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The traditional formulation of logit models applied to transport demand assumes a com-
pensatory (indirect) utility function in which the consumers’ strategy assumes a trade-
off between attributes. Several authors have criticized this approach because it fails to rec-
ognize attribute thresholds in consumer behavior, or a more generic domain where such a
compensatory strategy is contained. In this paper, a mixed strategy is proposed, which
combines the compensatory strategy valid in the interior of the choice domain with cutoff
factors that restrain choices to the domain edge. The proposed model combines the multi-
nomial logit model with a binomial logit factor that represents soft cutoffs. This approach
extends previous contributions in several ways and allows multiple dimensions for cutoff
factors. In addition to considering individual behavior, it introduces system constraints
such as capacity and inter-agent interactions (choice externalities). This extension yields
a non-linear problem, which is solved by analyzing the fixed point problem. Additionally,
a set of evaluation tools, a social utility of the constrained problem, and a measure of the
shadow price of each constraint, are proposed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Following Domencic and McFadden’s book (1975), the random utility model assuming a Gumbel distribution for utilities
has been widely applied in urban studies, producing an extensive literature of logit models based on different covariance
matrix structures, such as multinomial, nested, and mixed logit models, among others. The main microeconomic foundation
assumptions of these models is the compensatory strategy followed by individuals, i.e., their decision strategy assumes a
trade-off between attributes. This assumption has been criticized by several scientists who claim that non-compensatory
behavior is potentially more realistic, as, for example, the elimination-by-aspect (EBA) process (Tversky, 1972). A natural ap-
proach to relaxing the compensatory assumption, proposed by Manski (1977) and followed by Swait and Ben-Akiva (1987),
Ben-Akiva and Boccara (1995) and Cantillo and Ortúzar (2005), among others, is to explicitly model the choice set generation
process using a two-stage approach: first, the feasible choice set is generated for each individual and, second, a compensa-
tory model calculates the choice probability conditional on the choice set. The appeal of this approach is that it permits dif-
ferent models to simulate the phenomena associated with each stage (Cascetta and Papola, 2001), but it is computationally
complex because the number of possible choice sets explodes with the number of alternatives, with a maximum of 2m � 1
choice sets for m alternative options. Heuristic approaches have been proposed to reduce this difficulty, such as the pairwise
comparisons of alternatives suggested by Morikawa (1995). Nevertheless, the choice set formation process is not sufficiently
efficient if the number of alternatives is large, as in the case of spatial choices (e.g., trip destination and location choices), and
is not applicable in more complex processes involving intensive choice making calculations, such as equilibrium and opti-
mization processes.
. All rights reserved.
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The model proposed by Cascetta and Papola (2001) follows a different approach. It extends the compensatory utility func-
tion in order to implicitly simulate (rather than generate) the perception/availability of an alternative, leading to a one-step
approach called the implicit availability/perception model (IAP). In this model, the choice-set of alternatives is a fuzzy set,
where each element has a degree of membership to the choice set; thus, the choice-set is ‘‘soft”1 rather than ‘‘crisp”.

Swait (2001) models choice behavior incorporating a wide range of decision strategies using a third approach. He extends
the standard deterministic utility maximization problem by including constraints on the values that the attributes and prices
can attain for a choice to be feasible, which define a set of lower and upper bounds or cutoffs for each alternative. These con-
straints represent a feasible domain where the individual is willing to or can make choices, with attribute bounds reproduc-
ing ideological cutoffs, (for example the EBA process), economic constraints (e.g., income or time budgets), and physical
limits. Thus, the author proposes a flexible version of the deterministic utility optimization problem by relaxing constraints
which are introduced as linear penalties in the utility function which are activated if cutoffs are violated. This is also an im-
plicit approach, a one-step method based on a ‘‘reduced” form model of behavior. The underpinning rationale is given by
Swait: ‘‘it is behaviorally equivalent whether the decision-maker simply chooses the best good that satisfies the constraints,
or alternatively, first screens based on constraints, and then chooses the best alternative”. While we agree with Swait’s ratio-
nale, his implementation using a linear relaxation of cutoffs introduces a ‘‘kink” in the utility (changes the slope) at the cut-
off. The problem is that kinks in the utility function make it non-differentiable at the cutoff, which introduces a problem in
certain complex calculation processes, such as equilibrium and optimization processes, or in systems with a large number of
agents making choices on choice sets which change their attributes in the process (like price adjustment to equilibrium).

The constrained logit model (CLM) proposed in this paper combines aspects of Swait’s model and the IAP model. It follows
a one-stage approach using a reduced utility function that implicitly imposes cutoffs to choice makers. Our constrained util-
ity function is similar to the IAP model in that it applies the binomial logit to simulate soft cutoffs by a continuous and dif-
ferentiable extended utility function. However, we extend the approach for a full set of constraints on attributes and prices,
so the CLM constrains choices to a multi-dimensional domain. We also advance the analysis for the case of a multinomial
version of the CLM, denoted CMNL. For this model, we innovate by studying the more complex case of system constraints,
where the set of alternative attributes depend on the choices potentially made by the whole population of decision-makers.
In this case, these constraints introduce endogenous variables in the forecasting process in order to represent the complex
issue of externalities in consumption.

The extension that enables the model to cope with externalities opens up the set of applications to a variety of complex
cases where endogenous variables are relevant. In fact, it makes the demand model able to simulate emerging behavior ob-
served at a macro level while being generated based on micro level (individual) decisions. However, it also introduces the
need to study the solution(s) that emerge from such a model. In this paper, we prove that the proposed model has a unique
solution and that the fixed point iteration converges to that solution. The proving theorem, however, applies only for the
binomial logit used in CMNL model. The theorem makes the model applicable to a wide range of real problems where attri-
butes are endogenous, where the demand model inevitably embeds an equilibrium problem. A good example of these attri-
butes is the residential location model, where zone quality is defined as a function of the location choice of all agents; thus,
one’s demand for a location option depends on others’ location choice behavior. This case describes Shelling’s (1978) model,
where individuals’ micro motives, such as the will to live among peers, leads to a macro land use distribution reflecting spa-
tial socioeconomic segregation.

