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The Role of Social Networks on Regulation in the

Telecommunication Industry

by

Abstract

This paper studies the welfare implications of equilibrium behavior in a market charac-

terized by competition between two interconnected telecommunication firms, subject to

constraints: the customers belong to a social network. Using numerical approximations we

show that social networks matter because equilibrium prices and welfare critically depend

on how people are socially related. Next, the model is used to study the effectiveness of

alternative regulatory schemes. The standard regulated environment, in which the author-

ity defines interconnection access charges as being equal to marginal costs and final prices

are left to the market, is considered as a benchmark. Then, we focus on the performance

of two different regulatory interventions. First, access prices are set below marginal costs

to foster competition. Second, switching costs are reduced to intensify competition. The

results show that the second strategy is more efective to obtain equilibrium prices closer

to Ramsey’s level.

JEL codes: C70, D43, D60

Keywords: Access charges, social networks, random regular graphs.

1 Introduction

Over the last years several articles have been focused on the study of the equilibrium

interconnection strategies in telecommunication markets, in a framework where hetero-

geneity of consumers is recognized (see for example Dessein (2004) and Hahn (2004),

among others).1 This approach has been a significant improvement in the effort to obtain

more realistic models. However, the social network structure among consumers has been

mostly ignored, and heterogeneity has been usually motivated on the grounds of different

1For an excellent review of the literature see Armstrong (2002). The seminal papers are Laffont et al.
(1998a,b) and Armstrong (1998).
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propensities to make calls accross consumers. In this paper, we recognize that the position

in a social network affects the amount of calls a typical consumer can make. Naturally, a

more connected individual would make more calls than a hermit. Moreover, the number

of calls to any particular member in the network should depend not only on prices, but

also on how close they are in social terms.

In this context, we study a market characterized by competition between two inter-

connected telecommunication firms, with particular emphasis on the constraint that cus-

tomers belong to a social network. We consider, as usual, that a firm A has two sources of

revenues: its customer’ payments and the access charges that a rival firm B pays to A in

order to complete calls originated in B but terminated in A. Our benchmark case consists

of the standard regulated environment where interconnection access charges are defined

by the authority as equal to marginal costs, while final prices are left to the market. In

this environment we show that social structure matters, because equilibrium prices, con-

sumer surplus and producer surplus depend on network characteristics. Then, we study

the efectiveness of two alternative regulatory interventions. First, access prices are set

below marginal costs to enhance competition. Second, switching costs are reduced to

intensify competition, while access charges remain at marginal costs levels. The simplest

model corresponds to the case when both firms are single service providers and they are

constrained to offer linear prices schemes in a nondiscriminatory way. In this sense, the

closest model corresponds to Harrison et al. (2006), where the differential effect of regu-

lated versus unregulated frameworks is studied. Our analysis, however, differs from theirs

in several important aspects. First, the initial focus here is on the role of social networks

over the outcome, keeping the regulatory environment constant. Second, we introduce the

study of welfare effects of competition policy among interconnected firms in the presence

of a social network. Third, we study regulatory interventions which -though they depart

from the benchmark case- are feasible under standard regulatory environments.

Interestingly, our results show that a regulatory intervention focused on reducing access

charges below marginal costs enhances welfare. However, the alternative policy interven-

tion focused on reducing switching costs is much more effective. Welfare also increases

when the social network is more dense, but this characteristic of the network can not be

subject to policy implications.

The welfare effect of both policies is compared to another benchmark given by the

Ramsey solution, which characterize the second best scenario (see Laffont et al. (1998a)).

A comparison with expected results in a collusive scenario is also discussed and it shows

that the regulatory role of the authority is mandatory. In fact, it is more neccesary when

the social network is more dense.

The rest of the paper is organized as follows: In section 2 we develop the economic

model, including the agent’s demand, the firms’ problem and the game played by the two
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firms. In section 3 we establish the welfare considerations for the analysis. In section 4

we report numerical results and the main conclusions are stated in section 5.

2 The Economic Model

In the model we assume the existence of a social network, represented by graph g. Nodes in

the graph represent agents (indexed by i ∈ I) and a link between a pair of agents represent

a social connection between them. The graph g is generated using random regular graphs

(see Bollobas (2001)), where the connectivity degree d of graph g represents the average

number of social connections accross agents.

