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Abstract

We consider an implicit iterative method in convex programming which combines inexact
variants of the proximal point algorithm, with parametric penalty functions. We investigate a
multiplier sequence which is explicitly computed in terms of the primal sequence generated by the
iterative method, providing some conditions on the parameters in order to ensure convergence
towards a particular dual optimal solution.
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1 Introduction

Let us consider the mathematical programming problem

(P ) min {f0(x) | fi(x) ≤ 0 ∀ i = 1, . . . ,m}

where fi : R
d → R is convex and differentiable for every i ∈ {0, . . . ,m}. We assume that the

optimal solution set S(P ) is nonempty and bounded. In order to solve (P ) approximately, we take

fr(x) := f0(x) + r

m
∑

i=1

θ(fi(x)/r),

where r > 0 is a real parameter and the penalty function θ(·) satisfies the following conditions:

• θ : ] −∞, κ[→ R is strictly convex and smooth, where κ ≥ 0,

• θ′(u) > 0, θ′(u) → 0 as u → −∞ and θ′(u) → +∞ as u ր κ.

For instance, let us take the exponential penalty θ1(u) = exp(u) with κ = +∞, or the log-barrier
θ2(u) = − ln(−u) and the inverse barrier θ3(u) = −1/u both with κ = 0. When κ = 0 we assume
that the standard Slater condition holds:

∃x0 ∈ R
d, ∀i ∈ {1, . . . ,m}, fi(x0) < 0. (1)
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de Chile, Av. Blanco Encalada 2120, Santiago, Chile.

1



Notice that fr(·) is convex and differentiable. In addition, letting r → 0+ for a given x ∈ R
d we get

fr(x) → f0(x) when fi(x) ≤ 0 for all i ∈ {1, . . . ,m}, otherwise fr(x) → +∞. Under fairly general
conditions, for each r > 0, there exists a unique optimal solution x(r) for the penalized problem

(Pr) min
x∈Rd

fr(x).

Moreover, x(r) converges to some xθ ∈ S(P ) as r → 0+. For further details on the asymptotic
analysis of such primal optimal paths, the reader is referred to [7, 12, 14, 15].

In practice, the exact computation of x(r) is replaced with inexact iterative schemes for finding
an approximation xk of x(rk), for some sequence (rk) with rk > 0 and rk → 0 as k → ∞. Such
“path-following” procedures may be quite expensive in computational terms if we want to ensure
that xk be close enough to x(rk), as this may degrade the numerical performance of the algorithm.
Since the goal is not (Prk

) but (P ), an alternative approach consists in obtaining xk by performing
a prescribed number of iterations of an optimization method applied to frk

, and then update the
penalty parameter to rk+1 < rk.

In this paper, we focus on a special class of iterative methods for solving (P ), in which the
proximal point algorithm is coupled with the penalty function approach. More precisely, we consider
the sequences (xk)k generated by the following inexact implicit iterative scheme: given the current
iterate xk−1, a step-size hk > 0 and a tolerance parameter εk ≥ 0, we find xk and gk such that

xk = xk−1 − hkg
k + ηk, gk ∈ ∂εk

frk
(xk + ek), (Penalty-PPA)

for some errors ek, ηk ∈ R
d which are intended to be small. Here ∂εfr(x) stands for the approximate

ε-subdifferential of fr at x. When rk → 0, and under appropriate conditions, (Penalty-PPA)
generates sequences (xk)k such that xk → x∞ as k → +∞ for some x∞ ∈ S(P ); it may happen
that x∞ 6= xθ in the case of multiple optimal solutions. See [4, 5, 13, 15] for results in this
direction. A great effort has been devoted to relax the conditions on (rk)k in order to ensure primal
convergence. This is motivated by the practical implementation of some algorithms where the
penalty parameters are updated by an adaptable feedback rule depending on the current iterate;
an idea which may be useful to accelerate the convergence of the algorithm by avoiding numerical
instabilities.

Following previous works in the linear case [5, 15] (see also §3), we associate with (xk) a multiplier
sequence (λk) ⊂ R

m
++ explicitly given by

λk
i := θ′

[

fi(x
k + ek)/rk

]

, i = 1, ...,m. (2)

The question is under which conditions, especially on the parameters of the algorithm, we can ensure
the convergence of (λk) to a dual optimal solution. Since we already know that xk → x∞ ∈ S(P )
as k → ∞, we deduce that λk

i → 0 for any i such that fi(x
∞) < 0. The delicate problem is indeed

the convergence for i ∈ I∞ := {i | fi(x
∞) = 0}.

Under compactness of the dual optimal set, it is possible to verify that (λk)k is bounded and
every cluster point is indeed a dual optimal solution. It is apparent that convergence towards a
unique dual optimal solution is much harder to ensure. In this paper we give a general convergence
result under minimal assumptions on the penalty parameter sequence (rk)k.

Let us mention that the motivation for studying the dual convergence for a purely primal
method as (Penalty-PPA) is two-folded. On the one hand, dual solutions are interesting on their
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own: they are useful for sensitivity analysis, and in some applications they have an actual modelling
interpretation. On the other hand, such a dual convergence result provides a theoretical basis for
the following stopping rule for (Penalty-PPA): at each iteration we find xk, compute (2) and verify
whether the pair (xk, λk) satisfies a relaxed version of the Karush-Kuhn-Tucker conditions. If the
answer is positive, then STOP. In this paper we illustrate some of these aspects through simple
numerical illustrations.

The paper is organized as follows: in section §2, we describe some of the algorithms which
can be set in the framework of (Penalty-PPA), and give the basic assumptions we make on the
behaviour of the paramaters and the generated sequences (xk)k and (gk)k. Then, in section §3,
we show how to associate a dual sequence (λk)k to those generated by (Penalty-PPA), under some
additional hypotheses. In section §4, we state and prove our main result, that is the convergence of
the dual sequence (λk)k to the θ∗−center of the dual problem associated to (P ). In particular, we
give a simple proof and make some comments in the linear case. Finally, we give simple numerical
illustrations of our results in section §5, where we also discuss briefly on an effective implementation
of (Penalty-PPA).

2 Unified framework for penalty proximal point algorithms

The implicit iterative scheme given by (Penalty-PPA) can be viewed as a generic algorithm, which
unifies several methods that have been considered in the literature. Indeed, in the specific case
where we impose ηk = ek = 0, then (Penalty-PPA) amounts to

xk = xk−1 − hkg
k, gk ∈ ∂εk

frk
(xk). (3)

This is exactly the method whose primal convergence is studied in [13] under some hypotheses,
which imply in particular that rk → 0 together with the summability condition

∑

εkhk < +∞. (4)

See also [8, 21, 22]. Notice that if in addition we require that εk = 0, then (3) corresponds to the
equation

∇frk
(xk) +

1

hk
(xk − xk−1) = 0, (5)

and, by convexity, this means that xk must solve the auxiliary unconstrained problem

min
x∈Rd

{

frk
(x) +

1

2hk
‖x − xk−1‖2

}

.

