
W. Shen et al. (Eds.): CSCWD 2007, LNCS 5236, pp. 11–22, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting the Development of Applications in
Heterogeneous Ubiquitous Computing Environments

Nelson Baloian1 and Gustavo Zurita2

1 Department of Computer Science, Facultad de Cienncias Físicas y Matemáticas
Universidad de Chile

nbaloian@dcc.uchile.cl
2 Department of Information System, Facultad de Economía y Negocios,

Universidad de Chile
gzurita@facea.uchile.cl

Abstract. Ubiquitous computing is increasingly becoming part of our lives.
Various computing devices, having different sizes and capabilities, and using
different software platforms are part of our working, leisure and living scenario,
where mobile devices coexist and communicate with desktop and laptop com-
puters. Because of this phenomenon, the need for reliable and efficient mecha-
nisms to connect applications running on different platforms is increasing. In
this paper we present a middleware which easies the process of development
applications running in different platforms in a peer-to-peer computing envi-
ronment. The papers also present the results of benchmarking tests and the
experience of developing different applications with this platform.

Keywords: Techniques, methods and tools for CSCW in design, Middleware,
Mobile.

1 Introduction

Since the early days of distributed, collaborative applications development many
authors recognized the need for middleware that could ease the programming of this
kind of software. Sun’s RPC (Remote Procedure Call) [18] schema and the CORBA
[21] architecture are among the first and most known platforms.

Many other platforms followed, each one fulfilling different requirements [14].
They differ in the distribution schemes of the shared data, communication mecha-
nisms, and application architecture they support [11]. Rendezvous [8] and Suite [6]
are groupware platforms, which use a central distribution scheme for the data of col-
laborative applications. GroupKit [16], and DECAF [19] use a replicated distribution
scheme. DSC [9] is a p2p Groupware System with decentralized topology for support-
ing Synchronous Collaborations based on JXTA.

The last years have witnessed an explosion of new collaborative systems for mo-
bile devices that incorporate und utilize their communication capabilities to support
collaborative work in ways that were not conceived before or were impossible to
implement with desktop computers. Applications allowing users to collaborate in real

12 N. Baloian and G. Zurita

time over wireless connected mobile devices building ad-hoc networks have attracted
the attention of many authors. Some of the scenarios for which these applications
have been developed are the following:

• Rescue efforts can be more easily coordinated in emergency situations and disas-
ter areas where a wired infrastructure is not available.

• Group of people attending a meeting can share ideas and data by means of their
mobile devices [23].

• Military intelligence and strike teams can coordinate more easily in order to
provide quicker response time.

• Support for field survey operations in remote areas with no fixed infrastructure
can be provided.

• A team of construction workers or garden designers on a site without a network
infrastructure can share blueprints and schematics [22].

• Educational activities involving group of students and teachers in collaborative
room environments [15] [5] [10] [2].

All these scenarios share some common requirements: high mobility, dynamic user
group configuration, easy input procedures, data sharing, etc. However, the use of
mobile devices which can provide the needed computing support for the scenarios
already mentioned changes the requirements for the distributed applications imple-
menting them, since mobile devices have still some problems which are not present
on desktop computers. Some of them are described by [12] and [4] and are:

• Low-bandwidth and high latency - Network connectivity of mobile devices de-
pends on radio frequency technologies to exchange data. As a result, wireless net-
works generally exhibit low bandwidth, high latency, and high packet loss rate [7].

• Low processor power - Processor power becomes a limited resource, as mobile
devices are designed to be portable and the weight and size of the system must be
kept to a minimum.

• Small display size – Most of the mobile devices are equipped with small displays
that are not suitable for displaying large amount of information or sophisticated
user interface.

• Short battery life - The power necessary for operation, easily obtainable and virtu-
ally limitless in a stationary device, is a scarce resource for most mobile devices.

• Limited input methods - The possible methods of data input currently available on
the market include keyboard, pen-based, and voice. Some devices support varying
combination of these methods to give the user the most flexibility [22], although
they are still limited compared to their desktop counterparts.

