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Abstract

Motivated by Khovanov homology and relations between the Jones polynomial and graph polynomials,
we construct a homology theory for embedded graphs from which the chromatic polynomial can be recov-
ered as the Euler characteristic. For plane graphs, we show that our chromatic homology can be recovered
from the Khovanov homology of an associated link. We apply this connection with Khovanov homology to
show that the torsion-free part of our chromatic homology is independent of the choice of planar embedding
of a graph. We extend our construction and categorify the Bollobás–Riordan polynomial (a generalization of
the Tutte polynomial to embedded graphs). We prove that both our chromatic homology and the Khovanov
homology of an associated link can be recovered from this categorification.
© 2007 Elsevier Inc. All rights reserved.

MSC: primary 05C10; secondary 57M15

Keywords: Bollobás–Riordan polynomial; Chromatic polynomial; Categorification; Fatgraphs; Khovanov homology

1. Introduction

There are numerous connections between graph polynomials and knot invariants in the lit-
erature. Perhaps the best known connection between knot and graph polynomials is due to
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M.B. Thistlethwaite. In his seminal paper [33], Thistlethwaite proved that the Jones polyno-
mial of an alternating link in S3 can be recovered as an evaluation of the Tutte polynomial of a
plane graph. Thistlethwaite’s theorem was extended by L.H. Kauffman in [21] where he showed
that the Jones polynomial of any link can be obtained as an evaluation of the signed Tutte poly-
nomial of an edge-signed plane graph (or equivalently the + − J Potts partition function of a
plane graph).

More recently, M. Khovanov constructed a homological generalization of the Jones polyno-
mial. In his influential paper [22], he constructed a bigraded homology theory for knots whose
graded Euler characteristic is equal to the Jones polynomial. Khovanov’s homology groups
are themselves knot invariants and are in fact strictly stronger knot invariants than the Jones
polynomial. Thus Khovanov constructed a homological generalization of the Jones polynomial.
With Thistlethwaite’s theorem in mind, it is natural to question whether relations between graph
polynomials and the Jones polynomial “categorify.” That is to ask if one can construct a ho-
mology theory for graphs with the two properties that a given graph polynomial arises as the
Euler characteristic of the homology, and that the Khovanov homology of a link can be recov-
ered from the graph homology of an associated graph, or the graph homology can be recovered
from the Khovanov homology of an associated link. We will refer to this type of relation as a
“Thistlethwaite-type relation.” This question on graph and knot homologies motivates the ma-
terial presented here. Before we move on from these motivational considerations, we consider
additional desirable properties that we would like such a graph homology to have.

From the point of view of graph theory, Thistlethwaite’s connection between the Jones and
Tutte polynomials is a little unsatisfactory in that the relation is between links and plane graphs.
We do not want to impose any planarity conditions on our homology theories. We would rather
consider homology theories for graphs embedded in surfaces of any genus. This means that
we would like to construct a homology theory for embedded graphs, such that when the graph
is a plane graph, then we obtain the desired relations with Khovanov homology. Therefore in-
stead of considering graphs and their polynomials, we consider fatgraphs and their polynomials.
A fatgraph is a graph equipped with a cyclic ordering of the incident half-edges at each ver-
tex. Fatgraphs capture the essential part of an embedded graph. We note that fatgraphs are also
known in the literature as “ribbon graphs” and “maps,” but here favour the term “fatgraph” which
is standard in theoretical physics (see for example [12]). Rather than working with the Tutte poly-
nomial, when dealing with fatgraphs we instead consider the Bollobás–Riordan polynomial [2,3].
This is a recently defined generalization of the Tutte polynomial to ribbon graphs which captures
some of the topology of the fatgraph. Thistlethwaite’s theorem relating the Jones polynomial
and the Tutte polynomial of a plane graph was recently generalized by S. Chmutov and I. Pak.
In [5] (which was published in a revised form [6]), the Jones polynomial of a (certain type of)
link in a thickened surface was shown to be an evaluation of the Bollobás–Riordan polynomial
of an associated fatgraph. Furthermore, when the surface is of genus zero, Chmutov and Pak’s
result specializes to Thistlethwaite’s theorem. We note there is currently interest in connections
between knots and their polynomials and fatgraphs and their polynomials [8,11,18,26,27]. This
discussion motivates the categorifications of fatgraph polynomials proposed herein.

The paper is structured as follows. After making some preliminary definitions, in Section 3
we construct a bigraded chain complex using the set of spanning subfatgraphs of a fatgraph. We
then show that the graded Euler characteristic of the homology of this complex is the chromatic
polynomial, thus we have categorified the chromatic polynomial. Some properties of this homol-
ogy and connections with other homology theories in the literature are then given in Section 4.
Motivated by the discussion above, in Section 5 we consider categorifications of the Bollobás–
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Riordan polynomial of a fatgraph. We show how the construction of our chromatic homology
can be extended to give a homology theory from which the Bollobás–Riordan polynomial can be
recovered as the graded Euler characteristic. We then prove that both our chromatic homology
from Section 3, and the Khovanov homology of an associated link can be recovered from our
fatgraph homology. This provides our first Thistlethwaite-type relation between graph and knot
homology theories.

In Section 6 we reconsider our chromatic homology and prove some connections with Kho-
vanov homology. This section contains two main results. One of the main results provides a
second Thistlethwaite-type relation which states that our chromatic homology for a plane graph
can be recovered from the Khovanov homology of an associated link. The other main result
in this section states that the torsion-free part of our chromatic homology is independent of the
choice of embedding of a plane graph. The proof of this result utilizes the relation with Khovanov
homology as well as some recent results on Khovanov homology.

In the final section we provide a relation between L. Helme-Guizon and Y. Rong’s categori-
fication of the chromatic polynomial introduced in [16] and further studied in [7,9,15,17,30,31],
a categorification of the Bollobás–Riordan polynomial and Khovanov homology. Specifically
we construct a homology theory for the Bollobás–Riordan polynomial which comes equipped
with two natural homomorphisms: one to Helme-Guizon and Rong’s chromatic homology and
the other to Khovanov homology. Thus both of these homology theories arise from one ho-
mology theory for the Bollobás–Riordan polynomial. This addresses the question “What is the
relationship (of Helme-Guizon and Rong’s chromatic homology) with the Khovanov homology
for knots?”, which was posed in [16].

2. Some preliminaries

This section contains some preliminary definitions and results on graphs, fatgraphs, fatgraph
polynomials, graded modules. Having set up enough notation, we also provide a more detailed
statement of our results.

2.1. Fatgraphs

Let G = (V ,E) be an undirected graph, possibly with loops and multiple edges. Each sub-
graph (V ,W), W ⊂ E of G is called a spanning subgraph. Let us denote by S(G) the set of all
spanning subgraphs of G. A graph F is called a fatgraph if for each vertex v ∈ V , there is a fixed
cyclic order on half-edges adjacent to v (loops are counted twice). A fatgraph F may be regarded
as a 2-dimensional surface with boundary, which will also be denoted by F . The surface is ob-
tained from the fatgraph by fattening the vertices into discs and connecting them by untwisted
fattened edges (which we call ribbons) as prescribed by the cyclic orders. The genus, g(F ) of
a fatgraph F is defined to be the genus of this surface. It will always be clear from the context
whether by F we mean the fatgraph or the surface. We restrict ourselves to orientable surfaces.
For a fatgraph F we will usually denote its underlying graph by G = G(F). Let V (F) be its set
of vertices, E(F) its set of edges, and let v(F ) = |V (F)|, e(F ) = |E(F)|, r(F ) = |V | − k(F )

and n(F ) = |E(F)| − r(F ). We denote the number of connected components of F by k(F ),
and the number of connected components of the boundary of surface F by p(F). The functions
v, e, r, n, k will be used for graphs as well. Finally, if F = (V (F ),E(F )) is a fatgraph then each
subgraph F = (V (F ),W), W ⊂ E of F is called a spanning fatsubgraph. We denote the set of
all spanning subgraphs of G by S(G).
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2.2. Graph polynomials

Let us recall the definitions of the Tutte and the chromatic polynomials of a graph G = (V ,E):

T (G,x, y) =
∑

H∈S(G)

(x − 1)r(G)−r(H)(y − 1)n(H),

M(G,u) =
∑

H∈S(G)

(−1)e(H)uk(H).

The chromatic polynomial M(G,u) is a straightforward evaluation of T (G,x, y).
In [2] and [3], Bollobás and Riordan defined a fatgraph generalization of the Tutte polynomial.

