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It is well known that, when normalized by n, the expected length of a longest common subsequence
of d sequences of length n over an alphabet of size ¢ converges to a constant y, 4. We disprove
a speculation by Steele regarding a possible relation between y, 4 and ;. In order to do that we
also obtain some new lower bounds for y, 4, when both ¢ and d are small integers.

1. Introduction

String matching is one of the most intensively analysed problems in computer science. Among
string matching problems the longest common subsequence problem (LCS) stands out. This
problem consists of finding the longest subsequence common to all strings in a set of sequences
(often just two). The LCS problem is the basis of Unix’s diff command, has applications in
bioinformatics, and also arises naturally in remarkably distinct domains such as cryptographic
snooping, the mathematical analysis of bird songs, and comparative genomics. In addition, the
LCS problem offers a concrete basis for the illustration and benchmarking of mathematical
methods and tools such as subadditive methods and martingale inequalities; see, for example,
Steele’s monograph [15].

Although the LCS problem has been studied under many different contexts there are several
issues concerning it that are still unresolved. The most prominent of the outstanding questions
relating to the LCS problem concerns the length L, ;4 of an LCS of d sequences of n characters
chosen uniformly and independently over some alphabet of size ¢. Subadditivity arguments yield

T Gratefully acknowledges the support of CONICYT via FONDAP in Applied Mathematics and Anillo en Redes
ACTO8.
¥ Gratefully acknowledges the support of CONICYT via Anillo en Redes ACTOS.
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that for fixed d and n going to infinity, the expected value of L, ; 4 normalized by n converges to a
constant y, 4. For d, > 2, the precise value of }, 4 is unknown. The constant 7, , is referred to as
the Chvatal-Sankoff constant. The calculation of its exact value is an over three-decade-old open
problem. The determination of its value has received a fair amount of attention, starting with the
work of Chvatal and Sankoff [4], encompassing among others [1, 2, 6, 7, 8, 12], and is explicitly
stated in several well-known texts such as those by Waterman [19, § 11.1.3], Steele [16, p. 3],
Pevzner [13, p. 107], and Szpankowski [17, p. 109]. To the best of our knowledge the current
sharpest bounds on y, ; are due to Lueker [12], who established that 0.788071 < y,, < 0.826280.
The starting point for this investigation is the following comment by Steele [15]:

It would be of interest to relate c3 to ¢?, and one is tempted to speculate that c; = ¢? (and more generally
that ¢, = ¢*~!). Computational evidence does not yet rule this out.

Here, Steele uses ¢ to denote the limiting value of the longest common subsequence of two
random sequences of length n normalized by n as n goes to infinity, and in general, he uses ¢ to
denote the analogous constant for k sequences. However, it is unclear if in this comment he uses ¢
and ¢ to denote the constants y,, and yi (i.e., specifically for the case of alphabet size 2) or if
he is generically denoting the constants for arbitrary alphabet size. Dancik [6] cites the previous
statement as a conjecture by Steele using the second interpretation, i.e., as the claim that, for all
d>3and o > 2,

Vod = Va3 (1.1)
Dancik [6, Theorem 2.1, Corollary 2.1] shows that for d > 2

1 < liminf 61—1/(1%’[{ < limsup gl

g% G—00

Vo,d < e.

Hence, if (1.1) were true, then for ¢ > 0 and ¢ sufficiently large,

l—e<o Wiy, = 6171/47);151 < 611/4(8(1\/—;6)>d1.
Dancik’s results disprove (1.1) by observing that for d > 2 one may choose ¢ large enough so as
to make the rightmost term of the last displayed equation arbitrarily close to 0.

If we use the first interpretation of Steele’s speculation quoted above, i.e., considering only the
case of binary alphabets as we believe it was intended, then (1.1) is not invalidated by Dancik’s
work.

In [15], Steele does not justify his speculation. The following non-rigorous argument gives
some indication that one should expect that y,3 is strictly bigger than V§,2' Indeed, let A;, A
and A3 be three independently and uniformly chosen binary sequences of length n. For i # j and
very large values of n one knows that a longest common subsequence /; ; of sequences 4; and A4;
would be of length approximately y,,n. One would expect (although we can not prove it) that /; ;
would behave like a uniformly chosen binary string of length y,,n. Sequences /1, and /53 are
clearly correlated. However, one might guess that the correlation is weak (again, we can certainly
neither formalize nor prove such a statement). The previously stated discussion suggests that a
longest common subsequence /1,3 of /1> and ¢, 3 should be of length approximately y%ﬁzn. Since
/123 is clearly a longest common subsequence of A, A, and A3, one is led to conclude that

723 = 735 (1.2)
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However, there are two good reasons to suspect that this last inequality should be strict.

e Since /3 has only a fraction of 43’s length, one expects that a longest common subsequence
of /1, and A3 is significantly larger than a longest common subsequence of /1, and 75 3.

e The longest common subsequence of A1, A, and A3 might arise by taking a longest common
subsequence on sub-optimal common subsequences ¢’ ’]’2 and / ’2,3 of A; and A5, and A4, and
Ajz, respectively.