There are two firms, A and B, offering horizontally differentiated communication ser-

vices (for example two wireless companies) and consumers have to decide which firm to

subscribe to. In order to make the affiliation decision, agents take into account the pricing

schemes offered by each firm and her own preferences for the services provided. It is as-

sumed that the firms’ pricing schemes are constrained to be linear and nondiscriminatory.

On the other hand, the preferences are modeled in a way similar to a standard Hotelling

horizontally differentiated model: each agent i in the social network (i.e. each node in g)

is endowed with a realization of a taste variable xi, randomly assigned from a uniform

grid with support in [0, 1]. In what follows we assume that firm A is “located” in 0 and

firm B in 1. None of them provide the “ideal service” to agent i, positioned in xi, unless

xi itself be zero or one.

2.1 The Agent Demand

Consider the affiliation decision problem of agent i. If she decides to subscribe firm l =

A, B then we will say that she belongs to the set Il ⊆ I of subscribers to l. Agent i’s

demand for calls is represented by the vector qi = (qij)j∈I,j 6=i, where the generic element

qij is the number of calls that agent i makes to agent j. Then the gross utility of agent i

can be described as follows:2

Ui(qi) =
∑

j∈I,j 6=i

δtij u(qij) with u(qij) =
q
1−1/η
ij

1 − 1/η
(1)

where:

δ : represents a utility discount factor when agent i calls other agents located farther in

network g. Accordingly, it satisfies 0 < δ < 1.

tij : it is the shortest distance (in terms of links) connecting agents i and j with i 6= j. We

consider tij ∈ IN so that if the agents are direct neighbors, the discount factor is δ0 = 1.

2It is convenient to note that the funtional form of u(·) is standard in the literature (see Laffont et al
(1998 a,b).
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On the other hand if agents i and j are not connected, then tij ≡ ∞.

η : is a constant parameter that represents elasticity of demand, which is assumed to be

greater than 1 and independent of j.

Suppose that after observing the prices offered by the firms, pA and pB, agent i has to

decide which firm to become affiliated with. In order to make that decision, she needs to

figure out her net consumer surplus in both scenarios. If she decides to affiliate with firm

A, the vector of calls qi = (qij)j∈I,j 6=i to all her contacts in the social network g is defined

by:

Vi(pA) = max
qi







Ui(qi) − pA

∑

j∈I,j 6=i

qij







(2)

Solving this maximization problem, we obtain her demand’s components:

qij(pA) =

(

pA

δtij

)−η

(3)

Intuitively, for the same price pA, agent i makes more calls to contacts located closer in

the social network g than to those farther in it. Therefore, plugging into equation 2 we

get the indirect utility function:

Vi(pA) =
∑

j∈I,j 6=i

δηtij
pA

η − 1

1−η
(4)

and an analogous result arises for firm B.

Consider the parameter t that represents the unit cost that agent i, located in xi, has

to incur in order to become affiliated with firm A located in 0 or firm B located in 1.

Accordingly, the total cost of selecting a service, eventually different from i’s preferred

one, is assumed to be xit
∑

j 6=i
j∈I

δtij if agent i select firm A or (1 − xi)t
∑

j 6=i
j∈I

δtij if firm

B is preferred. It is important to note that in this model we assume that agent i incurs

in a discounted disutility for calls due to the imperfect matching between her preferences

and the service provided, where the discount appears because the imperfection is more

annoying the closer agent j is to i in the social network. The total cost of imperfect

matching is the sum of all the pairwise discounted costs. In addition, note that the cost to

agent i of an imperfect service to call agent j is assumed to be independent of the number

of calls.3

3Alternative approaches would be to make the transportation cost dependent on the utility obtained
from the calls or dependent on the number of calls. Our selection is consistent with Laffont et al. (1998a).
They do not consider, however, a discount factor because in their model agents are not connected through
a social network.
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The decision of affiliation to A or B depends on whether xi is to the right or to the

left of a critical value x∗
i given by:

Vi(pA) − tx∗
i

∑

j 6=i
j∈I

δtij = Vi(pB) − t(1 − x∗
i )

∑

j 6=i
j∈I

δtij

If xi < x∗
i , that means that agent i prefers firm A even considering that firm A does

not provide her with the ideal service (and has to pay txi

∑

j 6=i
j∈I

δtij due to imperfect

matching). Solving for x∗
i , we got:

x∗
i =

1

2
+ σi

(p1−η
A − p1−η

B )

η − 1

∑

j 6=i
j∈I

δηtij (with σi =
1

2t
∑

j 6=i
j∈I

δtij
)

So if xi < x∗
i (resp. xi > x∗

i ) then player i joins firm A (resp. B).