This three-variable polynomial is defined by the state sum

R(F,x, y, z) =
∑

H∈S(F )

xr(F )−r(H)yn(H)zk(H)−p(H)+n(H). (1)

The exponent of z is equal to twice the genus of the fatgraph H and we may therefore write

R(F,x, y, z) =
∑

H∈S(F )

xr(F )−r(H)yn(H)z2g(H).

If F is a fatgraph and G its underlying graph, one can express the chromatic polynomial of G

in terms of geometric information from F . The next lemma expresses the chromatic polynomial
in the evaluation we use.

Lemma 2.1. Let F be a fatgraph and G be its underlying graph. Then

(
q + q−1)e(F )

M
(
G,

(
q + q−1)2)

= (−1)e(F )
(
q + q−1)v(F )

∑
H∈S(F )

(
q + q−1)(p(H)+2g(H))

(−q)e(F )−e(H)
(
1 + q−2)e(F )−e(H)

.

(2)

Proof. Using the identity 2g(H) = k(H) − p(H) + n(H) and the definitions of n(H), r(H)

above, we have 2k(H) = p(H) + 2g(H) − e(H) + v(H). Hence

M(G,u) = u1/2v(F )
∑

H∈S(F )

u1/2p(H)+g(H)
[
(−1)u1/2]−e(H)

.

Substituting u1/2 = (q + q−1) we get

M
(
G,

(
q + q−1)2) = (

q + q−1)v(F )
∑

H∈S(F )

(
q + q−1)p(H)+2g(H)

(−1)−e(H)
(
q + q−1)−e(H)

.

This easily implies Eq. (2). �
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Our main object of study is the above evaluation and scaling of the chromatic polynomial. We
set

Z(F,q) = (
q + q−1)e(F )

M
(
G,

(
q + q−1)2)

= (−1)e(F )
(
q + q−1)v(F )

∑
H∈S(F )

(
q + q−1)p(H)+2g(H)

(−q)e(F )−e(H)

× (
1 + q−2)e(F )−e(H)

.

2.3. Graded modules

Let M = ⊕
i∈Z Mi be a graded Z-module. The graded dimension of M is defined by

qdim(M) :=
∑
i∈Z

qi rk(Mi) =
∑
i∈Z

qi dimQ(Mi ⊗Z Q).

If H = (H i)i∈Z is the homology of some chain complex of graded Z-modules, the Poincaré
polynomial is the two-variable Laurent polynomial

P(H) =
∑
i∈Z

t i qdim
(
Hi

) ∈ Z
[
q, q−1, t, t−1].

The Poincaré polynomial encodes all of the torsion-free information of the homology groups. The
Euler characteristic is defined to be the evaluation χ(H) = P(H)(t = −1). It generalizes the
usual Euler characteristic of graphs and surfaces.

We construct homology theories for fatgraphs which have the property that a given graph
polynomial can be recovered as its Euler characteristic. For the convenience of the reader we
summarize the main results of this paper in the following theorem.

Theorem 2.2. Let F be a fatgraph and G be its underlying graph. Let C(F ) be its chain complex
as constructed in Section 3. Then the following hold:

(1) The Euler characteristic of the homology (Hi(C(F )) := (kerdi)/(imdi−1)) is equal to the
chromatic polynomial Z(F,q).

(2) The homology groups H are strictly stronger graph invariants than the chromatic polyno-
mial.

(3) The Poincaré polynomial is invariant on different planar embeddings of a planar graph G.
However, the homology is dependent upon the genus of the embedding of a graph.

(4) The chromatic homology of a plane graph can be recovered from the Khovanov homology of
an associated link.

(5) This homology theory may be extended to a categorification of the Bollobás–Riordan poly-
nomial of the signed fat graphs, from which the Khovanov homology of an associated link
may be recovered. Our chromatic homology can also be recovered from this homology.

This theorem will follow from Theorem 3.2, which contains statement (1), Proposition 4.1,
which gives some properties of the homology, Theorem 6.1 which contains statement (3), The-
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orem 6.2 contains statement (4) and Section 5 which contains the construction for statement (5)
above.

3. Construction of the homology

Let F be a fatgraph and G = (V ,E) be its underlying graph. We call a spanning fatsubgraph
of a fatgraph a state. The chromatic polynomial Z(F,q) is expressed in (2) as a sum over all
states. Each state of a fatgraph F is obtained by the removal of a set of edges of F . For example:

A fatgraph A state

We call the total number of edges of F minus the number of edges in a state H the height of H ,
denoted by h(H), so h(H) = e(F ) − e(H).

Let us consider the following example of the state sum Z(F,q):

which, of course, is equal to zero. We will use this example to illustrate how the state sum
for Z(F,q) gives rise to a chain complex. The approach taken here is similar to Bar-Natan’s
exposition of Khovanov homology in [1].
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Notice that each state of the fatgraph in Eq. (2) gives rise to (up to sign) a Laurent polynomial
of the form

(
q + q−1)(v+p+2g)(1 + q−2)h

qh, (3)

where v = v(H), p = p(H), etc. We want to replace each such polynomial term of the state
sum Z(F,q) with a graded module whose graded dimension is equal to this polynomial.

To do this we define V to be the free, graded Z-module with two basis elements v− and
v+ in graded degrees −1 and +1, respectively, and R to be the free, graded Z-module with
basis elements x−2 and x0 in graded degrees −2 and 0. Notice that qdim(V ) = q + q−1 and
qdim(R) = 1 + q−2.

The degree shift operation { · } on graded modules is defined by setting

M{l}m := Mm−l .

Clearly qdim(M{l}) = ql · qdim(M). We note that R = V {−1} and therefore every occurrence
of R in this paper could be replaced with V {−1}. We retain the use of R for clarity, however the
reader should bear in mind that the two modules only differ by a grading shift. We will see that,
in some sense, R plays the role of coefficients in the homology theory.

Upon observing that for two graded modules M and N ,

qdim(M ⊗ N) = qdim(M) · qdim(N)

and

qdim(M ⊕ N) = qdim(M) + qdim(N),

it is easily seen that the modules

V ⊗(v+p+2g) ⊗ R⊗h{h} (4)

have graded dimensions equal to the Laurent polynomial (3).
In order to simplify the text, we abuse notation and identify the state of a fatgraph with its

assigned polynomial term (3) and its assigned graded module (4).
Next, as in the calculation for Z(F,q) in the example above, we arrange the states into

n = e(F ) columns indexed by the height of the corresponding state of the fatgraph, so the ith
column contains all modules which come from states of height i. We then define the ith chain
module C̃ i (F ) to be the direct sum of all of the modules corresponding to states of height i.
For example (ignoring the maps in the figure for the time being), the above example of Z(F,q)

becomes:
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Note that although the tensor powers of V are monotone in this example, this is not true in
general.

Our next task is to define chain maps. We begin with the observation that removing a ribbon
from a state of height h determines a state of height h + 1. The state obtained depends on which
ribbon is removed. Notice that the state determined by the removal of a ribbon will have one
more or one less boundary component than the original state, and the genus of the state will
either be unchanged or will decrease by one. Whenever we can move from a state of height h to
a state of height h + 1 by the removal of an edge we will define a per-edge map

δ :V ⊗(v+p+2g) ⊗ R⊗h{h} → V ⊗(v+p′+2g′) ⊗ R⊗(h+1){h + 1},
where p′ = p ± 1 and g′ = g or g − 1. In order to define δ, we first describe three maps which
correspond to the tensor factors V ⊗p , V ⊗2g and R⊗h.

V ⊗p: In terms of the boundary components of the states, one of two things can happen when
we move from one state to another by the deletion of a ribbon: either two boundary components
will be merged into one component or one component will be split into two components. For
example:

By (4), a copy of the module V is assigned to each boundary component of a state. We fix a corre-
spondence between the boundary components and the modules V once and for all (the homology
will be independent of this choice). When two components merge we need a multiplication map

m̃ :V ⊗p → V ⊗(p−1).
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We define the map to be the identity on all copies of V which are unchanged by the addition of an
edge, and to act on the two merging components by the multiplication defined on basis elements
by

m̃′ :

{
v− ⊗ v− 	→ 0, v+ ⊗ v− 	→ v−,

v+ ⊗ v+ 	→ v+, v− ⊗ v+ 	→ v−.

In the case where one component is split into two, we define a coproduct

Δ̃ :V ⊗p → V ⊗(p+1),

which is the identity on all factors of V ⊗p except on the component being split where it acts on
basis elements by

Δ̃′ :
{v+ 	→ v+ ⊗ v− + v− ⊗ v+,

v− 	→ v− ⊗ v−.