When εk = 0, it is natural to relax (5) by introducing an error criterion of the type

‖∇frk
(xk) +

1

hk
(xk − xk−1)‖ ≤ δk

for a given tolerance δk > 0, or equivalently we seek xk such that

xk = xk−1 − hk∇frk
(xk) + ηk,
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for any ηk satisfying
‖ηk‖ ≤ δkhk. (6)

Of course, the last algorithm is a specialization of (Penalty-PPA) with εk = 0 and ek = 0. More
generally, for εk > 0 the following scheme can be considered

xk = xk−1 − hkg
k + ηk, gk ∈ ∂εk

frk
(xk)

where ηk is required to satisfy (6). See [5, 15] for primal convergence results under the hypothesis
∑

δkhk < +∞ so that
∑

‖ηk‖ < +∞; in particular, ηk → 0 as k → +∞.
In order to impose less stringent conditions for the errors, some variants of the proximal point

algorithm have been proposed in the literature. For instance, following [23, 26], a two-steps al-
gorithm can be can considered, where an inexact proximal iteration is first performed to find an
auxiliary point zk such that

zk = xk−1 − hkg
k + ξk, gk ∈ ∂εk

frk
(zk), (7)

for some error ξk, next the current iterate xk−1 is updated through

xk = xk−1 − βkg
k with βk = 〈gk, xk−1 − zk〉/‖gk‖2. (8)

The latter is a projection step. Indeed, (8) can be written as xk = Pkx
k−1, where Pk : R

d → R
d is the

orthogonal projection onto the hyperplane {x ∈ R
d | 〈gk, x − zk〉 = 0}. Such a hybrid projection-

proximal algorithm has the advantage to ensure primal convergence under a fixed relative error
condition, namely, the error ξk is required to satisfy

‖ξk‖ ≤ σ
√

‖zk − xk‖2 + h2
k‖gk‖2, (9)

where σ ∈ [0, 1[ is given and remains fixed for all k. See [4] for results in this direction in the case
of penalty methods.

It is not difficult to show that (7)-(9) yield a specialization of (Penalty-PPA) for certain ηk and
ek, both converging to zero as k → ∞. In fact, under fairly general conditions, as a by-product of the
convergence analysis in [4], it follows that in this case

∑

h2
k‖gk‖2 < +∞ and

∑

‖zk − xk‖2 < +∞,
hence a posteriori we have

∑ ‖ξk‖2 < +∞ and moreover we can write zk as

zk = xk + ek

for some ek with
∑ ‖ek‖2 < +∞. By (7), we have that xk satisfies (Penalty-PPA) for ηk := ξk−ek.

In a similar way, we note that (8) can be written directly as (Penalty-PPA) where βk takes the place
of hk, ηk := 0 and zk = xk +ek. In any case, for the purpose of this paper, it will be only important
to know that ηk → 0 and ek → 0. Similar considerations hold for a hybrid extragradient-proximal
method [26] where the projection step (8) is replaced with xk = xk−1 − hkg

k, and the error ξk is
required to satisfy a fixed relative error tolerance analogous to (9). The coupling of this variant
with penalty methods have been recently investigated in [11].

We finally notice that the above discussion also applies to penalty methods with two parameters
as developed in [19]. These methods are based on the same scheme as (Penalty-PPA), but including
the penalty function θ appearing in frk

replaced by βkθ, where the varying parameter βk being
increased on each iteration for which the iterate xk is not feasible. It is proved in [19] that in the
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convex case, and assuming that the Slater condition holds, the sequence (βk)k generated by the
algorithm is stationary. In this respect, our asymptotic analysis of the next sections does apply
(with (lim βk)θ replacing θ) to this type of method.

Under appropriate conditions on the data and the algorithm parameters, the iterative schemes
described by (Penalty-PPA) generate a primal sequence (xk)k whose cluster points belong to the
optimal set S(P ). From now on, we shall assume that the sequences (xk)k and (gk)k generated by
(Penalty-PPA) satisfy

xk → x∞ and gk → 0 as k → +∞ (H0)

for some x∞ ∈ S(P ). In view of all known primal convergence results (see, for instance, [4, 5, 13,
15, 19]), natural but not sufficient assumptions for (H0) to hold are the following:

rk, εk → 0 as k → +∞, (H1)

ηk, ek → 0 as k → +∞, (H2)

as well as
∃h > 0, ∀k ≥ 0, hk ≥ h. (H3)

Remark 2.1. As part of the hypotheses stated in the introduction, we do assume throughout the
paper that all the functions fi are differentiable (in fact, in view of (H0), local differentiability in
the neighbourhood of x∞ would be sufficient). With this respect, the assumption gk → 0 made in
(H0) is natural; for example, when the parametrization (rk)k is slow, this amounts to follow the
central trajectory x(r)r. Moreover, this hypothesis is compatible with (H2,H3) in the sense that
since gk → 0, we may assume that (hk)k is bounded from below by a positive constant. This is no
more valid in the non-differentiable case, as the following example shows.

Example 2.2. Consider the following problem, where the functions fi are not differentiable at x∞:

(P ) min{|x| : x ∈ R, |x| ≤ 1}.

Of course, the only solution of (P ) is x∞ = 0, but if for example one applies (Penalty-PPA) with
θ = exp and εk ≡ 0, then the assumption gk → 0 may only hold if the sequence (gk)k is stationary
with xk + ek = 0 at some iteration. We notice that in this example, it should be assumed that
hk → 0, so that, (xk)k may converge to x∞.

Thus, in this paper, we take for granted that primal convergence holds, therefore we will focus
on dual convergence.

3 Preliminaries on duality in penalty methods

3.1 Approximate multipliers

Let us introduce the dual problem associated with (P ), which is

(D) max
λ≥0

{

p(λ) := inf
x∈Rd

L(x, λ)

}
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where the Lagragian function L : R
d × R

m → R is given by

L(x, λ) := f0(x) +

m
∑

i=1

λifi(x). (10)

Since S(P ) is supposed to be nonempty and bounded, the dual optimal set S(D) is also nonempty.
The Karush-Kuhn-Tucker conditions associated with (P ), consist on the following set of equations
and inequalities:

(KKT )























∇xL(x, λ) = 0,

λi ≥ 0, fi(x) ≤ 0, for all i ∈ {1, . . . ,m},
m
∑

i=1
λifi(x) = 0.

It is well known that a pair (x̂, λ̂) ∈ R
d × R

m satifies (KKT ) if and only if x̂ and λ̂ are optimal
solutions to (P ) and (D), respectively.

