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It is well known that, when normalized by n, the expected length of a longest common subsequence10
of d sequences of length n over an alphabet of size σ converges to a constant γσ,d. We disprove11
a speculation by Steele regarding a possible relation between γ2,d and γ2,2. In order to do that we12
also obtain some new lower bounds for γσ,d, when both σ and d are small integers.13

1. Introduction14

String matching is one of the most intensively analysed problems in computer science. Among15

string matching problems the longest common subsequence problem (LCS) stands out. This16

problem consists of finding the longest subsequence common to all strings in a set of sequences17

(often just two). The LCS problem is the basis of Unix’s diff command, has applications in18

bioinformatics, and also arises naturally in remarkably distinct domains such as cryptographic19

snooping, the mathematical analysis of bird songs, and comparative genomics. In addition, the20

LCS problem offers a concrete basis for the illustration and benchmarking of mathematical21

methods and tools such as subadditive methods and martingale inequalities; see, for example,22

Steele’s monograph [15].23

Although the LCS problem has been studied under many different contexts there are several24

issues concerning it that are still unresolved. The most prominent of the outstanding questions25

relating to the LCS problem concerns the length Ln,σ,d of an LCS of d sequences of n characters26

chosen uniformly and independently over some alphabet of size σ. Subadditivity arguments yield27

† Gratefully acknowledges the support of CONICYT via FONDAP in Applied Mathematics and Anillo en Redes
ACT08.

‡ Gratefully acknowledges the support of CONICYT via Anillo en Redes ACT08.
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that for fixed d and n going to infinity, the expected value of Ln,σ,d normalized by n converges to a28

constant γσ,d. For d, σ � 2, the precise value of γσ,d is unknown. The constant γ2,2 is referred to as29

the Chvátal–Sankoff constant. The calculation of its exact value is an over three-decade-old open30

problem. The determination of its value has received a fair amount of attention, starting with the31

work of Chvátal and Sankoff [4], encompassing among others [1, 2, 6, 7, 8, 12], and is explicitly32

stated in several well-known texts such as those by Waterman [19, § 11.1.3], Steele [16, p. 3],33

Pevzner [13, p. 107], and Szpankowski [17, p. 109]. To the best of our knowledge the current34

sharpest bounds on γ2,2 are due to Lueker [12], who established that 0.788071 � γ2,2 � 0.826280.35

The starting point for this investigation is the following comment by Steele [15]:36

It would be of interest to relate c3 to c2, and one is tempted to speculate that c3 = c2 (and more generally37
that ck = ck−1). Computational evidence does not yet rule this out.38

Here, Steele uses c to denote the limiting value of the longest common subsequence of two39

random sequences of length n normalized by n as n goes to infinity, and in general, he uses ck to40

denote the analogous constant for k sequences. However, it is unclear if in this comment he uses c41

and ck to denote the constants γ2,2 and γk,2 (i.e., specifically for the case of alphabet size 2) or if42

he is generically denoting the constants for arbitrary alphabet size. Dančı́k [6] cites the previous43

statement as a conjecture by Steele using the second interpretation, i.e., as the claim that, for all44

d � 3 and σ � 2,45

γσ,d = γd−1
σ,2 . (1.1)

Dančı́k [6, Theorem 2.1, Corollary 2.1] shows that for d � 246

1 � lim inf
σ→∞

σ1−1/dγσ,d � lim sup
σ→∞

σ1−1/dγσ,d � e.

Hence, if (1.1) were true, then for ε > 0 and σ sufficiently large,47

1− ε � σ1−1/dγσ,d = σ1−1/dγd−1
σ,2 � σ1−1/d

(
e(1 + ε)√

σ

)d−1

.

Dančı́k’s results disprove (1.1) by observing that for d > 2 one may choose σ large enough so as48

to make the rightmost term of the last displayed equation arbitrarily close to 0.49

If we use the first interpretation of Steele’s speculation quoted above, i.e., considering only the50

case of binary alphabets as we believe it was intended, then (1.1) is not invalidated by Dančı́k’s51

work.52

In [15], Steele does not justify his speculation. The following non-rigorous argument gives53

some indication that one should expect that γ2,3 is strictly bigger than γ2
2,2. Indeed, let A1, A254

and A3 be three independently and uniformly chosen binary sequences of length n. For i �= j and55

very large values of n one knows that a longest common subsequence �i,j of sequences Ai and Aj56

would be of length approximately γ2,2n. One would expect (although we can not prove it) that �i,j57

would behave like a uniformly chosen binary string of length γ2,2n. Sequences �1,2 and �2,3 are58

clearly correlated. However, one might guess that the correlation is weak (again, we can certainly59

neither formalize nor prove such a statement). The previously stated discussion suggests that a60

longest common subsequence �1,2,3 of �1,2 and �2,3 should be of length approximately γ2
2,2n. Since61

�1,2,3 is clearly a longest common subsequence of A1, A2 and A3, one is led to conclude that62

γ2,3 � γ2
2,2. (1.2)
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However, there are two good reasons to suspect that this last inequality should be strict.63

• Since �2,3 has only a fraction of A3’s length, one expects that a longest common subsequence64

of �1,2 and A3 is significantly larger than a longest common subsequence of �1,2 and �2,3.65

