Þ sin2 pR hð Þ
n o

¼
Z þ1

0
θ2a;1 rð Þ 1� cos 2pr hð Þ

2
fa rð Þdr

ð5Þ

Compare this expression with the spectral representation of
the power semi-variogram with exponent a [8]:

8h 2 R; hj ja¼ � 2* 1þa
2

� �
p1=2þa* �a

2

� � Z þ1

0
1� cos 2p r hð Þ½ � dr

r1þa
:

To have gYa , 1(h)=|h|
a for every h, one must find θa ,1 and

fa such that

8r 2 Rþ;
1

2
θ2a;1 rð Þ fa rð Þ ¼ � 2* 1þa

2

� �
p1=2þa* �a

2

� � 1

r1þa
: ð6Þ

As fa is a probability density function on R+, the following
constraint holds:Z þ1

0

dr

θ2a;1 rð Þ r1þa
< 1 ð7Þ

Suppose that there exist two real numbers, b and δ, such
that θa,1

2 (r)≈rβ for small r and θa ,1
2 (r)≈rδ for large r. To

fulfill relation 7, one must have b+a+1<1 and δ+a+1>1,
i.e., b<−a<δ. A solution is to define θa ,1 such that

8r 2 Rþ; θ2a;1 rð Þ / r�a=2�1 1þ rð Þ:
Because of Eq. 6, this amounts to putting

8r 2 Rþ; fa rð Þ / 1

1þ rð Þ r a=2
:

For this function to have a unit integral over R+, one
must take

8r 2 Rþ; fa rð Þ ¼ sin p a=2ð Þ
p

1

1þ rð Þ r a=2
: ð8Þ

One recognizes the probability density function of a beta
random variable R of the second kind with parameters
(1–a/2, a/2). Equivalently, R is the ratio of two independent
standard gamma random variables with shape parameters
1–a/2 and a/2, respectively, the simulation of which can
easily be achieved by acceptance–rejection algorithms [1,
18, 33]. Note that if a is close to 2, the outcomes of R are
likely to be very small: in such a case, the process
simulated in Eq. 3 is a low-frequency cosine function and
presents long-range memory (or persistence), as do frac-
tional Brownian motions with Hurst coefficients close to 1.
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If a is close to 0, the outcomes of R are likely to be very
large, so that the simulated process is a high-frequency
cosine function and presents anti-persistence.

According to Eqs. 6 and 8, function θa ,1 is defined by

8r 2 Rþ; θa;1 rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4* a þ 1ð Þ 1þ rð Þ

2pð Þar a=2þ1

s
: ð9Þ

2.2 Intrinsic random fields with power generalized
covariances

In this study, we consider the general problem of simulating
an intrinsic random field in R with the generalized
covariance h ! �1ð Þkþ1 hj ja, where α is a positive real
number and k is the integer part of a/2. For a<2, this boils
down to simulating an intrinsic random field with a power
semi-variogram of exponent a, which has been solved in
the previous subsection. In what follows, only the case a≥2
is examined.

Let k be a positive integer, a a real number in ]2k,2k+2[
and � a uniform random variable on [0,2p[. Consider a
random field Ya,1 such that

8x 2 R; Ya;1 xð Þ ¼ θa;1 Rð Þ cos 2pR xþ φð Þ; ð10Þ

for a random variable R independent of φ and a function
θa,1 to determine. Its derivative of order k is defined by

8x 2 R; Y kð Þ
a;1 xð Þ ¼ θa;1 Rð Þ 2pRð Þk cos 2pR xþ φ0ð Þ; ð11Þ

where φ0 ¼ φþ kp=2 mod 2pð Þ is a uniform random vari-
able on [0,2p[. Assume that Ya,1 has the requested power

generalized covariance h ! �1ð Þkþ1 hj ja. Then, Y kð Þ
a has

the generalized covariance [8]:

8h 2 R�; h ! �1ð Þk d
2k

dh2k
�1ð Þkþ1 hj ja

n o
;

that is

8h 2 R�; h ! � * a þ 1ð Þ
* a � 2k þ 1ð Þ hj ja�2k :

Because the exponent of this power covariance (a−2k) is
less than 2, one can choose for Y ðkÞ

a;1 a random field
proportional to that introduced in Eq. 3:

8x 2 R; Y kð Þ
a;1 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
* a þ 1ð Þ