Next, notice that the optimality condition for (Pr) can be written as

0 = ∇fr(x(r)) = ∇f0(x(r)) +

m
∑

i=1

λi(r)∇fi(x(r)) = ∇xL(x(r), λ(r))

where the multiplier vector λ(r) ∈ R
m
++ := {λ ∈ R

m | λi > 0, i = 1, ...,m} is defined explicitly in
terms of x(r) by

λi(r) := θ′
(

fi(x(r))

r

)

, i = 1, ...,m. (11)

Notice that λ(r) is the unique solution for the following problem:

(Dr) max
λ≥0

{

p(λ) − r
m
∑

i=1

θ∗(λi)

}

.

Here, θ∗(λ) := supu{λu − θ(u)} is the Fenchel conjugate of θ, which plays the role of a barrier
function for the positivity constraint. Indeed, for the examples mentioned in §1, we have: θ∗1(λ) =
λ log λ − λ if λ ≥ 0, θ∗1(λ) = ∞ otherwise; θ∗2(λ) = −1 − log λ and θ∗3(λ) = 1/

√
λ −

√
λ if

λ > 0, θ∗2(λ) = θ∗3(λ) = ∞ otherwise. Furthermore, the dual optimal path λ(r) converges to some
λθ ∈ S(D) as r → 0+. See, for instance, [6, 7, 15].

Similarly, we can associate with the primal sequence (xk)k obtained by iterating (Penalty-
PPA), the sequence (λk)k given by (2). Notice that for any k the vector λk is well defined because
gk ∈ ∂εk

frk
(xk + ek), so that, xk + ek is in the domain of frk

. The following result illustrates why
(λk)k may be considered as a multiplier sequence associated with the primal sequence (xk)k.

Lemma 3.1. Assume that (H0)-(H3) hold, as well as

εk

rk
→ 0 as k → +∞ (H4)

If λ̄ is a cluster point of (λk)k as k → +∞, then the pair (x∞, λ̄) satisfies (KKT).
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Proof. When εk > 0, by the Brøndsted-Rockafellar Theorem [10], there exists x̃k such that

‖xk + ek − x̃k‖ ≤ √
εk rk and ‖gk − ζk‖ ≤

√

εk

rk
, (12)

where ζk = ∇frk
(x̃k). When εk = 0, it may be set x̃k := xk + ek and ζk := gk. For i ∈ {1, . . . ,m}

and k ≥ 0, we set λ̃k
i := θ′[fi(x̃

k)/rk] and notice that

〈∇fi(x̃
k) ,

xk + ek − x̃k

rk
〉 ≤ fi(x

k + ek) − fi(x̃
k)

rk
≤ 〈∇fi(x

k + ek) ,
xk + ek − x̃k

rk
〉.

It then follows from (H4), that the sequences (λk)k and (λ̃k)k have the same asymptotic behaviour
as k → +∞. In particular, λ̄ is a cluster point of {λ̃k : k → +∞}. By definition, for all i, k we
have λ̃k

i > 0, so that, λ̄ ≥ 0. Moreover, it holds

ζk = ∇frk
(x̃k) = ∇f0(x̃

k) +

m
∑

i=1

θ′[fi(x̃
k)/rk]∇fi(x̃

k)

= ∇f0(x̃
k) +

m
∑

i=1

λ̃k
i ∇fi(x̃

k) = ∇xL(x̃k, λ̃k).

From (H0) and (H2), we then conclude that x̃k → x∞ and ζk → 0, so that, in the limit we have
that 0 = ∇xL(x∞, λ̄). It then remains to notice that

λ̄i = lim
k→+∞

θ′
[

fi(x̃
k)/rk

]

= 0

for any index i such that fi(x
∞) < 0 because rk → 0 and θ′(u) → 0 as u → −∞. As a consequence,

the complementarity holds:
m
∑

i=1

λ̄ifi(x
∞) = 0,

which concludes the proof.

3.2 Boundedness and convergence to the dual optimal set

From now on, we assume that

S(D) is nonempty and bounded. (H5)

A sufficient condition for the latter is the Slater condition (1), which we assume in the case where
θ is such that κ = 0.

Proposition 3.2. Under the assumptions (H0)-(H5), the dual sequence (λk)k is bounded and, even
more, dist(λk, S(D)) → 0 as k → +∞.

Proof. As in the proof of Lemma 3.1, when εk > 0, it is more natural to study the sequence
(λ̃k)k associated with (x̃k)k obtained via the Brøndsted-Rockafellar Theorem, which has the same
asymptotic behaviour as (λk)k. If εk = 0, then we simply identify (λ̃k)k with (λk)k.
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Next, recall from the proof of Lemma 3.1 that

ζk = ∇f0(x̃
k) +

m
∑

i=1

λ̃k
i ∇fi(x̃

k)

with x̃k → x∞ and ζk → 0. If the sequence (λ̃k)k were unbounded, then dividing by
∑m

i=1 λ̃k
i , letting

k → +∞ and taking a subsequence if necessary, we would deduce that there exist α1, ..., αm ≥ 0
with

∑m
i=1 αi = 1 such that

0 =

m
∑

i=1

αi∇fi(x
∞).

As a result of λ̃k
i → 0 for all i such that fi(x

∞) < 0, we would have αi = 0 for any of such i’s. This
implies that S(D) = S(D) + R · α, for some α 6= 0 ∈ R

m, contradicting the boundedness of S(D).
As a consequence, (λ̃k)k is bounded, and it results from Lemma 3.1 that any of its cluster points

is a Lagrange multiplier for x∞, which implies that dist(λ̃k, S(D)) → 0.

3.3 The θ
∗-center

In the next section, we will study sufficient conditions ensuring that (λk)k converges to a particular
solution of (D), which, in fact will be the so-called θ∗-center of the dual optimal set S(D). In this
section, we introduce this particular dual solution and give some of its relevant properties for our
asymptotic analysis.

We begin by setting
I := {i | ∃µ ∈ S(D), µi > 0} .

Notice that since S(D) is convex, there exists µ ∈ S(D) such that µi > 0 for any i ∈ I.

Definition 3.3. The θ∗-center of S(D) is the unique λθ ∈ S(D) such that

∑

i∈I

θ∗(λθ
i ) = min

µ∈S(D)

{

∑

i∈I

θ∗(µi)

}

.

The existence and uniqueness of the θ∗-center follow from (H5) and the hypotheses made on θ.
The θ∗-center was introduced and identified as the natural candidate for the asymptotic limit of
the dual path associated with penalty methods in [6, 7, 15, 18].

The two following results are at the root of the convergence analysis of section §4.

Lemma 3.4. Assume that λ ∈ S(D) is such that

∀i ∈ I, λi = θ′(〈∇fi(x
∞), v〉)

for some v ∈ R
d. Then λ = λθ, i.e. λ is the θ∗-center of S(D).

