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Abstract. In this paper, we study translation sets for non-decreasing maps of the real line
with a pattern-equivariant displacement with respect to a quasicrystal. First, we establish a
correspondence between these maps and self maps of the continuous hull associated with
the quasicrystal that are homotopic to the identity and preserve orientation. Then, by using
first-return times and induced maps, we provide a partial description for the translation set
of the latter maps in the case where they have fixed points and obtain the existence of a
unique translation number in the case where they do not have fixed points. Finally, we
investigate the existence of a semiconjugacy from a fixed-point-free map homotopic to the
identity on the hull to the translation given by its translation number. We concentrate
on semiconjugacies that are also homotopic to the identity and, under a boundedness
condition, we prove a generalization of Poincaré’s theorem, finding a sufficient condition
for such a semiconjugacy to exist depending on the translation number of the given map.

1. Introduction and results
The aim of this paper is to provide a generalization of Poincaré’s classification of the
dynamics of homeomorphisms of the circle to a class of maps on the real line which are
associated with quasicrystals.

On the one hand, Poincaré’s classification of the dynamics of homeomorphisms of
the circle is one of the oldest and most important results in the theory of dynamical
systems (e.g. [KH95]). On the other hand, Delone sets and tilings have been recently
and extensively studied in different contexts (e.g. [LP03, Wan61]) and in particular as
models for quasicrystals.



566 J. Aliste-Prieto

1.1. Delone sets and quasicrystals. A discrete subset X of Rd is called a Delone set if it
is uniformly discrete (there exists r > 0 such that every closed ball of radius r intersects X
in at most one point) and relatively dense (there exists R > 0 such that every closed ball of
radius R intersects X in at least one point). For t ∈ Rd and a discrete set P ⊂ Rd , P − t
denotes the set {u − t | u ∈ P}, which is referred to as the translate of P by t . Let X be a
Delone set in Rd . We say that X is aperiodic if X − t = X implies t = 0. A patch of X is
a subset of the form X ∩ B, where B is a closed ball in Rd . The Delone set X has finite
local complexity if for each r > 0 there is, up to translation, only a finite number of patches
of diameter less than r .

Delone sets arise naturally as mathematical models for the description of solids. In this
modelization, the solid is supposed to be infinitely extended and its atoms are represented
by points. These atoms interact through a potential (for example, a Lennard–Jones
potential). For a given specific energy, Delone sets are good candidates to describe
the ground-state configuration: uniform discreteness corresponds to the existence of a
minimum distance between atoms due to the repulsion forces between nuclei, and relative
density corresponds to the fact that empty regions cannot be arbitrarily big because of the
contraction forces. In perfect crystals, atoms are ordered in a repeating pattern extending in
all three dimensions and can be modeled by lattices in R3. Quasicrystalline solids are those
whose X-ray diffraction images have sharp spots indicating long-range order but without
having a full lattice of periods. Typically, they exhibit symmetries that are impossible for
a perfect crystal (see, e.g., [SBGC84]).

We restrict our attention to Delone subsets of the real line. A Delone set X is repetitive
if for every patch P there is M > 0 such that every closed interval J of length 2M contains
a closed subinterval I ′ such that X ∩ I ′ is a translated copy of P . Given a patch P of X ,
t ∈ R and M > 0, define

n(P, M, t)= #{P ′ ⊂ X ∩ [t − M, t + M] | P ′ = P − u for some u ∈ R}

to be the number of patches of X that are translated copies of P and are included in the
interval [t − M, t + M]. We say that the Delone set X has uniform pattern frequencies
if n(P, M, t)/2M converges uniformly in t when M→+∞ and the limit is independent
of t .

In our context, the term quasicrystal will be used for an aperiodic repetitive Delone set
that has uniform pattern frequencies. It is plain that such sets can be seen as increasing
sequences X = (xn)n∈Z with infn∈Z(xn − xn−1) > 0. In these terms, the Delone set X
has finite local complexity if and only if the prototile set L(X) := {xn+1 − xn | n ∈ Z} is
finite. Observe that each point of a Delone set is (possibly) decorated by a color. In this
context, finite local complexity means finite prototile set and finite number of colors, and
two patches will be considered translated if (without decorations) they are translated and
they are decorated in the same way.

1.2. Poincaré’s classification for circle homeomorphisms. Let us now recall Poincaré’s
classification. We deviate a little from the standard notation in rotation theory of the circle
in order to simplify the comparison between Poincaré’s classification and our work.
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Let f : R→ R be a continuous non-decreasing map of the real line. The displacement
of f is the continuous function φ defined by t→ f (t)− t . The translation number of f
at t is defined by

ρ( f, t)= lim
n→∞

f n(t)− t

n
, (1)

provided the limit exists. Let us suppose for the moment that φ is a periodic function and
that f is one-to-one. In this case, the map f factors through an orientation-preserving
homeomorphism of the circle F : R/Z→ R/Z. If π : R→ R/Z denotes the natural
projection of the real line R onto the circle R/Z, then the former means that π ◦ f = F ◦ π .

The first result in this topic proved by Poincaré is that the translation number ρ( f, t)
exists for every t ∈ R and is independent of t ∈ R. Therefore, there is a translation number
of f . Moreover, if we take a map that, like f , factors over F , then its translation number
differs from the translation number of f by an integer. This allows us to define the
rotation number of F as the number ρ(F)= ρ( f, t) mod Z for any t ∈ R. Poincaré
then proved that rotation numbers may be used to classify the dynamics of orientation-
preserving homeomorphisms of the circle.

POINCARÉ’S THEOREM. Let F : R/Z→ R/Z be an orientation-preserving homeo-
morphism. Then,
(1) the rotation number ρ(F) is rational if and only if F has a periodic orbit;
(2) if the rotation number ρ(F) is irrational, then F is semiconjugate to Rρ(F),

which means that there exists a continuous, onto and orientation-preserving map
H : R/Z→ R/Z such that

H ◦ F = Rρ(F) ◦ H,

where Rρ(F) is the rotation x 7→ x + ρ(F) mod Z in R/Z;
(3) if in (2) we assume that F is transitive (there is a dense orbit), then the map H

defined in (2) is a homeomorphism.
It is natural to attempt to generalize this result to more general systems. For instance,

in the context of homeomorphisms of the torus Rk/Zk , one finds that, in general, the
rotation number depends on the orbit. This means that instead of a unique rotation
number one obtains a rotation set (see [GM99, MZ89]). Even when the rotation set
is reduced to a unique rotation number, there are examples with behaviors that are not
compatible with Poincaré’s classification (see, e.g., [Her83, Man87]). Under some extra
(and natural) conditions, a Poincaré-like classification for torus homeomorphisms was
recently obtained [Jag08, JS06].

1.3. Translation numbers for maps on the quasicrystal systems homotopic to the identity.
In this paper we take a different direction: we drop the assumption of periodicity of φ
and study the case when φ is pattern equivariant with respect to a quasicrystal. More
precisely, given a quasicrystal X on the real line, a function φ : R→ R is called strongly
X-equivariant or a short-range potential if there exists S > 0, called the range of φ, such
that

(X − t) ∩ [−S, S] = (X − u) ∩ [−S, S]
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implies that
φ(t)= φ(u).

We say that a continuous function φ : R→ R is X-equivariant if it is the uniform limit of a
sequence of strongly X -equivariant continuous functions. In terms of the physical model,
the value of a short-range potential at a given point t depends on the neighborhood of t
up to a given radius. When X = Z (possibly decorated in an aperiodic way), continuous
periodic functions are X -equivariant. Short-range potentials and X -equivariant functions
have been studied in different contexts (see, e.g., [GGP06, Hof95, Kel03]).

In this paper we suppose that the displacement φ of f is X -equivariant, where X is a
quasicrystal, and study the translation set of f . Our first result states the following.

Result 1. Let X be a quasicrystal and f : R→ R a continuous non-decreasing map with
X -equivariant displacement φ(t)= f (t)− t . If φ is bounded away from zero then, for
every t ∈ R, the translation number ρ( f, t) exists and does not depend on t . That is to say,
f has a translation number, denoted by ρ( f ).

In the same way that a periodic lattice allows identification on the real line which yields
a circle, a quasicrystal X allows us to define a metrizable topology on the real line, coarser
than the standard one, that reflects several properties of X and for which the completion
of the real line is a compact space �X [Rud89], called the continuous hull of X , and its
elements are Delone sets with the same prototile set as X . Thus, there is a natural action T
of R on �X by translation (see, e.g., [Rob04]), and this action is continuous. Moreover, in
the situation we consider, it is minimal and uniquely ergodic (see, e.g., [LMS02, Rob04]).

There is a lamination structure on the continuous hull that is locally the product
of an interval and a Cantor set. Moreover, T -orbits coincide with the leaves of the
lamination [BBG06]. These results are reviewed in more detail in §2.

In the same way that periodic continuous functions with period 1 factor through a
continuous function on the circle, we have that X -equivariant functions factor through
continuous functions defined over the hull �X (see, e.g., [Kel03]). More precisely, if φ is
X -equivariant, then there is a unique continuous 8 :�X → R such that

φ(t)=8(X − t) for all t ∈ R. (2)

We review this correspondence in §3 and then we use it to define a correspondence between
self maps on �X that are homotopic to the identity and continuous self maps of the
real line with X -equivariant displacements. This correspondence reads as follows: for
each continuous map f with X -equivariant displacement φ, there is a continuous map
F :�X →�X defined by

F(Y )= Y −8(Y ) for all Y ∈�X , (3)

where 8 is the function defined by equation (2). We refer to 8 as the displacement of F .
We check that F is homotopic to the identity and that

X − f (t)= F(X − t) for all Y ∈�X . (4)

In particular, F sends each leaf to itself. Since X is aperiodic, it is not difficult to check
that every map that sends each leaf to itself can be written in the form (3), where the
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displacement 8 is not necessarily continuous. Hence, it is natural to ask whether every
continuous orientation-preserving self map of �X that sends each leaf to itself has a
continuous displacement, and hence induces by equation (4) a map of the real line with
X -equivariant displacement. We give an affirmative answer in §3 (cf. Theorem 3.4). It
follows that every such map is homotopic to the identity.

