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Abstract

We characterize inverse limits of nilsystems in topological dynamics, via a structure theorem for topo-
logical dynamical systems that is an analog of the structure theorem for measure preserving systems. We
provide two applications of the structure. The first is to nilsequences, which have played an important role
in recent developments in ergodic theory and additive combinatorics; we give a characterization that de-
tects if a given sequence is a nilsequence by only testing properties locally, meaning on finite intervals. The
second application is the construction of the maximal nilfactor of any order in a distal minimal topological
dynamical system. We show that this factor can be defined via a certain generalization of the regionally
proximal relation that is used to produce the maximal equicontinuous factor and corresponds to the case of
order 1.
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1. Introduction

1.1. Nilsequences

The connection between ergodic theory and additive combinatorics started in the 1970’s, with
Furstenberg’s beautiful proof of Szemerédi’s Theorem via ergodic theory. Furstenberg’s proof
paved the way for new combinatorial results via ergodic methods, as well as leading to numerous
developments within ergodic theory. More recently, the interaction between the fields has taken a
new dimension, with ergodic objects being imported into the finite combinatorial setting. Some
objects at the center of this interchange are nilsequences and the nilsystems on which they are
defined. They enter, for example, in ergodic theory into convergence of multiple ergodic aver-
ages [10] and into the theory of multicorrelations [4]. In number theory, they arise in finding
patterns in the primes (see [8] and the companion articles [7] and [9]). In combinatorics, they are
used to find intricate patterns in subsets of integers with positive upper density [5].

Nilsequences are defined by evaluating a function along the orbit of a point in the homoge-
neous space of a nilpotent Lie group. In a variety of situations, nilsequences have been used to
test for a lack of uniformity of a function. Yet, the local properties of nilsequences are not well
understood. It is difficult to detect if a given sequence is a nilsequence, particularly if one only
knows local information about the sequence, meaning properties that can only be tested on finite
intervals.

We recall the definition of a nilsequence. A basic d-step nilsequence is a sequence of the form
(f (T nx): n ∈ Z), where (X,T ) is a d-step nilsystem, f :X → C is a continuous function, and
x ∈ X. A d-step nilsequence is a uniform limit of basic d-step nilsequences. (See Section 2.3
for the definition of a nilsystem.) We give a characterization of nilsequences of all orders that
can be tested locally, generalizing the work in [14] that gives such an analysis for 2-step nilse-
quences.

We look at finite portions, the “windows”, of a sequence and we are interested in finding a
copy of the same finite window up to some given precision. To make this clear, we introduce
some notation. For a sequence a = (an: n ∈ Z), integers k, j,L, and a real δ > 0, if each entry in
the window [k − L,k + L] is equal to the corresponding entry in the window [j − L,j + L] up
to an error of δ, then we write

a[k−L,k+L] =δ a[j−L,j+L]. (1)

The characterization of almost periodic sequences (which are exactly 1-step nilsequences) by
compactness can be formulated as follows:

Proposition. The bounded sequence a = (an: n ∈ Z) of complex numbers is almost periodic
if and only if for all ε > 0, there exist an integer L � 1 and a real δ > 0 such that for any
k,n1, n2 ∈ Z whenever a[k−L,k+L] =δ a[k+n1−L,k+n1+L] and a[k−L,k+L] =δ a[k+n2−L,k+n2+L]
then |ak − ak+n1+n2 | < ε.

We give a similar characterization for a (d − 1)-step nilsequence a: if in every interval of
a given length the translates of the sequence a along finite sums (i.e. cubes) of any sequence
n = (n1, . . . , nd) are δ-close to the original sequence except possibly at the sum n1 + · · · + nd ,
then we also have control over the distance between a and the translate by n1 + · · · + nd .

The general case is:
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Theorem 1.1. Let a = (an: n ∈ Z) be a bounded sequence of complex numbers and let d � 2 be
an integer. The sequence a is a (d − 1)-step nilsequence if and only if for every ε > 0 there exist
an integer L � 1 and real δ > 0 such that for any (n1, . . . , nd) ∈ Z

d and k ∈ Z, whenever

a[k+ε1n1+···+εdnd−L,k+ε1n1+···+εdnd+L] =δ a[k−L,k+L]

for all choices of ε1, . . . , εd ∈ {0,1} other than ε1 = · · · = εd = 1, then we have |ak+n1+···+nd
−

ak| < ε.

In fact, we can replace the approximation in (1) in both the hypothesis and conclusion by any
other approximation that defines pointwise convergence and have the analogous result.