Proof. Since λ and λθ both belong to S(D), and recalling that λi = λθ
i = 0 for any i ∈ {1, . . . ,m}\I,

we get
∑

i∈I

λi∇fi(x
∞) = −∇f0(x

∞) =
∑

i∈I

λθ
i∇fi(x

∞).
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Next, we compute

∑

i∈I

θ∗(λθ
i ) − θ∗(λi) ≥

∑

i∈I

θ∗′(λi)(λ
θ
i − λi) =

∑

i∈I

〈∇fi(x
∞), v〉(λθ

i − λi)

= 〈
∑

i∈I

λθ
i∇fi(x

∞) −
∑

i∈I

λi∇fi(x
∞) , v〉 = 0,

where the first inequality is by convexity of θ∗, and then we have used θ∗′ = θ′−1. This implies
that λ minimizes µ 7→∑

i∈I θ∗(µi) over S(D). By uniqueness, we deduce that λ = λθ.

Lemma 3.5. Let us consider Ψ: R
d → R ∪ {+∞} defined by

Ψ(v) := 〈∇f0(x
∞), v〉 +

∑

i∈I

θ(〈∇fi(x
∞), v〉). (13)

If F := Span{∇fi(x
∞) | i ∈ I}, then the restriction of Ψ to F is coercive, strictly convex and has

a unique minimizer v∞ on F. Moreover, we have

∀i ∈ I, λθ
i = θ(〈∇fi(x

∞), v∞〉). (14)

Proof. For v ∈ F, the value of the recession function Ψ∞ of Ψ at v is given by

Ψ∞(v) = 〈∇f0(x
∞), v〉 +

∑

i∈I

θ∞(〈∇fi(x
∞), v〉)

=
∑

i∈I

[

θ∞(〈∇fi(x
∞), v〉) − λθ

i 〈∇fi(x
∞), v〉

]

where we used λθ ∈ S(D). The hypotheses made on θ yield that θ∞(s) = 0 whenever s ≤ 0 and
θ∞(s) = +∞, whenever s > 0. Since λθ

i > 0 for any i ∈ I, it then follows that Ψ∞(v) ∈ ]0,+∞] for
any v ∈ F \ {0}. The strict convexity of Ψ on F is inherited from that of θ, besides the existence
and uniqueness of the minimizer v∞ follows directly.

The optimality condition for the unique minimizer v∞ of Ψ over F reads

−∇f0(x
∞) =

∑

i∈I

θ′(〈∇fi(x
∞), v∞〉)∇fi(x

∞).

As a consequence, the vector λ ∈ R
m with coordinates λi := θ′(〈∇fi(x

∞), v∞〉) for i ∈ I and λi = 0
otherwise, belongs to S(D). Therefore, (14) follows from Lemma 3.4.

4 Convergence to the θ
∗-center

4.1 The main convergence result

By virtue of the caracterization of the θ∗-center given in Lemma 3.4, as well as, the notions intro-
duced in Lemma 3.5, we are now in position to state our main convergence result. From now on,
ProjF(·) denotes the usual projection on the vector subspace F defined in Lemma 3.5.
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Theorem 4.1. Let (H0)-(H5) hold, and assume that ( rk

rk−1
)k≥1 is a bounded sequence. Then, the

dual sequence (λk)k converges to the θ∗-center λθ, as k → +∞. Moreover, we also have

ProjF(wk) → v∞ as k → +∞ (15)

where wk :=
(xk + ek) − x∞

rk
, and v∞ is the unique optimal minimizer of Ψ over F.

The above convergence result generalizes that of [5, 15], which was devoted to the case where
all the functions fi were assumed to be affine (we refer to the following subsection §4.2 for more
comments on this issue); we only require that the functions fi be convex and (locally) differentiable
around the limit point x∞.

We notice that Theorem 4.1 in particular yields the following asymptotic behaviour for (λk)k

∀i ∈ I, λk
i = θ′

[

fi(x
∞ + rk wk)

rk

]

→ λθ
i = θ′(〈∇fi(x

∞), v∞〉),

as well as the asymptotic expansion

ProjF(xk + ek) = ProjF(x∞) + rkv
∞ + o(rk). (16)

Remark 4.2. As noted in Remark 2.1, the differentiability assumption on the functions fi is linked
with the hypotheses (H0) (for the part gk → 0) and (H3), which appear to be necessary in our
convergence analysis. On the other hand, our proof of Theorem 4.1 mainly relies on obtaining the
asymptotic expansion (16). With this in mind, the differentiability assumption on the functions fi

is also quite natural for this first order expansion. As a consequence, relaxing this hypothesis may
involve quite a different approach.

One of the main difficulties of the proof of Theorem 4.1, which we postpone to §4.3, is that

the sequence (wk) = ( (xk+ek)−x∞

rk
) may be unbounded in R

d when strict complementarity does not
hold. The following example shows this fact and also illustrates why the asymptotic expansion (16)
only holds in F.

Example 4.3. Consider the following simple example in dimension 2:

(Pex) min
{

x1 : x2
1 + (x2 − 1)2 ≤ 1, −2x1 ≤ 2 x2 − x1 ≤ 2

}

that is

f0(x) = x1; f1(x) = x2
1 + (x2 − 1)2 − 1; f2(x) = −2x1 − 2 and f3(x) = x2 − x1 − 2.

Then, S(Pex) = {x∞} with x∞ := (−1, 1), S(Dex) = {(t, 1
2 − t, 0) : t ∈ [0, 1

2 ]} so that, I = {1, 2}
and F = Span(∇f1(x

∞),∇f2(x
∞)) = R × {0}. Take θ = exp and let (xk)k be generated by

(Penalty-PPA). Under the hypotheses of Theorem 4.1, we infer that the associated dual path (λk)k
converges to the θ∗-center λθ given by

λθ := argmin {θ∗(λ1) + θ∗(λ2) : λ ∈ S(Dex)} =

(

1

4
,
1

4
, 0

)

10



while ProjF(wk) converges to v∞ := (sθ, 0), where

sθ := argmin {s + 2 θ(−2 s) : s ∈ R} = ln(2).

This implies that

wk
1 =

xk
1 + ek

1 − x∞
1

rk
=

xk
1 + ek

1 + 1

rk
→ ln(2) as k → +∞.

On the other hand, since the Lagrange multiplier for f3 is always 0, we infer that λk
3 = θ′[f3(x

k +
ek)/rk] → 0, that is

f3(x
k + ek)

rk
= wk

2 − wk
1 → −∞ as k → +∞.

Since (wk
1 )k converges, we conclude that wk

2 → −∞. See §5.2 for a numerical illustration of that
example.

The rest of the section is devoted to the proof of Theorem 4.1. For the reader’s convenience,
we shall first detail the proof in the linear case, where its technique appears more clearly. Finally,
we shall turn to the proof in the general case.