* a � 2k þ 1ð Þ

s
Ya�2k;1 xð Þ: ð12Þ

By identifying Eqs. 11 and 12, one finds that R is a beta
random variable with density fa–2k, as defined in Eq. 8,
whereas θa,1 is such that:

8r 2 Rþ; θa;1 rð Þ ¼ θa�2k;1 rð Þ
2prð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
* a þ 1ð Þ

* a � 2k þ 1ð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4* a þ 1ð Þ 1þ rð Þ

2pð Þar a=2þkþ1

s

2.2.1 Comments

1. Numerical problems may occur if the outcome of R is
close to 0, as θa,1(r) behaves like r� a=2þkþ1ð Þ=2 for small
r values. A solution is to replace the cosine function in
Eq. 10 by its Lagrange remainder at order k by putting

Ya;1 xð Þ ¼ θa;1 Rð Þ cos 2pR xþ φð Þ �
Xk
p¼0

2pR xð Þp
p !

cos φþ p
p
2

� 	( )
:

ð13Þ

The generalized covariance of Ya,1 is unchanged, as
an intrinsic random field of order k is defined up to a
polynomial of degree k: Two random fields that differ
from a polynomial of degree k or less are indistin-
guishable from the viewpoint of generalized incre-
ments of order k [8].

2. The probability density function fa–2k is undefined if a
is an even integer, say a=2k with k∈N*, so that Eq. 10
cannot be used in this case. An intrinsic random field
with the power covariance h ! �1ð Þk hj j2k and with
normal generalized increments can, however, be
obtained by putting

8x 2 R; Y2k;1 xð Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
* 2k þ 1ð Þp
Γ k þ 1ð Þ xk

¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
* 1

2 þ k
� �

* 1
2

� �
* k þ 1ð Þ

s
2xð Þk

ð14Þ

where A is a standard normal random variable. The
proof for Eq. 14 is similar to that made in Eqs. 10 to 12
and consists in checking that the generalized covariance
of the kth derivative of Y2k,1 is

h ! * 2k þ 1ð Þ ¼ �1ð Þk d2k

dh2k
�1ð Þkþ1 hj j2k

n o
:
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2.3 Intrinsic random fields with spline generalized
covariances

Other options are possible to choose functions θa,1 and fa
that fulfill the condition given in Eq. 7, for instance,

8r 2 Rþ; 8a 2�0; 2½; θ
0
a;1 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4p * 1þa

2

� �
1þrð Þ

* �a
2ð Þ prð Þaþ1=2

s

f
0
a rð Þ ¼ 1

p
1

1þrð Þ ffiffi
r

p

8>><
>>:

ð15Þ
As in the previous subsection, this result can be used for

simulating an intrinsic random field with the power
generalized covariance (1) in R. Let a be a positive real
number (not necessarily less than 2) different from an even
integer and k be the integer part of a/2. All calculations
done, one finds a random field of the following form:

8x 2 R; Y 0
a;1 xð Þ ¼ θ

0
a;1 R0ð Þ cos 2pR0 xþ φð Þ; ð16Þ

where φ is a uniform random variable on [0,2p[, R′ is an
independent random variable with probability density
function fa′, and θ′a,1 is defined by:

θ
0
a;1 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� p1=2�a * a þ 1ð Þ* 1þa

2 � k
� �

1þ rð Þ
22k�2* a � 2k þ 1ð Þ* k � a

2

� �
r aþ1=2

s

An interesting feature of this approach is that the
probability density function of R′ defined in Eq. 15 does
no longer depend on the value of a: R′ is a beta random
variable of the second kind with parameters 1/2 and 1/2, i.e.
the ratio of two independent standard gamma random
variables with shape parameter 1/2. This will be useful for
generalizing the proposed method to the simulation of
random fields with spline generalized covariances.

