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Convergence properties of Shannon Entropy are studied. In the differential setting, it is known
that weak convergence of probability measures (convergence in distribution) is not enough for con-
vergence of the associated differential entropies. In that direction, an interesting example is in-
troduced and discussed in light of new general results here provided for the desired differential
entropy convergence, results that take into account both compactly and uncompactly supported
densities. Convergence of differential entropy is also characterized in terms of the Kullback-Liebler
discriminant for densities with fairly general supports, and it is shown that convergence in variation
of probability measures guarantees such convergence under an appropriate boundedness condition
on the densities involved. Results for the discrete setting are also provided, allowing for infinitely
supported probability measures, by taking advantage of the equivalence between weak convergence
and convergence in variation in that setting.

Keywords: Shannon entropy, continuous/discrete alphabet sources, compactly/uncompactly supported den-
sities, weak convergence, convergence in variation, Kullback-Liebler discriminant

I. INTRODUCTION

The convergence of a sequence of probability measure entropies plays a key role in information theory, from both
theoretical and applied points of view, mostly in the context of estimation of the entropy of an information source
[1, 9, 15, 17].

The problem has been partially studied in the context of discrete sources, and proof of that is that some convergence
results can be found in today’s standard textbooks of information theory [5, 6], and some recent works [11]. A more
general approach is found in the works of A. Barron, where a proof of the Central Limit Theorem based on entropy
convergence [3] and the entropy convergence of stationary processes [2] are presented. The discussion of information
topologies for general sources [10] touches tangentially the problem of convergence in a more general setting.

However, the focus of many of these works has been on continuity rather than convergence properties of Shannon
entropy. On the one hand, continuity properties embrace results that guarantee convergence of entropy for all
approximating sequences of probability measures converging to a given limiting probability measure. Emphasis is put
there in identifying the largest class of probability measures for which the corresponding convergence of entropy takes
place. On the other hand, convergence properties are usually related to deciding whether convergence of entropy takes
place for a given, fixed family of probability measures, also converging in a certain topology to a limiting probability
measure. Whereas in the continuity context all requirements are imposed on the limiting probability measure, in
order to ensure convergence of entropy for all possible approximating sequences, in the convergence context one can
and should exploit any underlying structure of the particular approximating sequence at hand, as usually done in
applied probability problems.

The purpose of this paper is to present general conditions for the convergence of entropy sequences associated to
both discrete and continuous sources, over possibly infinite or non-compactly supported alphabets, respectively.

For the case of continuous sources, a result of this nature can be used in applications where one is confronted with
the problem of deciding whether the sequence of differential entropies associated with a family of probability densities
{pn}∞n=1 on Rk, each term of the sequence being given by

−
∫

Rk
pn log [pn] dx (1)

with dx denoting Lebesgue measure, converges as n increases to infinity to the respective differential entropy associated
to the limiting density of the family (assuming such limiting density exists in some appropriate sense).
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In general, only a numerical computation of the sequence elements (1) is possible, making it difficult to conclude
the desired convergence in an abstract sense. Such convergence must be established then by exploiting underlying
properties or structures of the sequence {pn}∞n=1 by itself and its limit.

If we assume pointwise convergence of the corresponding integrands, two main convergence-related results from
real analysis are at our disposal: the monotone and dominated convergence theorems for Lebesgue integrals. The
monotone convergence theorem provides no help for this problem given that if each pn is a probability density function
and, as such, satisfies the normalization condition ∫

Rk
pndx = 1,

then the monotonicity in the sequence {pn}∞n=1 is only possible in the trivial case when all densities coincide for almost
every x. If we decide to use the dominated convergence theorem, we need to construct a function f such that

|pn(x) log [pn(x)]| ≤ f(x) for each n and x and with
∫

Rk
fdx <∞. (2)

This construction, however, is difficult to carry out in general.
A weaker but easier condition to check corresponds to verify if the boundedness condition

sup
n,x
|pn(x)| <∞

holds. This implies

M
.= sup
n,x
|pn(x) log[pn(x)]| <∞,

but such condition is not enough for the application of the dominated convergence theorem in the case of densities
supported over an infinite Lebesgue measure set1.

We show that appropriate absolute continuity properties of measures provide a suitable boundedness condition
that can be used, in conjunction with the dominated convergence theorem, to establish the desired convergence of
the associated differential entropies, and of the Kullback-Liebler discriminant as well, for densities with fairly general
supports. Our result holds regardless of the non-compactness or even infinite Lebesgue measure nature of the supports
involved. This is accomplished by exploiting the fact that for a density p on X ⊆ Rk, though Lebesgue measure in X
may be infinite if X is unbounded, µ(·) .=

∫
· pdx is not. The value of the result lies on the fact that it does not require

the construction of any additional function (such as f above), as it relies exclusively on the structure of the densities
involved.

In connection with the previous claim, there exists evidence that convergence in distribution of the respective
probability measures is not enough to have convergence of the corresponding differential entropies [7]. In that regard,
an interesting example is presented and discussed in our work, reinforcing the importance of establishing general
conditions for such convergence to take place. The paper also provides a characterization of convergence of differential
entropies in terms of the Kullback-Liebler discriminant, for densities with fairly general supports too. Moreover, it
is shown that under an appropriate boundedness condition on the densities involved, convergence in variation of
probability measures does indeed guarantee the desired differential entropy convergence. In consequence, the uniform
convergence conditions established in [7], that guarantee the convergence of entropy under convergence in variation
of the underlying probability measures, are adapted in terms of appropriate boundedness requirements, providing a
sufficient condition to be checked for the desired entropy convergence that does not require the explicit computation
of the sequence terms in (1).

Our results can be applied in the discrete source case, by using the equivalence between convergence in distribution
and in variation of probability measures in such situation. In particular, if the probability measures have finite
support, the convergence of their respective entropies and the Kullback-Liebler discriminant follows immediately. In
the case of probability mass functions with infinite supports, we exploit the afore mentioned equivalence between
weak convergence and convergence in variation to establish the convergence of entropies and the Kullback-Liebler
discriminant.

1 We cannot define f to be the constant function, because if we do so, we will get
∫

X Mdx = M
∫

X dx =∞, for M > 0 and if X has infinite
Lebesgue measure.
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We finalize this section presenting the organization of the rest of the paper. In Section II we introduce notational
and terminological conventions used throughout, as well as the necessary elements from the theory of convergence of
probability measures. (Most of the definitions in this section apply to both the continuous and discrete case, Lebesgue
measure not playing a role in the late, of course.) Sections III and IV consider the case of continuous random variables.
In Section III we present an example where convergence in distribution of the underlying probability measures is
not enough to have convergence of the associated differential entropies. Differential entropy convergence is then
characterized in terms of the Kullback-Liebler discriminant for densities with fairly general supports, and it is shown
that, under an appropriate boundedness condition on the densities involved, convergence in variation of probability
measures does guarantee the desired differential entropy convergence. In Section IV we provide a general result for
convergence of differential entropy and Kullback-Liebler discriminant under a pointwise convergence condition, taking
into account both compactly and uncompactly supported densities. Finally, in section V we present our results for
the discrete case.