This work’s main contribution is to show that the inequality in (1.2) is indeed strict.

In Section 2 we give a simple argument that proves that when ¢ is fixed and d is large the
identity y,q = yi}l does not hold. The underlying argument is essentially an application of the
probabilistic method. However, it might still be possible for the relation to hold for some specific
values of ¢ and d. Of particular interest is the case of binary sequences, i.e., ¢ = 2. In Section 3
we show that even this weaker identity does not hold, i.e., that y,3 % V§,2~ To achieve this goal,
we rely on Lueker’s [12] U = 0.826280 upper bound on y,, and determine a lower bound on
723 which is strictly larger than U? > 73,. The lower bound on 7,3 is obtained by an approach
similar to that used by Lueker [12] to lower-bound 7, ,, although in our case we have to consider
a non-binary alphabet. Aside from the extra notation needed to handle the cases a,d > 2, our
treatment is a straightforward generalization of the approach used by Lueker. (In fact, in order to
keep the exposition as clear as possible we do not even use the optimization tweaks implemented
by Lueker in order to take advantage of the symmetries inherent to the problem and objects that
arise in its analysis.) We conclude with some final comments in Section 4.

2. Disproving 7,4 = 743! for large d

We start this section by introducing some notation. Given strings Aj,..., A4 of length n, we
denote by L(4,...,Ay) the length of the longest common subsequence of all 4;s. Let U, , be the
distribution of sequences of length n whose characters are chosen uniformly and independently
from X = {1,...,0}. We denote by L, ;4 the random variable L(A, ..., A;) when all the A4; are
chosen according to U, ,. Finally, we let y,4 denote the limit of EL,,4/n when n — oo (the
existence of this limit follows from standard subadditivity arguments [4]).

In what follows, we give a lower bound for v, 4 that is independent of d. This bound is based
on the following simple fact. If X is chosen according to U, and n is large, then the number
of occurrences of a fixed character in X is roughly n/c. Intuitively, this means that for a set
of d random strings of (very large) length n, with very high probability a sequence formed by
roughly |n/c | equal characters will be a common subsequence of all the d random strings.

Lemma 2.1. Forall d and 6, we have y,4 > 1/0.

Proof. LetAy,..., Ay be d independent random strings chosen according to U, ;. Let X; denote
the number of times the character ¢ € X appears in 4;, and X = min{Xj,..., X, 4}. The string
¢X formed by X copies of the character ¢ is a common subsequence of all X;s. It follows that
L(Ay,...,A4q) = X.
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Each X; is a binomial variable with parameter p = 1/0. By a standard Chernoff bound [9,
Remark 2.5] we have that forany 0 < ¢ < 1,

Pr[X; < (1 —e)np] < exp(—2n(pe)’).
Applying Markov’s inequality, and recalling that the X;s are independent, it follows that
EX > (1 —e)npPr[X > (1 —e)np] > (1 —e)np[1 — exp(—2n(pe)*)]".

Letting n be sufficiently large that [1 — exp(—2n(pe)?)]¢ > (1 — 2¢)/(1 — &), we obtain EX >
np(1 — 2¢). Therefore,
EL,;a EL(Ay,...,4s) _ E 1—2¢

= z—21-2p=
n n n

It follows that y, 4 > (1 — 2¢)/0. Since this is true for any ¢ > 0, we conclude that y,4 > 1/0.
O

It is now easy to disprove that y, 4 = yi}l for large d. Indeed, note that since y,, < 1 [4], then
limg_, o, yi’zl = 0. On the other hand, the previous lemma asserts that y,4 > 1/¢ for all d, and
hence for d large enough, yffle < Vod-

In particular, for the case ¢ = 2, Lueker [12] proved that y,, < U for U = 0.826280. Thus,
for all d > 5, we have the strict inequality

1451 < (0826280 < 1/2 < .

3. Disproving 7,3 = “/%,2

3.1. Diagonal common subsequence

As already mentioned, the best-known provable lower bound for y,, found so far is due to
Lueker [12]. The starting point of Lueker’s lower bound technique is a result by Alexander [1],
who related the expected length of the LCS of two random strings of the same length n, to
the expected length of the LCS of two random strings whose lengths sum up to 2n. Below, we
establish an analogue of Alexander’s result but for the case of d randomly chosen sequences.