• The longest common subsequence of A1, A2 and A3 might arise by taking a longest common66

subsequence on sub-optimal common subsequences �′1,2 and �′2,3 of A1 and A2, and A2 and67

A3, respectively.68

This work’s main contribution is to show that the inequality in (1.2) is indeed strict.69

In Section 2 we give a simple argument that proves that when σ is fixed and d is large the70

identity γσ,d = γd−1
σ,2 does not hold. The underlying argument is essentially an application of the71

probabilistic method. However, it might still be possible for the relation to hold for some specific72

values of σ and d. Of particular interest is the case of binary sequences, i.e., σ = 2. In Section 373

we show that even this weaker identity does not hold, i.e., that γ2,3 �= γ2
2,2. To achieve this goal,74

we rely on Lueker’s [12] U = 0.826280 upper bound on γ2,2 and determine a lower bound on75

γ2,3 which is strictly larger than U2 � γ2
2,2. The lower bound on γ2,3 is obtained by an approach76

similar to that used by Lueker [12] to lower-bound γ2,2, although in our case we have to consider77

a non-binary alphabet. Aside from the extra notation needed to handle the cases σ, d > 2, our78

treatment is a straightforward generalization of the approach used by Lueker. (In fact, in order to79

keep the exposition as clear as possible we do not even use the optimization tweaks implemented80

by Lueker in order to take advantage of the symmetries inherent to the problem and objects that81

arise in its analysis.) We conclude with some final comments in Section 4.82

2. Disproving γσ,d = γd−1
σ,2 for large d83

We start this section by introducing some notation. Given strings A1, . . . , Ad of length n, we84

denote by L(A1, . . . , Ad) the length of the longest common subsequence of all Ais. Let Un,σ be the85

distribution of sequences of length n whose characters are chosen uniformly and independently86

from Σ = {1, . . . , σ}. We denote by Ln,σ,d the random variable L(A1, . . . , Ad) when all the Ai are87

chosen according to Un,σ. Finally, we let γσ,d denote the limit of ELn,σ,d/n when n→ ∞ (the88

existence of this limit follows from standard subadditivity arguments [4]).89

In what follows, we give a lower bound for γσ,d that is independent of d. This bound is based90

on the following simple fact. If X is chosen according to Un,σ and n is large, then the number91

of occurrences of a fixed character in Σ is roughly n/σ. Intuitively, this means that for a set92

of d random strings of (very large) length n, with very high probability a sequence formed by93

roughly �n/σ	 equal characters will be a common subsequence of all the d random strings.94

Lemma 2.1. For all d and σ, we have γσ,d � 1/σ.95

Proof. Let A1, . . . , Ad be d independent random strings chosen according to Un,σ . Let Xi denote96

the number of times the character c ∈ Σ appears in Ai, and X = min{X1, . . . , Xd}. The string97

cX formed by X copies of the character c is a common subsequence of all Xis. It follows that98

L(A1, . . . , Ad) � X.99



4 M. Kiwi and J. Soto

Each Xi is a binomial variable with parameter p = 1/σ. By a standard Chernoff bound [9,100

Remark 2.5] we have that for any 0 < ε < 1,101

Pr[Xi � (1− ε)np] � exp(−2n(pε)2).

Applying Markov’s inequality, and recalling that the Xis are independent, it follows that102

EX � (1− ε)npPr[X � (1− ε)np] � (1− ε)np[1− exp(−2n(pε)2)]d.

Letting n be sufficiently large that [1− exp(−2n(pε)2)]d � (1− 2ε)/(1− ε), we obtain EX �103

np(1− 2ε). Therefore,104

ELn,σ,d

n
=

EL(A1, . . . , Ad)

n
� EX

n
� (1− 2ε)p =

1− 2ε

σ
.

It follows that γσ,d � (1− 2ε)/σ. Since this is true for any ε > 0, we conclude that γσ,d � 1/σ.105

106

It is now easy to disprove that γσ,d = γd−1
σ,2 for large d. Indeed, note that since γσ,2 < 1 [4], then107

limd→∞ γd−1
σ,2 = 0. On the other hand, the previous lemma asserts that γσ,d � 1/σ for all d, and108

hence for d large enough, γd−1
σ,2 < γσ,d.109

In particular, for the case σ = 2, Lueker [12] proved that γ2,2 � U for U = 0.826280. Thus,110

for all d � 5, we have the strict inequality111

γd−1
2,2 � (0.826280)d−1 < 1/2 � γ2,d.