This new environment also imposes new restrictions and requirements to the software
which runs on them. Novel collaborative paradigms need to be developed to take into
account the variability in device capabilities, dynamic configuration of working teams
and the unreliable network connectivity. Accordingly, new middleware supporting the
development of distributed communications was necessary.

Nowadays, ubiquitous computing is getting more and more prominent and there
are many situations which can benefit of the interaction between mobile devices and
desktop computers. One example is people engaged in brainstorming-like meeting
activities, where they use their handheld devices to input ideas which are collected

 Supporting the Development of Applications 13

and displayed by an electronic board [17]. Another interesting example is the use of
combined technology (mobile-desktop) in classroom learning activities [7].

Computer technology has made its way into classrooms in a very sound way and
nowadays it is not uncommon to see teachers using computers or electronic boards to
enhance their presentations, and students using laptops or other mobile devices to
search data, receive and manipulate multimedia-based learning material and work
collaboratively [1].

The authors of this paper have been engaged in developing software supporting in-
class synchronous collaborative learning since more than 10 years using a middleware
which easies the programming of distributed applications called MatchMaker [20]. As
mobile devices became an interesting resource to support in-classroom learning, we
tried to incorporate them by adapting the Java-based systems originally developed for
PCs to the new environment. This originated three main problems. First, it was neces-
sary to develop a lightweight version of MatchMaker for the handhelds, since the
original one could not run on the Java environment for handhelds. Second, freehand
writing and sketching input was very uncomfortable because the Java platform was
too slow. A new version of the same software was developed using the C# program-
ming language was developed. It proved to be much better to use, enabling more
accurate writing and sketches. The third problem was, since Java was designed to be
platform independent, some of the hardware-dependent features of the handheld were
not possible to control from the program.

The first idea we had to solve these problems was to use an approach like the one
used by XMIDDLE [12], which uses the object architecture as the only interface
between different environments. However this means that every application should
implement the conversions between the internal language-dependent object represen-
tation and its XML representation. Another solution called SOMU [13] uses web
services for exchanging data, but this solution is not lightweight enough and is too
slow when implemented across platforms.

The problem of having applications from different worlds talking to each other is
certainly becoming a general one. For this reason, it is a good idea to develop a reus-
able solution. Therefore we opted for developing a new middleware in Java and C#
which enables applications living in different worlds share and synchronize data
among them in a very simple yet fast enough way. The next section explains the prin-
ciples used for designing the solution. The following one describes the implementa-
tion and the Middleware’s API. Since one of our main concerns was the performance
of the distributed systems, we made some benchmarking measurements in order to
test the usefulness of the solution. Then, the next chapter presents applications devel-
oped so far with this middleware as a proof of concept. Finally we present conclu-
sions and future work concerning the middleware.

2 A Trans-Platform Middleware: Principles

As we said, the new hardware and scenarios used by mobile computing imposes differ-
ent requirements to the communication architecture to those imposed by desktop com-
puting. The main different characteristics of the middleware are:

14 N. Baloian and G. Zurita

Decentralized: In many mobile scenarios, the only available network will be the mobile
ad-hoc network (MANET) provided by the networking capabilities of the mobile de-
vices. This means that the communication and data architecture must follow a peer-to-
peer schema avoiding a central server keeping the “master” copy of the data and/or the
list of active users. A full centralized schema would be too risky for the mobile scenario
because of the communication problems and the dynamic nature of the groups. In [4]
and [12] full peer-to-peer middleware for supporting communications in mobile devices
are proposed. In [16] a mixed environment is presented, where a non-mobile server can
take a different role. A fully decentralized peer-to-peer schema adapts itself better to the
fact that connectivity between devices is intermittent and the participants list is dynamic
(participants may enter or leave the session anytime) because there is no central server
which could leave the session because of a crash or an intermittent communication
signal. Other solutions consider one of the peers arbitrarily taking the role of server. If
the server crashes or disconnects itself from the working session, another peer will take
automatically this role. This is a possible solution for the scenario we are trying to sup-
port in this work, but it is certainly more complicated to implement.