Let C[j..k] denote the substring C[j]C[j + 1] - -- C[k] formed by all the characters between
the jth and kth positions of C. Given strings Ay, ..., A4 of length at least n, we say that B is an
n-diagonal common subsequence of Ay, ..., A4 if B is a common subsequence of a set of prefixes
of Ay,..., Ay whose lengths sum to n, i.e., if for some indices iy, ..., iy suchthatiy + -+ - +i; = n,
the string B is a common subsequence of A;[1..i], 42[1..i2], ..., Ag[1..i4].

Let D,(A4,...,Ay) denote the length of a longest n-diagonal common subsequence of the
strings Ay,...,Aqs. We denote by D, ;4 the random variable D,(A4,...,A44) where the strings
Aj,...,Aqg are chosen according to U, 5.

The main objective of this section is to prove the following extension of a result of
Alexander [1, Proposition 2.4] for the d = 2 case.

Theorem 3.1. Foralln > d,

d-ED,44—d*2nInn <EL,qq < EDyiga.
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In particular, for all ¢ there exists 0,4 such that

EDn,a,d Vo.d

51741 = lim .
’ n—o0 n d

For the sake of clarity of exposition, before proving Theorem 3.1 we establish some interme-
diate results.

Lemma 3.2. Forallnandd, EL, ;4 < EDyj5.4.

Proof. Let Ay,...,A; be random strings independently chosen according to Up4,. Since a
longest common subsequence of A;[l..n],...,A4[1..n] is also an nd-diagonal common sub-
sequence of Ay,..., Ay,

L(Ai[1.n],..., Ag[1.1]) < Dual(As, ..., Aa).

Taking expectation on both sides of the previous inequality yields the desired conclusion. |

Lemma 3.3. Foralln > d,

d-ED,,q—d*>2nInn < EL, 4.

Proof. Let Ay,..., A, be a list of words of length n. Note that if we change one character of
any word in the list, then the values L(44,...,A4y) and D,(Ay4,..., Ay) will change by at most one
unit. It follows that the random variables L, , 4 and D, ; 4 (seen as functions from (Z”)d to R) are
both 1-Lipschitz. Applying Azuma’s inequality (as treated in, for example, [9, § 2.4]), we get

_2(”/2)> ol d

Pr [Dn,o‘,d < EDn,o,d Y H/Z] < eXP( nd m,

where the last inequality holds since e < 1/(x + 1) for all x > 0.
Let . = ED, ;4 — +/n/2. Since D, ;4 > / implies that there are positive indices iy, ..., iz such
that iy + -+ + iy = nand L(A;[1..i1],..., Aq[1..ig]) = A,

Pr[Dysa > 2] < Z Pr[L(Ai[1..i1],..., Aa[1..iq]) > Al

0<i| ..... id<n,
it +ig=n

Let I be the number of summands on the right-hand side. Note that I = (;:}) since it counts the

number of ways of partitioning n into d positive summands. It follows that there exist positive
J1s- -+, jq summing to n such that

) . 1 d 1
Pr[L(A;[1.ji],..., Aa[L.jal) > 4] > I<1 I3 1) bR

Note that the distribution of the random variable L(A;[1..ji],...,4[1..j;]) is the same as the
distribution of L(A;[1..jxn)], ..., Aa[l..jya]) for any permutation 7 : [d] — [d]. It is also easy to
see that the distribution of L(A;[a;..bi],..., A4laq..ba]) and L(A;[a}..b}],..., Agla)..b}]) is the
same when b, — a,, = b}, — a), forall 1 <m < d.
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Now, let 7 be the cyclic permutation (12 - - d), and for 0 < m < d — 1 let &,, denote the event

m—1

m m—1 m
L<A1 [Z 1. jrl(l)},...,Ad [Z o+ 1.3 jf,(d)D >
1=0 1=0 1=0 1=0

In particular, & is the event {L(A[1..j1],...,Aq[1..js]) > 4} whose probability was bounded
above. Note that the events &,...,E;—1 are equiprobable. Since each of the &,s depends on
a different set of characters, they are independent. Moreover, if &,...,&;—1 simultaneously
occur, then by concatenating the common subsequences of each block of characters we get that
L(A4,...,Ay) > dJ. Hence,

(d“) < HPr ] = Pr[€0,&1,...,E11] < Pr[Lygq > d2]. 3.1)

Applying Azuma’s inequality again, we have

21n(I(d + 1 1 d
Pr{ nod = ELyoq 41/ " n(z( + ))} < <I(d+1))' 32)

Combining (3.1) and (3.2) and recalling that 2 = ED,,; 4 — y/n/2, we obtain

2
Pr [Ln,,d EL,,q+ ”‘HH(IZM} <Pr {L,w,d > dED, ;. — d\/ﬂ.

Hence,

2
R ARy

Since 2 <d < n, (d+ 1) =(d+ 1)}~ 1) n?, and so
[
dEDn,a,d < ELn,a,d + d\/z + w < ELn,o',d + d3/2 V 2n ln(n) O