The applications of the CMNL cover a wide range, as we discuss below. The model enhances the logit model for current
applications since consumers always face a variety of constraints, for example, income, time, and choice attributes that vio-
late individuals’ limits. Additionally, on the supply side, producers may also be modeled as choice makers facing constraints
that can be explicitly modeled using the CMNL, for example, in the real estate market where zoning constraints are numer-
ous for developers.

The CLM’s theoretical framework is presented and discussed in the following sections. Next, we define choice probabil-
ities for the special case of the multinomial logit, which specifies the constrained multinomial logit model (CMNL), and we
analyze the model calibration with empirical examples. Then, we study the use of the CMNL to forecast demand, with a focus
on the non-linear effect introduced by endogenous constraints. This model is then further studied to produce two evaluation
tools: a social benefit measure and the shadow price for each constraint. The paper ends with a brief presentation of the
range of potential applications of the CLM model in spatial studies.

2. The constrained discrete choice problem

Consider the following class of optimization problems widely used in microeconomic theory to describe agent behavior of
discrete goods. Each agent n behaves according to the indirect utility function Un when deciding the best choice among a set
of I discrete alternatives contained in the set C of available alternatives. Assume that the utility function depends on a set of
K � 1 attributes, denoted by vector X 2 R(K�1)�I, and on the price vector p 2 RI.

From microeconomics, the rational consumer’s choice behavior among the set of discrete options C is described by the
following optimization problem:
1 Soft constraint means that the constraint can be violated to some limited extent.
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max
dni

X
i2C

dniUnðXi; piÞ

s:a
X
i2C

dni ¼ 1; dni 2 f0;1g 8i ¼ f1;2; . . . ; Ig 2 C
ð1Þ
where dni represents the individual’s choice, Xi is the vector of exogenous attributes that describes alternative i, pi is the exog-
enous price of the alternative, and U(X,p) is the indirect utility function.

A key point is that the utility function embeds, by definition, all budget constraints faced by the individual in making a
choice, such as the individual’s income and time, and by assumption, all other constraints as well. The violation of this
assumption implies potentially strong errors in forecasting demand. Therefore, in modeling the consumer behavior de-
scribed in (1), the modeler faces the difficulty of specifying an indirect utility function able to reproduce the complexity
of real behavior under constraints. For example, the behavior of choosing under the elimination by aspects process, where
some attributes surpass levels that saturate utility, or the behavior in the vicinity of the constraints imposed by income and
time expenditures. Although the specification of such utility functions is theoretically feasible, functions that can comply
with that requirement have a complex non-linear form and are difficult to implement in real studies, the majority of which
use the simple linear form for utilities or other forms limited by the data available to calibrate them.

Thus, instead of searching such a complex function, one can modify the consumers’ problem into:
max
dni

X
i2C

dniUnðXi; piÞ

s:a
X
i2C

dni ¼ 1; dni 2 f0;1g 8i 2 C

ank 6 Xik 6 bnk 8i 2 C; k ¼ f1; . . . ;K � 1g
anK 6 pi 6 bnK 8i 2 C

ð2Þ
where the consumer’s feasible/acceptable domain Dn is explicit. For simplicity, hereafter, we define vector Zi = (Xi,pi) 2 RK,
which contains attributes and the price of the alternative i.

Note that in making constraints on the attributes and prices explicit, the modeler has to specify a more simple function U
able to correctly represent behavior only in the interior of the domain; the behavior at the border of the domain is controlled
in (2) by explicit constraints. This motivates the decomposition of the consumer’s problem into a compensatory utility func-
tion in the interior of the consumers’ domain ðUÞ, and an explicit model of the behavior in the vicinity of the domain. Such
decomposition makes use of a simple functional form for U more plausible. This motivated Manski’s (1977) two-stage ap-
proach, where the first stage is a model that identifies the subset Cn where all constraints are complied, followed by a second
stage that models the maximum utility choice within this subset using a compensatory utility.

We denote bounds for attributes and prices by the following vectors for lower and upper bounds respectively:
hL

n ¼ ½an1; an2; . . . ; anK �; hU
n ¼ ½bn1; bn2; . . . ; bnK �. Note that these bounds are assumed to be exogenous and independent of the

specific alternative, but the approach may be easily extended to consider the case of alternatives with specific bounds. Note
also that bounds are assumed as specific to the choice maker; the case of constraints equal to all individuals is a special and
simpler case of problem (2).

Problem (2) can be written by the following unconstrained Lagrange function:
max
dni

L ¼
X
i2C

dniUnðXi; piÞ þ
X

k

knikðbnk � ZikÞ �
X

k

jnikðank � ZikÞ
 !

þ cn

X
i2C

dni � 1

 !
ð3Þ
where c, k and j are Lagrange multipliers associated to the constraints. The fact that problem (3) is unconstrained motivates
the implicit approach followed by Swait (2001) and Cascetta and Papola (2001), and is used in the following section to de-
velop a model of the consumer behavior problem (2) based on the random utility theory.
3. The constrained random utility

Consider now the classical model where the utility function is a random variable, that is Un ¼ Vn þ en, with Vn as a sys-
tematic compensatory utility, and en a random term. The widely used logit model is derived upon assuming that random
terms are distributed Gumbel, which implies that e 2 [�1,1], and utilities are unconstrained. Thus, by definition, logit mod-
els assume unconstrained utilities, thus choice behavior is also unconstrained unless the choice set is specified, which elim-
inates all alternatives whose attribute vector lies out of the consumer’s choice domain, which is the two-stage approach
mentioned above. Naturally, one can choose a distribution of utilities that, in contrast to the Gumbel distribution, is con-
strained; this would yield a family of models which are not studied in this paper.