2.2 The Firm’s Problem

The firms select their prices, pA and pB, simultaneous and independently, in order to

maximize profits. However, they know that, after observing prices, consumers are going

to make optimal affiliation decisions, so the number of clients for each firm is endogenous.

In addition, when they decide prices the level of access charges, aA and aB, are taken as

given. To illustrate the role of these payments, let us discuss aA. Access charge aA is a

unitary fee paid by firm B to firm A so that A may complete a call made by a client of B

to a client of A (analogous for aB). We assume that access charges are defined in a first

stage, either by the regulatory authority or the firms. In the last case, access charges can

be the result of a competitive process or a collusive agreement among operators.

Assuming that access charges are given by aA and aB, firm A (resp. B) will select its

price pA (resp. pB) such that:

max
pA≥0

πA(pA, pB, aA, aB) =

∑

i∈IA

{

∑

j 6=i
j∈IA

qij(pA)(pA − co
A − cf

A) +
∑

j∈IB
qij(pA)(pA − co

A − aB) − f

}

+

∑

i∈IB

∑

j∈IA
qij(pB)(aA − cf

A)

(5)

where:4

f : is the fixed cost incurred by a firm when it affiliates a new subscriber.

4In what follows, we always assume that firms select prices while consumers make optimal affiliation
decisions. Access prices are defined by the regulatory authority unless we explicitely consider a different
scenario. The rest of the variables involved are exogenous parameters in the problem.
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co
A : is the cost of originating a call for firm A (co

B is defined analogously).

cf
A : is the cost of terminating or finishing a call for firm A (cf

B is defined analogously).

aA : is the price or access charge that firm A charges firm B in order to terminate a call

from a subscriber of B to a subscriber of A (aB is defined analogously).

At this stage it is clear that we are facing a non standard optimization problem for the

firms, because sets IA and IB in equation (5), which contain the consumers affiliated to A

and B respectively, depend on the prices selected. In order to deal with this complexity, we

need to write the problem (5) using nonlinear programming schemes that are as standard

as possible. Let us define αi = 0 if agent i affiliates network A and αi = 1 if agent i

affiliates network B. Using this notation, our goal will be to write firm A’s problem as:

Max
pA≥0

πA(pA, pB, aA, aB; α) (6)

s.t. Hα ≤ z, α ∈ {0, 1}I

Note that the previous structure is not warranted in general, because we are requiring

that affiliation decisions be represented by a linear constraint. The gains from obtaining

such a neat representation of the problem are very important. First, we can bound the

level of complexity of the problem; second, we will be able to expand the aplicability of our

model without changing this structure, and third, it helps us to figure out an algorithm

to solve it. With this goal in mind, we separate the problem in two parts. First, we need

to write the vector of optimal affiliation decisions as the solution of a linear inequality

constraint (Hα ≤ z, α ∈ {0, 1}I) and then, we have to write the objective function as in

(6), so that we make explicit the dependance of the objective function on the vector of

affiliation decisions α. The following sections are devoted to these tasks.

2.3 The Constraint

Using the definition of αi the optimal affiliation decision can be written as:

αi =



















0 if xi < x∗
i

0 or 1 if xi = x∗
i

1 if xi > x∗
i

where

x∗
i =

1

2
+ σi

(p1−η
A − p1−η

B )

η − 1

∑

j 6=i
j∈I

δηtij
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Noting that the values of x∗
i do not depend on the affiliation decisions of agents other

than i,5 it is easy to see that the previous expression has the following structure:

αi =



















0 if bi < 0

0 or 1 if bi = 0

1 if bi > 0

(7)

where bi ∈ IR with:

bi = xi −
1

2
− 1te−i(pA, pB)

where:

e−i(p, q) =





























ei,1(p, q)
...

ei,i−1(p, q)

ei,i+1(p, q)
...

ei,I(p, q)





























I−1

1 =

















1

...

...

1

















I−1

ei,j(p, q) =
σiδ

ηtij

η − 1

(

p1−η − q1−η
)

The optimal affiliation decisions are then formally characterized, but they are still

nonlinear. In order to linearize them, consider M ∈ IR+ sufficiently high such that, for

given i, constraint (7) is equivalent to the following couple of inequations:6

0 ≥ bi − Mαi (8)

0 ≤ bi + M(1 − αi)

In effect, when bi < 0 holds, agent i is forced to choose αi = 0 otherwise (i.e. by

selecting αi = 1) the second inequality in (8) is violated. An analogous argument applies

when bi > 0. In the case when bi = 0 the inequalities in (8) hold with αi = 0 or αi = 1.