Proof of Theorem 3.1. Lemmas 3.2 and 3.3 already give the bounds on EL, ;4. To complete the
proof we need to show that lim,,_,., ED,; 4/n exists and that its value is y,4/d. By Lemmas 3.2
and 3.3 we have

1
ELysq < EDpioq < dELndad+d1/2 2nd In(nd).

Dividing by n, it follows that lim,_,, ED,454/1 = 74 4. Furthermore, ED,, ; 4 is non decreasing
in n, so

ln/d]  EDawaoi _ EDuoa _ [n/d]  EDipnjarod
n/d n/d] = n/d T n/d [n/d]

Since both the left-hand side and right-hand side terms above converge to y, 4 when n — oo, the
middle term also converges to that value, and so lim,_,.. ED,,; 4/n = y,4/d as claimed. ]
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3.2. Longest common subsequence of two words over a binary alphabet
In this section we describe Lueker’s [12] approach for finding a lower bound on y;, when d =
o = 2. Later on, we will generalize Lueker’s technique to the cases of arbitrary d and o.

Let X and X, be two random sequences chosen from U, », i.e., strings of length n such that all
their characters are chosen uniformly and independently from the binary alphabet {0, 1}. Lueker
defines, for any two strings 4 and B over the binary alphabet, the quantity

Wa(4, B) = E[ max L(AX, [1..i],BX2[1..j])]
i+j=n

Informally, W, (A, B) represents the expected length of an LCS of two strings with prefixes 4
and B, respectively, and suffixes formed by uniformly and independently choosing n characters
in {0, 1}. It is easy to see that W,(A4, B) behaves as D, 5, as n — co. Hence, applying Alexander’s
d = 2 version of Theorem 3.1, Lueker observes that, for all 4, B € {O, 1}*,

= lim W2n(AaB)
722 n—o0 n ’

A natural idea is to approximate y2, by W,(A, B)/n. Fix the length [ € N of the strings A
and B and denote by w, the 2?/-dimensional vector whose coordinates correspond to the values
W,(A, B) when A and B vary over all binary sequences of length [. For example, when [ = 2,
the vector w, has the following form:

w,[00,00] W,(00, 00)
wa[00,01] W,(00,01)
we=| i =]
wa[l1,10] W,(11,10)
wall1,11] W,(11,11)

Lueker established a lower bound for each component of w, as a function of the components
of w,_; and w,_,. To reproduce that lower bound, we need to introduce some more notation. If
A = A[1]A[2] - - - A[l] is a sequence of length [ > 2, let h(A) denote the head of A, i.e., its first
character, and let T'(A4) denote its tail, i.e., the substring obtained from A by removing its head.
In other words, h(A) = A[1] and T(A4) = A[2..I]. It is easy to see that the following relations
among wy,w,—1 and w,_; hold.

e If h(A) = h(B), then

1 ,
WA B> 145 3 walT(A) TB))
(c,c')E{0,1}2

o If h(A) # h(B), then

wa[4, B] > 1max{ > Wt [T(A)e, Bl > wai[A4, T(B)c]}.

2
ce{0,1} ce{0,1}

Using the previous inequalities one can define a function F : R?" x R?" — R?" such that for
all n > 2, w, > F(wy—1, wy—2). Furthermore, the function F can be decomposed in two sim-
pler functions F— and F. such that if II_ and II. are the projections of the vectors onto the
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coordinates corresponding to the pairs of words with the same and different heads respectively,
then

H:(Wn) = F:(Wn—2) and H#(Wn) P F#(Wn—l)-

It might be useful to see some examples of these transformations. For instance, to obtain a lower
bound of w,[001,011], one considers

w,[001,011] > F_(w,_,)[001,011]
=1+ %(wn_2 [010,110] + w,_»[010, 111] 4 w,,_»[011, 110] + w,_[011, 111]).
And to bound w,, [001, 111],
w,[001, 111] > Fx(w,_1)[001,111]

1
= 5 max{w,1[010, 111] 4w, 011, 111, w,-1[001, 110] + w, 1 [001, 111]}.

3.3. Longest common subsequence of d words over general alphabets
In this section we extend Lueker’s lower bound arguments as described in the previous section
to the general case of d strings whose characters are uniformly and independently chosen over
an alphabet of size o.