In §4, we study translation sets for maps that are homotopic to the identity: let
F :�X →�X be homotopic to the identity and 8 :�X → R its displacement. The
following definitions are adapted from [GM99]. The translation number of F at Y ∈�X

is defined by

ρ(F, Y )= lim
n→+∞

1
n

n−1∑
k=0

8(Fk(Y ))

provided the limit exists. The (pointwise) translation set of F , denoted by ρp(F), is
defined as the set of all translation numbers of F . We observe that if Y = X − t with
t ∈ R, then

1
n

n−1∑
k=0

8(Fk(X − t))=
f n(t)− t

n
.

Hence, Result 1 is a consequence of the following more general result describing the
translation set of F .

Result 2. Let X be a quasicrystal and �X its continuous hull. Consider a continuous map
F :�X →�X that is homotopic to the identity and denote its displacement by 8. Then,
exactly one of the following assertions holds.
(1) 8 changes sign: for every Y ∈�X the translation number of F at Y exists and equals

0 (cf. Proposition 4.1).
(2) 8 does not have zeros: F has a unique translation number, which is different from

zero (cf. Theorem 4.6).
(3) 8 does not change sign but has zeros: there exists ρ ∈ R such that for almost every

Y ∈�X the translation number of F at Y coincides with ρ (cf. Theorem 4.2).

We discuss some results in the literature that are related to Results 1 and 2:
Kwapisz [Kwa00] proved results that correspond to Results 1 and 2 when the displacement
of f is an almost-periodic function in the sense of Bohr. Clark [Cla02] studied rotation
numbers for self maps of solenoids that are homotopic to the identity, so Result 2 may be
seen as a generalization of some of the results of Clark. In particular, Result 2(3) already
appears in [Cla02]. Finally, Shvetsov [Shv03] studied rotation numbers for continuous-
time flows on the continuous hull of self-similar tilings. We observe that his results are true
for the continuous hull arising from a (general) quasicrystal. However, since not every map
considered in this paper is a time-t map for a flow, Results 1 and 2 are not consequences
of the results in [Shv03].

1.4. Classification of maps on Delone systems homotopic to the identity. Finally, in
§5 we develop the tools for obtaining a Poincaré-like classification for maps satisfying
Result 2(2). Let F :�X →�X be a map satisfying Result 2(2). That is, F does not
have fixed points, which means that it does not have periodic points either and it has a
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translation number ρ(F). Our objective is to classify the dynamics of F in a Poincaré-
like way. In particular, we ask whether there exists a semiconjugacy from F to Tρ(F), i.e.
a continuous and surjective map H :�X →�X such that

H(F(Y ))= H(Y )− ρ(F) for every Y ∈�X .

Motivated by the fact that translation numbers are not necessarily preserved by
semiconjugacies that are not homotopic to the identity, we require that semiconjugacies
be homotopic to the identity. To simplify notation, we call such a semiconjugacy a T -
semiconjugacy. This allows us to reduce the problem of finding a semiconjugacy to the
problem of finding a continuous solution 9 to the following cohomological equation:

9(Y −8(Y ))−9(Y )= ρ( f )−8(Y ) for all Y ∈�X , (5)

where 8 denotes the displacement of F and 9 corresponds to the displacement of the
desired T -semiconjugacy. Cohomological equations are very important objects in the
theory of dynamical systems and appear in several contexts (see e.g. [KH95]).

A direct necessary condition for the existence of a continuous solution to equation (5)
is the following: there exists C > 0 such that

|Fn(Y )− Y − nρ(F)|< C for every n ∈ N and Y ∈�X .

In the periodic case, this boundedness condition is always satisfied and it is key to prove
Poincaré’s theorem. In our setting, it is not known whether this condition is satisfied by all
F’s, so we say that a map that satisfies this condition is ρ-bounded. In the following, we
suppose that F is ρ-bounded.

In our case, rational numbers are no longer available. We also point out that translations
in�X have no periodic points since X is aperiodic. To define an alternative set, we observe
that if F is minimal and ρ-bounded then a well-known theorem of Gottschalk and Hedlund
ensures the existence of a continuous solution to the cohomological equation, and hence
also the existence of a semiconjugacy from F to Tρ(F). This implies that the translation
Tρ(F) is minimal. The well-known fact that a rotation of the circle is minimal if and only
if the angle that defines it is not rational motivates us to define

Q= {t ∈ R | Y ∈�X 7→ Y − t is not minimal on �X }.

Finally, we introduce a replacement for periodic points when ρ(F) ∈Q. A cylinder in
�X is a set of the form

{Z ∈�X | Z ∩ B = Y ∩ B},

where Y ∈�X and B is a closed ball around 0. It can be checked (see §2 for more details)
that these cylinders are Cantor sets, and thus a local vertical is a clopen (both open and
closed) subset of a cylinder in �X . Given a local vertical V in �X and two functions
α, β : V → R, the set

V [α, β] = {X − t | X ∈ V, α(X)≤ t ≤ β(X)}

is called a local strip. If V [α, α] = V [β, β] = V [α, β], then V [α, β] is said to be thin.
The main result of this paper is the following.
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Result 3. Suppose that F is a ρ-bounded map preserving the orientation in �X with
translation number ρ(F). Then,
• if ρ(F) ∈Q, then F is not minimal and every minimal set is the finite disjoint union

of thin local strips (cf. Theorem 5.10);
• if ρ(F) 6∈Q, then F is T -semiconjugate to Tρ( f ) (cf. Theorem 5.12).

2. Dynamical approach to the study of Delone sets
We review here some basic facts about the approach of dynamical systems to the study of
Delone sets on the real line. Most of these results are also valid for Delone sets in Rd with
d > 1; see, e.g., [KP00, LP03, Rob04].

2.1. Delone dynamical systems. Let T ⊂ R be a finite set (of prototiles) and denote by
�(T ) the set of all Delone sets of R with prototile set included in T . There is a natural
action T of R on �(T ), which is called a translation action, defined by

Tt (X)= X − t = {x − t | x ∈ X} for all X ∈�(T ) and t ∈ R.

This action is continuous with respect to the topology induced by the distance defined
below (see [Rob04, Rud89] for details). First, we introduce the following notation: for
Y ∈�(T ) and S > 0, we define the cylinder of radius S around Y by

VY,S = {Z ∈�(T ) | Z ∩ [−S, S] = Y ∩ [−S, S]}.

Given Y, Z ∈�(T ), we set

d(Y, Z)=min
{√

2
2
, inf{ε > 0 | ∃t ∈ (−ε, ε) s.t. Z − t ∈ VY,1/ε}

}
.

Roughly speaking, two Delone sets are close to each other if, modulo a small translation,
they coincide on a big ball around the origin. With this topology, �(T ) is compact
(see [Rud89]) and thus separable. A countable basis for �(T ) can be formed by sets
of the form

{Z − t | Z ∈ VY,S, t ∈ (−ε, ε)}. (6)

Let � be a subset of �(T ). The pair (�, R) is called a Delone dynamical system (in
short, Delone system) if � is closed and invariant under the translation action. Let (�, R)
be a Delone dynamical system. If the orbit O(X)= {X − t | t ∈ R} of every X ∈� is
dense in �, then we say that (�, R) is minimal. If X − t 6= X for every t ∈ R \ {0} and
every X ∈�, then we say that (�, R) is aperiodic. The main connection between Delone
sets and Delone dynamical systems is summarized in the following theorem.

THEOREM 2.1. (See [LP03, Sch00]) Let X be a Delone set with finite prototile set T and
denote�X =O(X). Then, (�X , R) is a Delone dynamical system and (�X , R) is minimal
if and only if X is repetitive. In the repetitive case, one also has
• (�X , R) is aperiodic if and only if X is aperiodic;
• (�X , R) is uniquely ergodic (there is a unique T -invariant probability measure on

�X ) if and only if X has uniform pattern frequencies.
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We say that (�X , R) is a quasicrystal system whenever X is a quasicrystal. Thus, a
quasicrystal system is an aperiodic, minimal, uniquely ergodic Delone system.

Let (�, R) be an aperiodic minimal Delone system. The canonical transversal �0 of
� is defined as the set of all Delone sets in � containing 0.

PROPOSITION 2.2. (See [KP00]) The canonical transversal of an aperiodic minimal
Delone system is a Cantor set.

It follows that each cylinder VY,S , where Y ∈� and S > 0, is a Cantor set (it is
homeomorphic to a clopen subset of �0). Moreover, (�, R) possesses a laminated
structure, which means the following. There is a finite open cover {Ui }

n
i=1 of �. Each

Ui can be written in the form

Ui = {Z − t | Z ∈ VYi ,Si , t ∈ Ii },

where Yi ∈�, Si > 0 and Ii is an open interval. Moreover, each Ui is homeomorphic to
VYi ,Si × Ii through hi : Ii × Vi →Ui defined by hi (t, Z)= Z − t , and the transition maps
satisfy, where defined,

h−1
i ◦ h j (t, Z)= (t − vi, j , Z − vi, j ), (7)

where vi, j ∈ R depends only on i and j .
A slice is an interval hi (Ii × {Z}). The leaves of the lamination are the smallest

connected subsets that contain all the slices they intersect. By equation (7), the leaves
coincide with the orbits of the action T and are 1-manifolds isometric to R (for more
details, see, e.g., [BBG06, BG03, GGP06]). Thus, we will prefer to use the term leaf to
refer to a T -orbit.

Thus, the natural orientation of R induces an orientation on each leaf of �. The same
is true for the natural order on R: for Y, Z ∈�, we say that Y ≤ Z if there exists t ≥ 0
such that Y − t = Z (analogous definitions are given for <,≥, >). It follows that a map
F :�→� is orientation preserving if for every Y, Z ∈�

Y ≤ Z implies F(Y )≤ F(Z).

In particular, orientation-preserving maps send leaves to leaves.

Example 2.3. The standard examples of quasicrystals on the real line are constructed via
substitution sequences (for more details, see [DHS99, RS01]), like the Fibonacci sequence.
This sequence is constructed by iterating the substitution{

a → ab,

b → a.