3. Disproving γ2,3 = γ2
2,2112

3.1. Diagonal common subsequence113

As already mentioned, the best-known provable lower bound for γ2,2 found so far is due to114

Lueker [12]. The starting point of Lueker’s lower bound technique is a result by Alexander [1],115

who related the expected length of the LCS of two random strings of the same length n, to116

the expected length of the LCS of two random strings whose lengths sum up to 2n. Below, we117

establish an analogue of Alexander’s result but for the case of d randomly chosen sequences.118

Let C[j..k] denote the substring C[j]C[j + 1] · · ·C[k] formed by all the characters between119

the jth and kth positions of C. Given strings A1, . . . , Ad of length at least n, we say that B is an120

n-diagonal common subsequence of A1, . . . , Ad if B is a common subsequence of a set of prefixes121

of A1, . . . , Ad whose lengths sum to n, i.e., if for some indices i1, . . . , id such that i1 + · · ·+ id = n,122

the string B is a common subsequence of A1[1..i1], A2[1..i2], . . . , Ad[1..id].123

Let Dn(A1, . . . , Ad) denote the length of a longest n-diagonal common subsequence of the124

strings A1, . . . , Ad. We denote by Dn,σ,d the random variable Dn(A1, . . . , Ad) where the strings125

A1, . . . , Ad are chosen according to Un,σ.126

The main objective of this section is to prove the following extension of a result of127

Alexander [1, Proposition 2.4] for the d = 2 case.128

Theorem 3.1. For all n � d,129

d · EDn,σ,d − d3/2
√

2n ln n � ELn,σ,d � EDnd,σ,d.
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In particular, for all σ there exists δσ,d such that130

δσ,d = lim
n→∞

EDn,σ,d

n
=

γσ,d

d
.

For the sake of clarity of exposition, before proving Theorem 3.1 we establish some interme-131

diate results.132

Lemma 3.2. For all n and d, ELn,σ,d � EDnd,σ,d.133

Proof. Let A1, . . . , Ad be random strings independently chosen according to Und,σ . Since a134

longest common subsequence of A1[1..n], . . . , Ad[1..n] is also an nd-diagonal common sub-135

sequence of A1, . . . , Ad,136

L(A1[1..n], . . . , Ad[1..n]) � Dnd(A1, . . . , Ad).

Taking expectation on both sides of the previous inequality yields the desired conclusion.137

Lemma 3.3. For all n � d,138

d · EDn,σ,d − d3/2
√

2n ln n � ELn,σ,d.

Proof. Let A1, . . . , Ad be a list of words of length n. Note that if we change one character of139

any word in the list, then the values L(A1, . . . , Ad) and Dn(A1, . . . , Ad) will change by at most one140

unit. It follows that the random variables Ln,σ,d and Dn,σ,d (seen as functions from (Σn)d to R) are141

both 1-Lipschitz. Applying Azuma’s inequality (as treated in, for example, [9, § 2.4]), we get142

Pr
[
Dn,σ,d � EDn,σ,d −

√
n/2

]
� exp

(
−2(n/2)

nd

)
= e−1/d <

d

d + 1
,

where the last inequality holds since e−x < 1/(x + 1) for all x > 0.143

Let λ = EDn,σ,d −
√

n/2. Since Dn,σ,d > λ implies that there are positive indices i1, . . . , id such144

that i1 + · · ·+ id = n and L(A1[1..i1], . . . , Ad[1..id]) � λ,145

Pr[Dn,σ,d > λ] �
∑

0<i1 ,...,id<n,
i1+···+id=n

Pr[L(A1[1..i1], . . . , Ad[1..id]) > λ].

Let I be the number of summands on the right-hand side. Note that I =
(
n−1
d−1

)
since it counts the146

number of ways of partitioning n into d positive summands. It follows that there exist positive147

j1, . . . , jd summing to n such that148

Pr
[
L(A1[1..j1], . . . , Ad[1..jd]) > λ

]
>

1

I

(
1− d

d + 1

)
=

1

I(d + 1)
.

Note that the distribution of the random variable L(A1[1..j1], . . . , Ad[1..jd]) is the same as the149

distribution of L(A1[1..jτ(1)], . . . , Ad[1..jτ(d)]) for any permutation τ : [d]→ [d]. It is also easy to150

see that the distribution of L(A1[a1..b1], . . . , Ad[ad..bd]) and L(A1[a
′
1..b
′
1], . . . , Ad[a

′
d..b
′
d]) is the151

same when bm − am = b′m − a′m for all 1 � m � d.152
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Now, let τ be the cyclic permutation (12 · · · d), and for 0 � m � d− 1 let Em denote the event153

L

(
A1

[m−1∑
l=0

jτl (1) + 1 ..

m∑
l=0

jτl (1)

]
, . . . , Ad

[m−1∑
l=0

jτl (d) + 1 ..

m∑
l=0

jτl (d)

])
> λ.

In particular, E0 is the event {L(A1[1..j1], . . . , Ad[1..jd]) > λ} whose probability was bounded154

above. Note that the events E0, . . . , Ed−1 are equiprobable. Since each of the Ems depends on155

a different set of characters, they are independent. Moreover, if E0, . . . , Ed−1 simultaneously156

occur, then by concatenating the common subsequences of each block of characters we get that157

L(A1, . . . , Ad) > dλ. Hence,158

(
1

I(d + 1)

)d

<

d−1∏
m=0

Pr[Em] = Pr[E0, E1, . . . , Ed−1] � Pr[Ln,σ,d > dλ]. (3.1)

Applying Azuma’s inequality again, we have159

Pr

[
Ln,σ,d � ELn,σ,d +

√
nd2 ln(I(d + 1))

2

]
�

(
1

I(d + 1)

)d

. (3.2)

Combining (3.1) and (3.2) and recalling that λ = EDn,σ,d −
√

n/2, we obtain160

Pr

[
Ln,σ,d � ELn,σ,d +

√
nd2 ln(I(d + 1))

2

]
< Pr

[
Ln,σ,d > dEDn,σ,d − d

√
n

2

]
.