II. PRELIMINARY ELEMENTS

In this section we introduce the concepts (and related notation) upon which we elaborate the present work. Our brief
presentation includes the notions of weak convergence, convergence in variation and a measure-theoretic definition of
entropy of probability measures.

A. Definitions

Let k be a positive integer, Rk the k-dimensional Euclidian space endowed with the usual Euclidian metric ‖ ·− ·‖2,
and B(Rk) the collection of Borel sets in Rk. Also, let X ∈ B(Rk), X closed, be a Polish subspace, i.e., X is separable
(it has a countable dense subset) and complete (every Cauchy sequence in X converges to a point x ∈ X) [8, 12]. Let
AC(X) denote the collection of all probability measures µ on (X,B(X)) which are absolutely continuous with respect
to (w.r.t.) the Lebesgue measure in X (denoted as dx), i.e., having the representation

µ(A) =
∫
A

dµ

dx
dx,

A ∈ B(X), with dµ
dx : X → R+

.= [0,∞), Borel measurable, the Radon-Nikodym derivative or density of µ w.r.t. dx.
Of course, when considering AC(X) we assume X is such that AC(X) 6= ∅ (i.e., X having strictly positive Lebesgue
measure). In the same way, we denote as AC+(X) the set of all µ ∈ AC(X) for which dµ

dx > 0 Lebesgue-almost
everywhere on X. In particular, µ ∈ AC+(X) implies that µ and dx are mutually absolutely continuous or equivalent,
and that

dx

dµ
(x) .=


[
dµ

dx
(x)
]−1

x ∈ X, dµ
dx (x) > 0

α x ∈ X, dµ
dx (x) = 0

(3)

with α ∈ R+ any constant value, provides indeed a valid expression for the Radon-Nikodym derivative dx
dµ .

In addition, let f : X→ R be a real-valued function. Its support is the closure of the set of all x ∈ X where f(x) is
strictly positive, i.e.,

support (f) .= {x ∈ X : f(x) > 0},

where the overline {·} denotes closure. In particular, we have that the Lebesgue measure of the sets support(dµdx ) and
X coincide when µ ∈ AC+(X).

B. Convergence of probability measures

We now collect some basic definitions and results, in the context needed for the following sections of the paper.
Throughout, P(X) denotes the collection of all probability measures on (X,B(X)) and C(X) (resp., Cb(X)) the space
of all continuous (resp., bounded and continuous), real-valued functions on X.
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Definition II.1 A sequence {µn}∞n=1 ⊆ P(X) is said to converge weakly to µ ∈ P(X), denoted µn ⇒ µ as n ↑ ∞, if∫
X
fdµn →

∫
X
fdµ

as n ↑ ∞ for each f ∈ Cb(X).

Since X is separable, weak convergence µn ⇒ µ as n ↑ ∞ of {µn}∞n=1 ⊆ P(X) to µ ∈ P(X) is equivalent to
convergence ρ(µn, µ)→ 0, as n ↑ ∞ as well, with ρ(·, ·) denoting the Prohorov metric on P(X)×P(X), that is defined
by

ρ(σ1, σ2) .= inf{ε > 0 : σ1(A) ≤ σ2(Aε) + ε, σ2(A) ≤ σ1(Aε) + ε,∀A ∈ B(X)},

σ1, σ2 ∈ P(X), where for A ⊆ X, ε > 0 and y ∈ X, Aε .= {x ∈ X : d(x,A) < ε} and d(y,A) .= inf{‖y − z‖2 : z ∈ A}.
Note Aε is open in X, and hence Aε ∈ B(X). In addition, since X is not just separable but Polish, (P(X), ρ) is Polish
too [4].

Weak convergence in P(Rk) is also equivalent to the standard convergence in distribution. (Note σ ∈ P(X) can
always be looked at as an element of P(Rk) when we note that σ(A) = σ(A ∩ X) for A ∈ B(Rk).) Indeed, for
{µn}∞n=1 ⊆ P(Rk) and µ ∈ P(Rk), we have µn ⇒ µ as n ↑ ∞ if and only if, as n ↑ ∞ as well,

Fn(x)→ F (x)

at each x ∈ Rk point of continuity of F , where Fn and F denote the distribution functions associated to µn and µ,
respectively, i.e.,

Fn(x) .= µn
(
×ki=1 (−∞, xk]

)
and F (x) .= µ

(
×ki=1 (−∞, xk]

)
for each x = (x1, . . . , xk) ∈ Rk. In fact, the following result holds (see Portmanteau’s Theorem, [4, Theorem 2.1,
p.16]).

Lemma II.1 Let {µn}∞n=1 ⊆ P(X) and µ ∈ P(X). We have µn ⇒ µ as n ↑ ∞ if and only if, as n ↑ ∞ as well,

µn(A)→ µ(A)

for each A ∈ B(X) being a µ-continuity set, i.e., such that µ(∂A) = 0 with ∂A denoting the boundary of A: ∂A .=
{x ∈ X : x ∈ A, x /∈ A}.

Another important way of convergence for probability measures, stronger than weak convergence, is the convergence
in variation associated with the distance in variation between probability measures.

Definition II.2 The distance in variation between σ1 ∈ P(X) and σ2 ∈ P(X) is the real number ‖σ1 − σ2‖V ∈ [0, 2]
given by

‖σ1 − σ2‖V
.= sup
ψ∈M(X)
|ψ|≤1

∣∣∣∣∫
X
ψdσ1 −

∫
X
ψdσ2

∣∣∣∣ ,
where M(X) denotes the collection of all R∗-valued, Borel measurable functions on X, R∗ .= R∪ {±∞} = [−∞,∞] is
the extended real line, and 1(x) .= 1, x ∈ X. In particular, we have that ‖ · − · ‖V : P(X)× P(X)→ [0, 2] is indeed a
metric on P(X). Moreover, a sequence {µn}∞n=1 ⊆ P(X) is said to converge in variation to µ ∈ P(X) if

‖µn − µ‖V → 0

as n ↑ ∞.

Distance in variation can alternatively be characterized as

‖σ1 − σ2‖V = 2 sup
A∈B(X)

|σ1(A)− σ2(A)|,

σ1, σ2 ∈ P(X) [14].
As mentioned before, convergence in variation is stronger than weak convergence. Indeed, we have the following

result, being a direct consequence of Lemma II.1.
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Lemma II.2 Let {µn}∞n=1 ⊆ P(X) and µ ∈ P(X). If ‖µn − µ‖V → 0 as n ↑ ∞, then µn ⇒ µ as n ↑ ∞.

For µ ∈ P(X) and p ∈ [1,∞) we define

Lp(dµ) .=

{
f ∈M(X) :

[∫
X
|f |pdµ

] 1
p

<∞

}
,

with the standard convention 0[±∞] = 0, and the Lp(dµ)-norm of f ∈ Lp(dµ) as

‖f‖Lp(dµ)
.=
[∫

X
|f |pdµ

] 1
p

.