Replicated Architecture: In a peer-to-peer, decentralized, distributed software archi-
tecture there is no central server keeping a “master” copy of the shared data and the
active users list. Therefore, every application must replicate exactly the data others have
in order to share a common working environment. This means that mechanisms must be
implemented in order to synchronize the replicated data.

State-Based Synchronization: There are mainly two ways to synchronize the data in a
replicated environment: by event or by state. Synchronization by event means that all
applications start with exactly the same set of data with the same values. During the
working session, if one data unit (for example an object) changes its status in one appli-
cation due to an event caused by the interaction with the user, the application sends this
event to all other connected applications, so they can change the state of their object
copy accordingly. Synchronizing by state means every time a data unit changes its
value, the whole object, and not the event, will be sent to the other applications. If the
objects in the application are big, the state-based synchronization mechanism may cause
more network traffic than the event-based one. But in an environment where events may
not reach all active application or new application instances can join the session at any
time, the state-based synchronization is the only reliable choice.

XML-Based Data Exchange: Many of the existing middleware supporting distributed
application programming for mobile or desktop devices use standard XML description
for an object (like SOAP) in order to transmit it to another application running on an-
other platform. Since different platforms use different internal object representation
schema this is the most convenient way for transmitting an object across different plat-
forms. An XML representation of an object may not only contain the names and values
of the object variables but also some meta-information describing it, like the class name,
which will be used by the other platform to reconstruct the object. Since there are al-
ready some “standards” defining the way how an object should be represented by an
XML description, we will use one of them in our solution.

 Supporting the Development of Applications 15

3 The Architecture of the Middleware

The middleware we developed consists of a set of classes implementing an API the
programmer can use in order to write distributed applications easily. These classes are
available in Java and C# and implement the necessary mechanisms for converting
data objects from their internal representations into an XML representation, transmit
them across platforms and convert the XML representation into the corresponding
internal one. They also provide and start the necessary services for discovering part-
ners present in the ad-hoc network and establish the necessary connections among the
different applications in order to synchronize shared data.

TCP/IP
connections
manager

Multicast
discovery
manager

 Active partners list

Communication Node

TCP/IP connections
to other applications for
transmitting/receiving
objects

Multicast UDP
traffic for discovering
and discarding partners

Fig. 1. The communication node

3.1 Discovering Partners and Establishing the Connections

In order to have an application join the group of active partners in the ad-hoc network
it has to instantiate an object of the Node class. The constructor of this node starts a
service which will send multicast messages at regular intervals to the group in order
to inform other participants of the presence of a new one. It will also start consuming
multicast messages from other partners present in the ad-hoc network. This allows the
application to maintain a list of active participants updated. Every time a multicast
message of a new participant is received, its ID and IP number are stored in the list
and a TCP/IP connection is established with that application through which data will
be shared. If a certain amount of time has passed without receiving a multicast mes-
sage from a member of the list of active participants, its entry is deleted and the
connection to that application closed. The Node class can be extended in order to
overwrite some methods. For example, there is receiveObject method which is called
every time the application receives an object. The figure 1 shows the structure of the
communication node implemented by the Node class. It has a module which manages
threads for sending and receiving multicast packages used to maintain an active part-
ners list. This list is used by another module which is responsible for creating TCP/IP

16 N. Baloian and G. Zurita

connections with the active partners and destroying them for those partners which left
the group and transmit synchronization data.

3.2 Sharing Objects

The data sharing mechanism is based on a “shared objects” principle. A shared object
is an abstract class which should be extended in order to create an object class whose
state will be transmitted to all active participants when the object changes its state,
this is when one or more variables change their value. The programmer implements a
shared object by extending the SharedObject abstract class. Apart from declaring the
field variables and methods for this object, it is often necessary to implement a
method called postProcess which will be called every time the object state is updated
by a remote application. This is a key mechanism which allows the updating of the
application's interface when the data changes. Apart from creating a shared object by
extending the SharedObject class, programmers have to register it with the communi-
cation node giving a name to this object, in order to start receiving the updates from
the partners also having a shared object with the same name.