Notice that the two maps m̃′ and Δ̃′ are the maps used in the definition of Khovanov homol-
ogy [1,22]. This observation will prove to be important later when we find Thistlethwaite-type
relations between graph and knot homologies.

V ⊗2g : We identify V ⊗0 with Z. There are two cases. If g = g′ then we set m̂g : V ⊗2g → V ⊗2g

equal to 1⊗2g . If g′ = g − 1 then we define m̂g :V ⊗2g → V ⊗2(g−1) on its basis elements by

m̂g :vi1 ⊗ · · · ⊗ vi2g
	→

∑
vj1 ⊗ · · · ⊗ vj2g−2,

where the sum is over all basis elements of V ⊗2(g−1) whose graded dimension is equal to the
graded dimension of the basis element vi1 ⊗ · · · ⊗ vi2g

of V 2g . m̂g is a map of graded degree 0.
R⊗h: Setting R0 = Z, we define Δh :R⊗h → R⊗(h+1) by

Δh :

{
1 	→ x0, when h = 0,

y ⊗ xi 	→ y ⊗ ∑
k+l=i xk ⊗ xl, otherwise.

Again this is a graded degree 0 map.
We take the tensor of these maps and define maps

V ⊗(v+p+2g) ⊗ R⊗h{h} → V ⊗(v+p′+2g′) ⊗ R⊗(h+1){h + 1}
by

m = 1⊗v ⊗ m̃ ⊗ m̂g ⊗ Δh and Δ = 1⊗v ⊗ Δ̃ ⊗ m̂g ⊗ Δh.

We need to assign a sign +1 or −1 to each of the maps m and Δ to obtain the per-edge maps δ.
This is done as in [1,22] by realizing the states as vertices of an n-dimensional cube and the
per-edge maps as its edges, where n = |E|. To do this we label the ribbons of F with 1, . . . , n.
The homology is independent of the choice of labeling. A proof of this follows the proof of [16,
Theorem 2.12] and is therefore excluded. Each state of F can be represented by the vertex of
an n-dimensional cube (α1, . . . , αn), by setting αi = 0 if the ribbon labeled i is in the state, and
αi = 1 if it is not. A per-edge map is a map from a state labeled (α1, . . . , αj−1,0, αj+1, . . . , αn)
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to one labeled (α1, . . . , αj−1,1, αj+1, . . . , αn). The sign (−1)
∑

i<j αi is then assigned to each of
the maps m and Δ in the complex. This defines the per-edge maps δ.

Finally the differential ∂̃h : C̃ h → C̃ h+1 is obtained as the sum of all of the per-edge maps
between the tensor factors of C̃ h and C̃ h+1.

For a fatgraph F , we let C̃(F ) denote the complex (C̃ h, ∂̃h) constructed as above.

Lemma 3.1. C̃ is a chain complex (i.e. ∂̃ ◦ ∂̃ = 0) and the differentials are of graded degree 0.

Proof. The per-edge maps are easily seen to be (co)associative and (co)commutative. The first
statement then follows as the per-edge maps around each state anti-commute. The second state-
ment follows since m̃ and Δ̃ are of degree −1 and are therefore of degree zero once the target is
shifted by {1}, and m̂g and Δr are of degree 0. �

Finally, in order to deal with the factor (−1)e(F ) of Z(F,q), we define the height shift op-
eration [ · ] on chain complexes by (Ci , ∂i)[s] := (Ci−s , ∂i−s). We can then normalize the chain
complex by [−e(F )] and define

C = (
Ch, ∂h

) = C̃(F )
[−e(F )

] = (
C̃ h, ∂̃h

)[−e(F )
]
.

Recall that the homology of a chain complex C = (Ch, ∂h) is the sequence H(C) =
(H i(C))i∈Z, where Hi(C) = ker(∂i)/im(∂i−1).

Theorem 3.2. Let F be a fatgraph, G its associated graph and C(F ) its chain complex. Then
the Euler characteristic of the homology H(C(F )) is equal to the scaled chromatic polyno-
mial Z(F,q). Moreover the homology is an invariant of fatgraphs and is a strictly stronger
invariant than the chromatic polynomial M(G,q).

Proof. The first statement follows essentially by construction. It is well known that when the
differentials are of graded degree 0, qdim(H i(C)) is equal to qdim(Ci ). In turn this is equal to
the sum of the graded dimensions of the states of height i. The result then follows. (This is the
graded extension of a classical result in topology, see e.g. [14, p. 146].) The shift [−e(F )] ensures
that the alternating sum of qdim(H i(C)) has the correct sign.

The second statement follows by a calculation (see Proposition 4.1). �
4. Properties of the homology

Having constructed our categorification of the chromatic polynomial, we show that the ho-
mology groups satisfy various desirable properties.

Proposition 4.1. The following hold for the homology H(C(F )):

(1) The homology groups are strictly stronger than the chromatic polynomial.
(2) The homology will differentiate between graphs which differ only by multiple edges or loops.
(3) The homology is not a Tutte–Grothendieck invariant.
(4) If F is the disjoint union of fatgraphs F1 and F2, then
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Hi
(
C(F )

) =
( ⊕

p+q=i

Hp
(
C(F1)

) ⊗ Hq
(
C(F2)

))

⊕
( ⊕

p+q=i−1

Tor1
(
Hp

(
C(F1)

)
,Hq

(
C(F2)

)))
.

(5) Let e be a ribbon of a fatgraph F and let F − e denote F with the ribbon e deleted and
F/e denote F contracted along the edge e, then there exists a deletion-contraction exact
sequence

H ∗(C(F − e)) ⊗ R H ∗(C(F ))

H ∗(C(F/e)) ⊗ V.

(6) If F1 is a subfatgraph of F2 the inclusion map induces a homomorphism H(i) :H(F1) →
H(F2) in homology.

Proof. (1) This follows by a calculation. For example it is easy to check that the fatgraphs
and have the same chromatic polynomials but different chromatic homology.

(2) This follows since the homology in the highest degree is non-zero (as Δn−1 is not surjec-
tive).

(3) Again this follows by a calculation. For example the fatgraphs and have
different homology. Note that this example also shows that the Poincaré polynomial is not a
Tutte–Grothendieck invariant.

(4) As in [16], the chain complex of F can be written C(F ) = C(F1) ⊗ C(F2). Then, since
the chain complexes are free, the result follows by an application of the Künneth formula (see
e.g. [4]).

(5) Since the homology is independent of the labeling of the ribbons, we may assume that e is
the ribbon which is labeled last so that (α1, . . . , αn−1,0) is the vertex label of a state containing
the ribbon e, while (α1, . . . , αn−1,1) is the label of the corresponding state with the ribbon e

deleted. Let α = (α1, . . . , αn−1) be a state of F − e of height h. Then α′ = (α1, . . . , αn−1,1)

gives a state of F . Notice that the fatgraphs of the states α and α′ are identical but the state α′ is
of height h+ 1. Therefore V ⊗(v+p+2g) ⊗R⊗h{h} is the module assigned to the state α. The map

ηα :V ⊗(v+p+2g) ⊗ R⊗h{h} ⊗ R → V ⊗(v+p+2g) ⊗ R⊗(h+1){h + 1},

which takes basis elements to themselves, then induces a map

η :C(F − e) ⊗ R → C(F ).

We also need to define a map ν :C(F ) → C(F/e) ⊗ V . To do this, suppose that α′ =
(α1, . . . , αn) is assigned to a state of F . Then α′′ = (α1, . . . , αn−1) is a state of F/e. If αn = 0,
then the fatgraph in the state α′′ is equal to the fatgraph of α′ contracted along the ribbon e.
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Notice that the heights of the two states α′ and α′′ are equal, however the fatgraphs F has one
more disc than F/e. We then define a map

να′ :V ⊗(v+p+2g) ⊗ Rh{h} → V ⊗((v−1)+p+2g) ⊗ Rh{h} ⊗ V

by

να′ :v1 ⊗ · · · ⊗ vv+p+2g ⊗ x1 ⊗ · · · ⊗ xh

	→
{

v2 ⊗ · · · ⊗ xh ⊗ v1 if α′ = (α1, . . . , αn−1,0),

0 otherwise,

where v1 ⊗ · · · ⊗ vv+p+2g ⊗ x1 ⊗ xh denotes a basis element of V ⊗(v+p+2g) ⊗ Rh{h}. These
induce ν :C(F ) → C(F/e) ⊗ V .