For µ ∈ P(X) we denote as L∞(dµ) the space of all functions f ∈ M(X) which are bounded except possibly on a
µ-null set, and define the L∞(dµ)-norm of f ∈ L∞(dµ) as usual, i.e.,

‖f‖L∞(dµ)
.= (µ) ess supx∈X |f(x)|,

where for g ∈ M(X), (µ) ess supx∈X g(x), the essential supremum of g w.r.t. µ, is the infimum of supx∈X h(x) as h
ranges over all functions mapping X into R∗ which are equal to g µ-almost everywhere. Thus, for f ∈ L∞(dµ) we
have

‖f‖L∞(dµ) = inf {M ∈ R+ : µ {x ∈ X : |f(x)| > M} = 0} .

As known [13], for any given µ ∈ P(X) the spaces (Lp(dµ), ‖·‖Lp(dµ)), p ∈ [1,∞], become normed linear spaces with
the usual addition and scalar multiplication of functions, and in fact Banach spaces, provided we treat measurable
functions coinciding µ-almost everywhere as equivalent.

This notion is useful to determine another characterization of distance in variation, namely

‖σ1 − σ2‖V =
∥∥∥∥dσ1

dx
− dσ2

dx

∥∥∥∥
L1(dx)

=
∫

X

∣∣∣∣dσ1

dx
− dσ2

dx

∣∣∣∣ dx,
σ1, σ2 ∈ AC(X), [14].

C. Entropy

We conclude this section by writing a general definition of entropy of probability measures, on measure-theoretical
grounds. In the sequel all logarithms are understood to be to the base 2.

The space of measures

H(X) .=
{
µ ∈ AC(X) : log

[
dµ

dx

]
∈ L1(dµ)

}
,

with the convention log[0] = −∞, represents the set of well-defined entropy measures.

Definition II.3 The Shannon Differential Entropy, associated to the underlying space X, is the mapping H : H(X)→
R, assigning to each µ ∈ H(X) the value H[µ] ∈ R given by

H[µ] .= −
∫

X
log
[
dµ

dx

]
dµ.

H[µ] is called the Shannon Differential Entropy of µ.

III. CONVERGENCE OF DIFFERENTIAL ENTROPY: CHARACTERIZATION IN TERMS OF WEAK
CONVERGENCE, CONVERGENCE IN VARIATION AND THE KULLBACK-LIEBLER

DISCRIMINANT

In this section we discuss an interesting example where weak convergence of probability measures is not enough
for convergence of the associated differential entropies. We characterize the desired differential entropy convergence
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for fairly general supported densities in terms of the Kullback-Leibler discriminant, also showing that under an
appropriate boundedness condition on the densities involved, convergence in variation of the underlying probability
measures does indeed guarantee differential entropy convergence.

Consider the space X = [0, 1], and define the probability measures (taken from [4]) µ and µn in AC([0, 1]) by
defining, for each x ∈ [0, 1] and n ∈ {1, 2, . . .},

dµ

dx
(x) .= 1 and

dµn
dx

(x) .= n21

{
x ∈

n−1⋃
k=0

(
k

n
,
k

n
+

1
n3

)}
,

where, as customary for A ⊆ X, 1{x ∈ A} .= 1 if x ∈ A and 1{x ∈ A} .= 0 if x ∈ X \A, with X \A .= {x ∈ X : x /∈ A},
the usual set-theoretic difference. Of course,

µ(A) .=
∫
A

dµ =
∫
A

dµ

dx
dx and µn(A) .=

∫
A

dµn =
∫
A

dµn
dx

dx

for each A ∈ B([0, 1]). Note µ is nothing but Lebesgue measure in [0, 1]. Also, it is easy to see that, for each
n ∈ {1, 2, . . .},

|µn([0, x])− µ([0, x])| ≤ 1
n

[
1− 1

n2

]
for all x ∈ [0, 1], and therefore µn ⇒ µ as n ↑ ∞. On the other hand, we obviously have µ ∈ H([0, 1]) and
{µn}∞n=1 ⊆ H([0, 1]). In fact,

H[µ] = −
∫

[0,1]

log
[
dµ

dx

]
dµ = − log[1]

∫
[0,1]

dµ = 0

and, for each n ∈ {1, 2, . . .},

H[µn] = −
∫

[0,1]

log
[
dµn
dx

]
dµn −

∫
[0,1]

log
[
dµn
dx

]
dµn
dx

dx = −n2 log[n2]
∫

⋃n−1
k=0 ( kn ,

k
n+ 1

n3 )

dx = −2 log[n],

where for the last equality above we have used the fact that Lebesgue measure of the set
⋃n−1
k=0( kn ,

k
n + 1

n3 ) is 1
n2 .

Hence, we have µn ⇒ µ as n ↑ ∞, but H[µn] ↓ −∞ as n ↑ ∞, i.e., H[µn] ↓ −∞ 6= 0 = H[µ].
In the previous example weak convergence of probability measures is not enough for convergence of the respective

differential entropies. It is interesting to note that in the example, though µn ⇒ µ as n ↑ ∞, pointwise convergence
of the family of densities {dµndx }

∞
n=1 to dµ

dx fails to hold Lebesgue-almost everywhere. Indeed, if An
.=
⋃n−1
k=0( kn ,

k
n + 1

n3 )
then µ(An) = 1

n2 for each n ∈ {1, 2, . . .}, and therefore

∞∑
n=1

µ(An) =
∞∑
n=1

1
n2

<∞.

Hence, by Borel Lemma, [8, Lemma 3, p.78],

µ

(
lim sup
n↑∞

An

)
= 0,

where, as usual lim supn↑∞An
.=
⋂∞
n=1

⋃∞
m=nAm. But then, for µ-almost every x ∈ [0, 1] there exists nx ∈ {1, . . . , n}

such that x /∈ An for all n ∈ {nx, nx + 1, . . .}. Hence, we conclude

dµn
dx

(x)→ 0

as n ↑ ∞, for µ-almost every x ∈ [0, 1] as well. Thus, we have

dµn
dx

(x)→ 0 6= 1 =
dµ

dx
(x)
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for µ-almost every x ∈ [0, 1], i.e., pointwise convergence of {dµndx }
∞
n=1 to dµ

dx fails to hold Lebesgue-almost everywhere
in [0, 1].

Instead of asking for an appropriate pointwise convergence condition, as we do in the next section, we now charac-
terize the desired convergence H[µn]→ H[µ] as n ↑ ∞ in terms of the Kullback-Liebler discriminant. Some definitions
are in order before establishing the result.

Let AC(X||µ) denote the set of all σ ∈ P(X) that are absolutely continuous w.r.t. µ, µ ∈ P(X), i.e., having the
representation

σ(A) =
∫
A

dσ

dµ
dµ,

A ∈ B(X), with dσ
dµ : X→ R+, Borel measurable, the Radon-Nikodym derivative or density of σ w.r.t. µ. Also, we set

H(X||µ) .=
{
σ ∈ AC(X||µ) : log

[
dσ

dµ

]
∈ L1(dσ)

}
.