Alternatively, we use the implicit method. We define a ‘‘constrained utility” function that induces the individual to make
choices belonging to her feasible domain Dn with a certain probability. As will be evident later, this probability may be as
high as desired, but not certain, because we allow cutoffs to be violated with a given probability g = {gk,k = 1, . . . ,K}, where
each element in this vector is the violation probability associated with the respective attribute k’s cutoff. Additionally, the
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constrained utility function is defined as compensatory in the interior of the individual’s domain, but non-compensatory in a
vicinity of the domain.

To obtain a utility function constrained to a domain, as in the IAP model, we also augment the usual compensatory utility
function by a new cutoff term, called the utility penalty. Thus, a compensatory term (Vc) and an additive cutoff term define
the constrained utility as follows:
VnðZiÞ ¼ Vc
nðZiÞ þ

1
l

ln /niðZiÞ þ eni ð3Þ
with e assumed as Gumbel distributed (0,l). Notice that a difference from Cascetta and Papola’s (2001) model is that here
the cutoff term is amplified by the inverse of the Gumbel scale parameter (1/l), which increases the penalty as the utility
dispersion increases. This difference means that the cutoff term in our model becomes more relevant as variability of utility
increases (l decreases).

Since the set of constrains affecting the choice of a given alternative may be more than only one, then the penalty term is
now defined as the following multi-dimensional composite cutoff factor /ni ¼

QK
k¼1/

L
nki � /

U
nki, which is composed of a set of K

lower and upper cutoffs. Now, each elementary cutoff factor is defined as a binomial logit function. This function has been
used previously for its simplicity by Swait and Ben-Akiva (1987), Ben-Akiva and Boccara (1995) and Cascetta and Papola
(2001). We used it not only for its simplicity, but also because it provides some relevant properties required to prove the
theorem for the case of endogenous constraints, as shown below.

Then, for each nki, we define the elementary lower and upper cutoff factors by
/L
nki ¼

1
1þ expðxkðank � Zki þ qkÞÞ

¼
1 if ðank � ZkiÞ ! �1
gk if ank ¼ Zki

�
ð4aÞ

/U
nki ¼

1
1þ expðxkðZki � bnk þ qkÞÞ

¼
1 if ðbnk � ZkiÞ ! 1
gk if bnk ¼ Zki

�
ð4bÞ
We define xj > 0,"j, because negative values simply convert (4a) into (4b) and vice versa. Additionally, we define
qk ¼
1
xk
� ln 1� gk

gk

� �
ð4cÞ
The parameter g is the cutoff tolerance, which defines the choice probability at the boundary, and qk is defined in the same
units as the kth variable. This tolerance can be as small as desired, but not zero, implying that the model cannot be applied
for deterministic compliance of constraints; some degree of tolerance is structurally imposed. For simplicity, g is specified as
constant for all agents, but an individual specific constant is also possible. The performance of other functions for the cutoff
may be explored; for example, Cascetta and Papola (2001) analyze the Gamma distribution for the single (not composite)
cutoff factor.

Observe that the generalized cutoff factor is (quasi)innocuous for any feasible alternative, i.e., those with vector Zi 2 Dn,
because /ni ? 1; conversely, if any element Zki R Dn then /ni ? 0, the alternative’s utility tends to minus infinity, and the
choice probability tends to zero, performing a soft compliance of the constraint. Fig. 1 depicts the binomial (lower and upper)
cutoff functions, and Fig. 2 shows that the parameter x controls the softness of the cutoff by defining the slope of the cutoff
function.

Note that in the case of a deterministic behavior, theoretically only the most binding constraint on each variable will af-
fect choices, because the rest are feasible by definition. In contrast, in our stochastic approach, even the least binding cutoff
on one attribute will have some effect on choices. Additionally, the more the constraint is violated, the larger the effects of
the cutoff. For example, consider the case of a choice alternative with a price close to a self-imposed maximum expenditure,
which defines the first constraint; the second less binding, but stricter constraint is the individual’s income. In the model, the
utility will tend to be reduced primarily by the first cutoff, but some extra reduction is produced by the second cutoff. This
combination of effects and the presence of a violation tolerance seem to be plausible in a real context because they can rep-
resent the stochastic nature of constraints associated to unpredictable events affecting the consumer’s disposable income,
such as accidents or health problems. The method may also be applied to consider constraints defined as a mix of attributes.

Our approach can be compared with Swaits’ (2001) model because both models penalize utilities of choices out of the
domain, but while his model assumes a linear penalty function, ours is non-linear. Indeed, our utility penalty factor is
ln /ni ¼ ln
YK

k

/L
nki/

U
nki

" #
¼
XK

k

ðln½/L
nki� þ ln½/U

nki�Þ
then
ln /ni ¼ �
XK

k

ðln½1þ exp xðank � Zki þ qkÞ� þ ln½1þ exp xðZki � bnk þ qkÞ�Þ ð5Þ
This penalty is negative (disutility) for all Zi out of the individual’s domain Dn, and increases exponentially as one (or more)
attributes fall further out of the domain. Another relevant difference is that Swaits’ linear penalty yields a continuous utility
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function but is not differentiable at the cutoff values of attributes, while the advantage of the non-linear approach is that
utilities are continuous and differentiable for all Z 2 R.

At this point we argue, along with other authors previously mentioned, that the optimization problem with soft con-
strained utilities is the natural representation of the individual’s choice problem. This argument arises from the observation
that in social sciences, cutoff limits are naturally soft because individual choices are subject to the individuals’ perceptions,
even in the case of physical constraints such as infrastructure capacity. Then, in models where a choice maker represents a
set of individuals with differentiated reactions to constraints, the emerging demand for a given alternative is naturally rep-
resented by the soft cutoff rather than a deterministic cutoff.

The cutoff tolerance parameter q may be conceived in the context of a process with memory, because the tolerance for
accepting penalties may be specified as dependent on previous experiences, in a way such that those individuals that had
chosen alternatives in the vicinity of the domain limit have a better knowledge of the penalty and the benefits/costs of
the choices made. Thus, we can postulate that the tolerance differs across similar individuals in all aspects, including their
experience in choosing alternatives in the vicinity of specific constraints.