Hence,161

ELn,σ,d +

√
nd2 ln(I(d + 1))

2
� dEDn,σ,d − d

√
n

2
.

Since 2 � d � n, (d + 1)I = (d + 1)
(
n−1
d−1

)
� nd, and so162

dEDn,σ,d � ELn,σ,d + d

√
n

2
+

√
nd2 ln(I(d + 1))

2
� ELn,σ,d + d3/2

√
2n ln(n). �

Proof of Theorem 3.1. Lemmas 3.2 and 3.3 already give the bounds on ELn,σ,d. To complete the163

proof we need to show that limn→∞ EDn,σ,d/n exists and that its value is γσ,d/d. By Lemmas 3.2164

and 3.3 we have165

ELn,σ,d � EDnd,σ,d � 1

d
ELnd,σ,d + d1/2

√
2nd ln(nd).

Dividing by n, it follows that limn→∞ EDnd,σ,d/n = γσ,d. Furthermore, EDn,σ,d is non decreasing166

in n, so167

�n/d	
n/d

·
EDd�n/d	,σ,d

�n/d	 � EDn,σ,d

n/d
� �n/d�

n/d
·
EDd�n/d�,σ,d

�n/d� .

Since both the left-hand side and right-hand side terms above converge to γσ,d when n→ ∞, the168

middle term also converges to that value, and so limn→∞ EDn,σ,d/n = γσ,d/d as claimed.169
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3.2. Longest common subsequence of two words over a binary alphabet170

In this section we describe Lueker’s [12] approach for finding a lower bound on γd,σ when d =171

σ = 2. Later on, we will generalize Lueker’s technique to the cases of arbitrary d and σ.172

Let X1 and X2 be two random sequences chosen from Un,2, i.e., strings of length n such that all173

their characters are chosen uniformly and independently from the binary alphabet {0, 1}. Lueker174

defines, for any two strings A and B over the binary alphabet, the quantity175

Wn(A,B) = E
[
max
i+j=n

L(AX1[1..i], BX2[1..j])
]
.

Informally, Wn(A,B) represents the expected length of an LCS of two strings with prefixes A176

and B, respectively, and suffixes formed by uniformly and independently choosing n characters177

in {0, 1}. It is easy to see that Wn(A,B) behaves as Dn,2,2 as n→∞. Hence, applying Alexander’s178

d = 2 version of Theorem 3.1, Lueker observes that, for all A,B ∈ {0, 1}∗,179

γ2,2 = lim
n→∞

W2n(A,B)

n
.

A natural idea is to approximate γ2,2 by W2n(A,B)/n. Fix the length l ∈ N of the strings A180

and B and denote by wn the 22l-dimensional vector whose coordinates correspond to the values181

Wn(A,B) when A and B vary over all binary sequences of length l. For example, when l = 2,182

the vector wn has the following form:183

wn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wn[00, 00]

wn[00, 01]

...

wn[11, 10]

wn[11, 11]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Wn(00, 00)

Wn(00, 01)

...

Wn(11, 10)

Wn(11, 11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Lueker established a lower bound for each component of wn as a function of the components184

of wn−1 and wn−2. To reproduce that lower bound, we need to introduce some more notation. If185

A = A[1]A[2] · · ·A[l] is a sequence of length l � 2, let h(A) denote the head of A, i.e., its first186

character, and let T (A) denote its tail, i.e., the substring obtained from A by removing its head.187

In other words, h(A) = A[1] and T (A) = A[2..l]. It is easy to see that the following relations188

among wn,wn−1 and wn−2 hold.189

• If h(A) = h(B), then190

wn[A,B] � 1 +
1

4

∑
(c,c′)∈{0,1}2

wn−2[T (A)c, T (B)c′].

• If h(A) �= h(B), then191

wn[A,B] � 1

2
max

{ ∑
c∈{0,1}

wn−1[T (A)c, B],
∑

c∈{0,1}

wn−1[A,T (B)c]

}
.

Using the previous inequalities one can define a function F : R
22l × R

22l → R
22l

such that for192

all n � 2, wn � F(wn−1, wn−2). Furthermore, the function F can be decomposed in two sim-193

pler functions F= and F �= such that if Π= and Π�= are the projections of the vectors onto the194
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coordinates corresponding to the pairs of words with the same and different heads respectively,195

then196

Π=(wn) � F=(wn−2) and Π �=(wn) � F �=(wn−1).

It might be useful to see some examples of these transformations. For instance, to obtain a lower197

bound of wn[001, 011], one considers198

wn[001, 011] � F=(wn−2)[001, 011]

= 1 +
1

4
(wn−2[010, 110] + wn−2[010, 111] + wn−2[011, 110] + wn−2[011, 111]).

And to bound wn[001, 111],199

wn[001, 111] � F �=(wn−1)[001, 111]

=
1

2
max{wn−1[010, 111] + wn−1[011, 111], wn−1[001, 110] + wn−1[001, 111]}.