The next step is to show that η and ν are chain maps, that is ∂ ◦ η = η ◦ ∂ and ∂ ◦ ν = ν ◦ ∂ .
It is enough to show this for the per-edge maps, i.e. that η and ν commute with δ. Since each ηα

maps a state to a state consisting of the same fatgraph, the corresponding per-edge maps in the
two complexes will both be of the form of ±m or ±Δ, and since we chose the edge e to be the
last element αn in the vertex labeling, the maps will occur with the same sign in both complexes.
Therefore it is enough to show m ◦ η = η ◦ (m ⊗ 1) and Δ ◦ η = η ◦ (Δ ⊗ 1), which is easily
verified.

Similarly, since ν maps a fatgraph to 0 or the fatgraph contracted along the edge e, it is enough
to show m ◦ ν = ν ◦ (m ⊗ 1) and Δ ◦ ν = ν ◦ (Δ ⊗ 1). Again this is easily verified.

It is not hard to see that the chain maps η and ν form a short exact sequence of chain complexes

0 → Ci−1(F − e) ⊗ R → Ci (F ) → Ci (F/e) ⊗ V → 0.

This induces the long exact sequence in homology, completing the proof.
(6) There is a natural inclusion F1 ↪→ F2. This extends to an inclusion map between states:

for each state H of F1 there is a state H2 of F2 whose fatgraph consists of H and k independent
discs, where k = v(F2) − v(F1). This inclusion between states of fatgraphs induces an inclusion

V ⊗v(H)+p(H)+2g(H) ⊗ R⊗h(H)
{
h(H)

}
↪→ V ⊗(v(H2))+(p(H2))+2g(H2) ⊗ R⊗h(H2)

{
h(H2)

}
between modules and therefore a map C(F1) ↪→ C(F2) of chain complexes. This is clearly a
chain map and therefore induces a homomorphism in homology. (Note that this property also
holds for the Tutte homology constructed in [19].) �
Remark 4.2. The homology theory is genuinely different from the categorification of the chro-
matic polynomial for abstract graphs constructed in [16]. This can be seen immediately from
properties (2) and (3) of Proposition 4.1. In fact Helme-Guizon and Rong’s homology groups are
trivial on graphs which contain loops and cannot distinguish graphs which differ only by multiple
edges (see [16]).

Remark 4.3. As with [15], our construction works over a variety of algebras. However, Kho-
vanov’s homology of links requires a unique choice of algebra for isotopy invariance, and since
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our proof of the invariance of the Poincaré polynomial for planar fatgraph homology (Theo-
rem 6.1) is dependent upon the invariance of Khovanov homology, we do not know if the
corresponding result holds over different algebras.

As mentioned in the introduction, our homology theory is motivated by Khovanov’s categori-
fication of the Jones polynomial and Thistlethwaite’s theorem connecting the Jones and Tutte
polynomials. We were motivated by the problem of lifting Thistlethwaite’s theorem to the ho-
mological level. For planar fatgraphs, such a relation will be given later in Theorem 6.2. This
theorem states that for fatgraphs of genus zero, our homology is obtained by “adding coeffi-
cients” to the Khovanov’s homology of the corresponding alternating link diagram. Before we
discuss this connection with Khovanov homology, we will consider homology theories for the
Bollobás–Riordan polynomial of a fatgraph.

5. The Bollobás–Riordan polynomial

As promised in the introduction, we provide categorifications of the Bollobás–Riordan poly-
nomial of a fatgraph. In Section 5.1 we consider the categorification of a one-variable spe-
cialization of the Bollobás–Riordan polynomial. We then state a proposition which relates this
Bollobás–Riordan homology with the chromatic homology considered above. This relationship
between the two fatgraph homologies will prove to be important in Section 6 where a connection
between our chromatic homology and Khovanov homology is given.

In Section 5.2 we go on to extend our categorification of the one-variable specialization of
the Bollobás–Riordan polynomial to a categorification of the full three-variable homology by
considering trigraded modules. We conclude the section with a proof that Khovanov homology
and our chromatic homology can be recovered from the categorification of the Bollobás–Riordan
polynomial. This provides one of our homological analogues of Thistlethwaite’s theorem.

5.1. Chromatic homology as an extension of Bollobás–Riordan homology

Here we categorify a one-variable specialization of the Bollobás–Riordan polynomial. To do
this we first write a suitable evaluation of R(F,x, y, z) as a state sum.

Lemma 5.1. Let F be a fatgraph and G be its underlying graph. Then

(
xk(F )yv(F )

[−y−1(xy)1/2]e(F )
R(F,x, y, z)

)∣∣
x=−q(q+q−1), y=−q−1(q+q−1), z=1

= (−1)e(F )
∑

H∈S(F )

(
q + q−1)v(H)+p(H)+2g(H)

(−q)e(F )−e(H). (5)

Proof. Using r(F ) = v(F )−k(F ), n(F ) = e(F )−r(F ) and g(F ) = 1/2(k(F )−p(F)+n(F )),
we have

R(F,x, y, z) = x−k(F )y−v(F )
∑

H∈S(F )

(xy)k(H)ye(H)z2g(H)

= x−k(F )y−v(F )
∑

(xy)1/2(v(H)+p(H)+2g(H))
[
y(xy)−1/2]e(H)

z2g(H)
H∈S(F )
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= x−k(F )y−v(F )
[
y−1(xy)1/2]−e(F )

×
∑

H∈S(F )

(xy)1/2(v(H)+p(H)+2g(H))
[
y−1(xy)1/2]e(F )−e(H)

z2g(H).

The lemma follows upon substituting x = −q(q + q−1), y = −q−1(q + q−1) and z = 1. �
We define the restricted Bollobás–Riordan polynomial by

R̂(F, q) =
∑

H∈S(F )

(
q + q−1)v(H)+p(H)+2g(H)

(−q)e(F )−e(H).

By assigning the modules

V ⊗(v(H)+p(H)+2g(H)){h}

to a state which contributes the summand

(
q + q−1)v(H)+p(H)+2g(H)

(−q)h

to R̂, we may categorify R̂ using a construction similar to that used in Section 3 to categorify the
chromatic polynomial. The differentials are defined through a restriction of the per-edge maps
used in the above complex for the chromatic polynomial Z(F,q), so that

mR̂ = 1⊗v(H) ⊗ m̃ ⊗ m̂g

and

ΔR̂ = 1⊗v(H) ⊗ Δ̃ ⊗ m̂g.

One then obtains a chain complex Ĉ(F ) which we call the restricted Bollobás–Riordan chain
complex. We denote the homology of this complex by Ĥ (Ĉ(F )). Just as before we have:

Theorem 5.2. Let F be a fatgraph and Ĉ(F ) be its restricted Bollobás–Riordan chain complex.
Then the Euler characteristic of the homology Ĥ (Ĉ(F )) is equal to the restricted Bollobás–
Riordan polynomial R̂(F ).

The following universal coefficient type theorem relates the categorification of the chromatic
polynomial from Section 3 to this categorification of the restricted Bollobás–Riordan polyno-
mial R̂(F ). Although the proposition can be proved directly, it will also follow from Proposi-
tion 5.5 which is stated and proved in the following subsection. Consequently we prefer to delay
the proof of Proposition 5.5 until we can prove it as an application of the stronger theorem.

Proposition 5.3. Let F be a fatgraph. Then

H̃ i
j

(
C̃(F )

) =
⊕ ((

Ĥ i
p

(
Ĉ(F )

) ⊗ Δ
(
R⊗(i−1)

q

)) ⊕ (
Zi

p

(
Ĉ(F )

) ⊗ R⊗i
q /Δ

(
R⊗(i−1)

q

)))
,

p+q=j
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where Mp denotes the degree p part of a graded module M , Ĥ (Ĉ(F )) denotes the homology of
the restricted Bollobás–Riordan complex and Zi

p(Ĉ(F )) = ker(di(Ĉ(F ))p) are its cycles. More-

over H
i+e(F )
j (C̃(F )) = Hi

j (C(F )).

We also note that the following deletion-contraction exact sequence holds for the homology
of the restricted Bollobás–Riordan complex.

Theorem 5.4. Let e be a ribbon of a fatgraph F and let F − e denote F with the ribbon e deleted
and F/e denote F contracted along the edge e, then there exists a deletion-contraction exact
sequence

Ĥ ∗(Ĉ(F − e)) Ĥ ∗(Ĉ(F ))

Ĥ ∗(Ĉ(F/e)) ⊗ V.