Starting from the sequence a.a, one obtains a bi-infinite sequence (wn)n∈Z, called the
Fibonacci sequence, that is a periodic point (of period two) of the previous substitution.
By taking its orbit closure under the shift map σ((wn)n∈Z)= (wn+1)n∈Z, one obtains
the so-called Fibonacci shift. Given L , S > 0, a Fibonacci quasicrystal is the Delone
set Xfib = {xn}n∈Z such that xn+1 − xn is equal to L if wn = a and to S if wn = b (see
Figure 1). If one lets � denote the continuous hull of Xfib, then it is easy to check
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FIGURE 1. Construction of the Fibonacci chain.

that the canonical transversal of � is conjugate with the Fibonacci shift. There are two
important choices for L , S. First, if L = S = 1, then � is conjugate with the suspension
of the Fibonacci shift. Second, if L = τ := (

√
5+ 1)/2 and S = 1, then Xfib is self

similar (see [RS01]) and there is a homeomorphism ω :�→�, the so-called inflation–
substitution homeomorphism, which satisfies ω(Xfib − t)= Xfib − τ t for every t ∈ R.

2.2. Return times and return maps. We end this section by recalling some basic results
that will be used throughout this paper. These are adaptations of standard tools used in
the study of minimal Cantor systems (see, e.g., [HPS92, Put89]). Let X be an aperiodic
repetitive Delone set and �X its hull. A local vertical is a clopen subset of VY,S for any
Y ∈�X and S > 0. Let V be a local vertical. For every Y ∈�, the first entry time of Y to
V is defined as

tV (Y )= inf{t > 0 | Y − t ∈ V }.

When Y belongs to V , we refer to tV (Y ) as the first-return time of Y to V . The first-return
map to V is the map σV : V → V defined by

σV (Y ) = Y − tV (Y ) for all Y ∈ V .

For an illustration of first-return time and first-return map when X = Xfib (defined in
Example 2.3) see Figure 2.

LEMMA 2.4. The first-return time tV is continuous on �X and, when restricted to V , it
takes only finitely many values. Moreover, the map σV is a homeomorphism and the system
(V, σV ) is minimal.

From this lemma, we immediately obtain the following.

COROLLARY 2.5. For every Y ∈ V , the set of return times of Y to V , defined by

R(Y, V )= {t ∈ R | Y − t ∈ V },

is a Delone set with finite local complexity.

Lemma 2.4 basically asserts that�X is topologically conjugate to the special flow of the
system (V, σV ) under the first-return time tV , where V is any local vertical. This implies
that each T -invariant measure induces a σV -invariant measure on V (see, e.g., [CFS82]).
We provide some of the details. Let µ be a T -invariant probability measure on �X .
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FIGURE 2. First-return time and first-return maps for Fibonacci quasicrystals. Here, V = {Y ∈�Fib | Y ∩
[−L , L] = {−L , L}}.

This measure induces a finite σ�0
X

-measure ν on the canonical transversal �0
X . We call

the measure ν the transverse measure on �0
X induced by µ. By Lemma 2.4, we write

{h1, . . . , hC } for the image of t�0
X

, where C ∈ N, and define Ei := {Y ∈�0
X | t�0

X
(Y )=

hi } for each i ∈ {1, . . . , C}. Given a clopen set V in �0
X , its transverse measure is given

by

ν(V )=
C∑

i=1

1
hi
µ({X − t | X ∈ V ∩ Ei , 0≤ t < hi }).

One can check that
C∑

i=i

ν(Ei )hi = 1. (8)

The same process allows us to induce a σV -invariant measure for every clopen subset V
of �0

X .
If we assume that X is a quasicrystal, i.e. that the system (�X , R) is uniquely ergodic,

then there is a unique transverse measure on �0
X , which we denote by ν, and, for each

clopen subset V of �0
X , the system (V, σV ) is uniquely ergodic; the unique σV -invariant

probability measure on V is ν/ν(V ).
The following lemma is an easy consequence of Birkhoff’s ergodic theorem.

LEMMA 2.6. Suppose that �X is uniquely ergodic. For a clopen set V in �0
X and Y ∈ V ,

define
`V (t, Y )= card{u ∈ [0, t) | Y − u ∈ V }.

Then, for every clopen set V in �0
X and Y ∈ V , we have

lim
t→+∞

`V (t, Y )

t
= ν(V ).

3. Maps with pattern-equivariant displacement
3.1. Pattern-equivariant functions. Let X be an aperiodic repetitive Delone set and
�X =O(X) its associated aperiodic minimal Delone system. A function φ : R→ R is
called strongly X-equivariant (or a short-range potential) if there exists S > 0 such that

(X − t) ∩ [−S, S] = (X − u) ∩ [−S, S]

implies that
φ(t)= φ(u).



Translation numbers for maps arising from quasicrystals 575

L L S L S L L S L L S L S L

FIGURE 3. Example of a Xfib-equivariant function.

A continuous function φ is called X-equivariant if it is the uniform limit of a sequence
of strongly X -equivariant continuous functions.

Example 3.1. Let Xfib be the Fibonacci quasicrystal defined in Example 2.3. A simple way
to obtain Xfib-equivariant functions consists in choosing two real-valued smooth functions,
vL ,L and vS,L , with compact support on the interval (−I, I ), where 0< 2I < S (< L).
A strongly Xfib-equivariant function φfib can be defined as follows (see Figure 3): if
θ ∈ (xn − I, xn + I ) for some n ∈ Z, then we set

φfib(θ)=

{
vL ,L(θ − xn) if |xn − xn−1| = |xn − xn+1| = L ,

vS,L(θ − xn) if |xn − xn−1| 6= |xn − xn+1|.

If not, we set φfib(θ)= 0.

We denote by CX (R) the set of all X -equivariant functions. It is well known that
X -equivariant functions form an algebra (see, e.g., [Kel03]). Moreover, there is an
isomorphism between CX (R) and the set C(�X ) of real-valued continuous functions on
�X , as the following lemma states.

LEMMA 3.2. [Kel03] The map C : C(�X )→ CX (R) given by

C(8)(t)=8(X − t) (9)

is an algebra isomorphism.

3.2. Maps with pattern-equivariant displacement. Let X be an aperiodic repetitive
Delone set. For a continuous map f : R→ R, its displacement is defined by φ(t)=
f (t)− t . The map f has X-equivariant displacement if φ is an X -equivariant function.

In this section we shall concentrate on the set F+X (R) of non-decreasing continuous
self maps of R with X -equivariant displacement. By using the correspondence defined
in Lemma 3.2, we see that for each map f in F+X (R) there is a unique continuous map
F :�X →�X that satisfies

F(X − t)= X − f (t) for every t ∈ R.

Indeed, F is defined by

F(Y )= Y −8(Y ) for all Y ∈�X , (10)

where 8= C−1(φ) is the continuous function on �X corresponding to φ in Lemma 3.2.
The function8 is called the displacement of F . We denote by F+0 (�X ) the set of all maps
F of the form (10) with continuous displacement 8. The following proposition states that
every map in F+X (R) is induced by such a map.



576 J. Aliste-Prieto

PROPOSITION 3.3. Let F :�X →�X be defined by F(Y )= Y −8(Y ), where 8 :

�X → R. For each Y ∈�X , let fY : R→ R be defined by

F(Y − t)= Y − fY (t) for every t ∈ R. (11)

Then, for every Y ∈�X , the map fY is well defined. Furthermore, if 8 is continuous, then
for every Y ∈�X the map fY is continuous and has Y -equivariant displacement. We say
that fY is the map induced by F on the leaf of Y . Moreover, F preserves orientation if and
only if fY is non-decreasing.

Proof. Clearly, the map F sends each leaf to itself. Hence, for every Y ∈�X , F(Y − t)
belongs to the leaf of Y . It follows from the aperiodicity of Y that fY (t) is well defined for
every t ∈ R. Since 8 is continuous and �X =�Y , Lemma 3.2 implies that the function
φ : R→ R defined by φ(t)=8(Y − t) is continuous and Y -equivariant. Aperiodicity of Y
implies that fY (t)= t − φ(t). The fact that fY is non-decreasing if F preserves orientation
follows from the density of each leaf in �X and the continuity of 8. 2

We remark that maps in F+0 (�X ) send each leaf to itself and are homotopic to the
identity, the homotopy being defined by Fτ (Y )= Y − tφ(Y ) for τ ∈ [0, 1]. It is natural
to ask whether every map that is homotopic to the identity induces a map with pattern-
equivariant displacement.

THEOREM 3.4. Let F :�X →�X be a continuous map of the form

Y 7→ Y −8(Y ) for all Y ∈�X ,

where 8 :�X → R. Assume that F is orientation preserving. Then, the function 8 is
continuous and, in particular, F is homotopic to the identity on �X .

COROLLARY 3.5. The set F+0 (�X ) coincides with the set of all self maps of �X that are
homotopic to the identity and preserve orientation.

Proof of Theorem 3.4. We first prove that 8 is bounded. The sets Bn = {Y ∈�X |

|8(Y )| ≤ n} are closed for every n ∈ N by the continuity of F . As
⋃

n∈N Bn =�X , by
the Baire category theorem there is n ∈ N such that Bn has non-empty interior, i.e. there
are a non-empty open set U ⊂�X and a C > 0 such that |8(Y )|< C for every Y ∈U .
Fix Y ∈U and choose S > 0 to be big enough such that V = VY,S ⊂U . By Corollary 2.5,
R(Y, V ) is a Delone set with finite local complexity, so we write R(Y, V ) as an increasing
sequence (tn)n∈Z. As F preserves the leaf of Y and its orientation, one has

u +8(Y − u)≤ t +8(Y − t)

for every t, u ∈ R such that t ≤ u. It follows that, for every s ∈ R,

|8(Y − u)| ≤ C + sup
n
(tn+1 − tn)=: C̃ . (12)

Recall that the finite local complexity of R(Y, V ) implies that C̃ is finite. Let Z ∈�X . By
minimality of (�, R), we can choose a sequence (zn)n∈N ⊆ R for which Y − zn converges
to Z . From equation (12), it follows that (8(Y − zn))n∈N is bounded and, thus, by
dropping to a subsequence if necessary, we assume that 8(Y − zn) converges to φz as
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n→+∞ with |φz | ≤ C̃ . It follows that F(Y − zn)= Y − zn −8(Y − zn) converges to
Z − φz . On the other hand, by the continuity of F we have that F(Y − zn) converges
to Z −8(Z) as n→+∞ and then the aperiodicity of Z yields that φz =8(Z), which
implies that 8 is bounded.