3.3. Longest common subsequence of d words over general alphabets200

In this section we extend Lueker’s lower bound arguments as described in the previous section201

to the general case of d strings whose characters are uniformly and independently chosen over202

an alphabet of size σ.203

Let X1, . . . , Xd be a collection of d independent random strings chosen according to Un,σ and204

let A1, . . . , Ad be a collection of d finite sequences over the same alphabet. We now consider205

Wn(A1, . . . , Ad) = E
[

max
i1+···+id=n

L(A1X1[1..i1], . . . , AdXd[1..id])
]
.

This quantity represents the expected length of an LCS of d words with prefixes A1, . . . , Ad,206

respectively, and d suffixes whose lengths sum up to n and whose characters are uniformly and207

independently chosen in Σ = {1, . . . , σ}. Since Wn(A1, . . . , Ad) and Dn,σ,d behave similarly as208

n→∞, Theorem 3.1 implies that, for all A1, . . . , Ad,209

γσ,d = lim
n→∞

Wnd(A1, . . . , Ad)

n
. (3.3)

Just as in the d = 2 case, fix l ∈ N and let wn denote the σld-dimensional vector whose210

coordinates are all the values of Wnd(A1, . . . , Ad) when A1, . . . , Ad vary over all sequences in Σl .211

We again seek a lower bound for wn as a function of vectors wm, with m < n.212

It is easy to see that if all the strings A1, . . . , Ad start with the same character, then213

wn[A1, . . . , Ad] � 1 +
1

|Σd|
∑

c∈Σd

wn−d[T (A1)c(1), T (A2)c(2), . . . , T (Ad)c(d)].

Informally, the previous inequality asserts that if all the words start with the same character then214

the expected length of the LCS of all of them, allowing n random extra characters, is at least 1215

(the first character) plus the average of the expected length of the LCS of the words obtained by216

eliminating the first character and ‘borrowing’ d of the n random characters.217

If not all the words start with the same character, we can still find a lower bound, but to write218

it down we need to introduce some additional notation. For any two sets X and Y , we follow the219
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standard convention of denoting by Y X the set of all mappings from X to Y . Also, for a d-tuple220

of strings A = (A1, . . . , Ad) and z ∈ Σ, we let Nz(A) denote the set of indices j ∈ {1, . . . , d} such221

that Aj’s head is not equal to z, i.e., to the set of string indices not starting with z. For a mapping222

c : Nz(A)→ Σ, we define τz(A, c) as the the d-tuple of strings obtained from A by replacing each223

string Ai that does not start with z by the sequence obtained by eliminating its first character and224

adding the character c(i) at its tail. Formally, τz(A, c) = (A′1, . . . , A
′
d), where225

A′i =

{
Ai, if h(Ai) = z,

T (Ai)c(i), if h(Ai) �= z.

A crucial fact is that for a d-tuple of strings A, if its coordinates do not all start with the same226

character, then227

wn[A] � max
z∈Σ

1

|ΣNz (A)|
∑

c∈ΣNz (A)

wn−|Nz (A)|[τz(A, c)].

Informally, each term over which the maximum is taken corresponds to the expected length of228

the LCS of the strings one would obtain by disregarding all first characters of sequences not229

starting with z, and concatenating to the tail of these strings an element randomly chosen over230

the alphabet Σ.231

For the sake of illustration, consider the following example of the derived inequalities when232

σ = 2 and d = 4:233

wn[001, 011, 101, 001] � max

{
1

2

∑
c∈{0,1}{3}

wn−1[001, 011, 01c(3), 001],

1

23

∑
c∈{0,1}{1,2,4}

wn−3[01c(1), 11c(2), 101, 01c(4)]

}
.

In the previous example only the third string over which wn is evaluated does not start with 0.234

Hence, the first term over which the maximum is taken is the average of the values of wn−1235

evaluated at the two possible 4-tuples of strings obtained from A by removing the initial 1 from236

the third string and adding a 0 or 1 final character. On the other hand, wn is evaluated at three237

strings that do not start with a 1. Hence, the second term over which the maximum is taken is the238

average of the values of wn−3 over all the 4-tuples of strings obtained from A by removing all the239

initial 0s and adding a 0 or 1 final character to those same strings.240

Expressing all the derived inequalities in vector form we have that there is a function F :241

(Rσld

)d → R
σld

such that242

wn � F(wn−1, wn−2, . . . , wn−d). (3.4)

For the ensuing discussion it will be convenient to rewrite F in an alternative way. For each z ∈ Σ243

we define the linear transformation Fz : (Rσld

)d → R
σld

such that244

Fz(v1, . . . , vd)[A] =

⎧⎪⎨
⎪⎩

1

|ΣNz (A)|
∑

c∈ΣNz (A)

v|Nz (A)|[τz(A, c)], if |Nz(A)| �= 0,

0, if |Nz(A)| = 0.