Let X1,..., X, be a collection of d independent random strings chosen according to U, , and
let Ay,..., Ay be a collection of d finite sequences over the same alphabet. We now consider

Wa(Ay,..., A) = E Llﬂi‘?jzn L(AX [t AXa[Lid)]

This quantity represents the expected length of an LCS of d words with prefixes Ay,..., A4,
respectively, and d suffixes whose lengths sum up to n and whose characters are uniformly and
independently chosen in £ = {1,...,0}. Since W,(A4y,...,A4) and D, ,4 behave similarly as
n — oo, Theorem 3.1 implies that, for all 44,..., Ay,
. Whi(AL,..., A
V(l‘,d = llm M.

n—0o0 n

(3.3)

Just as in the d = 2 case, fix | € N and let w, denote the ¢'?-dimensional vector whose

coordinates are all the values of Wy(A41,...,44) when Ay,..., A, vary over all sequences in !
We again seek a lower bound for w, as a function of vectors w,,, with m < n.
It is easy to see that if all the strings A4y, ..., A4 start with the same character, then

walAs,. ., Ad > 1+ Flﬂ 3 WasalT(ADe(1), T(A2)e(2)..., T(Ag)e(d)].
cexd

Informally, the previous inequality asserts that if all the words start with the same character then
the expected length of the LCS of all of them, allowing n random extra characters, is at least 1
(the first character) plus the average of the expected length of the LCS of the words obtained by
eliminating the first character and ‘borrowing’ d of the n random characters.

If not all the words start with the same character, we can still find a lower bound, but to write
it down we need to introduce some additional notation. For any two sets X and Y, we follow the
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standard convention of denoting by Y X the set of all mappings from X to Y. Also, for a d-tuple
of strings A = (Ay,...,A4y) and z € X, we let N.(A) denote the set of indices j € {1,...,d} such
that A;’s head is not equal to z, i.e., to the set of string indices not starting with z. For a mapping
¢ : N,(A) = Z, we define 7,(A, c) as the the d-tuple of strings obtained from A by replacing each
string A4; that does not start with z by the sequence obtained by eliminating its first character and
adding the character c(i) at its tail. Formally, (4, c) = (4},..., A}), where

o (4 if h(A4;) = z,
" T(A)el), if h(A;) # 2.

A crucial fact is that for a d-tuple of strings A, if its coordinates do not all start with the same
character, then

1
walA] 2 MAX SN

Z Wa—N.(4) [T2(4, €)].

cexN:()

Informally, each term over which the maximum is taken corresponds to the expected length of
the LCS of the strings one would obtain by disregarding all first characters of sequences not
starting with z, and concatenating to the tail of these strings an element randomly chosen over
the alphabet X.

For the sake of illustration, consider the following example of the derived inequalities when
o=2andd = 4:

1
wn[001,011,101,001]>max{2 S W 1[001,011,01¢(3),001],
ce{0,1}3

DS wn_3[01c<1),11c<2),101,010(4)]},

ce{0,1}124)

In the previous example only the third string over which w,, is evaluated does not start with 0.
Hence, the first term over which the maximum is taken is the average of the values of w,_;
evaluated at the two possible 4-tuples of strings obtained from 4 by removing the initial 1 from
the third string and adding a O or 1 final character. On the other hand, w, is evaluated at three
strings that do not start with a 1. Hence, the second term over which the maximum is taken is the
average of the values of w,_3 over all the 4-tuples of strings obtained from A by removing all the
initial Os and adding a O or 1 final character to those same strings.

Expressing all the derived inequalities in vector form we have that there is a function F :

Id

(R7) — R such that
wy = F(anls Wp—2,..., and)- (34)

For the ensuing discussion it will be convenient to rewrite F in an alternative way. For eachz € X
we define the linear transformation F, : (R"’d)d — R such that

1 .
SN o) [t2(4,0)], if [N.(4)] # 0,
2] e;, 3.5)

0, if [N (4)] = 0.
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Then, if we let b € R?" be the vector with value 1 in the coordinates associated to d-tuples of
strings of length [ starting all with the same character and 0O in the rest of the coordinates, F can
be expressed as

F(vy,...,vq) =b+maszZ(vl,...,vd). (3.6)
zZE

3.4. Finding a lower bound for 7, 4

In the preceding section we established that for any d-tuple of strings A = (Ay, ..., Ay4), each of
length [, we have y,4 = lim,_ wya[A]/n. To lower-bound this latter quantity one is tempted
to try the following approach: (1) for a fixed word length [, compute explicitly wy, ..., ws_1, and
(2) define a new sequence of vectors (v,)nen as v; = w; for 0 < i < d — 1, and then iteratively
define v, = F(vy—1,0p—2,...,0n—q), for all n > d. Since F is monotone and by (3.4), we have that
v, < w, for every n € N. It is natural to fix an arbitrary d-tuple of strings A = (A44,...,Ay) and
estimate a lower bound for y, 4 by lim,_,, v,q[A4]/n for large enough n.