Let us consider a family fY 0
2kþ";1 : " 2 R�

þg of intrinsic
random fields of order k defined as in Eq. 16 with the same
pair of random variables (R′,7). Define a new family of
random fields S2kþ";1 : " 2 R�

þ
� �

in the following fashion:

8" 2 R�
þ; 8x 2 R; S2kþ";1 xð Þ ¼ 1ffiffiffi

"
p Y

0
2kþ";1 xð Þ: ð17Þ

The generalized covariance of S2k+",1 (denoted by CS2k+",1)
is that of Y

0
2kþ";1 divided by ":

8h 2 R;CS2kþ";1 hð Þ ¼ �1ð Þkþ1 hj j2kþ"

"
:

As the generalized covariance of an intrinsic random
field of order k is defined up to an even polynomial of
degree 2k [8], one can also write

8h 2 R;CS2kþ";1 hð Þ � �1ð Þkþ1 hj j2kþ"� hj j2k
"

( )
:

If " tends to zero, it is seen that {CS2k+",1: "∈R+
*} tends

to a spline generalized covariance with index k

8h 2 R�;CS2kþ";1 hð Þ�!
"!0

CS2k;1 hð Þ ¼ �1ð Þkþ1 hj j2k ln hj jð Þ:
Therefore, an intrinsic random field with the generalized
covariance (2) in R is obtained by putting:

8x 2 R; S2k;1 xð Þ ¼ ξ2k;1 R0ð Þ cos 2πR0 xþ φð Þ; ð18Þ
with

8r 2 Rþ; ξ2k;1 rð Þ ¼ lim
"!0

θ
0
2kþ";1 rð Þffiffiffi

"
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
* 2k þ 1ð Þ 1þ rð Þ
2pð Þ2k�1 r2kþ1=2

s ð19Þ

2.4 Random measures with logarithmic generalized
covariances

The previous statements from Eqs. 17 to 19 are valid for
k=0, which corresponds to the logarithmic generalized
covariance. Strictly speaking, this covariance is not associ-
ated with an intrinsic random field, rather with a random
measure, as it is unbounded and cannot be extended at h=0.
However, the regularization of such a random measure onto
a non-point support corresponds to an intrinsic random field
[38]. For instance, the regularized random field over an
interval of length 2a is

S0;1 xð Þ ¼ 1

2a

Z a

�a
ξ0;1 R0ð Þ cos 2pR0 xþ uð Þ þ φ½ � du

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0

2paR05=2

r
sin 2πa R0ð Þ cos 2pR0 xþ φð Þ

3 Simulating random fields with isotropic power
and spline generalized covariances in Rd: Turning
bands method

3.1 Intrinsic random fields with power generalized
covariances

Simulating an intrinsic random field with the isotropic
power generalized covariance (1) in Rd (d≥1) is done by
recourse to the turning bands method by putting [8, 39]

8x 2 Rd; Ya;d xð Þ ¼ 1ffiffiffiffiffiffiffiffi
Aa;d

p Ya;1 < x;U >ð Þ; ð20Þ

where U is a random vector uniformly distributed on the
unit hypersphere of Rd, < , > is the standard inner product
in Rd, and Aa,d is defined by:

Aα;d ¼
Γ d

2ð Þ Γ 1þα
2ð Þ

Γ 1
2ð Þ Γ dþα

2ð Þ :

(15)

Comput Geosci (2008) 12:121–132 125



Let us consider the case when a is a positive real number
different from an even integer and define k as the integer
part of a/2. Formula 20 amounts to putting

8x 2 Rd; Ya;d xð Þ ¼ θa;d Rð Þ cos 2pR < x;U > þφÞ;� ð21Þ

where φ is a uniform random variable on [0,2p[, R is an
independent beta random variable with the density fa–2k
defined in Eq. 8, and θa,d is given by

8r 2 Rþ; θa;d rð Þ ¼ θa;1 rð Þffiffiffiffiffiffiffiffi
Aa;d

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4* a

2 þ 1
� �

* dþa
2

� �
1þ rð Þ

* d
2

� �
p ar a=2þkþ1

s

Again, to avoid numerical problems when the outcome of R
is very small, one can trade the cosine function in Eq. 21
for its Lagrange remainder at order k; see Eq. 13.

When a is an even integer (a=2k with k∈N*), Eq. 20
becomes

8x 2 Rd; Y2k;d xð Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
* d

2 þ k
� �

* d
2

� �
* k þ 1ð Þ

s
< 2x;U >k;

ð22Þ
where A is a standard normal random variable.