Take an arbitrary Y ∈�X and let (Yn)n∈N ⊆�X be a sequence that converges to Y . As
8 is bounded, it suffices to show that for every accumulation point φy of (8(Yn))n∈N we
have that 8(Y )= φy . But, the latter follows from the same argument as above and this
ends the proof. 2

4. Translation sets
Let X be a quasicrystal and �X its continuous hull. Consider a map F in F+0 (�X ) with

displacement 8. For each n ∈ N, we define 8(n) =
∑n−1

i=0 8 ◦ F i . For the definition
of translation numbers, we follow [GM99]. The translation number of F at Y ∈�X is
defined by

ρ(F, Y ) := lim
n→+∞

8(n)(Y )

n
, (13)

provided the limit exists. The set of all translation numbers at all points where they exist
is called the (pointwise) translation set of F and denoted by ρp(F). If for every Y ∈�X

the translation number of F at Y exists and is independent of Y , then we say that the
translation number of F exists, or that F has a translation number, denoted by ρ(F).

We remark that if fX is the map induced by F on the leaf of X (see Proposition 3.3),
then, for every n ∈ N and every t ∈ R,

f n
X (t)− t =8(n)(X − t).

This means that to study translation sets for maps with pattern-equivariant displacements
it suffices to study translation sets for maps in F+0 (�X ).

Let Merg(�X , F) be the set of all ergodic F-invariant probability measures. We remark
that for each measure µF ∈ Merg(�X , F), the ergodic theorem states that the translation
number of F exists at µF -almost every point and is equal to

∫
�X
8 dµF . Thus, we call∫

�X
8 dµF the translation number of µF and we define the measure translation set of F

by

ρm(F)=

{∫
�X

8 dµF | µF ∈ Merg(�X , F)

}
.

It is clear that if F is uniquely ergodic, then F has a translation number. Moreover, it is
well known (see for instance [GM99, Proposition 4.2]) that F has a translation number
ρ(F) if and only if ρp(F)= ρm(F)= {ρ(F)}.

The objective of this section is to describe the pointwise translation set of F . We
distinguish the cases when F has fixed points or not.

4.1. Translation sets for maps with fixed points. In this section we suppose that F has
fixed points. It is plain that in this case 0 belongs to ρp(F). This means that 8 has zeros,
since these coincide with fixed points of F . Hence, there are two different cases to analyze:
(1) 8 changes sign;
(2) 8 does not change sign.
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In case (1) we have the following easy result that describes the dynamics of every point
(a similar result appears in [Cla02]).

PROPOSITION 4.1. If8 changes sign, then ρp(F)= {0} and every point converges under
iteration by F to a fixed point.

Proof. Let Y and Z ∈�X be such that 8(Y ) < 0<8(Z). Because 8 is continuous, we
can find neighborhoods U of Y and V of Z such that 8 is negative at every point of
U and positive at every point of V . By the minimality of (�, R), there is K > 0 such
that

⋃
t∈[0,K ] TtU =

⋃
t∈[0,K ] Tt V =�X . It follows that for every W ∈�X there exist

−K < t1 < t2 < 0< t3 < t4 < K such that t 7→8(W − t) changes sign between t1 and t2
and also between t3 and t4. Hence, applying the intermediate-value theorem, one deduces
the existence of−K < u′ < 0< t ′ < K such that W − t ′ and W − u′ are fixed points of F .
Let fW be the map defined by Proposition 3.3. Then, t ′ and u′ are fixed points of fW and,
since fW is non-decreasing, the interval [u′, t ′] is fW -invariant. It follows that the sequence
( f n

W (0))n∈N is monotone and bounded. Since8(n)(W )= f n
W (0) for every n ∈ N, it follows

that ρ(F, W )= 0. Moreover, the sequence ( f n
W (0))n∈N converges to t0 ∈ [u′, t ′], which

is necessarily a fixed point of fW . By equation (11) and the continuity of the translation
action, one sees that W − t0 is a fixed point of F and that Fn(W ) converges to W − t0. 2

The case (2) is subtler. Because 8 does not change sign, either inf8≥ 0 or sup8≤ 0,
and to fix ideas we will suppose that inf8≥ 0 (the other case may be treated in an
analogous way).

We define
�+X =

{
Y ∈�X

∣∣∣ lim sup
k

8(k)(Y )=+∞
}

and set �fp
X =�X \�

+

X . We easily check that
• �+X is F-invariant;

• the translation set of F restricted to �fp
X is {0} when �fp

X is not empty;

• �
fp
X contains the fixed points of F . Moreover, �fp

X is not empty if and only if F has
fixed points.

Hence, we need only to compute the translation set of F restricted to �+X . We recall that
(�X , T ) is uniquely ergodic and that µ is the unique T -invariant probability measure on
�X . We obtain the following result.

THEOREM 4.2. Let F be a map in F+0 (�X ) and 8 its displacement. If inf8≥ 0, then
there exists ρ ≥ 0 such that for µ-almost every Y ∈�+X the translation number ρ(F, Y )
exists and is equal to ρ.

Theorem 4.2 implies that the set

A = {Y ∈�X | ρ(F, Y )= ρ}

satisfies µ(A)= 1. Let µF be an ergodic F-invariant probability measure. Since A is
F-invariant, ergodicity implies that either µF (A)= 0 or µF (A)= 1. If µF (A)= 1, then
by the ergodic theorem there is a point Y ∈ A for which the translation number at Y
coincides with

∫
�X
φ dµF , and therefore

∫
φ dµF = ρ. Whether the case µF (A)= 0
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is possible or not is not known to the author. However, we believe that the case µF (A)= 0
cannot occur, and thus we raise the following conjecture.

CONJECTURE 4.3. Let F be a map satisfying the hypothesis of Theorem 4.2. Then, there
exists ρ ≥ 0 such that for every ergodic F-invariant measure µF supported on�+X we have∫

�X

8 dµF = ρ.

To simplify the notation, [Y, Z ] will denote the set {W ∈�X | Y ≤W ≤ Z} whenever
Y ≤ Z (analogous definitions are given for [Y, Z), (Y, Z ] and (Y, Z)).

Proof of Theorem 4.2. Let (Cn)n∈N be a decreasing sequence of local verticals in �0
X with

diam Cn→ 0 as n→+∞. For the moment, we fix n ∈ N, let σn denote the first-return
map to Cn and define kn : Cn→ R ∪ {+∞} by

kn(Y )=max{k ≥ 0 | Fk(Y )≤ σn(Y )}, Y ∈ Cn . (14)

Let Y ∈�+X and define the sequence (Y`)`∈N recursively by

Y0 =

{
Y − tCn (Y ) if Y 6∈ Cn,

Y if Y ∈ Cn

and
Y`+1 = σn(Y`), ` ∈ N.

The idea is that kn(Y`) is a good approximation to the number of points in the F-orbit
of Y lying inside the slice [Y`, Y`+1). Hence, we have the following.

CLAIM 4.4. For each k ∈ N, set tk =8(k)(Y ) and `k = `Cn (tk, Y ) (see Lemma 2.6). Let
j0 =min{ j ∈ Z | Fk(Y ) > Y0}. Then, for every k ∈ N, we have

j0 +
`k−2∑
`=0

kn(Y`)≤ k ≤ j0 +
`k−1∑
`=0

kn(Y`)+ `k . (15)

Proof. For each ` ∈ N \ {0}, we define j` to be the unique integer satisfying

F j`(Y ) ∈ [Y`, F(Y`)). (16)

Observe that by definition j0 satisfies equation (16) and that the existence and uniqueness
of j` follow from the facts that F is orientation preserving and Y belongs to �+X .

The difference j`+1 − j` is exactly the number of iterates of Y by F that lie inside the
slice [Y`, Y`+1). We check that either

j`+1 = j` + kn(Y`) or j`+1 = j` + kn(Y`)+ 1. (17)

Indeed, applying Fkn(Y`) to equation (16) yields, because F is orientation preserving, that
F j`+kn(Y`)(Y ) belongs to [Fkn(Y`)(Y`), Fkn(Y`)+1(Y`)). By the definition of kn(Y`), this
slice clearly intersects [Y`+1, F(Y`+1)). Now, we distinguish two cases:
(1) F j`+1(Y ) belongs to the intersection of the two slices (see the left-hand part of

Figure 4), in which case the equality j`+1 = j` + kn(Y`) follows from the fact that
there is only one iterate of Y in either of the two slices;
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FIGURE 4. Proof of Theorem 4.2: on the left: j`+1 = j` + kn(Y`). On the right: j`+1 = j` + kn(Y`)+ 1.

(2) F j`+1(Y ) > Fkn(Y`)+1(Y`), in which case one sees that j`+1 = j` + kn(Y`)+ 1 by
using the uniqueness of j` (see the right-hand part of Figure 4).

Applying equation (17) recursively yields

j` = j0 +
`−1∑
`=0

kn(Y`)+ e(`) (18)

for every ` ∈ N, with an error e(`) that satisfies 0≤ e(`)≤ `.
Because Fk(Y ) ∈ [Y`k , Y`k+1) for every k ∈ N, equation (16) and the preservation of

orientation by F imply that

j`k−1 ≤ k ≤ j`k for every k ∈ N. (19)

To conclude the proof of Claim 4.4, use equation (18) to replace j`k and j`k−1 in
equation (19), which yields equation (15). 2

Now, divide equation (15) by 8(k)(Y ) to obtain

j0
tk
+
`k − 1

tk

1
`k − 1

`k−2∑
`=0

kn(Y`)≤
k

tk
≤

j0
tk
+
`k

tk

1
`k

`k−1∑
`=0

kn(Y`)+
`k

tk
. (20)

Then, let k go to infinity. Applying Lemma 2.6 and the ergodic theorem (which may be
applied since kn is measurable and positive) to the limit of equation (20) yields that, for
µ-almost every Y ∈�+X ,

lim sup
k→+∞

k

8(k)(Y )
− ν(Cn)≤

∫
Cn

kn dν ≤ lim inf
k→+∞

k

8(k)(Y )
. (21)

Now, let n go to infinity in equation (21). Since diam Cn→ 0, it follows that ν(Cn)→ 0,
and hence we obtain

lim sup
n→+∞

∫
Cn

kn dν ≤ lim inf
k→+∞

k

8(k)(Y )
≤ lim sup

k→+∞

k

8(k)(Y )
≤ lim inf

n→+∞

∫
Cn

kn dν (22)

for µ-almost every Y in �+X .
Let Y ∈�+X and suppose that equation (22) holds for Y . We distinguish two cases:

• the quantity lim infn→+∞
∫

Cn
kn dν is finite: in this case it follows from

equation (22) that both sequences (k/tk)k∈N and (
∫

Cn
kn dν)n∈N have finite limits.