1.2. A structure theorem for topological dynamical systems

We prove a structure theorem for topological dynamical systems that gives a characterization
of inverse limits of nilsystems. Theorem 1.1 follows from this structure theorem, exactly as it
does in the case for d = 2 in [14], where the proof of this implication can be found. The structure
theorem for topological dynamical systems can be viewed as an analog of the purely ergodic
structure theorem of [10]. We introduce the following structure:

Definition 1.1. Let (X,T ) be a topological dynamical system and let d � 1 be an integer. We
define Q[d](X) to be the closure in X2d

of elements of the form(
T n1ε1+···+ndεd x: ε = (ε1, . . . , εd) ∈ {0,1}d)

,

where n = (n1, . . . , nd) ∈ Zd , x ∈ X, and we denote a point of X2d
by (xε : ε ∈ {0,1}d). When

there is no ambiguity, we write Q[d] instead of Q[d](X). An element of Q[d](X) is called a
(dynamical) parallelepiped of dimension d .

As examples, Q[2] is the closure in X4 of the set{(
x,T mx,T nx,T n+mx

)
: x ∈ X, m,n ∈ Z

}
and Q[3] is the closure in X8 of the set{(

x,T mx,T nx,T m+nx,T px,T m+px,T n+px,T m+n+px
)
: x ∈ X, m,n,p ∈ Z

}
.

In each of these, the indices m,n and m,n,p can be taken in N rather than Z, giving rise to the
same object. This is obvious if T is invertible, but can also be proved without the assumption of
invertibility. Thus, throughout the article, we assume that all maps are invertible.

We use these parallelepipeds structures to characterize nilsystems:

Theorem 1.2. Assume that (X,T ) is a transitive topological dynamical system and let d � 2 be
an integer. The following properties are equivalent:

(1) If x,y ∈ Q[d](X) have 2d − 1 coordinates in common, then x = y.
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(2) If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d](X), then x = y.
(3) X is an inverse limit of (d − 1)-step minimal nilsystems.

(For definitions of all the objects, see Section 3.) We note that the use of both d and d − 1 is
necessary throughout the article, and this leads us to use whichever is notationally more conve-
nient at various times in the proofs.

The first property clearly implies the second, since (y, y, . . . , y) ∈ Q[d](X) for all y ∈ X. The
second property implies that the system is distal (see Section 3). The second property plus the
assumption of distality implies the first property (see Section 4), which together give that the first
two properties are equivalent.

Systems satisfying these properties play a key role in the article and so we define:

Definition 1.2. A transitive system satisfying either of the first two equivalent properties of The-
orem 1.2 is called a system of order d − 1.

The implication (3) ⇒ (1) in Theorem 1.2 follows from results in [13] and is reviewed here
in Proposition 4.6. The implication (1) ⇒ (3) is proved in Section 6, using completely different
methods from that used in [14] for d = 3, and proceeds by introducing an invariant measure
on X.

1.3. The regionally proximal relation and generalizations

We give a second application of Theorem 1.2 in topological dynamics. The study of maximal
equicontinuous factors is classical (see, for example [1]). The maximal equicontinuous factor
is the topological analog of the Kronecker factor in ergodic theory and recovers the continuous
eigenvalues of a system. There are several ways to construct this factor, but the standard method
is as a quotient of the regionally proximal relation. The first step in generalizing this relation was
carried out in [14], where the concept of a double regionally proximal relation is introduced and
is used in the distal case to define the maximal 2-step nilfactor. In this article we generalize this
relation for higher levels and for d � 1 we define the regionally proximal relation of order d ,
referring to it as RP[d]. While these generalizations were motivated by the study of abstract
parallelepipeds in additive combinatorics [11], they require new techniques. Although we defer
the definition of the regionally proximal relation of order d until Section 3, we summarize its
uses.

Proposition 1.1. Assume that (X,T ) is a transitive topological dynamical system and that d � 1
is an integer. If the regionally proximal relation of order d on X is trivial, then the system is
distal.

In a distal system, we show that RP[d] is an equivalence relation and that it defines the maximal
d-step topological nilfactor of the system.

Theorem 1.3. Assume that (X,T ) is a distal minimal system and that d � 1 is an integer. Then
the regionally proximal relation of order d on X is a closed invariant equivalence relation and
the quotient of X under this relation is its maximal d-step nilfactor.



B. Host et al. / Advances in Mathematics 224 (2010) 103–129 107
The maximal d-step (topological) nilfactor is the topological analog of the ergodic theoretic
factor Zd constructed in [10]. These ergodic factors are characterized by inverse limits of d-step
nilsystems. In this direction, we prove in the distal case that RP[d] is trivial if and only if the
system itself is an inverse limit of d-step nilsystems.

To prove Theorem 1.3 we show in Proposition 4.5 that the quotient of X under RP[d] is its
maximal factor of order d . From Theorem 1.2, we deduce that the notions of a system of order d

and an inverse limit of d-step nilsystems are equivalent, giving us the conclusion.
We conjecture that the hypothesis of distality in Theorem 1.3 is superfluous, but were unable

to prove this.