4. The constrained multinomial logit model (CMNL)

The individual choice problem under the constrained utility function defined in Eq. (3), is
Max
i2C

VnðZiÞ ¼ VC
nðZiÞ þ

1
l

ln /ni þ eni ð6Þ
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with C the universal set of alternatives and /ni = /n (Zi). Expression (6) is the reduced stochastic objective function that rep-
resents a stochastic version of the choice problem (2), with V as the indirect utility function which complies with the feasible
domain. The solution of this problem yields the following constrained choice probabilities:
Pni ¼ Prob VC
ni þ

1
l

ln /ni þ eni P max
j2C

VC
nj þ

1
l

ln /nj þ enj

� �� �
ð7Þ
Moreover, the assumption that the constrained utility is distributed as an identical and independent Gumbel yields the fol-
lowing multinomial probability function:
Pni ¼
/ni � expðlVC

niÞP
j2C/nj � expðlVC

njÞ
ð8Þ
This expression represents a choice probability which complies with the feasible domain Dn, which tends asymptotically
to zero if any of the alternative attributes violate any cutoff. At the boundary of the domain, the usual compensatory prob-
ability is multiplied by tolerance probability factors gs. This model, named the constrained multinomial logit (CMNL), pre-
serves the closed form of the equivalent classical compensatory logit models and the technical properties of the multinomial
logit with a non-linear utility function given by (6). Mathematically, the model reproduces the function of compensatory
utility models in the interior of the domain, but in the vicinity of the domain boundaries, diverts so that the probability dras-
tically falls to (near) zero. The transition from the compensatory model to a constrained model is smooth, because the utility
functions are continuous and differentiable in the whole real space.

4.1. Calibration issues and applications

It is now important to make some comments regarding calibration of the CMNL model. The population is assumed clas-
sified into socioeconomic groups, whose members are then assumed to behave identically, except for idiosyncratic variabil-
ity represented by en. Thus, we calibrate parameters for a representative individual identified by index n in Eq. (6) using
observations of consumers belonging to this category and their choices. The set of parameters include those of the compen-
satory utility and the set (qnk,xnk;"n,k) of the cutoff functions. The data required for the model calibration includes the set of
exogenous attributes (vector Z) of the choice set, the observation of the chosen alternative in each observation, and socio-
economic indices of the choice makers, which is the standard data for logit models. Additionally, all exogenous constraints
should be identified, and the values of the constraints are inputs for the calibration. As in the unconstrained multinomial
logit model, the parameter l is not identifiable; it is embedded in the parameters calibrated for the compensatory utility
VC and does not affect cutoffs when expressed as in Eq. (8).

The methodology for the calibration of parameters distinguishes two cases. The first case considers exogenous con-
straints, where (ank and bnk) are inputs for each attribute k (when they apply). In this case, the standard maximum likelihood
method with non-linear utility functions is applicable. The second case considers endogenous or self-imposed constraints,
for example, when a minimum quality is required for some attributes as a requisite for the alternative to be considered
in the option set; here, the a and b parameters are unknown for the modeler, and have to be identified endogenously, for
example, using the calibration method proposed by Cascetta and Papola (2001), which takes into account interdependencies
on the random terms.

In both cases, the calibration procedure faces the difficulty that cutoff parameters are associated to behavior in the very
specific region of attributes near the domain border, while within the domain, they may affect the parameters of the com-
pensatory utility. This fact calls attention to a potential identification problem of parameters q and x using revealed pref-
erences, unless the calibration sample contains sufficient information of the choices near the domain border. In any case, the
calibration data may be divided into two subsets, one defined by choices in the interior of the domain, which can only iden-
tify the compensatory utility function, and a second one defined by choices in the vicinity of the domain border, which is
appropriate to identify cutoff parameters. In the case where the calibration data came from a stated preferences (SP) exper-
iment, it is possible to design such experiment to explore and report on choice behavior in both sub-domains, where com-
pensatory behavior applies, and at the cutoff vicinity. However, this is not always possible, or at least less directly applicable,
with revealed preference data.

We report on two experiments. The first one refers to the calibration process and results obtained for a land use model.
We calibrate bid functions (denoted as B) in a CMNL model describing a location auction, given by
Pn=i ¼
/ni expðBniÞP
g2C/gi expðBgiÞ
with /k
ni ¼ 1

1þexpðxðdn�IiÞÞ
, and Bni ¼ an þ

P
kbnkxik. We modeled the probability that a household type n is the highest bidder in

location i, Pn/i, in an auction where all households in set C are allowed to bid for i. In this example, we used Eq. (4a) to model a
lower cutoff, reflecting that some consumers will not be willing to bid in zones having an average income (Ii) below certain
minimum, which are defined endogenously by qn and different for each group n. We have assumed xn = x"n and
dn = an + qn, which simplifies Eq. (4a).
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Two MNL and CMNL models are calibrated in this experiment and the results are shown in Table 1 in Appendix 1. Both
include the attribute ‘‘resident average income in the zone”, the MNL applied in a compensatory way, and the CMNL as a
cutoff function for this variable.

We used a cross-section revealed preferences data set with 600 observations, obtained from a household survey in San-
tiago city in 2002, which contains information on the socioeconomic characteristics of the household, the residential loca-
tion, and the dwelling attributes. Land use data was used to define zone attributes. We considered five income groups
(indexed by n, which increases with income); the variables included in the bid function included are floor space of the build-
ing, average income of residents in the zone (both as logarithms), and accessibility. Only one cutoff was considered to model
the segregation behavior of households in their residential location choice, such as high income groups allocated among peer
income groups.