4.2 The linear case

In this section, we consider the case where all the functions fi are assumed to be affine, so that,
(P ) is the following standard linear programming problem

(P ) min
x∈Rd

{〈a0, x〉 : ∀i ∈ {1, . . . m}, 〈ai, x〉 ≤ bi} .

We consider a sequence (xk)k generated by (Penalty-PPA), then the associated dual path (λk)k is
given by

∀i ∈ {1, . . . ,m}, λk
i = θ′

[

(〈ai, x
k + ek〉 − bi)/rk

]

.

We notice that for any i ∈ I, the complementarity condition yields 〈at
i, x

∞〉 = bi, so that, we have

∀i ∈ I, λk
i = θ′

[

〈ai, w
k〉
]

(17)

where wk :=
(xk + ek) − x∞

rk
. Furthermore, the function Ψ defined in Lemma 3.5 is given by

Ψ(v) := 〈a0, v〉 +
∑

i∈I

θ[〈ai, v〉],

and F = Span{ai : i ∈ I}. In this setting, Theorem 4.1 reads as follows.

Theorem 4.4. Let (H0)-(H5) hold, and assume that ( rk

rk−1
)k≥1 is a bounded sequence. Then, the

dual sequence (λk)k converges to the θ∗-center λθ, as k → +∞. In particular, we have

∀i ∈ I, 〈ai, w
k〉 → 〈ai, v

∞〉 (18)

where wk :=
(xk + ek) − x∞

rk
, and v∞ is the unique optimal minimizer of Ψ over F.

11



Remark 4.5. Notice that, thanks to Lemma 3.5 and (17), the property (18) is in fact equivalent
to the convergence of (λk)k to the θ∗-center λθ. The difficulty for the general nonlinear case lies
mainly in the fact that the equivalence between the convergence of (λk)k to λθ and (15), does not
hold a priori anymore.

Similar results to Theorem 4.4 about the convergence of the dual sequence (λk)k were obtained
in [5] and [15], in the setting of linear programming. More precisely, in [5] a similar dual convergence
result is proved for the particular case where θ ≡ exp(·) is the exponential penalty, and replacing
(H3) by the more general

∑

hk = +∞, together with the following additional hypotheses: (rk)k is
non-increasing, (

rk−1−rk

rk−1 hk
) is bounded, εk

hk
→ 0, and ek ≡ 0 in (H2). In [15], two dual convergence

results are proved for a wide class of penalty barrier functions. On the one hand, assuming that
the penalty θ is bounded from below, the convergence result is obtained under the same hypotheses
on the parameters as in [5]. On the other hand, allowing θ to be unbounded from below, dual
convergence is proved with the additional assumptions that εk ≡ 0 and ηk ≡ ek ≡ 0 in (H2).
Notice that in Theorem 4.4, we assume that hk is bounded away from zero, but we have proved
the convergence including the parameters ηk, ek ∈ R

d, εk ≥ 0, and for general penalty functions θ.

We shall now give a proof of Theorem 4.4, that we could in fact omit since this result is a
straightforward corollary of Theorem 4.1 for the special setting of linear programming. Nevertheless,
we believe that the fundamental arguments for the proof of Theorem 4.1 appear clearly in this
simpler setting, therefore, we propose a short proof in this case. For the sake of simplification, we
shall also restrict the proof to the case where εk ≡ 0. Let us mention as well, that our proof is
much simpler than those in [5, 15].

Proof of Theorem 4.4 with εk ≡ 0. Thanks to Proposition 3.2, we get that λk
i → 0 = λθ

i for any
i /∈ I. Thus, we shall study the convergence of the sequences (λk

i )k to λθ
i for i ∈ I. By Remark 4.5,

it is then sufficient to prove that

wkF := ProjF(wk) → v∞. (19)

We first claim that for all k it holds

1

2
‖wkF − v∞‖2 − 1

2
‖wk−1F − v∞‖2 ≤ hk

rk

[

Ψ(v∞) − Ψ(wkF) + 〈δk, wkF − v∞〉
]

(20)

with δk → 0 as k → +∞. In order to verify this, we first notice that

wk − wk−1 =
1

rk

[

(xk − xk−1) + (ek − rk

rk−1
ek−1) + (1 − rk

rk−1
)(xk−1 − x∞)

]

=
1

rk

[

xk − xk−1 + δk
1

]

where δk
1 → 0 as k → +∞. On the other hand, by definition of (Penalty-PPA), it follows that

xk − xk−1 = −hk∇frk
(xk + ek) + ηk

= −hk

(

c +
∑

i∈I

θ′[〈ai, w
k〉]ai +

∑

i/∈I

λk
i ai − ηk/hk

)

= −hk

(

∇Ψ(wkF) +
∑

i/∈I

λk
i ai − ηk/hk

)

= −hk

(

∇Ψ(wkF) + δk
2

)
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where δk
2 → 0 as k → +∞ and we used 〈ai, w

k〉 = 〈ai, w
kF〉 for all i ∈ I. Thus, we obtain

wk − wk−1 = −hk

rk

[

∇Ψ(wkF) +
δk
1

hk
+ δk

2

]

= −hk

rk

[

∇Ψ(wkF) + δk
]

(21)

where δk → 0 as k → +∞. Next, we may compute

1

2
‖wkF − v∞‖2 − 1

2
‖wk−1F − v∞‖2 = 〈wkF − wk−1F ,

wkF + wk−1F
2

− v∞〉

= 〈wkF − wk−1F , wkF − v∞〉 − 1

2
‖wkF − wk−1F ‖2

=
hk

rk
〈∇Ψ(wkF) + δk, v∞ − wkF〉 − 1

2
‖wkF − wk−1F ‖2,

from which (20) follows by the convexity of Ψ.

From the coercivity of Ψ over F (see Lemma 3.5), we also get that

∀ρ > 0, ∃γ > 0, ∀w ∈ F, ‖w − v∞‖ ≥ ρ ⇒ Ψ(w) − Ψ(v∞) ≥ γ.

Since δk → 0, we deduce from (20) that






for any ρ > 0 there exists Γ > 0 such that for k large enough:

‖wkF − v∞‖ ≥ ρ ⇒ 1

2
‖wkF − v∞‖2 − 1

2
‖wk−1F − v∞‖2 ≤ − h

rk
Γ

(22)

Since rk → 0, a classical argument yields ‖wkF − v∞‖ → 0, which proves the result.

4.3 Proof in the general case

We divide the proof in a series of steps, where Steps 1 and 4 are the analogous of (20) and (22) in
this general setting.