The turning bands method for simulating intrinsic
random fields with power generalized covariances has
already been proposed by several authors [20, 41, 43, 53].
However, these proposals use algorithms that perform the
simulation only at regularly spaced locations along the line
spanned by vector U. The simulated values must, therefore,
be migrated to the projection of the locations of interest in
Rd onto the line [37, 43]. Such a migration yields a bias in
the reproduction of the generalized covariance model and
causes difficulties in memory management if the discretiza-
tion mesh (band width) is small in comparison with the size
of the interval to be simulated on the line [22]. In the
present work, the line simulation process uses functions that
are defined continuously (Eqs. 21 and 22) and can be
calculated at any set of locations, not necessarily at
regularly spaced locations. There is no need for discretiza-
tion and migration, so that the generalized covariance
model is reproduced accurately.

3.2 Intrinsic random fields with spline generalized
covariances

The results given in Section 2.3 can also be extended to
simulating by turning bands an intrinsic random field with
the isotropic spline generalized covariance (2) in Rd. All

calculations done, one finds a random field of the following
form:

8k 2 N; S2k;d xð Þ ¼ ξ2k;d R0ð Þ cos 2πR0 < x;U > þφð Þ; ð23Þ

with R′ and 7 defined as in Eq. 16 and

8r 2 Rþ; ξ2k;d rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γ d

2 þ k
� �

Γ k þ 1ð Þ 1þ rð Þ
π2k�1 Γ d

2

� �
r2kþ1=2

s
:

The case when k=0 corresponds to a random measure
with logarithmic (de Wijsian) generalized covariance. Let
ϖdðaÞ ¼ adπd=2

Γ d
2þ1ð Þ denote the volume of a ball of Rd with

radius a. By regularizing the random measure over such a
ball, one obtains

S0;d xð Þ ¼ 1
ϖd að Þ

R a
�a ϖd�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p
Þ ξ0;d R0ð ÞηðuÞdu

¼ * d
2 þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þR0ð Þ

adπd�1R0dþ1=2

q
Jd=2 2πa R0ð Þηð0Þ

ð24Þ

where ηðuÞ ¼ cos½2πR0ð< x;U > þuÞ þ φ� and Jd/2 is
the Bessel function of the first kind with index d/2. The
second identity in Eq. 24 has been obtained by using the
Poisson integral representation [27].

3.3 Towards normal generalized increments

Up to now, the algorithm specified by Eqs. 21 and 23
fulfills all the requirements stated in Section 1, except the
last one (the generalized increments are not normally
distributed). To overcome this situation, the usual practice
is to define a normalized sum of the form

8a 2 R�
þ; Ya;d;N xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N Aa;d
p XN

i¼1

Y ið Þ
a;1 < x;U i >ð Þ; ð25Þ

or

8k 2 N; S2k;d;N xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N A2k;d

p XN
i¼1

S ið Þ
2k;1 < x;U i >ð Þ ð26Þ

wh e r e {U i , i = 1… N } , fY ið Þ
α;1; i ¼ 1 . . .Ng a n d

fS ið Þ
2k;1; i ¼ 1 . . .Ng are independent random vectors and

random fields defined as in Eqs. 20 or 23. Under these
conditions, the generalized covariance of Ya,d,N (respective-
ly, of S2k,d,N) is the same as that of Ya,d,1 (respectively, of
S2k,d,1) [8]. Besides, because of the central limit theorem,
the generalized increments of Ya,d,N and S2k,d,N tend to be
normally distributed as N becomes infinitely large.

As an illustration of the method, Figs. 1 and 2 present
grayscale representations of isotropic intrinsic random
fields on a square grid of R2, obtained by using N=
50,000 basic random fields. The representations displayed
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in Fig. 1 are realizations of random fields with power semi-
variograms that approximate the fractional Brownian sheet
in R2. The representations of Fig. 2 correspond to a random
measure with a logarithmic generalized covariance regular-

ized onto balls with radius a equal to 0.1 and 1 times the
grid spacing, respectively.