The results show that including the zonal income variable improves the log-likelihood indicator in both models, but the
way in which it is defined, as a compensatory term or as a cutoff term, makes no relevant difference in reproducing the ob-
served location distribution (e.g., they have a similar log-likelihood indicator). Nevertheless, we obtain some important con-
clusions from this exercise. First, that the cutoff parameters (x,q) are identified, some with high level of significance. Second,
notice that in the CMNL model the estimates of the constant parameters an are lower than in the MNL, which means that part
of the behavioral information explained by the constants in the latter model are transferred to the cutoff in the CMNL model.
This is a positive effect because the behavior described by the CMNL is more responsive to changes in the zone income var-
iable than a simple constant. Finally, although these models are similar in representing the observed location distribution,
they produce very different forecasts of location patterns when they are applied to scenarios where the constrained attribute
changes significantly.

The second experiment uses a synthetic data set for mode choice with 679 cases, based on data collected on a corridor
(Las Condes – Centro) of Santiago city. Two models were calibrated: one is a standard multinomial logit model (MNL) with
a linear utility function, and the other a constrained multinomial logit model (CMNL) with a cutoff parameter on the walking
time, which represents the travelers’ maximum time in which they are willing to walk. The walking time cutoff was assumed
to be 20 min, which was obtained as the value that yields the maximum log-likelihood value. The parameter g was assumed
as g = 0.0086, which was calculated as the percentage of travelers which violates the cutoff in the data set. Additionally, we
partitioned the sample assuming that 20% of travelers behave as having a compensatory behavior (/ = 1), while the rest are
assumed to be affected by the cutoff.

The results show (see Table 2 in Appendix 1) that the original parameters assumed to generate the data set are recovered
by the calibration process; that is, the models are significantly different (based on the v2 test on the likelihood index) and the
CMNL model has a better fit than the MNL model.

Additional experiments show that the likelihood index is sensitive to the partition of the data set into those observations,
affected or not by the cutoff. Moreover, they show that if data is not partitioned at all, some cutoff parameters cannot be
identified because of their correlation with parameters of the compensatory utility. These results call for further research
on the calibration methodology and on data collection.
5. Forecasting issues

The model structure also has relevant implications in the context of forecasting demand when (some) constraints are
endogenously defined by all consumers, which we call system constraints. In the presence of these constraints, forecasting
demand involves solving an equilibrium problem where the demand model’s structure is crucial for studying the
equilibrium.

System constraints can belong to two categories. One includes constraints exogenous to the consumer, for example, if the
alternative has capacity (e.g., road and public transport capacity, land space, and numerous policy regulations). Another cat-
egory contains endogenous constraints, such as individual thresholds, where the associated attributes are defined by the out-
come of all other consumers’ choices; for example, neighborhood quality in residential location choice when quality is
defined, and for instance, by socioeconomic, racial, or religious condition of neighbors and in-vehicle congestion in transport
choice. In economic terminology, these endogenous thresholds are called consumption externalities, characterized by pro-
ducing fundamental, real, and complex market effects.

A large number of exogenous system constraints may be expressed by the following (linear) expression:
�aL
ij 6

X
n

yijPni 6
�bU

ij ð9Þ
where yij are exogenous parameters that define the amount of the scarce resource j used if alternative i is chosen, Pni is the
probability that consumer n chooses alternative i, and �aij and �bij are the lower and upper constraints for the jth system con-
straint affecting alternative i. We define the aggregated demand for resources j generated by alternative i, given by
YijðPÞ ¼

P
nyijPni.

To introduce exogenous system constraints in the demand model, we apply the reduced (or constrained) utility approach
that internalizes all system constraints on each individual choice process. Again, we define the vector of system constraints
for each of the I alternatives and J constraints for each alternative:
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�hL
i ¼ ½�ai1; �ai2; . . . ; �aiJ �; �hU

i ¼ ½�bi1;
�bi2; . . . ; �biJ� ð10Þ
which define the alternative’s sub-domain Di.
As above, the constrained utility function Eq. (3) is further augmented by penalties of violating the system constraints,

yielding:
VnðZiÞ ¼ VC
nðZiÞ þ

1
l

ln /niðZiÞ þ
1
l

ln UiðPiÞ þ eni ð11Þ
where the system cutoff factor is defined as a function of the choice probabilities on alternative i, given by matrix Pi, for all
individuals. Additionally, Ui ¼

QJ
j¼1U

L
ij �U

U
ij with each elemental term defined by
UL
ijðPiÞ ¼

1
1þ expð �xjðaij � YijðPiÞ þ �qjÞÞ

¼
1 if ð�aij � YiÞ ! �1
�gj if �aij ¼ Yij

(
ð12aÞ

UU
ij ðPiÞ ¼

1
1þ expð �xjðYijðPiÞ � �bij þ �qjÞÞ

¼
1 if ð�bij � YijÞ ! 1
�gj if �bij ¼ Yij

(
ð12bÞ

�qj ¼
1
�xj
� ln 1� �gj

�gj

� �
ð12cÞ
with �xj > 08j, and
Endogenous system constraints naturally represent consumption externalities because they introduce interdependencies

in consumption between consumer agents. These externalities may affect utilities through changes in prices (pecuniary
externalities) or by directly changing attributes (technological externalities). The CMNL model can represent these external-
ities by making Z = Z(P) in Eq. (4), and the system constraint is represented by endogenous cutoffs on these attributes. There-
fore, the model described above does provide the flexibility to accommodate this case.

The combination of all constraints restricts individual choice probability to the domain eDn ¼ Dn
TJ

jDj, which is defined by
the augmented constraints vector ~hn ¼ hL

n [ hU
n [ �hL [ �hU ; ~hn 2 R2ðKþIÞ. Then, the CMNL model (Eq. (8)) can be extended to rec-

ognize system externalities as follows:
Pni ¼
~/niðPiÞ � expðlVC

niðPiÞÞP
j2C

~/njðPjÞ � expðlVC
njðPjÞÞ

ð13Þ
where P is the constrained choice probability, and ~/ni ¼ /ni �Ui is the composite cutoff factor including individual and system
constraints.