Step 0. Proposition 3.2 implies that λk
i → 0 for any i /∈ I, so that, we only need to study the

convergence of those coordinates of (λk)k with indices in I.
Following the proof of Lemma 3.1, we shall restrict our attention to the study of the sequences

(λ̃k)k and (w̃k)k, where

w̃k :=
x̃k − x∞

rk
and λ̃k

i := θ′
(

fi(x̃
k)

rk

)

= θ′
(

fi(x
∞ + rk w̃k) − fi(x

∞)

rk

)

in which we recall that fi(x
∞) = 0 for any i ∈ I. It follows from the convexity of the functions fi

that

∀i, ∀k, ∀y ∈ R
d, 〈∇fi(x

∞), y〉 ≤ fi(x
∞ + rk y) − fi(x

∞)

rk
≤ 〈∇fi(x

∞ + rk y), y〉. (23)

In particular, we have

∀i ∈ {0} ∪ I, ∀k, 〈∇fi(x
∞), w̃kF〉 ≤ fi(x

∞ + rk w̃k) − fi(x
∞)

rk
≤ 〈∇fi(x̃

k), w̃kFk〉 (24)
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where the sequences (w̃kF)k and (w̃kFk)k are given by

w̃kF := ProjF(w̃k) and w̃kFk := ProjFk(w̃k)

with Fk := Span{∇fi(x̃
k) | i ∈ I ∪ {0}}. Thanks to Lemma 3.5 and (24), it is sufficient to prove

that (w̃kF)k and (w̃kFk)k both converge to v∞.

In our study of the convergence of (w̃kFk)k, we shall introduce the sequence (v∞Fk)k given by

∀k, v∞Fk := ProjFk(v∞)

and the family of functions Ψk : R
d → R ∪ {+∞} defined as

Ψk(v) =
f0(x

∞ + rk v) − f0(x
∞)

rk
+
∑

i∈I

θ

(

fi(x
∞ + rk v) − fi(x

∞)

rk

)

.

Notice that it follows from (23) that

∀(yk)k ∈ (Rd)N,
[

yk → y
]

⇒
[

Ψk(yk) → Ψ(y)
]

. (25)

Step 1. We claim that for all k it holds

1

2
‖w̃kFk − v∞Fk‖2 − 1

2
‖w̃k−1Fk−1 − v∞Fk−1‖2 ≤ hk

rk

[

Ψk(v∞Fk) − Ψ(w̃kF) + 〈δk, w̃kFk − v∞Fk〉
]

(26)

with δk → 0 as k → +∞.
We first compute

1

2
‖w̃kFk − v∞Fk‖2 − 1

2
‖w̃k−1Fk−1 − v∞Fk−1‖2

=
1

2
〈w̃kFk − w̃k−1Fk−1 + v∞Fk−1 − v∞Fk , w̃kFk + w̃k−1Fk−1 − (v∞Fk + v∞Fk−1)〉

=
1

2
〈w̃kFk − w̃k−1Fk−1 + v∞Fk−1 − v∞Fk , 2(w̃kFk − v∞Fk)〉 − 1

2
‖(w̃k−1Fk−1 − w̃kFk) − (v∞Fk−1 − v∞Fk)‖2

≤ 〈w̃kFk − w̃k−1Fk−1, w̃
kFk − v∞Fk〉 + 〈v∞Fk−1 − v∞Fk , w̃kFk − v∞Fk〉

= 〈w̃kFk − w̃k−1Fk−1, w̃
kFk − v∞Fk〉 +

hk

rk
〈δk

1 , w̃kFk − v∞Fk〉

where δk
1 := rk

hk
(v∞Fk−1 − v∞Fk) → 0 as k → +∞; indeed, by (H3) the sequence (hk)k is bounded from

below by some positive h.
The first term of the right hand side is handled in the following way

〈w̃kFk − w̃k−1Fk−1 , w̃
kFk − v∞Fk〉 = 〈w̃kFk − w̃k−1, w̃kFk − v∞Fk〉 + 〈w̃k−1 − w̃k−1Fk−1 , w̃

kFk − v∞Fk〉

= 〈w̃k − w̃k−1, w̃kFk − v∞Fk〉 +
hk

rk
〈δk

2 , w̃kFk − v∞Fk〉

where we used that w̃kFk − v∞Fk ∈ Fk, and where δk
2 := 1

hk

rk

rk−1
(rk−1w̃

k−1 − rk−1w̃
k−1Fk−1) → 0, as

k → +∞.
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We now compute

w̃k − w̃k−1 =
1

rk
(x̃k − x̃k−1) + (

1

rk
− 1

rk−1
)(x̃k−1 − x∞)

=
1

rk
(x̃k − x̃k−1) +

hk

rk
δk
3

where δk
3 := 1

hk
(1 − rk

rk−1
)(x̃k−1 − x∞) → 0, as k → +∞.

On the other hand, it follows by (12) and the definition of (Penalty-PPA) that

x̃k − x̃k−1 = xk − xk−1 + ek − ek−1 + δk
4 = −hkg

k + hkη
k + δk

5

= −hk(ζ
k + δk

6 ) = −hk

(

∇f0(x̃
k) +

m
∑

i=1

λ̃k
i ∇fi(x̃

k) + δk
6

)

= −hk

(

∇f0(x̃
k) +

∑

i∈I

λ̃k
i ∇fi(x̃

k) + δk
7

)

= −hk(∇Ψk(w̃k) + δk
7 )

where δk
j → 0 as k → +∞ for j ∈ {4, . . . , 7}.

The preceding yields

1

2
‖w̃kFk − v∞Fk‖2 − 1

2
‖w̃k−1Fk−1 − v∞Fk−1‖2 ≤ hk

rk

[

〈−∇Ψk(w̃k), w̃kFk − v∞Fk〉 + 〈δk, w̃kFk − v∞Fk〉
]

with δk → 0 as k → +∞. Since ∇Ψk(w̃k) ∈ Fk we have

〈−∇Ψk(w̃k), w̃kFk − v∞Fk〉 = 〈∇Ψk(w̃k), v∞Fk − w̃k〉 ≤ Ψk(v∞Fk) − Ψk(w̃k).

It now remains to deduce from (23) that

−Ψk(w̃k) ≤ −Ψ(w̃k) = −Ψ(w̃kF)

from which (26) follows.

Step 2. We now claim that for some a > 0, it holds

∀k, ‖w̃kFk‖ ≤ a (‖w̃kF‖ + 1) and ‖w̃kF‖ ≤ a (‖w̃kFk‖ + 1). (27)

Since the same arguments apply, we shall only prove that

∀k, ‖w̃kFk‖ ≤ a (‖w̃kF‖ + 1). (28)

for some positive a. We make a proof by contradiction, and up to a change of index we assume
that

‖w̃kFk‖ → +∞ and
‖w̃kF‖
‖w̃kFk‖

→ 0 as k → +∞.

Now (23) applied with y = w̃k yields that

∀i ∈ I ∪ {0}, ∀k, 〈∇fi(x
∞), w̃kF〉 ≤ 〈∇fi(x

∞ + rk w̃k), w̃k〉 = 〈∇fi(x̃
k), w̃kFk〉. (29)
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Thus, dividing by ‖w̃kFk‖ we get

∀i ∈ I ∪ {0}, ∀k, 〈∇fi(x
∞),

w̃kF
‖w̃kFk‖

〉 ≤ 〈∇fi(x̃
k),

w̃kFk

‖w̃kFk‖
〉.