As a result, the vector of affiliation decisions must satisfy the following system of linear

inequations:

5In a companion paper we study the discriminatory case, where x∗
i

actually depends on the affiliation
decisions of all the agents, and the problem becomes much more complicated.

6A feasible definition of M is given in Appendix I.
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Hα ≤ z

where:

H =



































−M

M

−M

M

...
...

...

−M

M



































2I×I

z =



































−b1

b1 + M

−b2

b2 + M

...

−bI

bI + M



































2I×1

α =











α1

...

αI











I×1

It is convenient to emphasize that H is independent of a particular vector of prices

(pA, pB). On the other hand, z depends on the vector of prices because bi does so for each

i. Accordingly we should write the constraint as: Hα ≤ z(pA, pB).7

2.4 The Objective Function

Consider the problem for firm A established in equation (5). By replacing the optimal

values for qij defined in equation (3) it becomes:

max
pA≥0

πA(pA, pB, aA, aB) = (pA − co
A − cf

A)p−η
A

∑

i∈IA

∑

j 6=i
j∈IA

δηtij + (pA − co
A − aB)p−η

A

∑

i∈IA

∑

j∈IB

δηtij

−
∑

i∈IA

f + (aA − cf
A)p−η

B

∑

i∈IB

∑

j∈IA

δηtij

It is important to remember that the previous structure of the objective function is

inadequate because the sets IA and IB represent the group of consumers affiliated to the

corresponding firms, which are endogenous to the vector of prices (pA, pB). The objective

function can be simplified by incorporating the variables αi identifying the affiliation

decisions. If we include the fact that affiliation decisions are also optimal for consumers,

we have that firm A’s problem is given by:

7In a companion paper we study the effect of price discrimination depending on the destiny of the call.
Interestingly, in such case we also obtain a linear representation for the affiliation decisions, but matrix
H becomes more complicated because of the presence of network externalities.
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max
pA≥0

πA(pA, pB, aA, aB; α) = (pA − co
A − cf

A)p−η
A

∑

i∈I

∑

j 6=i
j∈I

δηtij (1 − αi)(1 − αj) (9)

+(pA − co
A − aB)p−η

A

∑

i∈I

∑

j∈I

δηtij (1 − αi)αj

−
∑

i∈I

(1 − αi)f + (aA − cf
A)p−η

B

∑

i∈I

∑

j∈I

δηtij αi(1 − αj)

s.t. Hα ≤ z(pA, pB), α ∈ {0, 1}I

where H , z and α were defined in the previous subsection. It is clear that problem (9)

has the structure required in (6).

The analogous problem for Firm B is trivially given by:

max
pB≥0

πB(pA, pB, aA, aB; α) = (pB − co
B − cf

B)p−η
B

∑

i∈I

∑

j 6=i
j∈I

δηtij αiαj (10)

+(pB − co
B − aA)p−η

B

∑

i∈I

∑

j∈I

δηtij αi(1 − αj)

−
∑

i∈I

αif + (aB − cf
B)p−η

A

∑

i∈I

∑

j∈I

δηtij (1 − αi)αj

s.t. Hα ≤ z(pA, pB), α ∈ {0, 1}I

Note that the constraint is the same that in equation (9), even when the objective

function changes according to the definition of αi’s.

2.5 The Regulatory Interventions

In the subsequent analysis we consider a benchmark case associated with the standard

regulatory approach, where access charges are defined by the authority, and only the final

prices are the result of market interactions. In this case, the authority selects access charges

as equal to marginal termination costs (i.e. aA = cf
A and aB = cf

B). For simplicity we

also assume symmetric firms so that cf
A = cf

B. Departing from this benchmark, we have

two alternative regulatory interventions:

1. The authority can set access charges below marginal termination costs to enhance

competition. Under this policy, the firms have an additional incentive to reduce prices,

because a net outflow of calls is more profitable than a balanced pattern.
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2. The authority can implement policies aimed at reducing switching costs, that is t,

which intensify rivalry to affiliate consumers.

We are going to describe how equilibrium is affected under each regulatory intervention

and then we will perform a comparative analysis for the welfare achieved in both of them

and in relation to reference cases.