Notice that a system constraint effectively makes the individual utility dependent on other consumers’ choices, then
dependent on others’ utility levels, by means of the joint consumption of capacity and by consumption externalities. Because
the constraints are defined at a system demand level, they do not induce further identification issues in the calibration pro-
cess, as they can be assumed exogenous for the consumer. However, it does raise the issue of the complexity induced by
interactions between consumers in the forecasting process, which is a matter discussed in the rest of this section.

Observe that Eq. (13) represents an equilibrium equation for the choice probabilities, which makes each individual’s
choice dependent on the other individuals’ choice. This describes a fixed point problem P = f(P), with P representing the prob-
abilities matrix of individual choices across travel alternatives, composed by a system of I � N non-linear equations and the
same number of variables. The algorithm studied to solve the equilibrium condition is the fixed point iterative process,
Pt = f(Pt�1), where t is the iteration number, which starts with any initial matrix P0. In the Appendix, we prove the following
theorem:

Theorem (Existence, uniqueness, and convergence). The CMNL model has a unique fixed point solution, and the fixed point
iteration converges to the solution if:

1. 1
k > 2 �maxmz

P
ni

oVc
ni

oPmz

��� ���þ jnj � PJ
l¼1yzlj þ

P
i

PK
l¼1

oZli
oPmz

��� ���� 	n o
2. 1

k > jnj �
P

z

PJ
l¼1jyzlj þ

P
mzs

PK
l¼1

oZls
oPmz

��� ���þmaxni
P

mz
oVc

ni
oPmz

��� ���þPs2C
oVc

ns
oPmz

��� ���n o
þ
P

mz

PK
l¼1

oZli
oPmz

��� ���þ jnj �PJ
l¼1jyilj

h i� 	
where k = max{x;l} is maximum between the scale parameters of the binomial and multinomial functions.

Proof. See Appendix 2. h

The conditions on k are obtained by imposing on f(P) the satisfaction of Banach theorem’s conditions by imposing that its
Jacobean norm be less than 1. This is a sufficient, although not necessary, condition for contractiveness of the fixed point
function, which implies that the convergence to a unique solution is assured. Observe that the convergence condition is very
strong, because they are sufficient conditions over the whole domain. In fact, violation of these bounds does not necessarily
imply lack of convergence; it means only lack of guaranteed convergence.
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The theorem has the benefit that it assures that the CMNL fixed point algorithm converges to the unique solution under
certain conditions on the model parameters. The convergence condition requires that a minimum dispersion be present on
individuals’ choice behavior, i.e.: if the choice process is close to deterministic, the convergence conditions are not guaran-
teed. In the theorem, such a condition imposes maximum values for the dispersion parameters x and l of the binomial and
multinomial functions, respectively.

Observe that as the number of alternatives increases, each one having nonzero probability (a condition of logit models),
then all probabilities tend to differ from one or zero, which means that dispersion in the choice process increases and that
the convergence condition in the forecasting demand procedure is more likely to be fulfilled. Thus, in real large scale prob-
lems, the minimum dispersion condition is more often likely to be satisfied. We have performed a large number of simula-
tion exercises solving the fixed point problem (13), with small and large problems, obtaining a high convergence
performance considering the complexity of the non-linear system of Eq. (13). See, for example, Martínez and Hurtubia
(2006) for the application of the CMNL model in the land use case where the number of zoning constraints for suppliers
is very large; in this case, suppliers chose maximum profit locations.

The theorem constitutes a fundamental advantageous property of the CMNL model on applications used to forecast trans-
port and land use markets. Indeed, under the presence of externalities and cutoffs, the market equilibrium problem involves
solving complex non-linear problems. Most applications simply ignore these effects, but this shortcoming wrongly assumes
that endogenous attributes are exogenous variables; thus, forecasts of demand are likely to violate constraints and miscal-
culate utilities, demand, and equilibrium prices. The theorem may be extended to other logit structures, for example, to the
Nested and Mixed Logit, which remains for further research.

6. Evaluation tools

The above defined CMNL model is used in this section to derive two evaluation tools. The first one is a measure of the
social benefit associated to choices made under a constrained context, defined as the expected maximum of individuals’ util-
ities aggregated across the population. The second one measures the social cost of policies that constrain consumption (e.g.,
capacities and regulations), measured as the shadow price of each elemental constraint.

Consider the CMNL utility function of Eq. (11), evaluated at the demand solution and calibrated parameters, that is, at the
forecast of the utility level and demand for alternatives. It is possible to examine the expected maximum utility level that the
consumer can obtain from a set of alternative choices restrained to the domain eDn, which is given by the following logsum
formula:
2 We
eUn=C ¼
1
l

ln
X
i2C

~/ni � expðlVC
niÞ

" #
ð14Þ
This equation measures the individual’s maximum expected benefit obtained from the choice-set C, which we can use to
analyze the impact of urban policies on individuals’ satisfaction.

The aggregate utility across N consumers is
eUC ¼
1
l
XN

n

ln
X
i2C

~/ni � expðlVC
niÞ

" #
ð15Þ
which represents the utilitarian social measure of the consumers’ benefits; this measure ignores issues of wealth distribu-
tion.2 Notice that the domain of this social utility function is eDC ¼

SN
n
eDn defined by the augmented vector

~hC ¼
S

n
~hn; ~hC 2 Rð2KþIÞ�N . Notice also that the parameter l is normally unknown in applied MNL models, because it is theoretically

embedded in the parameters calibrated for compensatory utility bV C ¼ leV ; then, in this case, the parameter l can be correctly
assumed to be equal to one.

Eq. (15) provides a measure of the social benefit yield by the urban system, which can be used for evaluating different
policy scenarios. One novel and logical application is to compare the benefits associated to different regulation sets: for
example, in the residential location choice process or transport regulations that affect demand of specific transport modes.
The benefit of changing the regulations from a scenario a to a scenario b, is given by: DeU ¼ eUð~hbÞ � eUð~haÞ.