The proof of this is similar to the proof of property (5) of Proposition 4.1 and is therefore
excluded.

5.2. Categorification of the multivariate Bollobás–Riordan polynomial

We now generalize the homology from the previous subsection to obtain a homology for the
full three-variable Bollobás–Riordan polynomial. We also prove relations between this homology
theory, Khovanov homology and our chromatic homology from Section 3.

Notice that if in the proof of Lemma 5.1 we set z = (r + r−1)/(q + q−1)
1
2 instead of 1 we

obtain the two-variable polynomial

∑
H∈S(F )

(
q + q−1)v(H)+p(H)

(−q)e(F )−e(H)
(
r + r−1)2g(H)

.

We can modify it to the three-variable polynomial

R′(F, q, r, s) =
∑

H∈S(F )

(
q + q−1)v(H)+p(H)

(−q)e(F )−e(H)
(
r + r−1)2g(H)(1 + s−2)e(F )−e(H)

.

It is straightforward to check that R′ is equivalent to the full Bollobás–Riordan polynomial (1).
The polynomial R′ can be categorified using a straightforward modification of the construc-

tion in Section 3. Essentially all this involves is replacing the graded modules in the construction
of the chain complex with trigraded modules. To do this let V , U and R be the trigraded free
modules of rank two with generators in degrees (±1,0,0), (0,±1,0) and (0,0,−2) and (0,0,0),
respectively. Then we assign the module V ⊗v(H)+p(H)⊗U⊗2g(H)⊗R⊗h(H){h(H)} to each state.
The per-edge maps are defined as before but acting in the relevant grading. Finally, defining the
graded dimension as
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qdim(M) =
∑
i,j,k

qirj skrk(M(i,j,k)),

we obtain the desired categorification of R′(F, q, r, s).
Observe that our chromatic homology is recovered by projecting the trigraded homology

groups onto a single grading.
The idea of using multi-graded modules was also used in [19], to categorify the Tutte polyno-

mial and [32] to categorify the Bollobás–Riordan polynomial.
Motivated by realizations of the Jones polynomial as a signed Tutte polynomial [21] or as a

Potts partition function [20] (such realizations will be discussed further in the next section), we
extend the function R′ to fatgraphs with signed edges, that is fatgraphs such that each ribbon
of F is decorated with plus or minus sign. Let us reserve the symbol Fs for signed fatgraphs.
For a state H of a signed fatgraph, let e−(H) (respectively e+(H)) denote the number of ribbons
in H with a negative (respectively positive) sign. We define the height of a state H as hs(H) =
e−(F ) − e−(H) + e+(H). The construction of the homology described above with respect to
this new height function, gives a categorification of the polynomial

R′(Fs, q, r, s) = (−q − qs−2)e−(Fs)

×
∑

H∈S(Fs)

(
q + q−1)v(H)+p(H)(

r + r−1)2g(H)(−q
(
1 + s−2))e+(H)−e−(H)

.

Up to normalization this can be seen to be equivalent to the more simple polynomial∑
H∈S(F )

xk(H)yg(H)
∏

e∈E(H)

ze,

where ze equals x−1z for an edge of positive weight and x−1z−1 for an edge of negative weight.
In order to write down a universal coefficient type theorem for the categorification of the

three-variable polynomial R′(Fs, q, r, s), we introduce some notation. Let HB(D(Fs)) be the ho-
mology of the complex D(Fs) associated with the three-variable Bollobás–Riordan polynomial
of signed graphs R′ described above. Clearly D(Fs) = (V ⊗v ⊗ D̂i (Fs) ⊗ R⊗i ,1⊗v ⊗ d̂ i ⊗ Δi).

Let ĤB denote the homology of the subcomplex (D̂(Fs)
i , d̂i). Its Euler characteristic is equal

to the polynomial

R̂ ′(Fs, q, r) =
∑

H∈S(Fs)

(
q + q−1)p(H)(

r + r−1)2g(H)
(−q)hs(H).

Proposition 5.5. Let Fs be a fatgraph. Then

HBi
(j,k,l)

(
D(Fs)

) =
⊕

p+q=j

(((
ĤB

i
(p,k,0)

(
D̂(Fs)

) ⊗ Δ
(
R

⊗(i−1)
(0,0,l)

))

⊕ (
Ẑi

(p,k,0)

(
D̂(Fs)

) ⊗ R⊗i
(0,0,l)/Δ

(
R

⊗(i−1)
(0,0,l)

))) ⊗ V ⊗v
(q,0,0)

)
,

where M(j,k,l) denotes the degree (j, k, l) part of a trigraded module M and Ẑi
(j,k,l)

(D̂(Fs)) =
ker(d̂i ) are the cycles of D̂(Fs).
(j,k,l)
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Proof. Let us consider the subcomplex D′(Fs) = (D̂i (Fs) ⊗ R⊗i , d̂ i ⊗ Δi). Let (HB ′)∗ denote
its homology.

By the universal coefficient theorem (see e.g. [4])

HBi
(j,k,l)

(
D(Fs)

) =
⊕

p+q=j

(
(HB ′)i(p,k,l)

(
D′(Fs)

) ⊗ V ⊗v
(q,0,0)

)
,

and we see that it remains to understand (HB ′)i(p,k,l)(D′(Fs)). Let Ẑi = ker(d̂i) and B̂i =
im(d̂i−1). For convenience we will denote Δi by Δ. Then since d̂ i and Δi are of degree zero we
have

(HB ′)i(p,k,l)

(
D̂(Fs)

) =
(

Ẑi ⊗ R⊗i

B̂i ⊗ Δ(R⊗(i−1))

)
(p,k,l)

= Ẑi
(p,k,0) ⊗ (R⊗i )(0,0,l)

B̂i
(p,k,0) ⊗ Δ(R⊗(i−1))(0,0,l)

.

Now Ẑi
(p,k,0) and B̂i

(p,k,0) are free abelian groups with Ẑi
(p,k,0) ⊂ B̂i

(p,k,0), and so we have

Ẑi
(p,k,0) = ⊕

α∈I nαZ and B̂i
(p,k,0) = ⊕

α∈I mαZ, where the sum is over the same finite in-

dex I and mα|nα for each α ∈ I . Also it is easy to show that (R⊗(i−1))(0,0,l) = Z⊕N and
Δ(R⊗(i−1))(0,0,l) = Z⊕M for some M and N (i.e. the generators of these groups are 1). We
can then write

Ẑi
(p,k,0) ⊗ (R⊗i )(0,0,l)

B̂i
(p,k,0) ⊗ Δ(R⊗(i−1))(0,0,l)

= (
⊕

α∈I nαZ) ⊗ Z⊕N

(
⊕

α∈I mαZ) ⊗ Z⊕M
,

where M|N . Using standard properties of the tensor product, we see that this can be written as

⊕
α∈I

(nαZ)⊕N

(mαZ)⊕M
=

⊕
α∈I

(nαZ)⊕(M+P)

(mαZ)⊕M
=

(⊕
α∈I

nαZ

mαZ

)⊕M

⊕
(⊕

α∈I

nαZ

)⊕P

,

which by definition is equal to

(
Ẑi

(p,k,0)/B̂
i
(p,k,0)

)⊕M ⊕ (
Ẑi

(p,k,0)

)⊕P

= (
ĤB

i
(p,k,0)

(
D̂(Fs)

))⊕M ⊕ (
Zi

(p,k,0)

(
D̂(Fs)

))⊕P

= (
ĤB

i
(p,k,0)

(
D̃(Fs)

) ⊗ Z⊕M
) ⊕ (

Zi
(p,k,0)

(
D̃(Fs)

) ⊗ Z⊕P
)
.

Now since R⊗i
(0,0,l) = Z⊕N and Δ(R⊗(i−1))(0,0,l) = Z⊕M we have that

R⊗i
(0,0,l)/Δ

(
R

⊗(i−1)
(0,0,l)

) = Z⊕(N−M) = Z⊕P .

The above is equal to

((
ĤB

i
(p,k,0)

(
D̂(F )

) ⊗ Δ
(
R

⊗(i−1)
(0,0,l)

)) ⊕ (
Zi

(p,k,0)

(
D̂(F )

) ⊗ R⊗i
(0,0,l)/Δ

(
R⊗(i−1)

)
(0,0,l)

))
,

as required. �
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Note that in the above proof we do need to be careful about the order of the summands in the
direct sums.

Proposition 5.3 is a corollary of this result by projecting the trigraded modules onto a single
graded dimension as follows.