3 The Welfare Analysis

The welfare analysis can be constrained to a simple comparison between the results of

both regulatory interventions, but it is illustrative to compare those results with clear

common benchmarks. The first benchmark considered is given by the standard regulation,

where access charges are fixed at marginal termination values and final prices result from

competition between the firms. A second one is a Ramsey approach, where consumer

surplus is maximized subject to break even constraints. In the last benchmark we consider

the collusive scenario characterized by the monopoly outcome, where competition is absent

but the standard access charge regulation is in place. In this section we discuss the two

last benchmarks.

For any pair of prices (pA, pB) we can evaluate consumer surplus as:

CS(pA, pB) =
∑

i∈IA

Vi(pA)+
∑

i∈IB

Vi(pB)−t









∑

i∈IA









xi

∑

j 6=i
j∈I

δtij









+
∑

i∈IB









(1 − xi)
∑

j 6=i
j∈I

δtij

















(11)

Accordingly, total welfare could be defined by:

W (pA, pB) = CS(pA, pB) + πA(pA, pB) + πB(pA, pB)

And we could evaluate how close is welfare obtained in equilibrium W (p∗A, p∗B) from

the maximum achievable welfare given by:

Max
pA, pB

W (pA, pB)

Unfortunately, consumer surplus can not be directly added to profits, because the

multiple ways to consider transportation costs in an horizontally differentiated model

implies multiple measures for consumer surplus.8 An alternative approach that permit us

to avoid this problem is the second best solution associated to the Ramsey problem:9

8See the different options mentioned in footnote 3.
9A similar approach is followed by Laffont et al. (1998a).
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Max
pA, pB≥0

CS(pA, pB) (12)

s.t.

πA(pA, pB) + πB(pA, pB) = 0

Where access charges have been set as equal to marginal termination costs. In this

approach we can compare the Ramsey solution, given by equation (12), with the values

obtained in equilibrium -for both regulatory interventions- for prices and consumer surplus,

i.e., p∗A, p∗B, CS(p∗A, p∗B).

Finally, it is also illustrative to use the monopoly case as another benchmark. In this

case the affiliation decision is irrelevant and the firm simply solves:

max
p≥0

πM (p) =















(p − co
M − cf

M )p−η
∑

i∈I

∑

j 6=i
j∈I

δηtij −
∑

i∈I

f















Where the subindex M denotes monopoly levels.

4 Results

In order to study the role of social networks on welfare in telecommunication markets

with a view to evaluate the relative performance of the two regulatory interventions, we

establish the basic parameters for our simulations in Table 1.

Table 1: Basic Parameters

elasticity of demand −η = −1.2

discount factor δ = 0.9

origination cost co
A = co

B = co
M = 0.75

termination cost cf
A = cf

B = cf
M = 0.75

fixed cost f = 50

number of individuals I = 1000

transportation cost t = 0.5

All the numbers in Table 1 were selected trying to conform a reasonable setting. For

example, Ingraham and Sidak (2004) have estimated that the elasticity of demand in

U.S. for wireless services is between -1.12 and -1.29. The fixed cost (f) has been selected

in order to represent 10% of ARPU (Average Revenue per User). On the other hand,
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origination, termination and transportation costs are in the same order of magnitude

than those reported by De Bijl and Peitz (2002) in their simulations. The main algorithm

is reported in Appendix II.

[Insert Figure 1 here]

Figure 1. The impact of Connectivity degree (d) on Equilibrium prices.

[Insert Figure 2 here]

Figure 2. The impact of Connectivity degree on Consumer Surplus (CS).

[Insert Figure 3 here]

Figure 3. The impact of Connectivity degree on Producer Surplus.

Figure 1 shows how the connectivity degree d affects both equilibrium prices as well

as Ramsey prices, mainly in the case of low levels of connectivity. However, Figure 2

shows that connectivity degree is an important factor affecting consumer surplus for all

d. Although the authority can not read this result as implying a policy intervention to

increase d, it is clear that the gap between the equilibrium and the Ramsey benchmark

can be reduced through regulation, and this is especially relevant for high values of d. On

the other hand, the gap between the Ramsey benchmark and the monopoly case increase

in d, showing that the relevance of the underlying social network, and the importance of

regulation, increases when societies becomes more complex. Finally, Figure 3 shows the

gap between total profits in competition and monopoly, both of them under the standard

regulated environment. It is clear that firms have a higher incentive to collude when the

connectivity degree increases.