(3.5)



10 M. Kiwi and J. Soto

Then, if we let b ∈ R
σld

be the vector with value 1 in the coordinates associated to d-tuples of245

strings of length l starting all with the same character and 0 in the rest of the coordinates, F can246

be expressed as247

F(v1, . . . , vd) = b + max
z∈Σ

Fz(v1, . . . , vd). (3.6)

3.4. Finding a lower bound for γσ,d248

In the preceding section we established that for any d-tuple of strings A = (A1, . . . , Ad), each of249

length l, we have γσ,d = limn→∞ wnd[A]/n. To lower-bound this latter quantity one is tempted250

to try the following approach: (1) for a fixed word length l, compute explicitly w0, . . . , wd−1, and251

(2) define a new sequence of vectors (vn)n∈N as vi = wi for 0 � i � d− 1, and then iteratively252

define vn = F(vn−1, vn−2, . . . , vn−d), for all n � d. Since F is monotone and by (3.4), we have that253

vn � wn for every n ∈ N. It is natural to fix an arbitrary d-tuple of strings A = (A1, . . . , Ad) and254

estimate a lower bound for γσ,d by limn→∞ vnd[A]/n for large enough n.255

Unfortunately, for the approach discussed in the previous paragraph to work one would need256

to determine for which values of n the quantity vnd[A]/n is effectively a lower bound for γσ,d.257

Indeed, vnd[A]/n does not even need to be increasing and wnd[A]/n equals γσ,d only in the limit258

when n→ ∞. We will pursue a different approach that relies on the next lemma which is a259

generalization of an observation by Lueker [12] for the d = σ = 2 case.260

Lemma 3.4. Let F : (Rσld

)d → R
σld

be a transformation that satisfies the following properties.261

(1) Monotonicity. If the inequality (v1, v2, . . . , vd) � (w1, w2, . . . , wd) holds component-wise, then262

the inequality F(v1, v2, . . . , vd) � F(w1, w2, . . . , wd) also holds component-wise.263

(2) Translation invariance. Let 1 be the vector of ones in R
σld

and
1 = (1, . . . , 1) be the vector264

of ones in (Rσld

)d. Then, for any r ∈ R and for all (v1, v2, . . . , vd) ∈ (Rσld

)d,265

F((v1, v2, . . . , vd) + r
1) = F(v1, . . . , vd) + r1.

(3) Feasibility. There exists a feasible triplet for F , i.e., a (u, r, ε) with u ∈ R
σld

, r ∈ R, and266

0 � ε � r such that267

F(u + (d−1)r1, . . . , u + 2r1, u + r1, u) � u + (dr − ε)1.

Then, for any sequence (vn)n∈N of vectors in R
σld

such that vn � F(vn−1, . . . , vn−d) for all n � d,268

there exists a vector u0 in R
σld

such that, for all n � 0,269

vn � u0 + n(r − ε)1. (3.7)

Proof. Let F be a transformation satisfying the hypothesis of the lemma and (u, r, ε) a feasible270

triplet for F . Let (vn)n∈N be a sequence of vectors as in the lemma’s statement and let α ∈ R be271

large enough so that, for all j � d− 1,272

vj + α1 � u + j(r − ε)1.

For example, set α to be the largest component of the vector max0�j�d−1(u + j(r−ε)1− vj).273
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Note that u0 = u− α1 satisfies (3.7) for all n � d− 1. We will prove by induction that this274

holds for all n ∈ N. Suppose that (3.7) holds up to n− 1. Using the inductive hypothesis we have275

(vn−1, . . . , vn−d)

� (u0 + (n−1)(r−ε)1, . . . , u0 + (n−j)(r−ε)1, . . . , u0 + (n−d)(r−ε)1)

= (u + (d−1)r1, . . . , u + (d−j)r1 + (j−1)ε1, . . . , u + (d−1)ε1)

+ ((n−d)(r−ε)− (d−1)ε− α)
1

� (u + (d−1)r1, . . . , u + (d−j)r1, . . . , u) + ((n−d)(r−ε)− (d−1)ε− α)
1.

Evaluating F at the terms on both sides of the previous inequality we get, by monotonicity and276

translation invariance, that277

vn � F(vn−1, . . . , vn−d)

� F(u + (d−1)r1, . . . , u + (d−j)r1, . . . , u) + ((n−d)(r−ε)− (d−1)ε− α)1.

Since (u, r, ε) is a feasible triplet, it follows that278

vn � u + (dr − ε)1 + ((n−d)(r−ε)− (d−1)ε− α)1

= u− α1 + n(r − ε)1 = u0 + n(r − ε)1.

This completes the proof.279

From F’s definition it easily follows that F is monotone and invariant under translations. If we280

find a feasible triplet (u, r, ε) for F then, by Lemma 3.4, we can conclude that the sequence of281

vectors (wn)n∈N satisfy wn � u0 + n(r − ε)1 for all n. It follows from (3.3) that282

γσ,d � d(r − ε).

The key point we are trying to make is that in order to establish a good lower bound for γσ,d one283

only needs to exhibit a good feasible triplet, namely one such that (r − ε) is as large as possible.284

Empirically, one observes that for any set of initial vectors v0, . . . , vd−1, if one makes vn+d =285

F(vn+d−1, . . . , vn) for all n ∈ N, then the sequence (vn)n∈N is such that vn/n seems to converge to286

a vector with all its components taking the same value. In fact, one observes that for large values287

of n the vectors vn and vn+1 differ essentially by a constant (independent of n) times the all ones288

vector. Roughly, there exists a real value r such that vn+1 − vn is approximately r1 for all large289

enough n. Since, by definition vn+d = F(vn+d−1, . . . , vn+1, vn), this implies that290

F(vn + (d−1)r1, vn + (d−2)r1, . . . , vn + r1, vn) ∼ vn + dr1.