Considering σ ∈ H(X||µ) and Xσµ
.= support(dσdµ ), we have∫

X
log
[
dσ

dµ

]
dσ =

∫
X

log
[
dσ

dµ

]
dσ

dµ
dµ =

∫
Xσµ

log
[
dσ

dµ

]
dσ

dµ
dµ =

∫
Xσµ

log
[
dσ

dµ

]
dσ

and, by a standard application of Jensen’s Inequality [6],

−
∫

Xσµ
log
[
dσ

dµ

]
dσ ≤ log

[
µ(Xσµ)

]
≤ 0,

with equality if and only if dσ
dµ = 1, σ-almost everywhere. Having noticed this, we make the following definition.

Definition III.1 The Shannon Relative Entropy, relative to µ ∈ P(X), is the mapping D[·||µ] : H(X||µ) → R+,
assigning to each σ ∈ H(X||µ) the value D[σ||µ] ∈ R+ given by

D[σ||µ] .=
∫

X
log
[
dσ

dµ

]
dσ.

D[σ||µ] is called the Shannon Relative Entropy between σ and µ, or the Kullback-Liebler discriminant between σ and
µ too.

As known, the Kullback-Liebler discriminant does not constitute a distance between probability measures: it is
not symmetric and does not satisfies the triangle inequality; indeed, σ ∈ H(X||µ) does not even imply µ ∈ AC(X||σ).
It is widely used as a notion of closeness between probability measures though, mainly because, as discussed above,
D[σ||µ] ≥ 0 with equality if and only if dσ

dµ = 1, σ-almost everywhere.
Before stating the result in the next theorem, we make the following remarks.

Remark III.1 If σ ∈ AC(X) and µ ∈ AC+(X), then σ ∈ AC(X||µ). In fact, we can define

dσ

dµ

.=
dσ

dx

dx

dµ

with dx
dµ given by (3), as we do throughout. Then, when σ, µ ∈ AC+(X) we have σ ∈ AC(X||µ) and µ ∈ AC(X||σ), i.e.,

σ and µ are mutually absolutely continuous or equivalent. Moreover, on the (partial) converse direction, σ ∈ AC(X)
if σ ∈ AC(X||µ) and µ ∈ AC(X), and we have dσ

dx = dσ
dµ

dµ
dx , Lebesgue-almost everywhere, and dσ

dµ = dσ
dx [dµdx ]−1, µ-almost

everywhere. These facts will be used in the sequel without any further comment.

Remark III.2 From Pinsker’s Inequality (see for example [10]), for any µ ∈ P(X) and {µn}∞n=1 ⊆ H(X||µ) we have

‖µn − µ‖V ≤
√

2D[µn||µ],

for each n ∈ {1, 2, . . .} and therefore, convergence D[µn||µ] → 0 as n ↑ ∞ implies convergence ‖µn − µ‖V → 0, as
n ↑ ∞ as well.
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Theorem III.1 Let {µn}∞n=1 ⊆ H(X) and µ ∈ AC(X) be such that dµ
dx (x) > 0, for each x ∈ X, and log[dµdx ] ∈ Cb(X).

Then, {µn}∞n=1 ⊆ H(X||µ), µ ∈ H(X) and the following assertions are equivalent.

1. µn ⇒ µ and H[µn]→ H[µ] as n ↑ ∞.

2. D[µn||µ]→ 0 as n ↑ ∞.

Proof. Since log[dµdx ] is in particular bounded on X, we obviously have µ ∈ H(X). In addition,∫
X

∣∣∣∣log
[
dµn
dµ

]∣∣∣∣ dµn ≤ ∫
X

∣∣∣∣log
[
dµn
dx

]∣∣∣∣ dµn +
∫

X

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµn <∞, (4)

since also {µn}∞n=1 ⊆ H(X). In particular, {µn}∞n=1 ⊆ H(X||µ). Now, from equation (4) we may write

D[µn||µ] =
∫

X
log
[
dµn
dµ

]
dµn =

∫
X

log
[
dµn
dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµn (5)

and, since also µ ∈ H(X), from equation (5) we conclude

D[µn||µ] = H[µ]−H[µn] +
∫

X
log
[
dµ

dx

]
dµ−

∫
X

log
[
dµ

dx

]
dµn. (6)

But, since log[dµdx ] ∈ Cb(X), if µn ⇒ µ as n ↑ ∞ we conclude that∫
X

log
[
dµ

dx

]
dµn →

∫
X

log
[
dµ

dx

]
dµ,

as n ↑ ∞ as well, equation (6) proving then the implication (i)⇒ (ii). The converse implication (ii)⇒ (i) also follows
from equation (6), in view of Remark III.2 and Lemma II.2. The theorem is then proved. �

Remark III.3 Consider µ ∈ AC(X) with dµ
dx (x) > 0 for each x ∈ X. Then, X does not necessarily need to be bounded

for log[dµdx ] to be bounded on X. Indeed, consider for instance the uniform distribution on any unbounded set X (⊆ Rk,
k > 1) having finite and strictly positive Lebesgue measure, as for example in R2

X =
{
x = (x1, x2) ∈ R2

+ : e−λx1 ≥ x2

}
with λ ∈ (0,∞). X so defined is an unbounded subset of R2. However, since the Lebesgue measure of X is

∫
X dx =

λ−1 ∈ (0,∞), the uniform distribution µ0 on X satisfies, for all x ∈ X,

log
[
dµ0

dx
(x)
]

= log

[(∫
X
dx

)−1
]

= log[λ],

trivially bounded on X. In the same way, the set X does not necessarily need to be bounded for log[dµdx ] to be an element
of L∞(dx).

Remark III.4 Since X is closed, we have log[dµdx ] ∈ Cb(X) whenever X is in addition bounded and µ ∈ AC(X) with
dµ
dx (x) > 0, for each x ∈ X, and dµ

dx ∈ C(X). Indeed, if X ⊆ Rk is closed and bounded it is then compact, and therefore
for µ ∈ AC(X) with dµ

dx (x) > 0, for each x ∈ X, and dµ
dx ∈ C(X), there exist m and M in (0,∞), m ≤ M , such that

dµ
dx (x) ∈ [m,M ], for each x ∈ X as well. Thus, log[dµdx ] ∈ Cb(X). Also, note that for the purpose of Theorem III.1 we
can always take X as being bounded for {µn}∞n=1 ⊆ AC(Rk) and µ ∈ AC(Rk) when

∞⋃
n=1

Kn ⊆ K

and K is bounded, where K .= support(dµdx ) and Kn
.= support(dµndx ) for each n ∈ {1, 2, . . .} (all the supports being

taken w.r.t. Rk). Indeed, with X .= K we then have dµ
dx > 0 on X and each µn, the same as µ, is concentrated on X,

i.e., µn(X) = 1.
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Remark III.5 The probability measures considered in the example at the beginning of this section satisfies all hy-
potheses of Theorem III.1 and, in addition, µn ⇒ µ as n ↑ ∞. However, similar to the differential entropy convergence
failure, we have D[µn||µ] = 2 log[n] ↑ ∞ as n ↑ ∞, i.e., the convergence D[µn||µ]→ 0 as n ↑ ∞ fails to hold. Also,

sup
A∈B(X)

|µn(A)− µ(A)| ≥ |µn(An)− µ(An)| = 1− 1
n2
,

for each n ∈ {1, 2, . . .}, and hence the convergence ‖µn−µ‖V → 0 as n ↑ ∞ fails to hold too. In light of Theorem III.1,
we have failure of differential entropy convergence due to failure of the corresponding convergence for the Kullback-
Liebler discriminant, due in turn and in light of Remark III.2 to the respective failure of convergence in variation.