The synchronization of the shared objects is achieved by transmitting a copy of it
to all partners every time their state is changed. For this, methods for sending and
receiving objects were designed and implemented. At the beginning these methods
were private to the middleware, but very soon we discovered that many small yet
powerful applications could be implemented very easily based on those methods
without having to use the SharedObject class. Therefore we made these methods
public to the API.

Communication
node

XMLSerializer Castor

 application

Communication
node

 application

C# World Java World

Fig. 2. Serializing and transmitting objects

As we said, in order to transmit an object across platforms we need a common
language to describe it in a common way. This language will be XML and the repre-
sentation will be generated in a standard way common to both platforms. In C# this
representation can be generated by the XMLSerializer library and in Java by the Cas-
tor library, both being free and open source software. The fact that the same object
should exist in both platform restricts the type of the variables an object can contain to
those common to both platforms. In our case there are numeric data (integer and

 Supporting the Development of Applications 17

decimal), characters, booleans, strings and arrays. Figure 2 shows how the object is
transformed into its XML description transmitted and reconstructed between applica-
tions running in a “C# world” and another in “Java World”. When the application
developed by the middleware’s user must update the state of an object it is passed to
the Node class. This uses the corresponding serializer for producing the XML repre-
sentation and sends it to the communication node of the other application. The receiv-
ing node uses its own de-serializer for transforming the XML representation in the
corresponding internal one.

3.3 Group Management

The learning scenario in a Computer-integrated Classroom was the situation that mo-
tivated us to for developing this middleware because of the need to have applications
implemented and running in different platforms to share data. In this scenario, we also
recognized the need to have the possibility of defining subgroups of partners inside
the whole group of active participants. For example, the teacher may want to propose
a task which should be accomplished by small groups which do interact among them,
but she wants to keep the possibility of looking what the different groups are doing.
For this we developed the necessary mechanisms inside the middleware in order to
have applications join and leave certain groups. This information is stored in the
communication node and is used when the copy of an updated object has to be dis-
tributed among participants. Accordingly, we developed the methods which will send
objects only to applications belonging to a certain group. An application can join
more than one group, so it can receive updates coming from different groups. We also
implemented methods for remotely force an application to join and/or leave a group.
This was necessary because in many cases, the teacher or the moderator of a group
was supposed to form smaller working groups. The teacher or moderator can then join
the various in order to “see” what was happening on all of them.

Table 1 shows a description of the most important methods implemented by the
middleware. All they are applied to the Communication Node of the application,
which is from the Node class or an extended one, except from the last two which are
applied to an object of a class extended from the SharedObject class.

4 Benchmarking

Because the performance of the platform was one of our first motivations for the
development of the middleware we wanted to test if our solution was fest enough. By
fast enough we mean that the time it take an object to be transferred from one applica-
tion to another does not interrupt the flow of the synchronous work. Of course, this is
more or less a subjective evaluation and depends on the application which is being
used. An application making intensive use ob the object transfer mechanism may be
more sensitive to longer delays than another which sends objects at a slower rate. In
any case, it was important to see how long this operation takes in order to analyze
which is the permitted delay between the sending of an object and its arrival at the
other end our middleware can still support. For this we carried out an experiment in
which we measured the round-trip time required to send and object to another applica-
tion and receive it back. We tested this for objects of different size and between

18 N. Baloian and G. Zurita

different platforms. We started by sending and receiving objects of 10 bytes up to
10000 bytes first among two applications both running in a C# platform. Then we
repeated it for two applications both running in a Java platform and finally we re-
peated it for two applications. The results of these experiments depend of course from
the hardware being used, so we used very standard mobile devices in order to have
representative results: DELL X50V and DELL X51V.