From this social benefit measure, one can derive the marginal social utility of violating a given constraint, or the value of
marginally loosening the constraint, which is known as the shadow price of the constraint. The shadow price (Sj) associated
to the jth constraint, denoted ~hj 2 ~hC with j = 1, . . . ,L and L = (2K + I), is calculated as the marginal utility of relaxing the con-
straint. Then
Sj ¼
oUC

o~hj

¼ 1
l
XN

n

X
i2C

ePni

X
l2L

xl
ð1� ~/nlÞ

~/nl

o~/nl

o~hj

" #
ð16Þ
Again, in applied studies, the scale parameter l can be assumed equal to one.
alth distributions with different equity criteria can be introduced by adding differentiated social values for consumers’ benefits.
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Observe that the shadow price is strictly non-negative because all terms are positive. It increases as demand for alterna-
tives close to the edge of the domain also increases, because cutoff factors tend to zero and xl > 0,"l, so each term in paren-
theses has the positive sign of o~/

oh; thus, Sj is strictly positive in that case. Conversely, if the choice pattern is sufficiently far
from the cutoff in the interior of the domain, then ~/ tends to one, and shadow prices tend to zero. These two cases are con-
sistent with the theoretical value of shadow prices under constrained behavior.

The terms in brackets recognize that our model includes multiple constraints, individual thresholds and system capacities
that are potentially interdependent; if they were independent, then the cross-derivatives are equal to zero and the shadow
price is only dependent on the corresponding cutoff. This is a relevant point because cross-dependency between cutoffs is
likely to occur. Think, for example, of the effects of increasing the level of the individual’s acceptance of travel time by
car (an individual constraint); then, more users are expected to show up on congested roads, thus increasing the level of con-
gestion (due to a system constraint) and, therefore, increasing the shadow price of road capacity constraints. Another exam-
ple is in land use, where a stronger zone regulation (a system constraint), like the minimum density induces several effects
on land values and location patterns, which may activate residents’ thresholds (an individual constraint) on neighbor
environment.
7. Applications

The potential application of constrained logit models covers the whole range of discrete choice processes in economic
systems, both on the demand and supply sides, where endogenous and exogenous individual and system constraints are
numerous.

In modeling the transport system, the model can be applied both for demand and supply choices. In travel demand, the
usual cutoffs are budget and time resources, which are assumed exogenous in the context of transport decisions. Examples of
endogenous cutoffs are associated with thresholds on several attributes: minimum activity level at destination for attracting
trips, maximum spent on travel, maximum waiting, and access times to public transport. Another cutoff is the maximum
walking limit, which may be taken as exogenous for the handicapped and elderly, or as endogenous for other travelers. In
vehicle route-assignment models, road and vehicle capacities are exogenous cutoffs, while accepted maximum time at traffic
jams is endogenous.

In location and land use modeling, cutoffs are particularly relevant. Households spend a significant proportion of their
income budget on housing cost, either mortgage or rental cost, and real estate prices vary across space also significantly,
which implies that housing choices are crucially determined by the income budget for the vast majority of the population.
This makes prices also directly dependent on this constraint, which is reflected in the urban dynamic model developed by
Martínez and Hurtubia (2006). Moreover, if real estate attributes are usually numerous, then attribute thresholds may also
be numerous and diverse. Relevant location options is another interesting case, because agents are likely to have cognitive
constraints to evaluating all alternative zones in a city; hence, cutoffs help to model this issue more realistically by restrain-
ing the scope of the spatial search. A similar argument applies for the destination choice in the travel demand model and for
all spatial choice processes. The non-negative profit constraint in a real estate production model is also a reasonable eco-
nomic assumption for the behavior of suppliers, in addition to planning regulations which represent the most numerous
and diverse set of constraints for real estate supply.

8. Conclusions

Advances in discrete choice modeling have not slowed in the last three decades, but challenges in replication of the actual
behavior of agents are still open for further research. Better techniques are clearly needed to deal with the high complexity of
this problem, and more specific models are required for the large variety of applications. Thus, models that explicitly incor-
porate specific and complete sets of constraints to the choice process are clearly relevant. For instance, in random utility
models, the explicit specification of the constraints in the deterministic component of the indirect utility function increases
the predictive power of the deterministic part of the indirect utility function and improves the quality of calibrated
parameters.

This paper proposes a method which builds upon previous techniques to make discrete choice random utility models
more realistic, by adding to the theoretically sound compensatory utility functions the additional flexibility to cope with con-
straints to individuals’ behavior. One advantage of this method is that it does not impose any limitation on the compensatory
utility function; on the contrary, it enhances the performance of any function in the domain’s border.

The basic method of implementing cutoffs as a binomial logit function was embedded in multinomial logit models, yield-
ing enhanced discrete choice models with the following characteristics. Physical and economic constraints (called exoge-
nous) and attribute thresholds (endogenous constraints) are modeled as soft cutoffs controlled by a stochastic tolerance
factor. Appropriate cutoff factors reproduce the wide range of individual and system constraints. A new reduced utility func-
tion is maximized yielding a multinomial logit probability function, where usual compensatory utilities are replaced by the
new constrained utility. The result is the constrained multinomial logit model (CMNL), which preserves the close form of the
MNL model, allowing the choice domain to be constrained by as many cutoffs as required, limiting both upper and lower
levels of variables.
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Although some comments regarding the calibration of the CMNL are included in the paper, we recognize that the stan-
dard maximum likelihood method yields a nonlinear optimization problem substantially different than the known MNL
model. Therefore, the calibration of the CMNL model parameters needs further research on efficient algorithms.

It is worth emphasizing that demand models are often used in forecasting future demand in an equilibrium context,
where several variables become endogenous. With this in mind, the paper also analyses the use of the CMNL model in this
context, because several cutoffs become endogenous, introducing extra complexity in solving the model to find the demand,
because it represents an equilibrium (fixed point) problem. A theorem proves that the solution of this problem exists and is
unique under minimum dispersion on choices, and that the standard fixed point algorithm converges to the solution. Addi-
tionally, empirical tests show that convergence is highly efficient regarding the complexity of the non-linear equations
involved.