Proof of Proposition 5.3. Regard the fatgraph F as a signed fatgraph Fs by assigning a negative
sign to each edge. We have

H̃ i
j

(
C̃(F )

) =
⊕

p+q+r=j

HBi
(p,q,r)

(
D(Fs)

)
.

An application of the above proposition gives

⊕
p+q+r=j

⊕
s+t=p

(((
ĤB

i
(s,q,0)

(
D̂(Fs)

) ⊗ Δ
(
R

⊗(i−1)
(0,0,r)

))

⊕ (
Zi

(s,q,0)

(
D̂(Fs)

) ⊗ R⊗i
(0,0,r)/Δ

(
R

⊗(i−1)
(0,0,r)

))) ⊗ V ⊗v
(t,0,0)

)
.

Projection onto a single graded variable then gives

⊕
p+q+r=j

⊕
s+t=p

(((
ĤB

i
s+q

(
D̂(Fs)

) ⊗ Δ
(
R⊗(i−1)

r

))

⊕ (
Zi

s+q

(
D̂(Fs)

) ⊗ R⊗i
r /Δ

(
R⊗(i−1)

r

))) ⊗ V ⊗v
t

)
,

which after reindexing gives the required formula. �
The convenience of our homology theory for the Bollobás–Riordan polynomial of weighted

graphs is described in the following theorem. The theorem provides one of the desired
Thistlethwaite-type relations between graph and knot homologies.

Theorem 5.6. The Khovanov categorification of the Jones polynomial as well as the categorifi-
cation of the chromatic polynomial described in Section 3 may be recovered from the categorifi-
cation of R′ just described.

Proof. We begin by using Proposition 5.5 to determine the homology ĤB(D̂(Fs)) from
HB(D(Fs)). To do this suppose that r−2 and r0 are the generators of R in graded dimension
(0,0,−2) and (0,0,0), respectively.

First, consider the map f defined by r−2 	→ 0. Applying this to the homology gives

f
(
HBi

(j,k,l)

(
D(Fs)

))
=

⊕
p+q=j

(((
ĤB

i
(p,k,0)

(
D̂(Fs)

) ⊗ Z
) ⊕ (

Zi
(p,k,0)

(
D̂(Fs)

) ⊗ (Z/Z)
)) ⊗ V ⊗v

(q,0,0)

)
,
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which can be written

=
⊕

p+q=j

((
ĤB

i
(p,k,0)

(
D̂(Fs)

) ⊕ Zi
(p,k,0)

(
D̂(Fs)

)) ⊗ V ⊗v
(q,0,0)

)
,

since only basis elements in graded degree (j, k,0) are not killed by f . Secondly, notice that
R⊗i

(0,0,−2i) = Z and Δ(V ⊗(i−1))(0,0,−2i) = 0, therefore Proposition 5.5 also gives

HBi
(j,k,−2i)

(
D(Fs)

) =
⊕

p+q=j

Zi
(p,k,0)

(
D̂(Fs)

) ⊗ Z ⊗ V ⊗v
(q,0,0).

Finally, since we know each free module V ⊗v
(q,0,0) we know Zi

(p,k,0)(D̂(Fs)) and hence
ĤB

i
(p,k,0)(D̂(Fs)).

The Khovanov homology of an associated link can be recovered from this as in the discussion
that will follow in Section 6.1: associate the crossing to an edge of negative weight and to
an edge of positive weight. The height then equals the number of 1-smoothings of the associated
link. The Khovanov homology is then a normalization of ĤB after projection onto a single
grading.

The second statement follows by regarding an unsigned fatgraph as a signed fatgraph whose
edges all have negative weight and projecting onto a single graded dimension. �
6. Independence of planar embeddings

We begin this section by describing the relationship of our homology theory with Khovanov’s
categorification of the Jones polynomial [22]. This provides another Thistlethwaite-type relation
between graph and knot homologies. We will describe this relation in Section 6.1 and apply it in
Section 6.2 the prove the following theorem on the independence of our chromatic homology of
a plane graph on the choice of planar embedding.

Theorem 6.1. Let F and F ′ be two genus 0 fatgraphs with the same associated graph G, and let
P be the Poincaré polynomial of the homology. Then

P(F) = P(F ′),

i.e. the Poincaré polynomial is independent of the embedding of the graph G.

6.1. The relation to Khovanov homology and knots

Let F be a genus g fatgraph. As mentioned earlier, F is equivalent to a genus g surface which
we will denote Σg . F gives rise to an alternating link L ⊂ Σg × I , and a canonical diagram
onto F by associating a crossing to each ribbon and connecting these crossings
according to the cyclic ordering at the discs of the fatgraph. We call this the associated link. The
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following figure shows a fatgraph with one disc of degree 4 and one disc of degree 2, and its
associated link:

.

Just as with link diagrams on S2, we can consider the smoothing of a crossing. A 0-smoothing is
defined locally on a link diagram by changing a crossing which looks like to look like ; and
for a 1-smoothing replacing the crossing with . A state of a link diagram is what is obtained by
smoothing all of the crossings of the link diagram. There is a clear correspondence between the
states of a fatgraph and the states of the associated link. This is summarized in the table below:

Smoothing Ass. link Fatgraph

0

1

From now on we will restrict ourselves to genus 0 fatgraphs. The associated links can then be
regarded as links in S3.

The Khovanov homology of a link is constructed in essentially the same way as the complex
in Section 3: given a link diagram L we define the height, h(S), of a state S to be the number of
1-smoothings used in its construction and we let p(S) denote the number of cycles in the state S.
The chain modules are constructed by assigning the graded module V ⊗p(S){h(S)}, which has
graded dimension qh(S)(q + q−1)p(S). Again the ith chain group is defined to be the direct sum
of all modules assigned to states of height i. Just as in Section 3, one can move from a state of
height i to i + 1 by merging or splitting cycles and we use the per-edge maps m̃ and Δ̃ from
Section 3 to move between the corresponding modules. The differentials are then obtained by
summing over all of the per-edge maps of the appropriate height as before. This gives a chain
complex C̃(L) = (C̃ i (L), d̃i). We let H̃K(L) denote the homology of this complex.

If n± denotes the number of ±-crossings of L (the sign of a crossing will be defined in
Section 6.2), then the Khovanov complex is defined as the following normalization of C̃:

C(L) = (
Ci (L), di

) = C̃(L)[−n−]{n+ − 2n−} = (
C̃ i (L), d̃i

)[−n−]{n+ − 2n−}.
The homology of this complex is called Khovanov homology, HK(L). It can be shown [1,22] that
the Euler characteristic χ(HK(L)) is equal to the Jones polynomial of L and that the homology
itself is a knot invariant which is strictly stronger than the Jones polynomial.

Observe that by the correspondence between the states of a fatgraph and the states of an
associated link described above, we have

C̃(F ) = (
V ⊗v ⊗ C̃ i (L) ⊗ R⊗h,1⊗v ⊗ d̃ i ⊗ Δh

)
,
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where L is the associated link of a planar fatgraph.
This observation leads to the following Thistlethwaite-type theorem, which is a corollary of

Proposition 5.3.

Theorem 6.2. Let F be a genus 0 fatgraph and L ⊂ S3 be the associated link with an arbitrary
orientation. Then

H̃ i
j

(
C̃(F )

)
=

⊕
p+q+r=j

(((
H̃K

i
p(L) ⊗ ΔR⊗(i−1)

q

) ⊕ (
Zi

p(L) ⊗ R⊗i
q /ΔR⊗(i−1)

q

)) ⊗ V ⊗v
r

)
,

where Mp denotes the degree p part of a graded module M ,

Zi
p(L) = ker

(
d̃ i
p

) (= ker
(
d

i+n−
p+2n−−n+

))
are cycles determined by the Khovanov complex and for the planar fatgraph Fs corresponding
to L,

H̃K
i
p(L) = HK

i+n−
p+2n−−n+(L),

where HK denotes Khovanov homology. Moreover Hi
j (C) = H

i+e(F )
j (C̃).

Note that one can prove an analogous result for the full (i.e. without the restriction to alternat-
ing links) Jones polynomial using the homology of the signed Bollobás–Riordan polynomial.

6.2. Proof of Theorem 6.1

This subsection is devoted to the proof of Theorem 6.1. Our method is to reduce the graph
theoretical problem to one of knot theory and to prove the result using this relation.