One is also interested in knowing the rate of conver-
gence of the generalized increment finite-dimensional
distributions to normal distributions when N increases. As
an example, let us consider the simulation of an intrinsic
random field with a power semi-variogram (0<α<2) in R
(Section 2.1). The Berry–Esséen inequality [23] provides
an upper bound for the Kolmogorov distance between the
distribution of a standardized increment and the asymptot-
ical normal distribution:

sup
y2R

P
Ya;1;N xþ hð Þ � Ya;1;N xð Þffiffiffiffiffiffiffiffiffiffi

2 hj ja
p < y

( )
� G yð Þ














� kffiffiffiffi
N

p m3 a; hð Þ; ð27Þ

where G is the standard normal cumulative distribution
function, k is a constant less than 0.7655 [45], and μ3(a,h)

Fig. 2 Realizations of regularized random measures with isotropic
logarithmic (de Wijsian) generalized covariances. These realizations
have been drawn on a regular grid with 200×200 nodes by using the
turning bands method with N=50,000 independent random fields
defined as in Eq. 24, with a regularization radius equal to 0.1 (left) and
1 (right) times the grid spacing

Fig. 1 Realizations of two-
dimensional intrinsic random
fields with isotropic power
semi-variograms of exponent a.
These realizations have been
drawn on a regular grid with
200×200 nodes by using the
turning bands method with
N=50,000 independent random
fields defined as in Eq. 21. From
left to right and top to bottom,
a=0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.6, and 1.8
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is the third order absolute moment of the standardized
increment of Ya,1,1:

m3 a; hð Þ ¼ E
Ya;1;1 xþ hð Þ � Ya;1;1 xð Þffiffiffiffiffiffiffiffiffiffiffi

2 hj ja
p













3

8<
:

9=
;:

By using Eq. 4, this moment can be expressed as:

μ3 a; hð Þ ¼ 8

2 hj jað Þ3=2
4

3p
E θ3a;1 Rð Þ sin pRhð Þj j3
n o

:

From Cauchy–Schwarz inequality and Eqs. 5, 8, and 9, it
comes

E θ3a;1 Rð Þ sin pRhð Þj j3
n o

� hj ja=2 4Γ a þ 1ð Þ
2pð Þa

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin pa=2ð Þ

p

Z þ1

0

1þ r

r3a=2þ2
sin4 prhð Þ dr

s
:

The integral can be expressed by using the following
identity, valid for a∈]0,4[−{1,2,3}:

Z þ1

0

sin4 uð Þ du
uaþ1

¼ p 2a�2 1� 2a�2ð Þ
* 1þ að Þ sin ap

2

� � :

Suppose that a is different from 2/3 and 4/3. It ensues:

μ3 a; hð Þe 29=2�α=4* a þ 1ð Þ
3p1þa=4 hj ja=4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin pa

2

� �
* 1þ 3a

2

� � h
2p 1� 23a=2�1ð Þ
1þ 3a

2

� �
cos 3ap

4

� � þ 1� 23a=2�2

sin 3ap
4

� �
( )vuut :

ð28Þ
The upper bound can be extended for a=2/3 and a=4/3

in the following fashion:

μ3
2
3 ; h

� �
e 1

hj j1=6
210=3 * 5

3ð Þ
33=4 p7=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 hj j ln 2ð Þ þ 1

p
μ3

4
3 ; h

� �
e 1

hj j1=3
211=3* 7

3ð Þ
35=4 p11=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 hj j þ 3 ln 2ð Þp

8><
>: ð29Þ

Figure 3 presents the results corresponding to four lag
distances: h=1, 0.5, 0.1, and 0.05. It is seen that μ3(a,h) is
always less than 2.3 for all these lags. Accordingly, by
using N=50,000 basic random fields, Eq. 27 ensures that
the Kolmogorov distance between the distribution of
standardized increments and the standard normal distribu-
tion will be less than 0.008.

Several comments are worth being made:

1. Inequalities 28 and 29 indicate that μ3(a,h) is likely to
be large when |h| tends to 0 or to infinity, thus, do not
provide any information about the rate of convergence
to normality. This suggests that the distributions of

short-scale and large-scale increments may depart from
normality much more than those of medium-scale
increments. Indeed, it is difficult to reproduce the
short-scale and large-scale behaviors of fractional
Brownian motions by summing cosine functions, as
these are infinitely differentiable and periodic (in
particular, a large number of low-frequency cosine
functions must be used before periodicities become
indiscernible at the scale of the domain on which
simulation is performed).

2. The Berry–Esséen inequality is conservative and may
be loose for the case of interest: convergence to
normality may be faster than that indicated in Eq. 27.