The equality of both limits is clear and we need to check that they are not zero.
Indeed, the first-return times to Cn go to infinity as n→+∞ because diam Cn goes
to 0. Thus, we may suppose that kn ≥ 1 (it suffices to take n big enough), from which
it follows that

∫
Cn

kn dν > 0. Finally,

ρ(F, Y )= lim
n→+∞

1∫
Cn

kn dν
;
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• the quantity lim infn→+∞
∫

Cn
kn dν is infinite: in this case it follows from

equation (22) that lim supk tk/k = 0. Since 8≥ 0, lim infk tk/k ≥ 0 and therefore

ρ(F, Y )= 0. 2

4.2. Translation numbers for maps without fixed points. In this section we suppose that
F is a map in F+0 (�X ) without fixed points. This means that 8 does not change sign
and hence either inf8> 0 or sup8< 0. Again, we restrict to the case inf8> 0 (the
other case may be treated in an analogous way). If in the proof of Theorem 4.2, the
functions kn were continuous, then by unique ergodicity, the ergodic theorem would ensure
the uniform convergence to a unique translation number. But, the functions kn are not
necessarily continuous. Nevertheless, the following lemma will allow us to obtain uniform
convergence to a unique translation number (see Theorem 4.6, below).

LEMMA 4.5. Suppose that inf8> 0. Let C be a local vertical and let κ : C→ N be
defined by

κ(Y )=max{k ≥ 0 | Fk(Y )≤ σ(Y )},

where σ denotes the first-return map to C. Then, there exists κ̂ : C→ R which is
continuous and satisfies supY∈C |κ(Y )− κ̂(Y )| ≤ 1.

Proof. Let a = inf8> 0. We show that κ is bounded. Indeed, 8(k)(Y ) > ak for every
k ∈ N and Y ∈ C . Since tC is continuous (thus bounded) by Lemma 2.4, there exists K > 0
such that κ(Y ) < K for every Y ∈ C .

The family {8(k)}K+1
k=1 is equicontinuous, which means that there is δ > 0 such that for

every k ∈ {1, . . . , K + 1}

d(Y, Z) < δ implies that |8(k)(Y )−8(k)(Z)|< a. (23)

By Lemma 2.4, one can find a partition C = {Ci }
L
i=1 of C by clopen sets with diameter

smaller than δ such that tC restricted to Ci is constant for each i ∈ {1, . . . , L}. For each
i ∈ {1, . . . , L}, we define Yi ∈ Ci and ki as follows: if there exist Y ∗ ∈ Ci and k∗ ∈ N such
that

|8(k
∗)(Y )− tC (Y

∗)|< a, (24)

then we let Yi = Y ∗, ki = k∗ (take any pair if there is more than one). Suppose that we
have this case and let Z ∈ Ci . If 8(k)(Z)≤ tC (Z), then 8(k+1)(Z) > tC (Z) follows from
equation (23), and hence κ(Z)= k; else 8(k−1)(Z)≤ tC (Y ) follows from equation (23),
and hence κ(Z)= k − 1.

If there are no Y ∗ and k∗ satisfying equation (24), then we let Yi be any element of
Ci and ki = κ(Yi ). Since |8(k)(Z)− tC (Z)|> a for all Z ∈ Ci and k ∈ N, equation (23)
implies that 8(ki )(Z)≤ tC (Z) < 8(ki+1)(Z) and thus κ(Z)= ki .

Finally, define κ̂ : C→ N by

κ̂(Y )=
L∑

i=1

κ(Yi )χCi (Y ) for every Y ∈ C,

where, for a given set A, χA(Y ) denotes the characteristic function of A. It is clear that κ̂
satisfies the assertions of the lemma, and the proof is finished. 2
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THEOREM 4.6. Let F be a map in F+0 (�X ) and 8 its displacement. Suppose that
inf8> 0. Then, there exists ρ > 0 such that, for every Y ∈�+X , the translation number
ρ(F, Y ) exists and is equal to ρ.

Proof. The proof is a modification of the proof of Theorem 4.2. Let (Cn)n∈N be a
decreasing sequence of local verticals in �0

X with diam Cn→ 0 as n→+∞, denote by
σn the first-return map to Cn and define kn : Cn→ R ∪ {+∞} by

kn(Y )=max{k ≥ 0 | Fk(Y )≤ σn(Y )} for every Y ∈ Cn .

Recall that (Y`)`∈N is defined recursively by

Y0 =

{
Y − tCn (Y ) if Y 6∈ Cn,

Y if Y ∈ Cn

and

Y`+1 = σn(Y`) for ` ∈ N.

For each n ∈ N, applying Lemma 4.5 to kn yields a continuous function k̂n that satisfies

|kn(Y )− k̂n(Y )| ≤ 1 for all Y ∈�X .

Combining this inequality with Claim 4.4 and then dividing by tk , we obtain

j0
tk
+
`k − 1

tk

(
−1+

1
`k − 1

`k−2∑
`=0

k̂n(Y`)

)
≤

k

tk
≤

j0
tk
+
`k

tk

(
1
`k

`k−1∑
`=0

k̂n(Y`)+ 1
)
+
`k

tk
(25)

for every Y ∈�X (recall that in this case �+X =�X ). The system (Cn, ν/ν(Cn), σn) is
uniquely ergodic, so when we let k go to infinity and apply the ergodic theorem and
Lemma 2.6 to equation (25), we obtain

lim sup
k→+∞

k

8(k)(Y )
− 2ν(Cn)≤

∫
Cn

k̂n dν ≤ lim inf
k→+∞

k

8(k)(Y )
+ ν(Cn) (26)

for every Y ∈�X . Because∣∣∣∣∫
Cn

kn(Y ) dν −
∫

Cn

k̂n(Y ) dν

∣∣∣∣< ν(Cn),

equation (26) implies that

lim sup
k→+∞

k

8(k)(Y )
− 3ν(Cn)≤

∫
Cn

kn dν ≤ lim inf
k→+∞

k

8(k)(Y )
+ 2ν(Cn)

for every Y ∈ Cn . Finally, we take the limit as n goes to infinity and proceed exactly as in
the proof of Theorem 4.2 to conclude the proof. 2
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5. Towards Poincaré’s theorem for maps on quasicrystal systems homotopic to the
identity

Let X be a quasicrystal and �X its associated quasicrystal system. We focus on the set of
homeomorphisms in F+0 (�X ) without fixed points. Denote this set by H++(�X ).

Let F ∈H++(�X ). By Theorem 4.6, F has a translation number ρ(F). In this section,
we investigate the dynamics of the system (�, F) and provide a Poincaré-like classification
theorem under a boundedness condition. Since in our setting rational numbers are no
longer available, we need to define a proper replacement for them. Before doing so, we
give some notation: for K ⊆�X and G ∈H++(�X ) we say that K is G-minimal if K is
closed, G-invariant and the system (K , G) is minimal.

5.1. Replacing the rational numbers. It is well known that the rotation number of a
monotone circle homeomorphism is rational if and only if there are periodic points. Since
homeomorphisms in H++(�X ) do not have periodic points (regardless of their translation
numbers), this characterization of rational numbers is not useful for our purposes. Another
characterization of rational numbers is given by the fact that a rotation Rρ of the circle R/Z
defined by x 7→ x + ρ mod Z is not minimal exactly when ρ is rational. This motivates
the following definition:

Q= {t ∈ R | (�X , Tt ) is not minimal},

where the translation Tρ is defined by Y ∈�X 7→ Y − ρ. We will say that ρ ∈ R is T -
rational if ρ ∈Q, and ρ ∈ R is T -irrational otherwise. The following general lemma
allows us to describe Q (for an outline of the proof, see [Gla03, 4.24.1]).

LEMMA 5.1. Let M be a compact metric space and {Tt }t∈R a minimal continuous action
of R on M. Let t ∈ R \ {0} be such that (M, Tt ) is not minimal. Then, there is an integer
k 6= 0 such that k/t is a continuous eigenvalue of (M, {Tt }t∈R), i.e. there is a continuous
function g : M→ R/Z such that for every u ∈ R one has

g(Tu x)= g(x)+ u
k

t
mod Z. (27)

Indeed, applying Lemma 5.1 to (�X , R) gives the following description for Q:

Q=
{

k

λ

∣∣∣∣ k ∈ Z, λ 6= 0 is a continuous eigenvalue of (�X , R)
}
. (28)

In particular, the set Q is countable, and it can be either {0} or dense in R (see [Gla03,
4.24.1] for details).

The next step is to describe minimal sets of (�, Tq) for q ∈Q, for which we need the
following definition: a local graph is a set

V [ϕ] = {X − ϕ(X) | X ∈ V },

where V is a local vertical (i.e. a clopen subset of a cylinder VY,S) and the function
ϕ : V → R satisfies supY∈V |ϕ(Y )| = (1/2) infY∈V tV (Y ). The last condition ensures that
the map X ∈ V 7→ X − ϕ(X) is a bijection from V to V [ϕ]. It is standard that V [ϕ]
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is closed if and only if ϕ is continuous on V and, in this case, the previous map is a
homeomorphism.

By rewriting the description of Q given in equation (28) in terms of local graphs, we
obtain the following.

PROPOSITION 5.2. Let I be a Tρ-minimal set, where ρ > 0 is T -rational. Then, for every
ε > 0 small enough, there are local verticals V1, . . . , Vk of diameter smaller than ε and
continuous functions ϕi : Vi → (−2ε, 2ε), i ∈ {1 . . . , k}, such that I is the disjoint union
of the local graphs Vi [ϕi ]. In particular, I is a Cantor set.

Proof. Take k ∈ N to be the smallest positive integer such that λ := k/ρ is a continuous
eigenvalue of (�X , R) (this is well defined by equation (28)) and let gλ be the associated
continuous eigenfunction. Equation (27) implies that gλ is Tρ-invariant, so the minimality
of (I, Tρ) implies that gλ is constant on I . Moreover, by equation (27), the set K =⋃

t∈[0,ρ) Tt I is T -invariant and closed. Minimality of (�, T ) implies that K =�.