Though weak convergence does not guarantee convergence of differential entropy, convergence in variation does it
under an appropriate boundedness condition on the densities involved. The result is the following.

Theorem III.2 Let {µn}∞n=1 ⊆ AC+(X) and µ ∈ AC+(X) be such that log[dµdx ] ∈ L∞(dx) and {log[dµndx ]}∞n=1 ⊆
L∞(dx). Assume that

M
.= sup
n∈{1,2,...}

∥∥∥∥log
[
dµn
dx

]∥∥∥∥
L∞(dx)

<∞. (7)

Then, {µn}∞n=1 ⊆ H(X) ∩H(X||µ), µ ∈ H(X) and, if ‖µn − µ‖V → 0 as n ↑ ∞, we have both

D[µn||µ]→ 0 and H[µn]→ H[µ],

as n ↑ ∞ as well.

Proof. First, since both

log
[
dµ

dx

]
∈ L∞(dx) and

{
log
[
dµn
dx

]}∞
n=1

⊆ L∞(dx),

we have µ ∈ H(X) and {µn}∞n=1 ⊆ H(X). Therefore, we may write

|H[µn]−H[µ]| =
∣∣∣∣∫

X
log
[
dµn
dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµ

∣∣∣∣ =
∣∣∣∣∫

X

(
dµn
dx

log
[
dµn
dx

]
− dµ

dx
log
[
dµ

dx

])
dx

∣∣∣∣
≤
∫

X

∣∣∣∣dµndx log
[
dµn
dx

]
− dµ

dx
log
[
dµ

dx

]∣∣∣∣ dx. (8)

Now, for each n ∈ {1, 2, . . .} we have∣∣∣∣dµndx (x) log
[
dµn
dx

(x)
]
− dµ

dx
(x) log

[
dµ

dx
(x)
]∣∣∣∣ ≤ ∣∣∣∣log

[
dµn
dx

(x)
]∣∣∣∣ ∣∣∣∣dµndx (x)− dµ

dx
(x)
∣∣∣∣+

dµ

dx
(x)
∣∣∣∣log

[
dµn
dµ

(x)
]∣∣∣∣ , (9)

for Lebesgue-almost every x ∈ X. For each n ∈ {1, 2, . . .} we also have, for Lebesgue-almost every x ∈ X as well,∣∣∣∣log
[
dµn
dµ

(x)
]∣∣∣∣ ≤ log [M ′]

M ′ − 1

∣∣∣∣dµndµ (x)− 1
∣∣∣∣ , (10)

since

dµn
dµ

(x) =
dµn
dx

(x)
[
dµ

dx
(x)
]−1

≥ 2−M2−‖
dµ
dx‖L∞(dx) = 2−

(
M+‖ dµdx‖L∞(dx)

)
.= M ′ ∈ (0, 1)

for each n ∈ {1, 2, . . .} and Lebesgue-almost every x ∈ X too, and

| log[a]| ≤ log[a0]
a0 − 1

|a− 1|

for all a ∈ [a0,∞), with a0 ∈ (0, 1). We also have∣∣∣∣dµndµ (x)− 1
∣∣∣∣ =

[
dµ

dx
(x)
]−1 ∣∣∣∣dµndx (x)− dµ

dx
(x)
∣∣∣∣ (11)
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for each n ∈ {1, 2, . . .} and Lebesgue-almost every x ∈ X. Hence, from equations (9), (10) and (11) we conclude∣∣∣∣dµndx (x) log
[
dµn
dx

(x)
]
− dµ

dx
(x) log

[
dµ

dx
(x)
]∣∣∣∣ ≤ [M +

log [M ′]
M ′ − 1

] ∣∣∣∣dµndx (x)− dµ

dx
(x)
∣∣∣∣ ,

for each n ∈ {1, 2, . . .} and Lebesgue-almost every x ∈ X as well, and therefore, from equation (8),

|H[µn]−H[µ]| ≤
[
M +

log [M ′]
M ′ − 1

] ∥∥∥∥dµndx − dµ

dx

∥∥∥∥
L1(dx)

. (12)

In the same way, since ∫
X

∣∣∣∣log
[
dµn
dµ

]∣∣∣∣ dµn ≤M +
∥∥∥∥log

[
dµ

dx

]∥∥∥∥
L∞(dx)

<∞,

and therefore {µn}∞n=1 ⊆ H(X||µ), from equations (10) and (11) it is easy to see that

D[µn||µ] ≤ log [M ′]
M ′ (M ′ − 1)

∥∥∥∥dµndx − dµ

dx

∥∥∥∥
L1(dx)

. (13)

The last part of the theorem then follows from equations (12) and (13) since, if ‖µn − µ‖V → 0 as n ↑ ∞, then∥∥∥∥dµndx − dµ

dx

∥∥∥∥
L1(dx)

(= ‖µn − µ‖V )→ 0,

as n ↑ ∞ as well. �

Remark III.6 The reader can verify that the arguments leading to the proof of Theorem III.2 require for the supports
of the densities dµ

dx and dµn
dx , n ∈ {1, 2, . . .}, when regarded as densities in Rk, to at most pairwise differ by a Lebesgue-

null set. The set X in the statement of the theorem can then be taken as the intersection of all the afore mentioned
supports. Indeed, for such a µ ∈ AC(Rk) and {µn}∞n=1 ⊆ AC(Rk) we have, with µ0

.= µ, K0
.= support(dµ0

dx ),
Kn

.= support(dµndx ) for each n ∈ {1, 2, . . .} (all the supports being taken w.r.t. Rk) and

X .=
∞⋂
n=0

Kn,

that for each m ∈ {0, 1, 2, . . .}

Km \ X =
∞⋃
n=0

(Km \Kn) ,

a Lebesgue-null set, and therefore, since {µn}∞n=0 ⊆ AC(Rk), that each element in the sequence {µn}∞n=0 is concentrated
on X. Moreover, {µn}∞n=0 ⊆ AC+(X).

In view of Remark III.2 and Lemma II.2, we have the following direct corollary to Theorems III.1 and III.2.

Corollary III.1 Let {µn}∞n=1 ⊆ AC+(X) and µ ∈ AC(X) be such that dµ
dx (x) > 0, for each x ∈ X, log[dµdx ] ∈ Cb(X)

and {log[dµndx ]}∞n=1 ⊆ L∞(dx). Assume that

sup
n∈{1,2,...}

∥∥∥∥log
[
dµn
dx

]∥∥∥∥
L∞(dx)

<∞.

Then, {µn}∞n=1 ⊆ H(X) ∩H(X||µ), µ ∈ H(X) and the following assertions are equivalent.

1. µn ⇒ µ and H[µn]→ H[µ] as n ↑ ∞.