The figure 3 presents the results of these experiments. As we expected, the time re-
quired for the round-trip of objects between applications running in similar platforms
is much smaller and almost neglectable compared to the time required for the same
round-trip between applications running over different platforms. A very interesting
and unexpected result was that for all cases, the time is drastically reduced when the
objects’ size nears the 1000 bytes number. The time remains almost the same for
bigger objects. This may be caused by the way the ad-hoc network packs the data in
an UDP packages and sends it to the network. In any case, this result gives us a hint
on how to design applications in order to have the best response time: objects being
shared should contain as much information as possible and in any case they should
contain at least 1k bytes.

0

500

1000

1500

2000

2500

3000

3500

10 41
0

81
0

31
10

71
10

Object size (in bytes)

tr
an

sf
er

 r
o

u
n

d
-t

ri
p

 t
im

e
(i

n
 m

ili
se

co
n

d
s)

JAVA-
JAVA
C#-
JAVA
C# C#

Fig. 3. Curves of time required for a round-trip of objects of different sizes between two C# applica-
tions, two Java applications, and a C# and a Java application

5 Implemented Applications

With the help of this middleware, we have already implemented some applications for
mobile and desktop computers. Some of them make intensive use of the trans-
platform feature of the middleware and others were implemented for being run on the
same platform. The trans-platform feature was mainly used when we wanted to de-
velop C# applications running on handheld devices communicating with existing
applications on desktop computers developed for the Java platform.

 Supporting the Development of Applications 19

MCsketcher: MCSketcher [3] is a system that enables face-to-face collaborative
design based on sketches using handheld devices equipped for spontaneous wireless
peer-to-peer networking. It is especially targeted for supporting preliminary, in-the-
field work, allowing designers to exchange ideas through sketches on empty sheets or
over a recently taken photograph of the object being worked on, in a brainstorming-
like working style. Pen-based designed human-computer interaction is the key to
supporting collaborative work. This application was entirely written in C# aimed for
being used only in a mobile situation.

Table 1. Description of the most important methods of the middleware’s API

FOR SENDING/RECEIVING OBJECTS
public Node(String nodeID,
String multicastIP, int
multicastPort)

Creates a Node object which starts the Multicast
service for discovering and the TCP/IP server for
transferring data.

public void
receiveObject(Object o)

Used by the communication node in order to
receive the objects sent by the partners and
synchronize the state of the shared objects.

public void sendObject(String
partnerID, Object obj)

Sends an object to a certain partner. If partnerID
is null the object will be sent to all partners in the
network

public void
sendObject(String[] usrIDList,
Object obj)

Sends an object to a list of users

public void
sendToGroup(String
groupName, Object o)

Sends an object to all partners registered in a
specific group

GROUP MANAGEMENT
public void join(String
groupName)

Joins the application to a certain group character-
ized by the group’s name

public void leave(String
groupName)

Detaches the application from the group specified

public void
remoteJoinGroup(String
groupName, String partnerID)

Invokes the join method in a remote application,
forcing that application to join a group

public void
remoteLeaveGroup(String
groupName, String partnerID)

Invokes the leave method in a remote application,
forcing that application to leave a group

METHOD FOR SHARED OBJECTS
public void postProcess() Abstract method of the SharedObjec class. In-

voked when the object is updated
public void addSOb-
ject(SharedObject so, String
name)

Registers a shard object with the communication
node

20 N. Baloian and G. Zurita

Nomad: Nomad [22] is an Electronic Meeting Support system for handhelds. The
design principles applied for developing the system are aimed to help reduce the prob-
lems associated with having a small size screen to interact with. The human-handheld
interaction is based only in gestures and freehand writing, avoiding the need of wid-
gets and virtual keyboards. The content of the generated documents are organized as
concept maps, which gives more flexibility to reorganize and merge the contributions
of the meeting attendees. The system is based on handhelds interconnected with an
ad-hoc wireless network. This application has a module which allows the use of an
electronic board in order to have a common display to show the content being
produced during the working session.

Coolmodes: Coolmodes [15] provides a uniform shared workspace environment
which allows for constructing and running models with different formal representa-
tions (Petri nets, System Dynamics, mathematical graphs etc.) and also supports
semi-formal argumentation graphs and hand-written annotations. This software was
developed for being used on desktop computers over the Java platform with the goal
of being used collaboratively in a classroom. Several students can share a running
model by synchronizing their simulation environments. Simulations are analyzed to
generate hypotheses about the global behavior of systems. For this system, a C# mod-
ule was developed in order to allow students interact with the software from mobile
devices instead of.