It follows that one possible approach to find a feasible triplet is to consider an n large enough so291

that the difference between vn and vn−1 is essentially a constant times the all ones vector. Then,292

set u = vn, and define r as the maximum value such that vn − vn−1 � r1 and ε as the minimum293

possible value such that the triplet (u, r, ε) is feasible for F . The following result validates the294

approach just described.295

Lemma 3.5. Let F : (Rσld

)d → R
σld

be a monotone and translation-invariant transformation.296

Let v0, . . . , vd−1 ∈ R
σld

and vn+d = F(vn+d−1, . . . , vn+1, vn) for all n ∈ N. If for some r ∈ R, n0 � 1297
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and ε > 0 we have ‖vn+1 − vn − r1‖∞ � ε/2d for all n ∈ {n0, . . . , n0+d−1}, then (vn0
, r, ε) is a298

feasible triplet for F .299

Proof. First, observe that the monotonicity and translation invariance property of F implies300

that301

‖F(x0, . . . , xd−1)− F(y0, . . . , yd−1)‖∞ � max
i=0,...,d−1

‖xi − yi‖∞.

Let u = vn0
and note that ‖vn0+i − (u + ir1)‖∞ � iε/2d < ε/2 for 0 � i � d. Hence, by definition302

of vn0+d,303

‖vn0+d − F(u + (d−1)r1, u + (d−2)r1, . . . , u + r1, u)‖∞ � ε/2.

Since ‖vn0+d − (u + dr1)‖∞ � ε/2 it follows that304

‖(u + dr1)− F(u + (d−1)r1, u + (d−2)r1, . . . , u + r1, u)‖∞ � ε.

In other words, (u, r, ε) is a feasible triplet for F .305

It is easy to check that F satisfies the hypothesis of Lemma 3.5. This justifies, together with306

the empirical observation that vn+1 − vn is approximately r1 for large values of n, the general307

approach described in this section for finding a feasible triplet for F , and thus a lower bound308

for γσ,d. It is important to stress here that there is no need to prove the convergence of vn/n309

to r1 in order to establish the lower bound γσ,d � d(r − ε). We only need to find a feasible triplet310

(u, r, ε) for F . The characteristics of F , empirical observations and Lemma 3.5, efficiently lead to311

such feasible triplets.312

3.5. Implementation and results; new bounds313

In this section we describe the procedure we implemented in order to find a feasible triplet (u, r, ε)314

for F and, as a corollary, a lower bound for γσ,d. The procedure is called FEASIBLETRIPLET; it315

is parametrized in terms of the number of sequences d and the alphabet Σ, and its pseudocode316

is given in Algorithm 1. In order to implement F we rely on the characterization given by (3.5)317

and (3.6). Since the Fzs are linear transformations, they can be represented as matrices. This318

allows for fast evaluation of the Fzs, but requires a prohibitively large amount of main memory319

for all but small values of σ, l and d. In order to optimize memory usage, we use the fact that by320

distinguishing (3.5) according to the cardinality of Nz(A) where A ∈ (Σl)d, Fz can be written as321

Fz(v1, . . . , vd) =
1

σ1
Fz,1(v1) + · · ·+ 1

σd
Fz,d(vd),

322

where323

Fz,i(vi)[A] =

⎧⎪⎨
⎪⎩

∑
c∈ΣNz (A)

vi[τz(A, c)], if |Nz(A)| = i,

0, otherwise.

Note in particular that every Fz,i can be represented as a 0–1 sparse matrix.324
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Algorithm 1 Procedure for computing a feasible triple for F

1: procedure FEASIBLETRIPLETd,Σ(l, n) � l ∈ N parameter, n ∈ N iteration steps
2: for i = 0, . . . , d− 1 do

3: vi ← 0 � Where 0 denotes the vector of zeros in R
σld

4: end for

5: (u, r, ε)← (v0, 0, 0)

6: for i = d, . . . , n do

7: vi ← F(vi−1, vi−2, . . . , vi−d)

8: R ← maxA∈(Σl )d (vi − vi−1)[A]

9: W ← vi + dR1− F(vi + (d−1)R1, . . . , vi + R1, vi)

10: E ← max{0,maxA∈(Σl )d W [A]}
11: if R − E � r − ε then

12: (u, r, ε)← (vi, R, E)

13: end if

14: end for

15: return (u, r, ε)

16: end procedure

Table 1. Best-known lower bounds for γσ,2 (in boldface).

γσ,2

σ This work Lower bound from [2] Lower bound from [5, 8]

3 0.671697 0.63376 0.61538
4 0.599248 0.55282 0.54545
5 0.539129 0.50952 0.50615
6 0.479452 0.46695 0.47169
7 0.444577 – 0.44502

8 0.356545 – 0.42237

9 0.327935 – 0.40321

10 0.303490 – 0.38656

In our experiments we ran Algorithm 1 for different values of l and alphabet sizes σ. As one325

would expect, the derived lower bounds improve as l grows. However, the memory resources326

required to perform the computation also increases. Indeed, throughout the second loop of Al-327

gorithm 1 we need to store d vectors of dimension σld. Also, a simple analysis of the definition328

of the sparse matrix Fz,i shows that it has
(
d
i

)
σ(l−1)d(σ − 1)iσi non-zero entries. It follows that a329

sparse matrix representation of Fz has roughly σld(σ − 1)d non-zero entries. Hence, the necessary330

computations are feasible only for small values of σ, l and d, unless additional features of the331

matrices involved are taken advantage of in order to optimize memory usage.332

Table 1 summarizes the lower bounds we obtain for γσ,2 and contrasts them with previously333

derived ones. To the best of our knowledge, for the d = 2 case and alphabet sizes 3, 4, 5, and 6,334

this work provides the currently best-known lower bounds for γσ,2. It might be worth mentioning335

that, as can be seen in that table, the bound of [5, 8] is better than the bound of the more recent336
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Table 2. Lower bounds for γσ,d.