2. D[µn||µ]→ 0 as n ↑ ∞.

3. ‖µn − µ‖V → 0 as n ↑ ∞.
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IV. POINTWISE CONVERGENCE AND DIFFERENTIAL ENTROPY CONVERGENCE

In this section we provide a general result for convergence of Shannon Differential Entropy, and Kullback-Liebler
discriminant as well, under an appropriate pointwise convergence condition. We take into account both compactly
and uncomplactly supported densities. As mentioned in Section I, the proof is based on exploiting absolute continuity
properties of measures, in conjunction with a suitable boundedness condition and the dominated convergence theorem.
The result is the following.

Theorem IV.1 Let µ ∈ H(X) and {µn}∞n=1 ⊆ AC(X||µ) be such that dµn
dµ (x) → 1 as n ↑ ∞, for µ-almost every

x ∈ X, and {dµndµ }
∞
n=1 ⊆ L∞(dµ). Assume that

M
.= sup
n∈{1,2,...}

∥∥∥∥dµndµ
∥∥∥∥
L∞(dµ)

<∞. (14)

Then, {µn}∞n=1 ⊆ H(X) ∩H(X||µ) and we have both

D[µn||µ]→ 0 and H[µn]→ H[µ]

as n ↑ ∞.

Proof. First, for each n ∈ {1, 2, . . .} we have∫
X

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµn =
∫

X

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµndµ dµ ≤M
∫

X

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµ <∞
(µ ∈ H(X)). Condition (14) in the statement of the theorem also implies that {dµndµ log[dµndµ ]}∞n=1 ⊆ L∞(dµ) with

M ′
.= sup
n∈{1,2,...}

∥∥∥∥dµndµ log
[
dµn
dµ

]∥∥∥∥
L∞(dµ)

<∞, (15)

and therefore, {µn}∞n=1 ⊆ H(X||µ). Indeed, for each n ∈ {1, 2, . . .},∫
X

∣∣∣∣log
[
dµn
dµ

]∣∣∣∣ dµn =
∫

X

∣∣∣∣log
[
dµn
dµ

]∣∣∣∣ dµndµ dµ ≤
∫

X
M ′dµ, (16)

and
∫

X M
′dµ = M ′µ(X) = M ′ <∞. Hence, for each n ∈ {1, 2, . . .} we also have∫

X

∣∣∣∣log
[
dµn
dx

]∣∣∣∣ dµn ≤ ∫
X

∣∣∣∣log
[
dµn
dµ

]∣∣∣∣ dµn +
∫

X

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµn <∞,
thus {µn}∞n=1 ⊆ H(X), and we may write

|H[µn]−H[µ]| =
∣∣∣∣∫

X
log
[
dµn
dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµ

∣∣∣∣
≤
∣∣∣∣∫

X
log
[
dµn
dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµn

∣∣∣∣+
∣∣∣∣∫

X
log
[
dµ

dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµ

∣∣∣∣ ,
i.e.,

|H[µn]−H[µ]| ≤ D[µn||µ] +
∣∣∣∣∫

X
log
[
dµ

dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµ

∣∣∣∣ , (17)

for each n ∈ {1, 2, . . .} as well. But,

D[µn||µ] =
∫

X
log
[
dµn
dµ

]
dµn =

∫
X

log
[
dµn
dµ

]
dµn
dµ

dµ (18)

for each n ∈ {1, 2, . . .} and, as already used in equation (16), from (15) it follows that, for each n ∈ {1, 2, . . .},

dµn
dµ

(x)
∣∣∣∣log

[
dµn
dµ

(x)
]∣∣∣∣ ≤M ′
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for µ-almost every x ∈ X. Since also {dµndµ log[dµndµ ]}∞n=1 converges pointwise µ-almost everywhere to 0 on X as n ↑ ∞,
where 0(x) .= 0, x ∈ X, by Lebesgue’s Dominated Convergence Theorem (see for example [13]) we conclude∫

X
log
[
dµn
dµ

]
dµn
dµ

dµ→ 0, (19)

as n ↑ ∞ as well. The claimed convergence D[µn||µ] → 0 as n ↑ ∞ then follows from equations (18) and (19). Now,
to establish the remaining claimed convergence H[µn]→ H[µ] as n ↑ ∞, we note that for each n ∈ {1, 2, . . .} we also
have∣∣∣∣∫

X
log
[
dµ

dx

]
dµn −

∫
X

log
[
dµ

dx

]
dµ

∣∣∣∣ =
∣∣∣∣∫

X
log
[
dµ

dx

]
dµn
dµ

dµ−
∫

X
log
[
dµ

dx

]
dµ

∣∣∣∣ ≤ ∫
X

∣∣∣∣log
[
dµ

dx

](
dµn
dµ
− 1
)∣∣∣∣ dµ. (20)

But, since {dµndµ }
∞
n=1 converges pointwise µ-almost everywhere to 1 on X as n ↑ ∞, we conclude

log
[
dµ

dx

](
dµn
dµ
− 1
)
→ 0,

µ-almost everywhere on X and as n ↑ ∞ as well. In addition, since we obviously also have {dµndµ − 1}∞n=1 ⊆ L∞(dµ)
and

M ′′
.= sup
n∈{1,2,...}

∥∥∥∥dµndµ − 1
∥∥∥∥
L∞(dµ)

≤ sup
n∈{1,2,...}

∥∥∥∥dµndµ
∥∥∥∥
L∞(dµ)

+ 1 = M + 1 <∞,

we conclude that, for each n ∈ {1, 2, . . .},∣∣∣∣log
[
dµ

dx
(x)
](

dµn
dµ

(x)− 1
)∣∣∣∣ ≤M ′′ ∣∣∣∣log

[
dµ

dx
(x)
]∣∣∣∣

for µ-almost every x ∈ X. But, ∫
X
M ′′

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµ = M ′′
∫

X

∣∣∣∣log
[
dµ

dx

]∣∣∣∣ dµ <∞
(µ ∈ H(X)). Hence, once again by Lebesgue’s Dominated Convergence Theorem we conclude∫

X

∣∣∣∣log
[
dµ

dx

](
dµn
dµ
− 1
)∣∣∣∣ dµ→ 0

as n ↑ ∞, and therefore from equation (20) we also have∫
X

log
[
dµ

dx

]
dµn →

∫
X

log
[
dµ

dx

]
dµ, (21)

as n ↑ ∞ as well. The claimed convergence H[µn] → H[µ] as n ↑ ∞ now follows from equations (17), (18), (19) and
(21), proving the theorem. �

Remark IV.1 If {µn}∞n=1 ⊆ AC(X) and µ ∈ AC+(X), then µ-almost everywhere pointwise convergence dµn
dµ → 1 as

n ↑ ∞ is equivalent to Lebesgue-almost everywhere pointwise convergence dµn
dx →

dµ
dx , as n ↑ ∞ as well (both on X, of

course).