6 Conclusions

In this work we presented a middleware to ease the development of distributed appli-
cations in a peer-to-peer environment. Our major contribution is to provide a full
peer-to-peer solution across different platforms, which not only solves the problem of
discovering the partners present in the MANET and synchronizing the application
data among them, but this middleware also provides an easy to use API in order to
manage different working groups among the members of the MANET. This has
shown to be a very important feature especially when programming applications sup-
porting collaborative learning, since in this kind of work, group forming and changing
the group composition is present in many learning best practices. According to the
benchmarking results and to the practical experience in using the middleware we can
conclude that this is in fact an easy to use, flexible, and lightweight middleware for
developing distributed applications across platforms. In fact, we could see that pro-
grammers could fast and easily design and program applications. The shared object
paradigm was perceived by them as a powerful yet easy to learn and use paradigm.
Recent developments and testing have shown that the system can cope with a rela-
tively large number of students working at the same time without [24]. In this work,
up to 25 students were able to work simultaneously without saturating the network.

As we saw from the benchmarking results, the solution is fast enough to implement
synchronous applications across platforms. In all the applications implemented so far
the half a second-delay was not critical for influencing the normal flow of the applica-
tions we have developed so far with the middleware. We are still working in order to
make the object transfer time between different platforms smaller, by making the
serializing/deserializing process more efficient.

 Supporting the Development of Applications 21

Finally, we want to point out that any platform implementing the API could then
also communicate with applications implementing these two platforms using the
shared object paradigm.

Acknowledgments. This paper was funded by Fondecyt 1050601 and partially by
Fondecyt 1085010.

References

1. Baloian, N., Hoppe, H.U., Milrad, M., Hoeksema, K.: Technologies and educational ac-
tivities for supporting Challenge-based Learning. In: Education for the 21st Century-
Impact of ICT and Digital Resources. IFIP, vol. 210, pp. 7–16. Springer, Boston (2006)

2. Baloian, N., Berges, A., Buschmann, S., Gassner, K., Hardings, J., Hoppe, H.U., Luther,
W.: Document Management ina a Computer-Integrated Classroom. In: Haake, J.M., Pino,
J.A. (eds.) CRIWG 2002. LNCS, vol. 2440, pp. 35–44. Springer, Heidelberg (2002)

3. Breuer, H., Konow, R., Baloian, N., Zutira, G.: Mobile Computing Seamlessly Integrate
Formal and Informal Learning. In: Proceedings of the 7th IEEE Cof ICALT, Niigata, Ja-
pan, pp. 589–591 (2007)

4. Buszko, D., Lee, W., Helal, A.: Decentralized ad-hoc Groupware API and framework for
mobile Collaboration. In: Proceedings of the GROUP 2001 Conf. Boulder, pp. 5–14
(2002)

5. Chang, C.Y., Sheu, J.P., Chan, T.W.: Concept and design of ad hoc and mobile class-
rooms. Journal of Assisted Learning 19, 336–346 (2003)

6. Dewan, P., Choudhary, R.: A High-level and flexible framework for implementing multi-
user interfaces. ACM Transactions on Information Systems 10(4), 345–380 (1992)

7. Farooq, U., Schafer, W., Rosson, M., Carroll, J.: M-Education: Bridging the gap of mobile
and desktop computing. In: Proceedings of the WMTE 2002, Vexjö, Sweden, pp. 91–94
(2002)

8. Hill, R., Brinck, T., Rohall, S., Patterson, J., Wilne, W.: The Rendezvous architecture and
language for constructing multiuser applications. ACM Transactions on Computer-Human
Interaction 1(2), 81–125 (1994)

9. Jianhua, M., Shizuka, M., Lee, J., Huang, R.: A P2P groupware system with decentralized
topology for supporting synchronous collaborations. In: International Conf. on Cyber-
worlds, Singapore, December 3-5, 2003, pp. 54–61 (2003)