For the analysis of the regulatory interventions, Table 2 summarize the setting for

the parameters. The first column corresponds to the standard case where regulatory

authorities set access prices as equal to marginal termination costs. The second column

contains the parameters for the Ramsey approach, while the last two columns contain the

settings where the intervention occurs in access charges (scheme 1) and in switching costs

(scheme 2), respectively.
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Table 2: Basic Parameters under Regulatory Interventions

Parameters Standard Ramsey Scheme 1 Scheme 2

access charges (aA = aB) 0.75 0.75 < 0.75 0.75

transportation cost (t) 0.5 0.5 0.5 < 0.5

[Insert Figure 4 here]

Figure 4. The effect of Access Charges on the Gap between Equilibrium and Ramsey Prices.

[Insert Figure 5 here]

Figure 5. The Effect of reducing Switching Costs on the Gap between Equilibrium and Ramsey Prices.

We already mentioned that competition in retail markets increases when access charges

are settled below marginal costs. Figure 4 provides support for this policy recomendation,

showing that equilibrium prices can get closer to Ramsey levels when access charges are

reduced. It is clear that, according to our simulations, lowering access charges even below

marginal termination costs permits us to increase social welfare. However, this is not the

only policy intervention that can be evaluated. Figure 5 shows the effect of an alternative

policy intervention where the authority reduces transportation costs, making it easier to

switch from one service provider to another. For example, one of such policy interventions

would be the implementation of number portability policies, that permit a consumer

to switch the phone service provider keeping the same phone number. Our simulations

shows that this policy intervention is even more effective than access charge regulation in

generating equilibrium prices closer to the Ramsey benchmark case.

5 Conclusion

In this paper we studied the competition between two interconnected firms providing com-

munication services in a context where consumers are related through a social network.

Taking as a benchmark the standard regulatory case, where access charges are fixed at

marginal termination cost levels, using numerical methods we showed that network struc-

ture affects consumer and producer surplus. In this setting we have performed a wel-

fare comparative analysis between two different regulatory interventions departing from
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the standard regulation. The policies considered were: (1) Setting access charges below

marginal termination costs and, (2) Reducing switching costs between service providers.

The main difference with the existing literature is that the analysis was performed

using a model where rational consumers are related through a social network, and then the

number of calls between any pair of them depends not only on prices and transportation

costs, but also on how socially close they are in the network.

The results showed that equilibrium prices, consumer surplus and producer surplus

depend on the connectivity parameter d, showing that social networks matter in the way

how markets perform and also how regulation should be accomplished. For example,

although the regulatory role of the authority seems to be mandatory, its importance

depends on the social network characteristics, because the collusive scenario, associated

to monopoly outcomes, is more profitable and has higher impact on consumer surplus for

higher connectivity degrees in the social network.

In relation to the regulatory interventions, our results showed that setting access

charges below marginal costs have a positive impact on competition, reducing equilib-

rium prices to consumers. However, an alternative policy intervention, oriented to reduce

switching costs, was much more effective, because it brought final prices closer to a sec-

ond best solution, the Ramsey approach. In this line, policies such as number portability

appear as highly desirable in telecommunication markets.

6 Appendix

6.1 AI: Definition of M

In this section we want to define a valid upper bound M such that (8) be an alternative

representation of (7). We need to consider two cases:

Case I. Consider first the case when bi < 0. In such a case we want agent i to have

the incentive to choose αi = 0. According to (8) if he or she chooses αi = 1 the second

inequation in (8) is violated. But we also need to be sure that by choosing αi = 0 the

binding constraint is the first one. In order to do that we need to select an M sufficiently

high such that the second inequation in (8) is always satisfied when αi = 0. In effect:

0 ≤ bi + M ⇔ −bi ≤ M but:

−bi = −xi + 1

2
+ 1te−i(pA, pB)

≤ 1

2
+ σi

η−1

(

p1−η
A − p1−η

B

)

j 6=i
δηtij using that 0 < δ < 1 and η > 1 we have:

≤ 1

2
+ σi

η−1

[

p1−η
A − p1−η

B

]

j 6=i
δη0

≤ 1

2
+ σi

η−1
(I − 1)

[

p1−η
A − p1−η

B

]
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Assuming that individual i is connected to the network (j 6=iδ
tij ≥ 1) we have:10