Remark IV.2 If {µn}∞n=1 ⊆ AC(X) and µ ∈ AC(X) with {dµndx }
∞
n=1 converging pointwise Lebesgue-almost everywhere

to dµ
dx on X as n ↑ ∞, then ‖µn − µ‖V → 0, as n ↑ ∞ as well. Indeed,

‖µn − µ‖V =
∥∥∥∥dµndx − dµ

dx

∥∥∥∥
L1(dx)

=
∫

X

∣∣∣∣dµndx − dµ

dx

∣∣∣∣ dx→ 0

as n ↑ ∞, the convergence following from Scheffé’s Lemma, [16, Lemma 5.10, p.55]. Therefore, when {µn}∞n=1 ⊆
AC+(X) and µ ∈ AC+(X), by going from convergence in variation in Theorem III.2, to pointwise convergence of the
corresponding densities in Theorem IV.1 (see Remark IV.1 above), we are able to relax the corresponding boundedness
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condition from (7) to (14). Indeed, for {µn}∞n=1 ⊆ AC+(X) and µ ∈ AC+(X) satisfying log[dµdx ] ∈ L∞(dx) and
{log[dµndx ]}∞n=1 ⊆ L∞(dx) with supn∈{1,2,...} ‖ log[dµndx ]‖L∞(dx) <∞, we have {dµndµ }

∞
n=1 ⊆ L∞(dµ) and

sup
n∈{1,2,...}

∥∥∥∥dµndµ
∥∥∥∥
L∞(dµ)

≤ 2supn∈{1,2,...}‖log[ dµndx ]‖
L∞(dx)

2−‖
dµ
dx‖L∞(dx)

,

condition (7) implying then (14).

Remark IV.3 For any {µn}∞n=1 ⊆ AC(X) and µ ∈ AC+(X), condition (14) in Theorem IV.1 reads as

dµn
dx

(x)
[
dµ

dx
(x)
]−1

≤M <∞ (22)

for each n ∈ {1, 2, . . .} and Lebesgue-almost every x ∈ X, and therefore, as the reader can easily verify (note M ≥ 1
necessarily), we have

dµn
dx

(x) log
[
dµn
dx

(x)
]
≤M max {ψ1(x), ψ2(x)} ,

for each n ∈ {1, 2, . . .} and Lebesgue-almost every x ∈ X as well, where

ψ1(x) .=
dµ

dx
(x) log [M ] and ψ2(x) .=

dµ

dx
(x) log [M ] +

dµ

dx
(x) log

[
dµ

dx
(x)
]
.

Thus, since also2 y log[y] ≥ (−e ln[2])−1 for all y ∈ R+, condition (22) then implies the existence of C0, C1, C2 ∈ R+,
with C0 > 0 necessarily if X has infinite Lebesgue measure (easy to check), such that for each n ∈ {1, 2, . . .}∣∣∣∣dµndx (x) log

[
dµn
dx

(x)
]∣∣∣∣ ≤ f(x), (23)

for Lebesgue-almost every x ∈ X, where

f(x) .= C0 + C1
dµ

dx
(x) + C2

dµ

dx
(x)
∣∣∣∣log

[
dµ

dx
(x)
]∣∣∣∣ .

However, even with {µn}∞n=1 ⊆ H(X), µ ∈ H(X) ∩ AC+(X) and {dµndx }
∞
n=1 converging pointwise Lebesgue-almost

everywhere to dµ
dx on X as n ↑ ∞ (see Remark IV.1), condition (23) cannot be used in the dominated convergence

theorem to conclude the convergence

H [µn] = −
∫

X
log
[
dµn
dx

]
dµn = −

∫
X

log
[
dµn
dx

]
dµn
dx

dx→ −
∫

X
log
[
dµ

dx

]
dµ

dx
dx = −

∫
X

log
[
dµ

dx

]
dµ = H [µ] ,

as n ↑ ∞, if X has infinite Lebesgue measure. Indeed,∫
X
fdx ≥

∫
X
C0dx = C0

∫
X
dx =∞

in that case. Therefore the advantage of considering integrals w.r.t. dµ (instead of dx) in the arguments leading to
the proof of Theorem IV.1.

V. DISCRETE ALPHABET SOURCES

In this section we consider discrete alphabet sources. We show how all convergence results become straightforward
for finitely supported probability measures, and we also provide results for the infinitely supported case, by exploiting
the equivalence between weak convergence and convergence in variation in this setting.

2 Recall that 0 log[0] = 0[−∞] = 0 by convention.
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Though most of the definitions in the previous sections include the discrete case as a particular case when no
reference to AC(X) is made, we will go briefly through the relevant concepts that apply for the case of probability
measures with discrete support prior to state the results.

Throughout this section we consider

X .= {xi}i∈I ⊆ Rk with I ⊆ {1, 2, . . .}.

Accordingly, S(X) denotes the collection of all subsets of X and P(X) the collection of all probability measures on
(X,S(X)). A measure µ ∈ P(X) is now characterized by the sequence {pµi }i∈I ⊆ [0, 1], satisfying the normalization
condition ∑

i∈I
pµi = 1,

and given by pµi
.= µ({xi}), i ∈ I. We will associate the sequence {ai}i∈I ⊆ R to the mapping a : X→ R by defining

a(xi)
.= ai for each i ∈ I. We shall use the same notation as in the previous sections to denote now

H(X) .=
{
µ ∈ P(X) : {log [pµi ]}i∈I ∈ l

1(µ)
}
, where l1(µ) .=

{
{ai}i∈I ⊆ R :

∑
i∈I
|ai|pµi <∞

}
for µ ∈ P(X). Note that {ai}i∈I ∈ l1(µ) if and only if a ∈ L1(dµ). In fact,∑

i∈I
aip

µ
i =

∫
X
adµ and ‖{ai}i∈I‖l1(µ)

.=
∑
i∈I
|ai| pµi =

∫
X
|a| dµ = ‖a‖L1(dµ)

for {ai}i∈I ∈ l1(µ) or, equivalently, for a ∈ L1(dµ).
Consider the measure µ ∈ H(X). Then,

H[µ] .= −
∑
i∈I

pµi log [pµi ] ∈ R+

is the Shannon Entropy of µ. Also, given µ ∈ P(X), AC(X||µ) denotes the set of all probability measures σ ∈ P(X)
that are absolutely continuous w.r.t. µ, i.e., satisfying the condition pσi = 0 whenever pµi = 0. In the same way,

H(X||µ) .=
{
σ ∈ AC(X||µ) :

{
log
[
pσi
pµi

]}
i∈I
∈ l1(σ)

}
,

with the standard convention 0 log[ 00 ] = 0 (motivated by continuity). Finally, if σ ∈ H(X||µ), then

D[σ||µ] .=
∑
i∈I

pσi log
[
pσi
pµi

]
∈ R+

is the Shannon Relative Entropy between σ and µ, or equivalently the Kullback-Liebler Discriminant between σ and
µ too. Similarly than before, D[σ||µ] = 0 if and only if pµ = pσ σ-almost everywhere, i.e., if and only if pµi = pσi for
each i ∈ I such that pσi > 0.