Unfortunately, for the approach discussed in the previous paragraph to work one would need
to determine for which values of n the quantity v,4[A4]/n is effectively a lower bound for y, 4.
Indeed, v,4[A]/n does not even need to be increasing and w,s[A] /n equals y, 4 only in the limit
when n — co. We will pursue a different approach that relies on the next lemma which is a
generalization of an observation by Lueker [12] for the d = ¢ = 2 case.

Lemma 3.4. Let F : (R”M ) — R bea transformation that satisfies the following properties.

(1) Monotonicity. If the inequality (vi,v2,...,05) < (Wi, Wa,. .., Wy) holds component-wise, then
the inequality F (v, v2,...,05) < F(Wi, Wa,...,wq) also holds component-wise.

(2) Translation invariance. Let 1 be the vector of ones in R and 1 = (1,...,1) be the vector
of ones in (R”ld)d. Then, for any r € R and for all (vy,v,...,04) € (]R"ld)d,

f((vl,vz,...,vd)—i—ri) = F(vy,...,09) +rl.

(3) Feasibility. There exists a feasible triplet for F, i.e., a (u,r, &) with u € R"M, reR, and
Y. p
0 < & < r such that

Fu+d—Drl,...,u+2rLu+rlLu) > u+ (dr —e)l.

. 1d
Then, for any sequence (v,)en of vectors in R such that v, > F(vy—1,...,0n—q) for alln > d,
. . 1d
there exists a vector uy in R°" such that, for all n > 0,

v, = ug +n(r — ée)l. (3.7

Proof. Let F be a transformation satisfying the hypothesis of the lemma and (u, r, ¢) a feasible
triplet for F. Let (v,)nen be a sequence of vectors as in the lemma’s statement and let « € R be
large enough so that, forall j < d—1,

vj+ol > u+ j(r—e)l.

For example, set « to be the largest component of the vector maxog j<a—1(u + j(r—e)1 —v;).



274
275

276
277

278

279

280
281
282

283
284
285
286
287
288
289
290

291
292
293
294
295

296
297

On a Speculated Relation Between Chvdtal-Sankoff Constants of Several Sequences 11

Note that ug = u — o1 satisfies (3.7) for all n < d — 1. We will prove by induction that this
holds for all n € N. Suppose that (3.7) holds up to n — 1. Using the inductive hypothesis we have

(Un—15---,Vn—q)
= (ug + (n—=1)(r—e)l,...,ug + (n—j)(r—e)l,...,uy + (n—d)(r—e)1)
=+ d—1rl,...,u+ (d—jr1 + (j—1)el,...,u + (d—1)el)
+ (n—d)(r—e) — (d—1)e — )1
> (u+ (d—=rl,...,u+ (d—j)rl,...,u) + (n—d)(r—e) — (d—1)e — 2)1.

Evaluating F at the terms on both sides of the previous inequality we get, by monotonicity and
translation invariance, that

vy 2 f(vn—lw . '9vi’l—d)
> Flu+ d-rl,...,u+ (d—j)rl,...,u) + ((n—d)(r—e) — (d—1)e — o2)1.

Since (u, r, ¢) is a feasible triplet, it follows that

vy = u+ (dr — &)l + (n—d)(r—e) — (d—1)e — a)1
=u—ol +n(r—el =uy+n(r—el.
This completes the proof. |

From F’s definition it easily follows that F is monotone and invariant under translations. If we
find a feasible triplet (u,r,¢) for F then, by Lemma 3.4, we can conclude that the sequence of
vectors (wy)nen satisfy w, = ug + n(r — €)1 for all n. It follows from (3.3) that

Yo.d = d(r - 8)'

The key point we are trying to make is that in order to establish a good lower bound for y, 4 one
only needs to exhibit a good feasible triplet, namely one such that (r — ¢) is as large as possible.

Empirically, one observes that for any set of initial vectors vy, ..., v4—1, if one makes v,14 =
F(vy14-1,...,0,) for all n € N, then the sequence (v,,),en is such that v, /n seems to converge to
a vector with all its components taking the same value. In fact, one observes that for large values
of n the vectors v, and v,41 differ essentially by a constant (independent of n) times the all ones
vector. Roughly, there exists a real value r such that v,; — v, is approximately r1 for all large
enough n. Since, by definition v,+¢ = F(0yt4—15- - -, Un+1,Un), this implies that

F(v, + (d—Drl,v, + (d=2)r1,...,v, +r1,v,) ~ v, +drl.

It follows that one possible approach to find a feasible triplet is to consider an n large enough so
that the difference between v, and v, is essentially a constant times the all ones vector. Then,
set u = v,, and define r as the maximum value such that v, — v,_; > r1 and ¢ as the minimum
possible value such that the triplet (u,r,¢) is feasible for F. The following result validates the
approach just described.