First we need to understand how the two fatgraphs F and F ′ and their corresponding links
are related. For this we find it convenient to switch to the language of embedded graphs. Recall
that a genus 0 fatgraph is equivalent to an embedding of the associated graph G ↪→ S2. We will
need the following two local moves on embedded graphs. Let G ⊂ S2 be a connected embedded
graph. A 1-flip is a move which replaces a 1-connected component of the map G with its rotation
by π around the axis in the xy-plane which intersects the 1-connecting vertex. For example,
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A 2-flip is a move which replaces a 2-connected component of G with its rotation by π around
the axis determined by its 2-connecting vertices. For example,

The following theorem relates two planar embeddings of the same graph (see [28], or [29]).

Theorem 6.3. Let G be a connected graph and f,f ′ :G → S2 be two planar embeddings. Then
f (G) and f ′(G) are related by a sequence of 1-flips and 2-flips.

We need to understand how a flip changes the associated link. First consider the 1-flip. By
regarding a 1-connected graph as two components with a vertex identified, it is easy to see that
the associated link is non-prime with a connect sum determined by the connecting vertex, and
that the embeddings of the two components determine where the connect sum occurs. (Recall
that the sum of two links is the link formed by cutting open an arc of each link and identifying
the free ends in a way consistent with orientation. Although this process is well defined with
respect to isotopy for knots, in general it will depend upon which components of the link have
been identified under the sum.)

It is then clear that in terms of the associated link, a 1-flip simply changes the way we connect
the two links in the connect sum. We will discuss this in more detail in the proof of Lemma 6.7.

Now, by considering the example

it is easy to see that a 2-flip corresponds to a move which replaces a 2-tangle with its rotation by
π around the axis between the tangle ends:
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This is a form of Conway mutation of the link [10]. We refer to this specific move on the link
diagram simply as mutation.

This discussion gives the following lemma.

Lemma 6.4. Two genus 0 fatgraphs have the same associated connected graph if and only if
their associated links are obtained as the connect sum of the same set of links and by a sequence
of mutations.

So far we have only discussed un-oriented links, but our application of knot theory requires
a choice of orientation of the links. We need to be careful in this choice of orientation. Recall
that the sign of a crossing of an oriented link is the assignment of ±1 according to the following
scheme:

If the components of a link L are labeled {1, . . . , n}, then the linking number lkL(i, j) is defined
to be the sum of the signs over all crossings between the components labeled i and j .

Given two links which are related as in Lemma 6.4, we require that the corresponding cross-
ings in the two links have the same sign. To do this we orient the summands of links arbitrarily.
First we deal with the case of a connected sum. If a connect sum requires the reversal of the
orientation of a component, then we reverse all of the components of that summand. The case
for mutation is a little more complicated. Let R denote the tangle on which the mutation acts.
Then, if the two free arcs at the top R are both oriented into or out of the tangle, we retain all
orientations. If one of the arcs at the top R is oriented into the tangle and one out of the tangle,
then we reverse the orientations of all the components of the tangle R. See the figure below. We
call such an orientation of the mutant the induced orientation. It is immediate that the sign of
each crossing before and after the mutation is the same.

Keep orientation Change orientation

Further to this, the labeling of R induces a labeling of the components after the mutation which
we call the induced labeling. We can now prove the theorem.

Proof of Theorem 6.1. Let f (G) and f ′(G) be the embeddings corresponding to the associated
graphs F and F ′. The following lemma reduces the problem.

Lemma 6.5. Let L and L′ be the two links associated with the fatgraphs F and F ′. Then to prove
the theorem, it is enough to show that P(HK(L)) = P(HK(L′)).
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Proof. Assume P(HK(L)) = P(HK(L′)). Recall that if H = (H i)i∈Z is the homology of some
chain complex of graded Z-modules, the Poincaré polynomial is defined by

P(H) =
∑
i∈Z

t i qdim
(
Hi

)
.

The Poincaré polynomial encodes all of the torsion-free information of the homology groups. By
Theorem 6.2, to prove the lemma it suffices to show that rk(H̃K(L)ij ) = rk(H̃K(L′)ij ), and that
rk(ker(d̃i

j )) = rk(ker(d̃i
j )).

Clearly, in any graded degree we have

rk
(
HKi

j

) = rk
(
ker

(
di
j

)) − rk
(
im

(
di−1
j

))
,

and by classic linear algebra we know that

rk
(
Ci

j

) = rk
(
ker

(
di
j

)) + rk
(
im

(
di
j

))
.

Suppose we know the ranks of Ck
j and HKk

j for some k. If in addition to this we know

the value rk(im(dk−1
j )), then by the above we can determine the values of rk(ker(dk

j )) and

rk(im(dk
j )). Therefore if we know the ranks of each Ci

j and HKi
j and one value of rk(im(dk−1

j ))

then we can determine every value rk(ker(di
j )) and rk(im(di

j )) and we then know the torsion-free
information of the entire complex.

It is easily seen (recall that v + p + 2g − e = 2k) that each term rk(Ci
j ) is equal for the two

chain complexes from the two associated links L and L′. Also by assumption we have that each
value of rk(HKi

j ) is the same in the two complexes. The above argument then tells us that if
there exists a value rk(im(d

kl

l )) which is equal for the two complexes associated with L and L′
for each graded dimension l, then the torsion-free parts of the two complexes are equal. Finally
since the chain complexes in any graded degree only have finitely many non-zero terms, clearly
such values rk(im(d

kl

l )) = 0 exist, completing the proof of the lemma. �
We need to use the following theorem of Lee, which proved a conjecture of Garoufalidis

from [13].

Theorem 6.6. (See [23].) For a reduced alternating link, P(HK) is determined by the Jones
polynomial, the signature of the link and the linking numbers.

Clearly the associated links are alternating. Since we are only interested in determining
P(HK) and Khovanov homology is a link invariant, we can reduce the associated link (recall
that a link projection is said to be reduced if four distinct regions meet at every crossing). It is
well known and easily seen that Conway mutation does not change the Jones polynomial or the
signature of the link (for a definition of the signature of a link see, for example, [25]) and since
the Jones polynomial is multiplicative and the signature additive under the connect sum, we see
that these two invariants are equal for both our associated links. However, the linking numbers
do change under the operations. By Theorems 1.2 and 4.5 of [24] and Corollary A.2 of [13], we
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see that it is enough to show that if the components of each of the associated links are labeled
1, . . . , n then the following formula is equal for both links,

∑
E⊂{2,...,n}

γ
∑

j∈E,k /∈E lkjk . (6)

The following two lemmas will complete the proof of Theorem 6.1.

Lemma 6.7. Eq. (6) does not depend upon which two components the connect sum operation
acts.

Proof. Suppose we have two links L, with components labeled a1, . . . , an, and L′, with compo-
nents labeled b1, . . . , bm. Let A be the link obtained by connect summing with respect to the com-
ponents a1 and b1 labeling this new component α and B be the link obtained by connect summing
with respect to the components a2 and b1 labeling this new component β . If n � 2 and m = 1 the
result is obvious, so assume that this is not the case. Now if E ⊂ {α,a2, . . . , an, b2, . . . , bm} then
construct a subset F from E by replacing the element α with a1 and a2 by β , if α or a2 are in E.
Similarly if E ⊂ {β,a1, a3, . . . , an, b2, . . . , bm} then construct a subset F from E by replacing
the element β with a2 and a1 by α, if β or a1 are in E. Then since

lkA(α, ai) = lkL(a1, ai), lkA(α, bi) = lkL′(b1, bi),

lkA(ai, aj ) = lkL(ai, aj ), lkA(bi, bj ) = lkL′(bi, bj )

and

lkB(β, ai) = lkL(a2, ai), lkB(β, bi) = lkL′(b1, bi),

lkB(ai, aj ) = lkL(ai, aj ), lkB(bi, bj ) = lkL′(bi, bj )

and all other linking numbers are zero, we have that

γ
∑

j∈E,k /∈E lkjk = γ
∑

j∈F,k /∈F lkjk ,

and therefore for each summand in Eq. (6) for the link A, there is a corresponding summand
of equal value in the equation for the link B and vice versa. This completes the proof of
Lemma 6.7. �

Note that by our choice of orientation of the summands, to prove the theorem we are allowed
to assume that the connect sum is consistent with the orientation.

Lemma 6.8. If L is a link, L′ is obtained from L by a mutation and L′ has the canonical orien-
tation and labeling, then the sum of formula (6) is equal for the two links L and L′.