The paper also proposes two evaluation results. One is a social benefit measure for a constrained setting and an evaluation
method for regulatory scenarios. The other one is the shadow price for each cutoff. These are useful tools for the economic
evaluation of policies affecting perceptions of attribute cutoffs or system capacities.
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Appendix 1. See Tables 1 and 2.
Appendix 2. In this Appendix, we prove the theorem of existence, uniqueness, and convergence of the fixed point
problem associated with choice externalities.
Theorem A1 (Existence of endogenous cutoffs solutions). The CMNL model has a fixed point solution.

Proof. A direct application of the Brower’s fixed point theorem yields this result for function (13) on the probability simplex
D ¼ x 2 RjNjjIj=

P
nixni ¼ 1; xni P 0

n o
. h
Table 1
Calibration of cutoff parameters for a land use model

Parameter Income group MNL / = 1 CMNL / – 1

an 2 �3.329 �0.238**

3 �8.130 �2.272**

4 �14.228 �4.781
5 �24.808 �10.257

ln(floor space) 2 �1.840 �0.012**

3 �0.078* 0.493**

4 �0.857 1.022
5 0.346** 2.502

ln(zone income) 2 0.723*

3 1.075
4 2.013
5 2.442

Accessibility 1 0.283** 0.492**

2 1.636 1.692
3 2.262 2.295
4 3.926 3.966
5 3.125* 3.377

dn 1 �63.769**

2 �23.953
3 �18.290
4 �11.601**

5 �0.069**

x 0.242

Log-likelihood �3.313 �3.316
Nr observations 600 600

Note: Estimates without asterix are significant (t-test>1.96), except when indicated by * (1.7<test-t<1.96) and by ** (t-test<1.7).



Table 2
A mode choice model with cutoffs (synthetic data set)

Parameter MNL CMNL

Car driver �2.0074 �2.3400
(�4.4) (�5.3)

Car passenger �2.1220 �2.3857
(�6.2) (�7.2)

Share taxi �1.4364 �1.5315
(�4.7) (�5.1)

Subway 2.4430 2.3027
(7.2) (7,1)

Bus 0.0000 0.0000
Car driver – subway �1.9062 �1.9687

(�4.6) (�5.0)
Car pass. – subway �1.2733 �1.2474

(�5.1) (�5.1)
Shared taxi – subway �1.6940 �1.8113

(�5.1) (�5.6)
Bus – subway �0.4267 �0.5179

(�1.6) (�2.1)

Nr of license 2.2374 2.2838
(5.3) (5.6)

Sex �0.3108 �0.3179
(�1.4) (�1.5)

Travel time �0.0846 �0.0848
(�4.8) (�5.0)

Waiting time �0.162 �1.207
(�8.4) (�8.3)

Walking time �0.2435 �0.2199
(�2.1) (�1.9)

Total out-of-pocket/leisure time �0.0061 �0.0045
(�4.1) (�3.0)

xk (walking time) – 0.1321
(�6.8)

Likelihood (q) �943.86 �901.30
Likelihood (cte) �1027.94 �1001.39
q2 0.082 0.100
LR (constant) 168.16 200.18

Nr of observations 697 679
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Theorem A2 (Convergence of endogenous cutoffs fixed points). D ¼ x 2 RjNjjIj=
P

nixni ¼ 1; xni P 0
n o

be the probability simplex
and k the maximum scale factor of the CMNL model. If the functions Vni (P),n 2 N,i 2 C are of class C1, then there exists ~k > 0 such
that 8k 2 ð0; ~kÞ the CMNL model has a unique fixed point solution over D, and the fixed point iteration converge to the solution.

Proof. We will find ~k > 0 such that, under theorem conditions on k, the Jacobian of the logit function presented in Eq. (13)
has norm less than one. This means that the function is contractive, so the application of the Banach fixed point theorem
yields the results of existence, uniqueness, and convergence.

Let Mni
rl ¼maxP2D

oVC
ni

oPrl

��� ���; oZni
oPrl

��� ���n o
; we have that Mni

rl <1, because functions Vni(P) are of class C1, and so are functions Zni(P).

Now we calculate the Jacobian 1-norm and bound it strictly by 1. This is
kJk1 ¼maxmz

X
ni

ofni

oPmz

���� ����

where f is the CMNL function presented in Eq. (13) and P is the CMNL probability. The f function is such that
ofni

oPmz
¼ Pni l oVc

ni
oPmz
þ
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oPmz
ð/U
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nlsÞ þ ds

z

XJ

l¼1

�wlyslð/U
sl � /L

slÞ
 !)
where di
z equals 1 if, and only if, i = z and 0 otherwise; the rest of the notation follows the text.

Successive applications of the triangular inequality, the fact that j/U
� � /L

� j 6 1, the strict positivity condition on the scale
factors l, wk, wj and the probabilities, and the M bounds, yield the following:
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ofni

oPmz
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Let k ¼ maxfl; maxkwk; maxj �wjg be the maximum dispersion parameters over the binomial and multinomial functions of the
CMNL model. We have
ofni

oPmz

���� ���� 6 kPni Mni
mz þ

PK
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z
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Then for the 1-norm we can write:
kJk1 6 k max
mz
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ni

Pni Mni
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where eMni
rl ¼ Mni

mz þ
PK
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z

PJ
l¼1jyilj

Strictly bounding the above norm bounds by one and noting that all matrix norms are equivalent, we obtain that there
exist M > 0 such that kJk 6 kM < 1. Thus, defining ~k ¼ 1=M and provided that k < ~k, f becomes a contractive function. Finally,
an application of the Banach Theorem to f over D for any k 2 ð0; ~kÞ yields the proof. h
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