From equation (27) it follows that J := g−1
λ (gλ(I ))=

⋃k−1
`=0 T`ρ/k I . Since the sets

T`ρ/k I for ` ∈ {0, . . . , k − 1} are Tρ-minimal, they either coincide or are disjoint and thus
I is clopen in J .

I = g−1
λ (gλ(I )) means that for every Y ∈ I and t ∈ R one has that gλ(Y − t) 6= g(Y ) if

and only if t 6∈ ρ/kZ. Hence, Y − t does not belong to I if t is small enough, which implies
that I is totally disconnected. By using the minimality of (I, Tρ) and the aperiodicity of
�X , it is easy to check that I has no isolated points. Hence, I is a Cantor set.

Fix ε > 0 and suppose that g̃λ :�X → R is a lift of gλ. By the continuity of g̃λ
there exists 0< δ < ε such that |g̃λ(Z)− g̃λ(Y )|< ε when d(Y, Z) < δ. Thus, if we let
V = VY,1/δ , then supZ∈V |g̃λ(Z)− g̃λ(Y )|< ε. Hence the function ϕ : V → R given by

ϕ(Z)=
ρ

k
(g̃λ(Y )− g̃λ(Z))

defines a local graph V [ϕ] when ε is sufficiently small. Moreover, equation (27) implies
that for every Z ∈ V one has that

gλ(Z − ϕ(Z))= g̃λ(Y ) mod Z,

which means that V [ϕ] is included in J . Since ϕ is continuous, it follows that V [ϕ] is
closed. Since Y − t − ϕ(Y ) does not belong to J for Y ∈ V and t sufficiently small, one
checks that V [ϕ] is open in J . This construction yields a clopen cover of J by local
continuous graphs. Since J is compact, there is a finite subcover {V1[ϕ1], . . . , Vk[ϕk]}

of J . To finish, it is not difficult to check that if there exist i, j such that C = Vi [ϕi ] ∩

V j [ϕ j ] is non-empty, then C and Vi [ϕi ] \ C are local continuous graphs, so the subcover
induces a partition of J the same form which in turn induces a partition of I of the same
form. 2

5.2. T -semiconjugacies and ρ-bounded maps. The next step consists in introducing the
boundedness condition that will allow us to obtain the desired classification. We recall that
given two homeomorphisms F, G ∈H++(�X ), we say that F is semiconjugate to G if
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there is a continuous onto map H :�X →�X such that

H ◦ F = G ◦ H. (29)

The map H is called a semiconjugacy from F to G. If H is also one-to-one, then F and
G are said to be conjugate and the map H is called a conjugacy. In our context, it is
natural to consider semiconjugacies that are homotopic to the identity. Thus, we say that
F ∈H++(�X ) is T -semiconjugate to G ∈H++(�X ) if there exists a semiconjugacy H
from F to G that is homotopic to the identity. In this case, we call H a T -semiconjugacy
from F to G. It is left to the reader to see that translation numbers are preserved
by T -semiconjugacies. The following example shows that this is no longer true if the
semiconjugacy is not homotopic to the identity (a similar example appears in [Shv03]).

Example 5.3. Let X = Xfib be the Fibonacci quasicrystal defined in Example 2.3. The
inflation–substitution homeomorphism ω on �X fixes X . Moreover,

ω(Y − t)= ω(Y )− τ t (30)

for every Y ∈�X and t ∈ R, where τ is the golden ratio (see, e.g., [RS01]). Let F be
a homeomorphism in H++(�X ) and 8 its displacement. We suppose that 8 is strictly
positive and define 8G by

8G(Y )= λ8(ω
−1(Y )) for every Y ∈�X .

If we define G :�X →�X by G(Y )= Y −8G(Y ), then

G(ω(Y − t))= ω(Y − t)− τ8(Y − t) = Y − τ(t +8(Y − t))

= ω(Y − t −8(Y − t))= ω(F(Y − t))

for every t ∈ R. Since F and ω are continuous maps, a density argument yields that F and
G are conjugate by ω. It can be checked that G preserves orientation. Hence, G belongs
to H++(�X ) and by Theorem 4.6 it has a translation number. We now compute ρ(G).
Iterating the semiconjugacy equation (29) gives

Gn(Y )= ω ◦ Fn
◦ ω−1(Y ) for all Y ∈�X and n ∈ N.

This equality applied to X reads

X −8(n)G (X)= ω(X)−8(n)(X)= X − τ8(n)(X).

The aperiodicity of X then implies that

ρ(G)= τρ(F).

It easily follows from Theorem 3.4 and equation (30) thatω is not homotopic to the identity.

Now, we concentrate on the question of determining when F ∈H++(�X ) is T -
semiconjugate to Tρ(F). Suppose that H is a T -semiconjugacy from F to Tρ(F) and
let 8 and 9 be the displacements of F and H , respectively. Then, the semiconjugacy
equation (29) written in terms of 8 and 9 yields a cohomological equation:

9(F(Y ))−9(Y )= ρ(F)−8(Y ) for all Y ∈�X . (31)
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This means that the problem of finding a T -semiconjugacy reduces to the problem
of finding a continuous (and therefore bounded) solution 9 to the cohomological
equation (31). For every n ∈ N and Y ∈�X , we let ζ(n, Y )= nρ(F)−8(n)(Y ). We say
that F is ρ-bounded if there exists C > 0 such that

|ζ(n, Y )|< C for all Y ∈�X and n ∈ N.

The following proposition is plain.

PROPOSITION 5.4. Suppose that F ∈H++(�X ) is T -semiconjugate to Tρ(F). Then, F is
ρ-bounded.

The next lemma provides a partial converse for the previous proposition. It is basically
the Gottschalk–Hedlund theorem (see [KH95, §2.9] for an introduction to cohomological
equations and a proof of this theorem) adapted to our context.

LEMMA 5.5. Suppose that F ∈H+(�X ) is ρ-bounded. Then, equation (31) has a
bounded solution 9 :�X → R. Moreover, its restriction to any F-minimal set is
continuous, the map H defined by H(Y )= Y −9(Y ) for Y ∈�X is orientation preserving
and the following diagram commutes:

K
F |K //

H
��

K

H
��

�X
Tρ(F) // �X

(32)

Proof. We let

9(Y ) := lim sup
n∈N

{8(n)(Y )− nρ(F)}.

9 is well defined and bounded because F is ρ-bounded, and it solves the cohomological
equation (31) (for details see [KH95, Theorem 2.9.3]). Let K be an F-minimal set. The
restriction of 9 to K is continuous because it coincides with the continuous solution of
equation (31) on K given by the Gottschalk–Hedlund theorem [KH95, Theorem 2.9.4].
To see that H is orientation preserving, it suffices to prove that the function hY defined by
t ∈ R 7→ t + ψ(Y − t) is non-decreasing for every Y ∈�X . Indeed,

t +9(Y − t)= lim sup
n∈N

{t +8(n)(Y − t)− nρ(F)}

for every t ∈ R. Besides, t 7→ t +8(n)(Y − t) is non-decreasing because Fn preserves
orientation and Fn(Y )= Y −8(n)(Y ). As the lim sup of non-decreasing functions is non-
decreasing, the proof is finished. 2

Lemma 5.5 means that when F is minimal, ρ-boundedness of F is also a sufficient
condition for F to be T -semiconjugate to Tρ(F). Since minimality is preserved by
semiconjugacies, it follows that ρ(F) is T -irrational when F is ρ-bounded and minimal.
This implies that, at least in the minimal case, T -rational numbers provide a good
replacement for rational numbers.
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5.3. Two lemmas about F-minimal sets.

LEMMA 5.6. Let K be a non-empty closed F-invariant set. Then, K intersects every leaf
of �X and the set of return times

R(Y, K )= {t ∈ R | Y − t ∈ K }

is relatively dense for every Y ∈�X .

Proof. Let Y ∈�X . First we prove that R(Y, K ) is closed. Indeed, suppose that (tn)n∈N ⊆
R(Y, K ) is a sequence converging to some t ∈ R. By the continuity of T , (Y − tn)n∈N
converges to Y − t when n goes to infinity. But, by definition, the sequence (Y − tn)n∈N is
included in K and, since K is closed, it follows that Y − t belongs to K . This means that
t ∈R(Y, K ).

Now, we prove that if R(Y, K ) is not empty, then it is relatively dense. Indeed, suppose
that R(Y, K ) is not empty. There is t ∈ R such that Y − t ∈ K , and by F-invariance of
K it follows that the F-orbit of Y − t is included in K . Thus, the set of return times
contains the set {t +8(n)(Y − t) | n ∈ Z}. But, the latter set is relatively dense because
{8(n)(Y ) | n ∈ Z} is unbounded (from above and below), and its gaps are smaller than
sup8, which is finite because 8 is continuous. This implies that R(Y, K ) is relatively
dense.

To conclude the proof of the lemma, it suffices to show that R(Y, K ) is not empty
for every Y ∈�X . Fix Y ∈ K . By definition, R(Y, K ) is not empty. Applying the
previous argument to Y , we obtain that R(Y, K ) is relatively dense. Since (�X , R)
is minimal, it follows that for every Z ∈�X there is a sequence (tn)n∈N ⊆ R such that
(Y − tn)n∈N converges to Z . The relative density of R(Y, K ) implies that for each n ∈ N
there is un ∈R(Y, K ) such that the sequence (un − tn)n∈N is bounded. By dropping to
a subsequence, we may suppose that (un − tn)n∈N converges to some u ∈ R. It follows
that (Y − un)n∈N converges to Z − u. But, by construction, the sequence (Y − un)n∈N
is included in K , which is closed. Hence, Z − u belongs to K , which means that
u ∈R(Y, K ), and the proof is done. 2

LEMMA 5.7. Let K be a non-empty F-minimal set and H the map defined in Lemma 5.5.
Then, the set H(K ) is Tρ(F)-minimal.