Alphabet size σ = 2

d L such that γ2,d � L Parameter l

2 0.781281 10
3 0.704473 7
4 0.661274 5
5 0.636022 4
6 0.617761 3
7 0.602493 2
8 0.594016 2
9 0.587900 2
10 0.570155 1
11 0.570155 1
12 0.563566 1
13 0.563566 1
14 0.558494 1

Alphabet size σ = 3

d L such that γ3,d � L Parameter l

2 0.671697 6
3 0.556649 4
4 0.498525 3
5 0.461402 2
6 0.421436 1
7 0.413611 1
8 0.405539 1

Alphabet size σ = 4

d L such that γ4,d � L Parameter l

2 0.599248 5
3 0.457311 3
4 0.389008 2
5 0.335517 1
6 0.324014 1

Alphabet size σ = 5

d L such that γ5,d � L Parameter l

2 0.539129 4
3 0.356717 2
4 0.289398 1
5 0.273884 1

Alphabet size σ = 6

d L such that γ6,d � L Parameter l

2 0.479452 3
3 0.309424 2
4 0.245283 1

Alphabet size σ = 7

d L such that γ7,d � L Parameter l

2 0.444577 3
3 0.234567 1
4 0.212786 1

Alphabet size σ = 8

d L such that γ8,d � L Parameter l

2 0.356545 2
3 0.207547 1

Alphabet size σ = 9

d L such that γ9,d � L Parameter l

2 0.327935 2
3 0.186104 1

Alphabet size σ = 10

d L such that γ10,d � L Parameter l

2 0.303490 2
3 0.168674 1

work of [2] for alphabet size 6, and that for bigger alphabet sizes, the bound of [5, 8] is still better337

than ours.338

The best-known lower bound for γ2,2 is still that established by Lueker [12]. Table 2 lists the339

distinct choices of σ and d for which we could execute Algorithm 1 and indicates the value of340

the parameter l giving rise to the reported lower bound.341

3.6. Disproving Steele’s γ2,2 = γ2
2,3 speculation342

We showed in Section 2 that γ2,d > γd−1
2,2 for all d � 5. We now establish that this is also the case343

when d = 3 and d = 4. Recall that Lueker [12] proved that γ2,2 � U for U = 0.826280. From344
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Table 2 we see that for d = 3 and d = 4, the indicated lower bound for γ2,d is strictly greater345

than Ud−1, and is therefore also strictly greater than γd−1
2,2 . This implies that γ2,d > γd−1

2,2 for d = 4346

and d = 3 as claimed. Together with the results of Section 2 this establishes that γ2,d > γd−1
2,2 for347

all d � 3.348

4. Final comments349

As already mentioned at the start of this paper, Steele [15] pointed out that it would be of interest350

to find relations between the values of the γσ,ds, especially between γ2,2 and γ2,3. We think it351

would be very interesting if such a relation would exist. In fact, it might shed some light upon352

the longstanding open problem of determining the exact value of the Chvátal–Sankoff constant.353

Lacking a relation among the γσ,ds it would still be interesting to relate these terms to some354

other constants that arise in connection with other combinatorial problems. A step in this direc-355

tion was taken by Kiwi, Loebl and Matoušek [10], who showed that
√
σγσ,2 → c2 when σ →∞,356

where c2 is a constant that turns up in the study of the Longest Increasing Sequence (LIS) problem357

(also known as Ulam’s problem). Specifically, c2 is the limit to which the expected length of a358

LIS of a randomly chosen permutation of {1, . . . , n} converges when normalized by
√
n. Logan359

and Shepp [11] and Vershik and Kerov [18] showed that c2 = 2. Consider now the following360

experiment. Choose n points in a unit d-dimensional cube [0, 1]d and let Hd(n) be the random361

variable corresponding to the length of a longest chain (for the standard partial order in R
d) of362

the n chosen points. Bollobás and Winkler [3] proved that there are constants c′2, c
′
3, . . . such that363

c′d < e, limd→∞ c′d = e and limn→∞Hd(n)/n
1/d = c′d. By labelling a set S of points in [0, 1]2 in364

increasing order of their x-coordinate and reading the labels in the order of their y-coordinates365

one can associate a permutation π to the set S . It is easy to see that a chain of points in S is366

in one-to-one correspondence to an increasing sequence of π. Hence, it follows that c′2 = c2.367

Soto [14] extended the results of [10] and showed that σ1−1/dγσ,d → c′d when σ →∞. We think368

that any similar type of result, or even a reasonable conjecture, that would hold for fixed σ and d369

would also be quite interesting.370
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