3. Convergence to normality may also be improved by
using in Eq. 25 a set of vectors {Ui, i=1… N} regularly
or quasi-regularly distributed over the unit hypersphere
of Rd, instead of independent uniform vectors. For
instance, vectors regularly distributed on the unit circle
of R2 can be used for any value of N. In higher
dimensional spaces, the number of regularly distributed
vectors on the unit hypersphere is bounded (e.g., N≤15
in R3). To overcome this restriction, one can use
equidistributed sequences with low discrepancy [32],
the distribution of which is more homogeneous over the
unit sphere than that of independent uniform vectors.

4. Regarding the simulation of intrinsic random fields
with spline generalized covariances, the third-order
absolute moments of the generalized increments of
S2k,d are not always finite. Accordingly, when using a
normalized sum of the form 26, the upper bound of the
Berry–Esséen inequality may not exist, and the rate of
convergence to normality remains unknown.

Fig. 3 Theoretical upper bounds for the third order absolute moment
μ3(a,h) for |h|=1, 0.5, 0.1, and 0.05. This moment refers to the
standardized increment of a one-dimensional intrinsic random field
Ya,1,1 with semi-variogram h ! hj ja
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5. Other criteria can be considered for assessing whether
the distributions of generalized increments are close to
normal or not. In [32, 33], it is proposed to compare the
fourth-order moments of increments with those of a
normal distribution, and it is shown that this criterion is
less severe than the Kolmogorov distance criterion.

6. Banding effect. From Eq. 25, it is seen that Y ið Þ
a;1 does

not contribute to the variability of Ya,d,N in the
hyperplane orthogonal to vector Ui, which tends to
produce linelike patterns (“banding” or “stripping”
effect) when mapping the realizations of Ya,d,N [37,
51]. To attenuate these patterns, it is advisable to use
several hundreds or thousands of basic random fields
[8, 22, 51]. An example is given in Fig. 4, which maps
realizations of Ya,3,N for several values of a and N:
Banding is manifest with N=10 and still appears with
N=100 and a=0.5 or 1.5, but it becomes barely visible
with N=1,000 in all the cases. From several thousands
of basic random fields onward, banding is impercepti-

ble (as seen in Figs. 1 and 2, which have been obtained
with N=50,000). Accordingly, choosing a large number
for N not only ensures that the generalized increments
are normally distributed but also eliminates the linelike
patterns in the simulated maps. The computational cost
is not really a problem because of the very simple
expression of the basic random fields (Eqs. 21 to 23).

4 Concluding remarks

The algorithm presented in this work is an extension of the
so-called spectral turning bands method [32, 36, 37] for
simulating multi-dimensional intrinsic random fields in-
stead of stationary random fields. It is fast and accurate in
the sense that the target generalized covariance (power,
spline, or logarithmic model) is reproduced exactly,
irrespective of the number of basic random fields consid-
ered in the turning bands process.

Fig. 4 Realizations of intrinsic
random fields with isotropic
power generalized covariances
of exponent α. These
realizations have been drawn on
a regular grid of R3 by using the
turning bands method with
varying values for N (only a
planar cross-section is
displayed)
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Because it uses functions defined continuously (cosine
functions), the proposed algorithm allows performing the
simulation at any set of locations in Rd, which cannot be
done with the moving average, discrete spectral, and
circulant-embedding approaches. Let us give a few exam-
ples in which this feature is useful.

1. Domain shape. Suppose that the random field has to be
simulated on a bounded domain D⊂Rd. Using algo-
rithms that only perform the simulation on regular grids
may not be convenient if D cannot be enclosed tightly
within a right parallelotope.

2. Conditioning to data. Suppose that the simulated
random field has to be conditioned to a set of data
scattered in space, a situation of interest in most
geosciences applications. In such a case, the condition-
ing process requires performing the simulation at the
(irregularly spaced) data locations [8, 20, 22].

3. Composition of random fields. Suppose that the
simulated random field is of the form

8x 2 Rd; Z xð Þ ¼ Yα;1 T xð Þ½ �;
where Ya,1 is defined as in Eq. 3 (with 0<a<2) and T is
a zero-order intrinsic random field with semi-variogram
gT in Rd. It is easy to show that Z is a zero-order
intrinsic random field with a semi-variogram propor-
tional to gT

a/2 [40]. Simulating Z amounts to simulating
T first, then Ya,1 at the locations in R defined by the
realization of T, which have no reason to be regularly
spaced.