Lemma 3.5. Let F : (R"M)d — R be a monotone and translation-invariant transformation.
Letvg,...,05_1 € R and vy+qg = F(Vptd—1s---»>Uns1,Up) foralln € N. If for somer € R, ng > 1
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and ¢ > 0 we have ||vy41 — vy — 115 < &/2d for all n € {ny,...,ng+d—1}, then (v,,,r,¢) is a
feasible triplet for F.

Proof. First, observe that the monotonicity and translation invariance property of F implies
that

1F(x0, s Xa1) = F o, Va1 oo < maX_x; = yilo-
i=0,....d

Let u = v,, and note that ||v,,1; — (u + irl) |, < ie/2d < ¢/2for 0 < i < d. Hence, by definition
of Vnytds

vngta — Fu+ (d—1)rLu+ (d—2)r1,...,u +rlu)|, < &/2.
Since ||vyg+a — (u + drl)| o < &/2 it follows that
l(u+drl) — Flu+ (d—1)rlLu+ (d=2)rl,...,u+rlu)|, < &

In other words, (u, r, ¢) is a feasible triplet for F. ]

It is easy to check that F satisfies the hypothesis of Lemma 3.5. This justifies, together with
the empirical observation that v, — v, is approximately r1 for large values of n, the general
approach described in this section for finding a feasible triplet for F, and thus a lower bound
for y44. It is important to stress here that there is no need to prove the convergence of v,/n
to 71 in order to establish the lower bound y, 4 > d(r — ¢). We only need to find a feasible triplet
(u, r, €) for F. The characteristics of F, empirical observations and Lemma 3.5, efficiently lead to
such feasible triplets.

3.5. Implementation and results; new bounds

In this section we describe the procedure we implemented in order to find a feasible triplet (u,r, ¢)
for F and, as a corollary, a lower bound for y, 4. The procedure is called FEASIBLETRIPLET; it
is parametrized in terms of the number of sequences d and the alphabet X, and its pseudocode
is given in Algorithm 1. In order to implement F we rely on the characterization given by (3.5)
and (3.6). Since the F.s are linear transformations, they can be represented as matrices. This
allows for fast evaluation of the F.s, but requires a prohibitively large amount of main memory
for all but small values of ¢, [ and d. In order to optimize memory usage, we use the fact that by
distinguishing (3.5) according to the cardinality of N,(4) where A € (X')%, F, can be written as

1 1
F.(vi,...,09) = p F.1(v1)+ - s — F:.a(va),

where

> ule(A,c)], i No(A)] =,
Fz,i(Ui)[A]= ceXNz(4)
0, otherwise.

Note in particular that every F.; can be represented as a 0—1 sparse matrix.
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Algorithm 1 Procedure for computing a feasible triple for F

1: procedure FEASIBLETRIPLET;x(/, n) > [ € N parameter, n € N iteration steps
2 fori=0,...,d —1do

3 v; <0 > Where 0 denotes the vector of zeros in R”"
4: end for

5: (u,r, &) < (vg,0,0)

6 fori=d,...,ndo

7 v — F(vi—1,0i-2,...,0i_4)

8 R« max ey (v — vi—1)[A]

9 W «—v;+dR1 — F(v; + (d—1)R1,...,v; + R1,v;)
10: E « max{0,max ¢z WI[A]}
11: if R—E > r —¢then
12: (u,r,e) « (v, R, E)
13: end if
14: end for
15: return (u,r, €)

16: end procedure

Table 1. Best-known lower bounds for y, > (in boldface).

Va2
o This work Lower bound from [2] Lower bound from [5, 8]
3 0.671697 0.63376 0.61538
4 0.599248 0.55282 0.54545
5 0.539129 0.50952 0.50615
6 0.479452 0.46695 0.47169
7 0.444577 - 0.44502
8 0.356545 - 0.42237
9 0.327935 - 0.40321
10 0.303490 - 0.38656

In our experiments we ran Algorithm 1 for different values of [ and alphabet sizes o. As one
would expect, the derived lower bounds improve as | grows. However, the memory resources
required to perform the computation also increases. Indeed, throughout the second loop of Al-
gorithm 1 we need to store d vectors of dimension ¢'?. Also, a simple analysis of the definition
of the sparse matrix F; shows that it has (‘j) o=D4(g — 1)!¢' non-zero entries. It follows that a
sparse matrix representation of F, has roughly ¢//(¢ — 1)? non-zero entries. Hence, the necessary
computations are feasible only for small values of ¢, | and d, unless additional features of the
matrices involved are taken advantage of in order to optimize memory usage.