Proof. By Lemma 5.5, the map H |K is continuous. Since K is compact, it follows that
H(K ) is compact and thus closed. The Tρ(F)-invariance of H(K ) follows directly from
equation (32). Finally, let F be a closed Tρ(F)-invariant set included in H(K ). Then,
H−1(F) ∩ K is a non-empty closed F-invariant set. From the minimality of the system
(K , F), it follows that H−1(F)⊇ K , and thus F ⊇ H(K ), which concludes the proof. 2

5.4. The T -rational case. In this section we consider the case when ρ(F) is a T -
rational number, and we give a description of F-minimal sets. Let 9, H be as defined
in Lemma 5.5. The idea is to combine Lemma 5.7 and Proposition 5.2 to obtain some
local F-invariant graphs. Since H may not be continuous outside a minimal set, these
local graphs may not be closed. This motivates us to study the closures of local graphs,
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for which we need the following definitions: for a local vertical V in �X , we let
RV = (1/2) infY∈V tV (Y ) > 0. Given two functions α, β : V → R satisfying −RV < α ≤

β < RV , the set
V [α, β] = {Y − t | Y ∈ V, α(Y )≤ t ≤ β(Y )}

is called a local strip. When Y ∈ V , then Y [α, β] is defined by

Y [α, β] = {Y − t | α(Y )≤ t ≤ β(Y )}.

We check that, by the definition of RV , the restriction of T to V × [α, β] is a
homeomorphism from V × [α, β] to V [α, β]. Also, V [α] = V [α, α]. A set K is called
a strip if it can be decomposed into a finite disjoint union of local strips. A local strip
V [α, β] is thin if V [α] = V [β] = V [α, β]. A strip is thin if it is the finite union of disjoint
thin local strips.

The following results follow directly from the fact that V [α, β] is homeomorphic to
V × [α, β] and standard results in the theory of semicontinuous functions.

LEMMA 5.8. A local strip V [α, β] is closed (as a subset of �X ) if and only if α is lower
semicontinuous and β is upper semicontinuous.

PROPOSITION 5.9. The closure of a local graph V [α] is included in a thin local strip of
the form V [α−, α+], where

α+(x)= inf{β(x) | β is upper semicontinuous and β ≥ α on V }

and
α−(x)= sup{β(x) | β is lower semicontinuous and β ≤ α on V }.

Now, we can state the main result of this section.

THEOREM 5.10. Let F be a ρ-bounded homeomorphism in H++(�X ) with ρ(F) ∈Q.
Then, every F-minimal set is a thin strip.

Before giving the proof, we need one more lemma.

LEMMA 5.11. Given a local closed graph V [ϕ] ⊆�X , there are bounded real-valued
functions s, t defined on V such that

V [s, t)⊆ H−1(V [ϕ])⊆ V [s, t].

Moreover, if ‖ϕ‖∞ + ‖9‖∞ < RV , then the set V [s, t] is a local strip.

Proof. Since H preserves every leaf of �X , it follows that, for every Y ∈ V , the set A
containing the preimages of Y − ϕ(Y ) by H is included in the leaf of Y . This gives
a correspondence between the elements of A and the solutions t ∈ R of the following
equation:

t +9(Y − t)= ϕ(Y ). (33)

Since H preserves orientation, the function t ∈ R 7→ hY (t)= t +9(Y − t) is non-
decreasing. Moreover, it is unbounded from above and below because 9 is bounded by
Lemma 5.5. Hence, the set of solutions t ∈ R of equation (33) is a bounded interval. We
denote by s(Y ) and t (Y ) its lower and upper extreme points, respectively. We observe that
every solution t of equation (33) satisfies |t | ≤ ‖9‖∞ + ‖ϕ‖∞. This implies that t (Y ) and
s(Y ) are bounded and that V [s, t] is a local strip when ‖9‖∞ + ‖ϕ‖∞ < RV . 2
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Proof of Theorem 5.10. Let K be an F-minimal set and I = H(K ). By Lemma 5.7, we
know that I is Tρ(F)-minimal. Proposition 5.2 implies that I is the finite disjoint union of
local closed graphs, say V1[ϕ1], . . . , Vn[ϕn]. Without loss of generality, we may assume
that RVi > ‖9‖∞ + ‖ϕi‖∞ (it suffices to take ε in Proposition 5.2 sufficiently small). For
each i ∈ {1, . . . , n} and Y ∈ Vi , we define

Ki := H |−1
K (Vi [ϕi ])= H−1(Vi [ϕi ]) ∩ K .

The family {Ki | i ∈ {1, . . . , n}} defines a finite partition of K . For each i ∈ {1, . . . , n},
Ki is closed in K , since H |K is continuous. It follows that Ki is closed. Applying
Lemma 5.11, we obtain real-valued functions si , ti on Vi such that

Vi [si , ti ) ∩ K ⊆ Ki ⊆ Vi [si , ti ] ∩ K for each i ∈ {1, . . . , n}. (34)

For each i ∈ {1, . . . , n}, we define

αi (Y )=min{t ∈ [si (Y ), ti (Y )] | Y − t ∈ K }

and
βi (Y )=max{t ∈ [si (Y ), ti (Y )] | Y − t ∈ K }.

From equation (34), it easily follows that

Ki = Vi [αi , βi ] ∩ K for each i ∈ {1, . . . , n}. (35)

Suppose for now that the set A =
⋃

i Vi [αi ] is F-invariant. By equation (35) and the
definition of the Ki ’s, we see that A is included in K . Hence, the F-minimality of K
implies that the closure of A coincides with K . But, A is the finite union of the local graphs
Vi [αi ], whose closures are, by Proposition 5.9, included in thin local strips Vi [α

−

i , α
+

i ].
Each of these strips is included in the corresponding Ki . Since the Ki ’s are disjoint, it
follows that the local strips Vi [α

−

i , α
+

i ] are also disjoint, and thus K is the finite disjoint
union of thin local strips, which means that K is a thin strip.

It remains to show that A is T -invariant. Indeed, let i ∈ {1, . . . , n} and Y ∈ Vi , so that
Y − αi (Y ) belongs to A. Since I is Tρ(F)-invariant, there are j ∈ {1, . . . , n} and Z ∈ V j

such that
Y − ϕi (Y )− ρ(F)= Z − ϕ j (Z). (36)

j and Z are uniquely defined by equation (36). We will prove that

Z − α j (Z)= F(Y − αi (Y )), (37)

from which it follows that A is F-invariant, since Z − α j (Z) belongs to A. First, observe
that equation (34) implies that

Y [si , ti )⊆ H−1(Y − ϕi (Y ))⊆ Y [si , ti ], (38)

Z [s j , t j )⊆ H−1(Z − ϕ j (Z))⊆ Z [s j , t j ]. (39)

Using equation (39) and the definitions of α j and β j , it is not difficult to check that

Z [α j , β j ] ⊆ H−1(Z − ϕ j (Z)).
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Taking the preimage by F of this inclusion and using equation (32) in the resulting
inclusion gives

F−1(Z [α j , β j ])⊆ H−1(Z − ϕ j (Z)+ ρ(F)). (40)

Hence, replacing equations (36) and (38) in equation (40) yields

F−1(Z [α j , β j ])⊆ Y [si , ti ]. (41)

Since K is F-invariant, it follows from equations (41) and (34) that Z − α j (Z) belongs
to Ki . Now, we deduce from the definition of αi (Y ) that F−1(Z − α j (Z))≥ Y − αi (Y ).
But, F preserves orientation, so this implies that

Z − α j (Z)≥ F(Y − αi (Y )). (42)

The reverse inequality is obtained by a similar argument. Using equation (38) and the
definitions of αi and βi , it is not difficult to check that

Y [αi , βi ] ⊆ H−1(Y − ϕi (Y )). (43)

Apply F to equation (43) and then use equations (36) and (32) in the resulting relation to
obtain

F(Y [αi , βi ])⊆ H−1(Z − ϕ j (Z)).

Thus, applying equation (39) to the last inclusion yields

F(Y [αi , βi ])⊆ Z [s j , t j ]. (44)

Since K is F-invariant, it follows from equations (44) and (34) that F(Y − αi (Y )) belongs
to K j . The definition of α j then implies that

Z − α j (Z)≤ F(Y − αi (Y )). (45)

2

5.5. The T -irrational case. In this section we suppose that ρ(F) is a T -irrational
number and prove the existence of a T -semiconjugacy from F to Tρ(F). To this end, it
suffices to prove that the map H defined in Lemma 5.5 is continuous on �X and onto.
Therefore, we have the following.

THEOREM 5.12. Let F be a ρ-bounded homeomorphism in H++(�X ) and 8 its
displacement. If ρ(F) is T -irrational, then F is T -semiconjugate to Tρ(F).

For the proof, we need the following definitions: let K be a non-empty closed F-invariant
set. For each Y ∈�X , we define

K+(Y )= sup{t ≤ 0 | t ∈R(Y, K )}

and
K−(Y )= inf{t ≥ 0 | t ∈R(Y, K )}.

It is easy to check that

−‖8‖∞ ≤ K+(Y )≤ 0≤ K−(Y )≤ ‖8‖∞. (46)

Moreover, the following lemma states that the slice Y [K−, K+] is included in a level set
of H .
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LEMMA 5.13. Let K be a non-empty closed F-invariant set. Then, we have that
Y − K−(Y ) ∈ K and Y − K+(Y ) ∈ K for every Y ∈�X , and the maps Y 7→ K+(Y )
and Y 7→ K−(Y ) are, respectively, upper semicontinuous and lower semicontinuous.
Moreover, the map H restricted to K is onto, and the equation

H(Y − K+(Y ))= H(Y )= H(Y − K−(Y )) (47)

holds for every Y ∈�X .

Proof. We check the assertions for K+, the assertions for K− follow from similar
arguments. Let Y ∈�X . We show that Y − K+(Y ) belongs to K . Indeed, Lemma 5.6
implies that the set AY = (−∞, 0] ∩R(Y, K ) is non-empty, closed and bounded from
above. Hence, it attains its maximum and, since K+(Y )= sup AY , it follows that
K+(Y ) ∈R(Y, K ), which (by definition of R(Y, K )) means that Y − K+(Y ) ∈ K .

Now, we show that Y 7→ K+(Y ) is upper semicontinuous. Since K+(Y ) < 0 for
every Y ∈�X , it follows that y := lim supZ→Y K+(Z) is finite. Consider a sequence
(Yn)n∈N that converges to Y as n→+∞. Without loss of generality, we suppose that
K+(Yn) converges to y as n→+∞. By the continuity of T , we have that Yn − K+(Yn)

converges to Y − y. Since this sequence is included in K and K is closed, we deduce that
y ∈ AY . The definition of K+ then implies that y ≤ K+(Y ). This proves that K+ is upper
semicontinuous.