4. Regularization. Suppose that one is interested in
simulating a regularized random field

8x 2 Rd ; Z xð Þ ¼
Z

Yα;d xþ hð Þ p hð Þ dh;

where p(.) is a weighting function and Ya,d is the
random field defined in Eq. 21. One example of
regularization has been seen in Eq. 24 for simulating
a random measure with logarithmic generalized covari-
ance, in which p(.) was the indicator of a ball in Rd.
Other kinds of weighting functions could be consid-
ered, for instance, a d-variate normal density function
that is the product of d marginal normal densities with
mean 0 and standard deviation a. With the notations of
Eq. 21, it comes

Z xð Þ ¼ θa;d Rð Þ exp � 2πRað Þ2
2

( )
cos 2πR < x;U > þφð Þ:

The regularization is performed by using the expression
of Ya,d as a cosine function, not by a weighted average
of the values obtained over a fine grid.

5. Differentiation. Suppose that one is interested in
simulating an intrinsic random field together with its

partial derivatives, a problem of interest in geothermy,
meteorology, and hydrogeology for characterizing heat,
air, or water flows [14, 17, 21, 31, 34]. As for the
regularization problem, the partial derivatives can be
calculated directly from the functional expression of the
intrinsic random field (Eqs. 21 to 23), with no need for
a discretization over a regular grid.

Appendix

Consider a stationary random field Y defined in Rd with
mean zero and unit variance. Let C be its covariance
function and χ the associated spectral measure, such that
[23, 29]:

8h 2 Rd ;C hð Þ ¼
Z
Rd

ei ω;hh iχ dωð Þ: ð30Þ

In particular, the integral of the spectral measure is the
variance (also called total power) of the random field:

C 0ð Þ ¼
Z
Rd

χ dωð Þ ¼ 1:

Assuming that χ has a probability density function f (a
situation that occurs when C is absolutely integrable in Rd),
Eq. 30 becomes

8h 2 Rd ;C hð Þ ¼
Z
Rd

cos ω; hh ið Þ f ωð Þdω: ð31Þ

A spectral turning bands approach to simulating Y
consists in putting [32, 46]

8x 2 Rd; Y xð Þ ¼
ffiffiffi
2

p
cos 4; xh i þ φð Þ; ð32Þ

where φ is a random variable uniformly distributed on
[0,2p[, whereas 4 is an independent random vector in Rd

with probability density function f.
Let us now suppose that 4 has another probability

density function in Rd, say g, which is positive on the
support of f. To compensate for the substitution of f by g,
we shall replace Eq. 32 by the following expression:

8x 2 Rd; Y xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2f 4ð Þ
g 4ð Þ

s
cos 4; xh i þ φð Þ: ð33Þ

For any x and x′ in Rd, the covariance between Y(x) and
Y(x′) is

cov Y xð Þ; Y x0ð Þf g ¼ 2E f 4ð Þ
g 4ð Þ cos 4; xh i þ φð Þ cos 4; x0h i þ φð Þ

n o
¼ R

Rd
f wð Þ
g wð Þ cos w; x� x0h ið Þ g wð Þdw

¼ C x� x0ð Þ;
the last equality being justified by Eq. 31. This implies that Y
is second-order stationary with C as its covariance function. In
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particular, suppose that f has a bounded support, say [−1,1],
and let us choose for g a uniform probability density function
on [−1,1]: This yields the spectral approaches proposed by
Shinozuka and Jan [47] and Mantoglou and Wilson [37] for
simulating stationary random fields.

As for intrinsic random fields, generalized covariances
have spectral representations similar to Eq. 30 [8, 39].
However, unlike ordinary covariances, the integral of the
spectral measure does not necessarily converge, as low
frequencies may have an infinite power. To solve the
simulation problem, Chilès [6] suggests defining a frequen-
cy threshold w 0 such that cosine functions with frequencies
less than w 0 can be considered as constant at the scale of
the domain where simulation is required. Hence, one can
use Eq. 32, where the distribution of 4 is the spectral
measure of the intrinsic random field conditioned by
4j j > w0. Nonetheless, such a truncation of low frequen-
cies introduces a bias in the reproduction of the generalized
covariance. To avoid this drawback, the approach presented
in this work relies on random fields of the form of Eq. 33
rather than Eq. 32. It can be viewed as an importance
sampling technique that compensates for the under-sam-
pling of low frequencies in the simulation process.
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