Weak convergence of {µn}∞n=1 ⊆ P(X) to µ ∈ P(X) is now characterized as follows. We have µn ⇒ µ as n ↑ ∞ if
and only if ∑

i∈I
f(xi)p

µn
i →

∑
i∈I

f(xi)p
µ
i , (24)

as n ↑ ∞ as well, for each bounded, real-valued function f on X.
Distance in variation between σ1 ∈ P(X) and σ2 ∈ P(X) is

‖σ1 − σ2‖V =
∥∥{pσ1

i − p
σ2
i }i∈I

∥∥
l1(δ)

,

where δ denotes the counting measure on (X,S(X)), i.e., δ({xi})
.= 1 for each i ∈ I and δ(A) .=

∑
xi∈A δ({xi}) for

each A ∈ S(X). The corresponding convergence in variation of {µn}∞n=1 ⊆ P(X) to µ ∈ P(X), ‖µn − µ‖V → 0 as
n ↑ ∞, takes place if and only if, as n ↑ ∞ as well,∑

i∈I
|pµni − p

µ
i | → 0, since ‖{pµni − p

µ
i }i∈I‖l1(δ) =

∑
i∈I
|pµni − p

µ
i | .

In the discrete setting, the relationship between weak convergence and convergence in variation in Lemma II.2 can
be strengthened, as stated in the following result.
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Lemma V.1 Let {µn}∞n=1 ⊆ P(X) and µ ∈ P(X). Then, we have µn ⇒ µ as n ↑ ∞ if and only if ‖µn − µ‖V → 0,
as n ↑ ∞ as well. Moreover, the previous ways of convergence take place if and only if pµni → pµi as n ↑ ∞ for
each i ∈ I, i.e., both the topology of weak convergence and convergence in variation are equivalent to the topology of
coordinatewise convergence of the sequence of vectors {(pµni )i∈I}∞n=1 to the vector (pµi )i∈I as n ↑ ∞ (equivalently, to
the topology of pointwise convergence of {pµn}∞n=1 to pµ on X as n ↑ ∞).

Proof. We obviously have that µn ⇒ µ as n ↑ ∞ implies pµni → pµi , as n ↑ ∞ as well, for each i ∈ I (just need
to consider equation (24) with fi : X → {0, 1} defined, for each i ∈ I, by letting fi(x) .= 1 if x = xi and fi(x) .= 0 if
x ∈ X \ {xi}). Now, since

‖µn − µ‖V =
∥∥{pµni − pµi }i∈I∥∥l1(δ) = ‖pµn − pµ‖L1(dδ) =

∫
X
|pµn − pµ|dδ,

if the sequence {pµn}∞n=1 converges pointwise to pµ on X as n ↑ ∞, then Scheffé’s Lemma gives us the convergence
‖µn − µ‖V → 0, as n ↑ ∞ too, the same as in the differential case (see Remark IV.2). The result then follows from
Lemma II.2. �

Remark V.1 In the differential setting and from Remark IV.2 and Lemma II.2, we have the chain of implications:
pointwise convergence of densities (Lebesgue-almost everywhere pointwise convergence in fact) ⇒ convergence in vari-
ation ⇒ weak convergence. As Lemma V.1 shows, the corresponding three ways of convergence in the discrete setting
are indeed equivalent.

In view of Lemma V.1, it is a straightforward exercise to check that in the case when the set X (equivalently the
index set I) can be taken to be finite (i.e., when the supports of all probability measures involved are contained in a
finite set), the convergence µn ⇒ µ as n ↑ ∞ implies both

H[µn]→ H[µ] and D[µn||µ]→ 0,

as n ↑ ∞ as well, being in fact, from Remark III.2, µn ⇒ µ as n ↑ ∞ and D[µn||µ]→ 0 as n ↑ ∞ equivalent (of course
with {µn}∞n=1 ⊆ AC(X||µ) for the convergence D[µn||µ]→ 0 as n ↑ ∞).

Given µ ∈ P(X) and {µn}∞n=1 ⊆ P(X), the set X can be made into a finite set whenever µ is finitely supported and
{µn}∞n=1 ⊆ AC(X||µ), by just redefining it as Xµ with

Xµ
.= support (pµ) = {x ∈ X : pµ(x) > 0} = {xi}i∈Iµ

and Iµ
.= {i ∈ I : pµi > 0}. Note that if µ ∈ P(X) is finitely supported and {µn}∞n=1 ⊆ AC(X||µ), then µ ∈ H(X) and

{µn}∞n=1 ⊆ H(X||µ). The discrete setting versions of Theorems III.1 and III.2 and Corollary III.1 are trivial in that
case. They cannot be stated for µ ∈ P(X) being infinitely supported however, as clear from the following remark.

Remark V.2 Unlike in the differential setting (see Remark III.3), in the discrete setting we have for µ ∈ P(X) that
pµi → 0 as i ↑ ∞, i ∈ Iµ, whenever Iµ (equivalently Xµ) is infinite (

∑
i∈Iµ p

µ
i = 1 <∞), and therefore the subsequence

{log[pµi ]}i∈Iµ cannot be bounded in that case (even when Xµ is a bounded subset of Rk).

We consider the general case, covering infinitely supported probability measures, in the following theorem (which
corresponds to the discrete version of Theorem IV.1) and two corresponding corollaries. The proof of the theorem
will be omitted, following by similar corresponding arguments as those in the proof of Theorem IV.1.

Theorem V.1 Let µ ∈ H(X) and {µn}∞n=1 ⊆ AC(X||µ) be such that pµni → pµi as n ↑ ∞, for each i ∈ Iµ>0, and

M
.= sup
n∈{1,2,...}
i∈Iµ>0

pµni
pµi

<∞.

Then, {µn}∞n=1 ⊆ H(X) ∩H(X||µ) and we have both

D[µn||µ]→ 0 and H[µn]→ H[µ]

as n ↑ ∞.

We have the following two direct corollaries to Theorem V.1 (see also Lemma V.1 and Remark III.2). For the first,
we define [H ∩ P+](X) .= H(X) ∩ P+(X) with P+(X) the collection of all µ ∈ P(X) satisfying pµi > 0 for each i ∈ I.



16

Corollary V.1 Let µ ∈ [H ∩ P+](X) and {µn}∞n=1 ⊆ P(X) be such that µn ⇒ µ as n ↑ ∞ and

sup
n∈{1,2,...}

i∈I

pµni
pµi

<∞.

Then, {µn}∞n=1 ⊆ H(X) ∩H(X||µ) and we have both

D[µn||µ]→ 0 and H[µn]→ H[µ]

as n ↑ ∞.

Corollary V.2 Let µ ∈ H(X) and {µn}∞n=1 ⊆ AC(X||µ) be such that

sup
n∈{1,2,...}
i∈Iµ>0

pµni
pµi

<∞. (25)

Then, {µn}∞n=1 ⊆ H(X) ∩H(X||µ) and, if D[µn||µ]→ 0 as n ↑ ∞, we have

H[µn]→ H[µ],

as n ↑ ∞ as well.

Remark V.3 In the context of continuity versus pure convergence properties of Shannon entropy discussed in Section
I, note Corollary V.2 establishes the convergence H[µn] → H[µ] as n ↑ ∞, under the convergence D[µn||µ] → 0
as n ↑ ∞ as well, by exploiting an underlying structure relating {µn}∞n=1 to µ (condition (25)). In contrast, by
imposing the stronger requirement on µ of being power dominated (stronger than just µ ∈ H(X); see [10] for the
definition of a power dominated distribution), the continuity result [10, Theorem 21, p.16] establishes the corresponding
entropy convergence, in a discrete setting too, for all approximating sequences converging in the above Kullback-Liebler
discriminant sense.
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