We now show that H restricted to K is onto, i.e. that H(K )=�X . Indeed, by
Lemma 5.7, we know that H(K ) is Tρ(F)-minimal. But, (�X , Tρ(F)) is minimal since
ρ(F) is T -irrational. Hence, H(K )=�X .

Finally, we suppose by contradiction that equation (47) does not hold. Then, there exists
Y ∈�X for which H(Y − K+(Y )) 6= H(Y − K+(Y )). Since H preserves orientation, it
is plain that H(Y − K+(Y ))≤ H(Y − K−(Y )), and thus there exists Z ∈�X such that

H(Y − K+(Y )) < Z < H(Y − K−(Y )).

The fact that each leaf is preserved by H implies that for every Y ′ ∈ H−1(Z) ∩ K , which is
not empty since H(K )=�X , there is t ∈ R such that Y ′ = Y − t . Finally, the preservation
of orientation by H implies that t belongs to (K+(Y ), K−(Y )), which clearly contradicts
either the definition of K+ or the definition of K−. 2

Proof of Theorem 5.12. We need only to prove that H is continuous, since H satisfies
equation (32) and is onto by Lemma 5.13. Take an arbitrary Y ∈�X and consider a
sequence (Yn)n∈N ⊆�X that converges to Y . Since 9 is bounded, by dropping to a
subsequence we have that the sequence (H(Yn))n∈N converges to some Z ∈�X . By
standard arguments, it suffices to prove that Z = H(Y ). To do this, we consider an
F-minimal set K . By equation (46), the sequence (K+(Yn))n∈N is bounded by ‖8‖∞.
Thus, by dropping to a new subsequence, we have that K+(Yn)→ x+ ∈ [−‖8‖∞, ‖8‖∞]
as k→∞. The key step consists in applying equation (47) to each Yn . This yields

H(Yn)= H(Yn − K+(Yn)) for every k ∈ N.

By taking the limit in this equation when k→+∞, we obtain

Z = H(Y − x+).
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From the upper semicontinuity of K+, we know that x+ ≤ K+(Y ), which means that
Y − x+ ≤ Y − K+(Y ). On the other hand, equation (47) applied to Y reads

H(Y )= H(Y − K+(Y ))

and, since H preserves orientation, it follows that Z ≤ H(Y ). To see that Z ≥ H(Y ),
and thus that H is continuous, we apply almost the same argument to the sequence
(K−(Yn))n∈N, the only difference being the fact that we use the lower semicontinuity
of K−. 2

Lemma 5.13 also allows us to prove that (�X , F) has a unique minimal set, as the
following result shows.

PROPOSITION 5.14. Suppose that F satisfies the hypotheses of Theorem 5.12. Then, the
set K H defined as the closure of

AH = {Y ∈�X | H
−1(H(Y ))= {Y }}

is the unique minimal set of the system (�X , F).

Proof. We will prove that AH is F-invariant, non-empty and intersects every F-minimal
set. The conclusion easily follows from these facts. Let K be an F-minimal set and take
Y ∈�X . If Y 6∈ K , then by definition of K+ and K− we have that K+(Y ) < 0< K−(Y ).
Therefore, from equation (47), the set H−1(H(Y )) is not a singleton, which means that Y
does not belong to AH . This means that AH is included in K .

Let us check that AH is F-invariant. From equation (32), for every Y ∈�X we have
that

F−1
◦ H−1

◦ H(F(Y ))= H−1(H(Y )).

Hence, if we assume that Y ∈ AH , then the last equation implies that F−1
◦ H−1

◦

H(F(Y ))= {Y }. This implies that F(Y ) ∈ AH and AH is F-invariant.
Finally, we check that AH is non-empty. Recall that the function hY : R→ R induced

by H on the leaf of Y is defined by hY (t)= t +9(Y − t). For each t ∈ R, we let
a(t)=min{s ≤ t | hY (s)= hY (t)} and b(t)=max{s ≥ t | hY (s)= hY (t)}. Since H is
continuous by Theorem 5.12, it is easy to check that Y [a(t), b(t)] = H−1(H(Y − t)). If
Y [a(t), b(t)] is not a singleton, then we say that Y [a(t), b(t)] is a plateau of H in the leaf
of Y . By observing that a(t ′)= a(t) and b(t ′)= b(t) for every t ′ ∈ [a(t), b(t)], we deduce
that there is a countable number of plateaux of H in the leaf of Y (each plateau is indexed
by a rational number). This implies that the image of H restricted to the union of all its
plateaux in the leaf of Y is countable, and hence it does not cover the leaf. Since H is onto,
it follows that AH is not-empty. 2

We end this paper by giving an example (which was hinted to the author by the anonymous
referee).

Example 5.15. Let X = Xfib be the Fibonacci quasicrystal defined in Example 2.3
with L = S = 1. Let f : R→ R be the lift of an orientation-preserving circle
homeomorphism g. Since the displacement of f is X -equivariant, define F :�X →�X

by F(Y )= Y −8(Y ), where 8 is the continuous function on �X corresponding to
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φ(t)= f (t)− t (see Lemma 3.2). It is clear that for every Y ∈�0
X one has that

F(Y − t)= Y − f (t), and hence ρ(F)= ρ( f ). Moreover, F is ρ-bounded. On the other
hand, it is known that the eigenvalues of �X contain (

√
5+ 1)/2 and hence Q contains

Q(
√

5) (see e.g. [Fog02]).
Next, suppose that ρ( f )=

√
5, i.e. ρ( f ) is irrational but T -rational. We analyze two

cases:
(1) g is transitive: in this case, by Poincaré’s theorem f is conjugated to t 7→ t + ρ( f )

by a map h whose displacement is also periodic (see e.g. [KH95, proof of Poincaré’s
theorem]). Hence, in this case h extends to a T -conjugacy between F and T√5.
Applying Theorem 5.2, one obtains that the minimal sets of F are local closed graphs
(in this case H is one-to-one);

(2) g is a Denjoy example: in this case F is not transitive and therefore it is not T -
conjugate with T√5. Moreover, if E is the unique g-minimal Cantor subset of R/Z,

then K H = {Y − t | Y ∈�0
X , t ∈ E}.

Open questions. Let F be a ρ-bounded homeomorphism in H++(�X ) and ρ(F) its
translation number.
• If ρ(F) is T -irrational and F is transitive, is it true that F is T -conjugate with Tρ(F)?

If not, give a counterexample.
• If ρ(F) is T -rational, give general conditions for the invariant sets to be closed

graphs.
• Find more natural conditions for F to be ρ-bounded.

Acknowledgements. The author thanks Samuel Petite and the Laboratoire Amiénois de
Mathématique Pure et Apliquée, where part of this work was done, for their hospitality
and helpful discussions. He also thanks Jarek Kwapisz for helpful discussions about
Theorem 3.4 and in particular for providing the Baire argument used in the proof. Finally,
the author acknowledges support from a CONICYT doctoral fellowship and grants: ECOS-
CONICYT C03EC03, Nucleo Milenio P04-069-F, ANR Crystal Dyn and Basal-CMM.

REFERENCES

[BBG06] J. Bellissard, R. Benedetti and J.-M. Gambaudo. Spaces of tilings, finite telescopic approximations
and gap-labeling. Commun. Math. Phys. 261(1) (2006), 1–41.

[BG03] R. Benedetti and J.-M. Gambaudo. On the dynamics of G-solenoids. Applications to Delone sets.
Ergod. Th. & Dynam. Sys. 23(3) (2003), 673–691.

[CFS82] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaı̆. Ergodic Theory (Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 245). Springer, New York,
1982 (Translated from the Russian by A. B. Sosinskiı̆).

[Cla02] A. Clark. The dynamics of maps of solenoids homotopic to the identity. Continuum Theory
(Denton, TX, 1999) (Lecture Notes in Pure and Applied Mathematics, 230). Dekker, New York,
2002, pp. 127–136.

[DHS99] F. Durand, B. Host and C. Skau. Substitutional dynamical systems, Bratteli diagrams and
dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953–993.



594 J. Aliste-Prieto

[Fog02] N. P. Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in
Mathematics, 1794). Eds. V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Springer, Berlin, 2002.

[GGP06] J.-M. Gambaudo, P. Guiraud and S. Petite. Minimal configurations for the Frenkel–Kontorova
model on a quasicrystal. Commun. Math. Phys. 265(1) (2006), 165–188.

[Gla03] E. Glasner. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American
Mathematical Society, Providence, RI, 2003.

[GM99] W. Geller and M. Misiurewicz. Rotation and entropy. Trans. Amer. Math. Soc. 351(7) (1999),
2927–2948.

[Her83] M.-R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples
montrant le caractère local d’un théorème d’Arnol ′d et de Moser sur le tore de dimension 2.
Comment. Math. Helv. 58(3) (1983), 453–502.

[Hof95] A. Hof. A remark on Schrödinger operators on aperiodic tilings. J. Statist. Phys. 81(3–4) (1995),
851–855.

[HPS92] R. H. Herman, I. F. Putnam and C. F. Skau. Ordered Bratteli diagrams, dimension groups and
topological dynamics. Int. J. Math. 3(6) (1992), 827–864.

[Jag08] T. H. Jäger. Linearization of conservative toral homeomorphisms. Invent. Math. 176(3) (2009),
601–616.

[JS06] T. H. Jäger and J. Stark. Towards a classification for quasiperiodically forced circle
homeomorphisms. J. London Math. Soc. (2) 73(3) (2006), 727–744.

[Kel03] J. Kellendonk. Pattern-equivariant functions and cohomology. J. Phys. A: Math. Gen. 36(21)
(2003), 5765–5772.

[KH95] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems
(Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge,
1995 (With a supplementary chapter by Katok and Leonardo Mendoza).

[KP00] J. Kellendonk and I. F. Putnam. Tilings, C∗-algebras, and K -theory. Directions in Mathematical
Quasicrystals (CRM Monograph Series, 13). American Mathematical Society, Providence, RI,
2000, pp. 177–206.

[Kwa00] J. Kwapisz. Poincaré rotation number for maps of the real line with almost periodic displacement.
Nonlinearity 13(5) (2000), 1841–1854.

[LMS02] J.-Y. Lee, R. V. Moody and B. Solomyak. Pure point dynamical and diffraction spectra. Ann. Henri
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