Table 1 summarizes the lower bounds we obtain for y,, and contrasts them with previously
derived ones. To the best of our knowledge, for the d = 2 case and alphabet sizes 3, 4, 5, and 6,
this work provides the currently best-known lower bounds for y, . It might be worth mentioning
that, as can be seen in that table, the bound of [5, 8] is better than the bound of the more recent
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Table 2. Lower bounds for y, 4.

Alphabet size ¢ = 2 Alphabet size ¢ = 5
d Lsuchthaty,4 > L  Parameter [ d Lsuchthatysy > L  Parameter !
2 0.781281 10 2 0.539129 4
3 0.704473 7 3 0.356717 2
4 0.661274 5 4 0.289398 1
5 0.636022 4 5 0.273884 1
6 0.617761 3
7 0.602493 2 Alphabet size 0 = 6
g 822‘7‘8{1)8 5 d Lsuchthatygy > L  Parameter !
10 0.570155 1 2 0.479452 3
11 0.570155 1 3 0.309424 2
12 0.563566 1 4 0.245283 1
13 0.563566 1
14 0.558494 1 Alphabet size ¢ = 7
Alphabet size ¢ = 3 d  Lsuchthaty;q > L  Parameter !
d  Lsuchthaty;g > L  Parameter 2 0.444577 3
3 0.234567 1
2 0.671697 6 4 0.212786 1
3 0.556649 4
4 0.498525 3 Alphabet size ¢ = 8
5 0.461402 2
6 0.421436 1 d Lsuchthatygy > L  Parameter !
7 0.413611 1 ) 0356545 )
8 0.405539 ! 3 0.207547 1
Alphabet size 0 = 4 Alphabet size ¢ = 9
d  Lsuchthatysg > L  Parameter !/ d Lsuchthatygy > L  Parameter |
2 0.599248 3 2 0.327935 2
3 0.457311 3 3 0.186104 1
4 0.389008 2
5 0.335517 1 Alphabet size ¢ = 10
6 0.324014 1
d Lsuchthatygy > L  Parameter/
2 0.303490 2
3 0.168674 1

work of [2] for alphabet size 6, and that for bigger alphabet sizes, the bound of [5, 8] is still better
than ours.

The best-known lower bound for 7y, is still that established by Lueker [12]. Table 2 lists the
distinct choices of ¢ and d for which we could execute Algorithm 1 and indicates the value of
the parameter / giving rise to the reported lower bound.

3.6. Disproving Steele’s y,, = y§’3 speculation
We showed in Section 2 that y, 4 > yi}‘ for all d > 5. We now establish that this is also the case
when d = 3 and d = 4. Recall that Lueker [12] proved that y,, < U for U = 0.826280. From
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Table 2 we see that for d = 3 and d = 4, the indicated lower bound for y,, is strictly greater
than U%"!, and is therefore also strictly greater than yi}l. This implies that y, 4 > yi}l ford =4
and d = 3 as claimed. Together with the results of Section 2 this establishes that y, 4 > %151 for
alld > 3.

4. Final comments

As already mentioned at the start of this paper, Steele [15] pointed out that it would be of interest
to find relations between the values of the y, 48, especially between 7, and y,3. We think it
would be very interesting if such a relation would exist. In fact, it might shed some light upon
the longstanding open problem of determining the exact value of the Chvatal-Sankoff constant.

Lacking a relation among the y, 4s it would still be interesting to relate these terms to some
other constants that arise in connection with other combinatorial problems. A step in this direc-
tion was taken by Kiwi, Loebl and Matousek [10], who showed that \/Eymz — ¢, when 0 — o0,
where c¢; is a constant that turns up in the study of the Longest Increasing Sequence (LIS) problem
(also known as Ulam’s problem). Specifically, ¢, is the limit to which the expected length of a
LIS of a randomly chosen permutation of {1,...,n} converges when normalized by \/ﬁ Logan
and Shepp [11] and Vershik and Kerov [18] showed that ¢; = 2. Consider now the following
experiment. Choose 1 points in a unit d-dimensional cube [0, 1]¢ and let Hy(n) be the random
variable corresponding to the length of a longest chain (for the standard partial order in R?) of
the n chosen points. Bollobds and Winkler [3] proved that there are constants ¢5, 5, ... such that
¢ < e, limy_,., ) = e and lim,_,,, Hy(n)/n'/¢ = ¢,. By labelling a set S of points in [0, 1] in
increasing order of their x-coordinate and reading the labels in the order of their y-coordinates
one can associate a permutation 7 to the set S. It is easy to see that a chain of points in § is
in one-to-one correspondence to an increasing sequence of 7. Hence, it follows that ¢ = c;.
Soto [14] extended the results of [10] and showed that ¢!~/ dya,d — ¢, when ¢ — oo. We think
that any similar type of result, or even a reasonable conjecture, that would hold for fixed ¢ and d
would also be quite interesting.
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