Proof. We can regard the link L as the identification of two 2-tangles, R and T . We may assume
that L′ is obtained from L by a mutation which ‘flips over’ the tangle R. Then the two links L
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and L′ and their linking numbers differ according to how the two tangles R and T are joined.
This can be represented by the following figure:

The eight free ends of the tangles belong to one or two components of the final link. The re-
mainder of the proof is split into several cases according to which components the free ends will
belong to in the corresponding link. Note that the number of components of L and L′ will always
be equal.

Now suppose that the free ends of the tangle are labeled as in the above figure. First note
that only the linking numbers which involve a component coming from one of the free ends can
change under mutation.

Case 1. Suppose that after identification all of the free ends belong to one component labeled A.
Then

lkL(A, i) = lkL′(A, i),

for an arbitrary component i. Therefore Lee’s formula is unchanged by mutation.

Case 2. Suppose that after identification x1, x2, α1 and α2 belong to the same component labeled
A and x3, x4, α3 and α4 belong to the same component labeled B . Then

lkL(A, i) = lkL′(A, i),

lkL(B, i) = lkL′(B, i)

for an arbitrary component i, and again Lee’s formula is unchanged by mutation.

Case 3. Suppose that after identification x1, α2, x3 and α4 belong to the same component labeled
A and x2, α1, x4 and α3 belong to the same component labeled B . This case is more complicated.
We start with some notation. Let AR be the segment of A in R with open ends x1, x3 and let
AT ,BR,BT be defined analogously. Hence the components ARAT ,BRBT of L are transformed
into components ARBT ,BRAT of L′. If n = 2 then the components of L are exactly A,B and
lemma is simply true. Hence assume further that n > 2 and l1 = C is a component of L different
from both A,B . Without loss of generality assume C is a component of R. Let us denote by LR

(LT ) the set of the components of L in R (T respectively).
Let E(L) be the set of all E ⊂ {2, . . . , n} such that A ∈ E and B /∈ E, or A /∈ E and B ∈ E.

Analogously let E(L′) be the set of all E ⊂ {2, . . . , n} such that ARBT ∈ E and BRAT /∈ E, or
ARBT /∈ E and BRAT ∈ E.
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For E ∈ E(L) let

l(E) =
∑

i∈{A,B}∩E,j /∈E∪{A,B}
lkL(i, j) +

∑
i∈E−{A,B}, j∈{A,B}−E

lkL(i, j).

Analogously for E ∈ E(L′) let

l(E) =
∑

i∈{ARBT ,BRAT }∩E,j /∈E∪{ARBT ,BRAT }
lkL′(i, j)

+
∑

i∈E−{ARBT ,BRAT }, j∈{ARBT ,BRAT }−E

lkL′(i, j).

Clearly, it suffices to show:

Claim 1. {l(E);E ∈ E(L)} = {l(E);E ∈ E(L′)}.

For each X ⊂ LR containing C and for each Y ⊂ LT let

E(L,AR,X,Y ) = {
E ∈ E(L); E = {ARAT } ∪ X ∪ Y

}
and

E(L′,AR,X,Y ) = {
E ∈ E(L′); E = {ARBT } ∪ X ∪ Y

}
.

We define E(L,BR,X,Y ), E(L′,BR,X,Y ) analogously.
Clearly the sets E(L,AR,X,Y ), E(L,BR,X,Y ), X ⊂ LR containing C and Y ⊂ LT form a

partition of E(L). An analogous statement holds also for L′. Hence Claim 1 follows from the
following.

Claim 2. For each X ⊂ LR containing C and Y ⊂ LT ,{
l(E); E ∈ E(L,AR,X,Y )

} = {
l(E); E ∈ E(L,AR,X,LT − Y)

}
and the same is true when AR is replaced by BR .

Claim 2 may be verified by checking. In fact, both sides are equal to{
lkL(AR,LR − X) + lkL(Br,X), lkL(AT ,LT − Y) + lkL(BT ,Y )

}
.

This finishes the proof of Claims 2, and 1 and therefore Case 3.

Case 4. The final case is when, after identification, x1, α2, x4 and α3 belong to the same com-
ponent labeled A and x2, α1, x3 and α4 belong to the same component labeled B . This case is
similar to Case 3 and the proof is omitted.

This finishes the proof of the lemma. �
This completes the proof of Theorem 6.1. �
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Remark 6.9. With some easy changes, the proof of Theorem 6.1 above shows that the torsion-
free part of the homology HB(D(Fs)) is also invariant of the choice of genus 0 embedding of a
signed fatgraph all of whose edges are of the same sign.

7. Helme-Guizon and Rong’s chromatic homology

In this final section we provide a categorification of the Bollobás–Riordan polynomial which
unites Helme-Guizon and Rong’s categorification for the chromatic polynomial [16] and Kho-
vanov homology. As mentioned in the introduction, this addresses a question posed in [16]. We
begin by recalling Helme-Guizon and Rong’s categorification of the chromatic polynomial.

Helme-Guizon and Rong categorify the chromatic polynomial

M(G,1 + r) =
∑

H∈S(G)

(−1)e(H)(1 + r)k(H).

This polynomial is categorified by considering modules M which are free, graded, rank 2,
Z-modules with generators m0 in graded degree zero and m1 in degree 1, so that qdim = 1 + r .
The height function is |H | and the module M⊗k(H) is attached to each state. The per-edge maps
are either the identity or the map induced by the degree zero multiplication m′(m0,m0) = m0,
acting on merging connected components.

Consider again the Bollobás–Riordan polynomial

R(F,x, y, z) =
∑
H

xr(F )−r(H)yn(H)zk(H)−p(H)+n(H).

Using the definitions of the rank and nullity we can write this as

x−k(yz)−v
∑
H

(
xyz2)k(H)

(yz)e(H)z−p(H).

Setting x = (1 + r)(−1 − q−2), y = −1 − q2, z = (q + q−1)−1 and forgetting about the normal-
ization, we obtain the polynomial

B(F,q, r) =
∑
H

(1 + r)k(H)(−q)e(H)
(
q + q−1)p(H)

.

We concern ourselves with this evaluation of the Bollobás–Riordan polynomial, which we note
is not equivalent to the 3-variable Bollobás–Riordan polynomial.

The polynomial B can be categorified. The chain complex is constructed using rank 2, free,
bigraded modules V and M with basis generators v± in graded degree (±1,0) and generators
m0 and m1 in graded degrees (0,0) and (0,1), respectively. The module M⊗k(H) ⊗ V ⊗p(H) is
assigned to each state and the per-edge maps are of the form m′ ⊗ m̃ and m′ ⊗ Δ̃, where m̃, Δ̃

and m′ are the obvious bigraded versions of the maps defined in Section 3 and above.
Notice that for a planar fatgraph F , this chain complex is of the form E(F) =

(Ci ⊗ Di, di ⊗ ∂i) where C(F) = (Ci, di) is the chain complex of Helme-Guizon and Rong’s
chromatic homology and, by Section 6.1, D(F) = (Di, ∂i) is the unnormalized Khovanov com-
plex of the reflection (since the height function here corresponds to the addition of edges rather
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than the removal) of the associated link. Also note that the maps f :M → 1 and g :V → 1
clearly induce chain maps f :E(G) → D(G) and g :E(G) → C(G). Putting all of this together
we obtain:

Proposition 7.1. For a planar fatgraph F there is a homology theory for the Bollobás–Riordan
polynomial which comes equipped with two natural homomorphisms, one to the chromatic ho-
mology of Helme-Guizon and Rong and the other to the Khovanov homology of the reflection of
the associated link.
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Appendix A. Table of polynomials

To simplify the entries of the table we write v,p, . . . for v(H),p(H), . . . and sums are taken
over the appropriate set of states.

Polynomial State sum Complex Homology

Z(F,q) (−1)e(F )
∑

(q + q−1)v+p+2g((−q)(1 + q−2))h C(F ) H(C(F ))

–
∑

(q + q−1)v+p+2g((−q)(1 + q−2))h C̃(F ) H̃ (C̃(F ))

R̂(F, q)
∑

(q + q−1)v+p+2g(−q)h Ĉ(F ) Ĥ (Ĉ(F ))

R′(Fs , q, r, s)
∑

(q + q−1)v+p(r + r−1)2g(−q(1 + s−2))hs D(Fs) HB(D(Fs))

R̂′(Fs , q, r)
∑

(q + q−1)p(r + r−1)2g(−q)hs D̂(Fs) ĤB(D̂(Fs))

Jones poly. (−1)n−qn+−2n− ∑
(q + q−1)p(−q)h C(L) HK(L)

–
∑

(q + q−1)p(−q)h C̃(L) H̃K(L)
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