10. Liang, J.-L., Liu, H.Y., Chang, B., Deng, Y.C., Yang, J.C., Chou, C.Y., Ko, H.W., Yang,
S., Chan, T.W.: A few design perspectives on one-on-one digital classroom environment.
Journal of Assisted Learning 21, 181–189 (2005)

11. Lukosch, S.: Adaptive and Transparent data Distribution Support. In: Haake, J.M., Pino,
J.A. (eds.) CRIWG 2002. LNCS, vol. 2440, pp. 255–274. Springer, Heidelberg (2002)

12. Mascolo, C., Capra, L., Zachariadis, S.: XMIDDLE: A data-sharing middleware for mo-
bile computing. In: Wireless Personal Communications, vol. 21, pp. 77–103. Kluwer,
Netherlands (2002)

13. Neyem, A., Ochoa, S., Pino, J.A.: Supporting Mobile Collaboration with Service-Oriented
Mobile Units. In: Dimitriadis, Y.A., Zigurs, I., Gómez-Sánchez, E. (eds.) CRIWG 2006.
LNCS, vol. 4154, pp. 228–245. Springer, Heidelberg (2006)

14. Urnes, T., Nejabi, R.: Tools for implementing groupware: Survey and evaluation. Techni-
cal Report No. CS-94-03, York University (1994)

22 N. Baloian and G. Zurita

15. Pinkwart, N., Hoppe, U., Milrad, M., Perez, J.: Educational scenarios for cooperative use
of Personal Digital Assistants. J. of Comp. Assisted Learning 19, 383–391 (2003)

16. Roseman, M., Grimberg, S.: Building real.time groupware with GroupKit. ACM Transac-
tions on Computer-Human Interaction 3(1), 66–106 (1996)

17. Siland, P., Sutinen, E., Tarhio, J.: Mobile Collaborative Concept-Mapping Classroom Ac-
tivity with Simultaneous Field Exploration. In: Proceedings of the WMTE 2004, Tayuan,
Taiwan, pp. 114–118 (2004)

18. Srinivasan, R.: RPC: Remote Procedure Call Protocol Specification Version 2. Internet
RFC 1831 (1995)

19. Storm, R., Banvar, G., Miller, K., Prakash, A., Ward, M.: Concurrency Control and vie no-
tification algorithms for collaborative replicated objects. IEEE Transactions on Com-
puters 47(4), 458–471 (1998)

20. Tewissen, F., Baloian, N., Hoppe, H.U., Reimberg, E.: MatchMaker: Synchronising Ob-
jects in Replicated Software-Architectures. In: Proceedings of the CRIWG 2000, Madeira,
Portugal, pp. 60–67. IEEE Computer Society Press, Los Alamitos (2000)

21. Vogel, A., Duddy, K.: Java Programming with CORBA, 2nd edn. John Wiley & Sons,
USA (1998)

22. Zurita, G., Baloian, N., Baytelman, F.: A face-to-face system for supporting mobile col-
laborative design using sketches and pen-.based gestures. In: Proceedings of the CSCWD
2006, Nanjing, China, pp. 250–255 (2006)

23. Zurita, G., Baloian, N., Baytelman, F., Morales, M.: A gestures and freehand writing inter-
action based Electronic Meeting Support System with handhelds. In: COOPIS 2006,
Montpelier, France, pp. 679–696 (2006)

24. Zurita, G., Baloian, N., Baytelman, F., Morales, M.: Using Mobile Devices to Foster So-
cial Interactions in the Classroom. In: Proceeding of the CSCWD 2008, XiAn, China, pp.
1041–1046 (2008)

	Supporting the Development of Applications in Heterogeneous Ubiquitous Computing Environments
	Introduction
	A Trans-Platform Middleware: Principles
	The Architecture of the Middleware
	Discovering Partners and Establishing the Connections
	Sharing Objects
	Group Management

	Benchmarking
	Implemented Applications
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