If we consider a cluster point ṽ of (
w̃kFk

‖w̃kFk
‖
)k, then ṽ has norm 1 and belongs to F, moreover

∀i ∈ I ∪ {0}, 0 ≤ 〈∇fi(x̃
∞), ṽ〉.

Since it holds
〈∇f0(x̃

∞), ṽ〉 = −
∑

i∈I

λθ
i 〈∇fi(x̃

∞), ṽ〉 (30)

with λθ
i > 0 for any i ∈ I, hence, we obtain

∀i ∈ I ∪ {0}, 〈∇fi(x̃
∞), ṽ〉 = 0

and then ṽ = 0 since ṽ ∈ F, but this contradicts ‖ṽ‖ = 1 and concludes this step.

Step 3. We infer from the preceding step the following estimate

∀b > 0, ∃kb ∈ N, ∀k ≥ kb, ‖w̃kFk − v∞Fk‖ ≥ b ⇒ ‖w̃kF − v∞‖ ≥ b

2
. (31)

We prove this by contradiction: assume that (31) fails for some b > 0, that is there exists an
increasing function φ : N→ N such that

∀k ∈ N, ‖w̃φ(k)Fφ(k) − v∞Fφ(k)‖ ≥ b and ‖w̃φ(k)F − v∞‖ ≤ b

2
.

It first follows from (27) that the sequence (w
φ(k)Fφ(k))k is bounded. We may then assume that (w̃

φ(k)Fφ(k))k

converges to some limit ṽ ∈ F while (w̃
φ(k)F )k converges to some limit v ∈ F. Consequently, applying

(29) with parameter φ(k) instead of k and then passing to the limit as k → +∞, gives

∀i ∈ I ∪ {0}, 〈∇fi(x
∞), v〉 ≤ 〈∇fi(x

∞), ṽ〉.

We conclude from these inequalities and (30) that ṽ = v, since F is completely determined by

(∇fi(x
∞))i∈I∪{0}. As (w̃

φ(k)Fφ(k))k and (w̃
φ(k)F )k have the same limit, yields the desired contradiction.

Step 4. We now conclude the proof of Theorem 4.1. To this end, we prove the following






for all ρ > 0, there exists Γ > 0 such that for k large enough:

‖w̃kFk − v∞Fk‖ ≥ ρ ⇒ 1

2
‖w̃kFk − v∞Fk‖2 − 1

2
‖w̃k−1Fk−1 − v∞Fk−1‖2 ≤ − Γ

rk

(32)

Indeed, It directly follows from (32) that ‖w̃kFk − v∞Fk‖ → 0 as k goes to +∞, hence w̃kFk → v∞.

Arguing as in Step 3, we infer that w̃kF → v∞ also holds, which ends the proof of Theorem 4.1.
In order to obtain (32), we fix b > 0 and notice the coercivity of Ψ over F obtained in Lemma

3.5, which yields that

Γ′ :=
1

3
inf

{

Ψ(v) − Ψ(v∞)

‖v − v∞‖ | v ∈ F, ‖v − v∞‖ ≥ ρ

2

}

> 0.
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For k large enough, if we assume that ‖w̃kFk − v∞Fk‖ ≥ ρ, then it follows from (26), (31) and the
preceding that

1

2
‖w̃kFk − v∞Fk‖2 − 1

2
‖w̃k−1Fk−1 − v∞Fk−1‖2

≤ hk

rk

[

Ψk(v∞Fk) − Ψ(v∞) + Ψ(v∞) − Ψ(w̃kF) + 〈δk, w̃kFk − v∞Fk〉
]

≤ hk

rk

[

Ψk(v∞Fk) − Ψ(v∞) − 3Γ′ ‖w̃kF − v∞Fk‖ + 〈δk, w̃kFk − v∞Fk〉
]

Then, we infer from (25), (31) and the definition of δk that for k large enough, it holds

Ψk(v∞Fk) − Ψ(v∞) ≤ ρ

2
Γ′ and 〈δk, w̃kFk − v∞Fk〉 ≤ Γ′ ‖w̃kF − v∞Fk‖.

As a consequence, for k large enough we get

‖w̃kFk − v∞Fk‖ ≥ ρ ⇒ 1

2
‖w̃kFk − v∞Fk‖2 − 1

2
‖w̃k−1Fk−1 − v∞Fk−1‖2 ≤ − hk

rk

ρ

2
Γ′

from which (32) follows thanks to (H3).

5 Numerical illustrations

In this section, we present some numerical illustrations of the theoretical results shown above. To
this end, we first introduce the algorithm we used to implement the iterative scheme Penalty-PPA,
and secondly, illustrate the convergence of the associated multipliers considering some examples.

5.1 The algorithm

For the numerical illustration, we have implemented the hybrid projection proximal algorithm (7)-
(9) described in §(2). The main iteration of the algorithm is the following:

1. given xk−1 and rk, solve (7),

2. obtain xk via (8) and update rk to rk+1.

In order to solve (7), we note that when ξk = 0, the formula turns to the classical proximal point
algorithm. Therefore, solving the equation (7) is equivalent to solve the system







∇zL(z, λ) + (z − xk−1)/hk = 0
λi − θ′(fi(z)/rk) = 0 ∀i ∈ I(z, λ)
rkθ

′−1(λi) − fi(z) = 0 ∀i ∈ {1, . . . ,m} \ I(z, λ)
(33)

This system is approximately solved using Newton’s type iterations; being these inner iterations
in (7) stopped when the relative error condition (9) is satisfied. Notice that the constraint λi −
θ′(fi(z)/rk) = 0 (for any i ∈ {1, . . . ,m}) is written in two equivalent forms in the above system. This
way of splitting the constraints correspond to a well known technique of active set identification,
and is introduced here to avoid the ill-conditioning of the system (for example, see [16, 17]). For
the numerical illustrations presented hereafter, we have obtained good results with the following
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rule, in part inspired by the discussion in §3.2 of [17]: i ∈ I(z, λ) if and only if fi(z)/rk ≤ θ′−1(rk)
and λi < rk.

The penalty parameter rk is updated using the feedback rule

rk+1 = max{1

4
rk,min{‖gk‖(1.25), rk}}. (34)

This corresponds to a measure of how close is our iterate from the stationary point of frk
. We note

that we are imposing bounds for updating the parameter in order to ensure that the sequence is
decreasing, and also to avoid numerical instabilities when the parameter decreases too fast. We
propose the factor 1.25 in the above equation in order to help the penalty parameter rk be smaller
than the norm of the gradient gk: intuitively, this helps to strengthen the penalized part without
making too many Newton’s steps in (7). Without a special mention, the computations presented
here use the rule (34), referred to as “feedback rule”. As the results in Table 2 below show, this
rule gives good results compared to fixed evolutions of (rk)k.