σi ≤ σ ≡ 1

2t and considering the extreme possible values for prices we have:

MCaseI = 1

2
+ σ

η−1
(I − 1)

[

p1−η
A

− p1−η
B

]

Case II. An analogous argument leads us to show that when bi > 0, the constraint is

equivalent to select αi = 1 when M is sufficiently high, and a feasible selection of M is

obtained from:

0 ≥ bi − M ⇔ M ≥ bi but:

bi = xi −
1

2
− 1te−i(pA, pB)

≤ 1

2
− σi

η−1

(

p1−η
A − p1−η

B

)

j 6=i
δηtij

≤ 1

2
+ σi

η−1

[

p1−η
B − p1−η

A

]

j 6=i
δη0

≤ 1

2
+ σi

η−1
(I − 1)

[

p1−η
B − p1−η

A

]

Assuming again that individual i is connected to the network and considering the

extreme possible values for prices we have:

MCaseII = 1

2
+ σ

η−1
(I − 1)

[

p1−η
B

− p1−η
A

]

So when the upper and lower bounds for the feasible prices for firms A and B are the

same, M = MCaseI = MCaseII otherwise M is selected as the biggest of them.

6.2 AII: A Feasible Algorithm

The algorithm developed permit us to study a more general case than the one used in the

paper where both, access charges and final prices, are defined by the equilibrium solution

of a two stage noncooperative game Γ. In the first stage the firms simultaneously and

non cooperatively select access charges in a range [amin, amax] defined by the regulatory

authority, while in the second, firms compete in prices in the presence of the selected access

charges, with payoff functions given in (9) and (10) and subject to the constraint that

customers are making optimal affiliation decisions. Of course, the regulated environment

is a particular case where the authority defines amin = amax.

Given the set of parameters and the realization of the taste random variables (xi)i∈I , a

feasible procedure to get the Nash equilibrium of the two stage game Γ consists in finding

the second stage reaction functions. The main difficulties to apply standard optimization

10If individual i is disconnected from the social network, then, whithout loss of generality, he can be
removed from the problem.
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tools is that the constraint is discrete and that the vector z in equations (9) and (10)

depends on the vector of prices.

The numerical study was performed by medium scale simulations. The social network

was modeled by random regular graphs (see Bollobas (2001)). The access charges and

prices varied in a predefined grid G in the range: [amin, amax] , [pmin, pmax]. The method-

ology for the simulations was the following:

0) Constant and parameter definitions: I, d, f, η, δ, co
A, co

B, cf
A, cf

B.

1) Generate random graph g with fixed degree d.

2) Generate random vector of network preferences: x = (xi)i∈I .

3) For each pair of access charges aA, aB in the grid over [amin, amax]:

(a) For each pair of prices pA, pB in the grid over [pmin, pmax]:

i) Compute indifference points: x∗(pA, pB) = (x∗
i (pA, pB))i∈I .

i. Select α(pA, pB) satisfying the constraint in (9).

ii) For the selected α in (ii) we can write the profits for firms A and B as:

πA(pA, pB; aA, aB), πB(pA, pB; aA, aB).

(b) Compute prices response functions: p∗A(pB; aA, aB), p∗B(pA; aA, aB).

(c) Compute Nash equilibrium prices in the second stage: p∗A(aA, aB), p∗B(aA, aB).

(d) Compute VA(p∗A, p∗B), VB(p∗A, p∗B).

(e) Compute consumer surplus CS(p∗A, p∗B).

4) From πA(p∗A(aA, aB), p∗B(aA, aB); aA, aB), πB(p∗A(aA, aB), p∗B(aA, aB); aA, aB) com-

pute access charges response functions a∗
A(aB) and a∗

B(aA).

5) Compute Nash equilibrium access charges a∗
A, a∗

B.

6) Compute indifference values in equilibrium: x∗(a∗
A, a∗

B) = (x∗
i (a

∗
A, a∗

B))i∈I .

7) Compute equilibrium profits for firms A and B: πA(p∗A(a∗
A, a∗

B), p∗B(a∗
A, a∗

B); a∗
A, a∗

B),

πB(p∗A(a∗
A, a∗

B), p∗B(a∗
A, a∗

B); a∗
A, a∗

B).

8) Compute consumer surplus CS(p∗A(a∗
A, a∗

B), p∗B(a∗
A, a∗

B)).

9) Repeat steps 1) to 8) for a statistically significant number of graphs.
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