Finally, the main iteration stops when, for a given tolerance ε, we have

max

{‖∇xL(xk, λk)‖
‖∇f0(xk)‖ ,max

i
{fi(x

k)},max
i

{
∣

∣

∣
λk

i fi(x
k)
∣

∣

∣
}
}

≤ ε, (35)

which corresponds to a relaxed version of KKT conditions for the mathematical programming
problem. In the criterion above, the division by ‖∇f0(x

k)‖ is intended to normalize the equation

∇xL(xk, λk) = 0 ⇔ ∇f0(x
k) = −

m
∑

i=1

λk
i ∇fi(x

k).

Notice that the criterion (35) is validated by Theorem 4.1 which, in particular, yields that this
maximum goes to 0 as k → ∞.

For the numerical illustrations presented here, we choose x0 = 0 ∈ R
n, σ = 0.95, hk = 10 for

all k ∈ N, θ = exp(·) as the penalty function, and ε = 10−6 in (35) as the stopping criterion.

5.2 Examples

Our first illustration refers to Example 4.3 presented in §4. The results are shown in Figure 1,
giving an emphasis upon the convergence of the dual sequence (λk)k to λθ, and on the distinct
behaviours of the coordinates wk

1 and wk
2 . Notice that there is no explicit control on wk in the

algorithm, and, particularly, that the “divergent part” wk
2 may induce numerical instabilities in

larger problems. Anyway, on this toy example in dimension 2, the lack of strict complementarity
is well handled by our algorithm.

The second series of examples corresponds to the classical problem of minimizing the compliance
of truss structures (for example see [2]). This problem consists in finding the distribution of bar’s
areas that minimizes the total amount of energy (compliance) of a truss structure carrying an
external load. Mathematically, this problem can be stated as the following quadratic minimization
problem:

min
x∈Rd

{

〈c, x〉 :
1

2
〈x,Aix〉 − 〈b, x〉 ≤ 0, i = 1, . . . ,m

}

. (36)

where b, c ∈ R
d, and Ai, is a symmetric positive semidefinite matrix in R

d, for i = 1, . . . ,m. It can
be proved that the associated dual variables of this problem correspond to the bar’s area of the
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dotted line (· · · ) denotes the convergent direction (

∣

∣wk
1 − ln 2

∣

∣ / ln 2), finally, the dashed line (– –)
denotes the divergent part (

∣
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2

∣

∣). At the stopping time, the value of rk is 7 · 10−8.

truss (see e.g. [1, 2]). Thus, any minimization algorithm implemented to solve (36) should ensure
the convergence of the multipliers.

We illustrate the convergence of the algorithm (7)-(9) on various samples of this type of struc-
tural optimization problems. More precisely, we consider the following test problems:

• A cantilever type structure in a 3D space, see [24] Fig. 5.7, denoted here by C3D.

• A dome composed by four floors, see Example 2 Fig. 3 in [3], denoted here by Dome.

• A cantilever arm structure in a 2D space, similar to [2] §7.1, denoted here by C2D.

• A Michel type structure, similar to Fig. 1.1 in [20], denoted here by MLP.

• A cantilever type structure in a 3D space with a cross sectional area, similar to [9] Fig. 4.9
(b), denoted here by C3Db.

The results obtained are presented in Table 1. Notice that the stopping criterion (35) imposes
that the couple (xk, λk) returned by the algorithm satisfies the KKT system, which in particular
validates the convergence of the dual variable λk to a dual solution.

problem # variables # constraints iterations # function
evaluations

C3D 37 102 68 410
Dome 76 104 69 504
C2D 49 193 150 856
MLP 101 934 196 921
C3Db 145 912 111 1123

Table 1: Examples of small scale problems in structural optimization.

Following, we illustrate the convergence of the multipliers given by the algorithm (7)-(9) to
the θ∗-center of the dual space, when the dual optimal set S(D) is not a singleton. To do so, we
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consider the following reformulation of the problem C3D (presented in Table 1):

min
x∈Rd

{

〈c, x〉 ;
1

2

(

1

2
〈x,Bix〉 − 〈b, x〉

)

≤ 0, i = 1, . . . , 2m

}

, (37)

with Bi := Bi+m := Ai for i ∈ {1, . . . ,m}. By duplicating each constraint, the dual problem
of (37) admits multiple solutions, and its θ∗-center is λ̄θ = [λθ, λθ], where λθ is the θ∗-center of
the original problem C3D. Then, we run the algorithm (7)-(9) by using different rules to update
the penalty parameter rk. The dual residues, the number of iterations and the total number of
functional evaluations in the inner iterations (33) are reported in Table 2. It appears that the
feedback rule (34) gives fairly good results compared to fixed parametrization rules for (rk)k.

Penalty # Iterations # function
parameter rk

‖λk−λ̄θ‖/‖λ̄θ‖ evaluations

1/k2 2 · 10−3 481 870
1/k3 5 · 10−4 97 1108
(0.8)k 4 · 10−5 72 507
feedback rule 8 · 10−5 83 502

Table 2: Behaviour of dual residues considering different rules for updating the penalty parameter.

We have also compared the behaviour of our algorithm with the sequential quadratic program-
ming (SQP) algorithm implemented in the MatLab1 routine fmincon (see e.g. [25] Chapter 18).
The relative error between the multiplier obtained by the (SQP) routine and λ̄θ is of order 0.9;
in fact, this routine proposes a multiplier near to the dual solution [2λθ, 0]. This illustrates the
convergence of our method to a specific multiplier, namely the θ∗-center.
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Figure 2: Evolution of the KKT residues and the number of Newton steps in (33) with respect to
rk, with vertical dotted lines each 10 main iterations.

We conclude these illustrations with Figure 2, which shows the evolution of the value of the
stopping KKT criterion (35), and the number of Newton’s steps in the inner iterations in (33), with
respect to the value of the parameter rk updated through the feedback rule (34). As the results
show, the number of Newton’s steps does not increase too much when the parameter rk goes to 0,

1Matlab is registered trademarks of The MathWorks, Inc.
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which seems to show that the active set identification we propose does work well when the feedback
rule is used. This issue, as well as a serious study of the speed of convergence of the algorithm
proposed in §5.1, is out of the scope of this paper, but shall be the subject of a future research.
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[17] R. Cominetti and J. M. Pérez-Cerda. Quadratic rate of convergence for a primal-dual expo-
nential penalty algorithm. Optimization, 39(1):13–32, 1997.

[18] R. Cominetti and J. San Mart́ın. Trajectory analysis for the exponential penalty method in
linear programming. Mathematical Programming, 67(2, Ser. A):169–187, 1994.
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