1.4. Guide to the paper

The article is divided into two somewhat distinct parts. In the first part (Sections 3 and 4),
we develop the topological theory of parallelepipeds and the associated theory of generalized
regionally proximal relations. With the topological methods developed in these sections, we are
able to prove all but the implication “(1) ⇒ (3)” of Theorem 1.2. In Section 3, we state the prop-
erties of parallelepiped structures and the relation with generalized regionally proximal pairs and
show how the conditions of Theorem 1.2 imply that the system is distal. In Section 4, we prove
that in the distal case, the main structural properties of parallelepipeds (the “property of closing
parallelepipeds”) allows us to show that first two conditions in Theorem 1.2 are equivalent and
to show that regionally proximal relation of order d gives rise to the maximal factor of order d .
The proof of the remaining implication is carried out in Section 6 and relies heavily on ergodic
theoretic notions of Section 5. However, the interaction of the topological and measure theoretic
structures plays a key role in the analysis, and it is only via measure theoretic methods that we
are finally able to obtain the general topological results.

2. Background

2.1. Topological dynamical systems

A transformation of a compact metric space X is a homeomorphism of X to itself. A topo-
logical dynamical system, referred to more succinctly as just a system, is a pair (X,T ), where
X is a compact metric space and T :X → X is a transformation. We use dX(·,·) to denote the
metric in X and when there is no ambiguity, we write d(·,·). We also make use of a more general
definition of a topological system. That is, instead of just a single transformation T , we consider
commuting homeomorphisms T1, . . . , Tk of X or a countable abelian group of transformations.
We summarize some basic definitions and properties of systems in the classical setting of one
transformation. Extensions to the general case are straightforward.

A factor of a system (X,T ) is another system (Y,S) such that there exists a continuous and
onto map p :X → Y satisfying S ◦p = p ◦ T . The map p is called a factor map. If p is bijective,
the two systems are (topologically) conjugate. In a slight abuse of notation, when there is no
ambiguity, we denote all transformations (including ones in possibly distinct systems) by T .

A system (X,T ) is transitive if there exists some point x ∈ X whose orbit {T nx: n ∈ Z} is
dense in X and we call such a point a transitive point. The system is minimal if the orbit of any
point is dense in X. This property is equivalent to saying that X and the empty set are the only
closed invariant sets in X.
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2.2. Distal systems

The system (X,T ) is distal if for any pair of distinct points x, y ∈ X,

inf
n∈Z

d
(
T nx,T ny

)
> 0. (2)

In an arbitrary system, pairs satisfying property (2) are called distal pairs. The points x and y are
proximal if lim infn→∞ d(T nx,T ny) = 0.

The following proposition summarizes some basic properties of distal systems:

Proposition 2.1. (See Auslander [1, Chapters 5 and 7].)

(1) The Cartesian product of a finite family of distal systems is a distal system.
(2) If (X,T ) is a distal system and Y is a closed and invariant subset of X, then (Y,T ) is a

distal system.
(3) A transitive distal system is minimal.
(4) A factor of a distal system is distal.
(5) Let p :X → Y be a factor map between the distal systems (X,T ) and (Y,T ). If (Y,T ) is

minimal, then p is an open map.

Up to the obvious changes in notation, this proposition holds for systems with a countable
abelian group of transformations acting on the space X.

For later use, we note the following lemma on distal systems:

Lemma 2.1. Let (X,T ) and (Y,T ) be two minimal systems and assume that (Y,T ) is distal. If
X1 is a nonempty invariant subset of X and Φ :X1 → Y is a continuous map on X1 with the
induced topology and commuting with the transformations T , then Φ has a continuous extension
to X.

Proof. Let Γ ⊂ X × Y be the graph of Φ:

Γ = {(
x,Φ(x)

)
: x ∈ X1

}
.

Let Γ̄ be the closure of Γ in X × Y . We claim that Γ̄ is the graph of some map Φ ′ :X → Y .
The projection of Γ̄ on X is a closed invariant subset of X containing X1, and by minimality

this projection is equal to X. Assume that x ∈ X and y, y′ ∈ Y are such that (x, y) and (x, y′)
belong to Γ̄ . Let x1 ∈ X1 and chose a sequence (ni)i∈N of integers such that T ni x → x1 and such
that the sequences (T ni y)i∈N and (T ni y′)i∈N converge in Y , to the points z and z′, respectively,
as i → ∞. Then (x1, z) and (x1, z

′) belong to Γ̄ ∩ (X1 × Y ).
On the other hand, since Φ is continuous on X1, we have that Γ̄ ∩ (X1 × Y) = Γ and thus

z = Φ(x1) = z′. Since (Y,T ) is distal, we conclude that y = y′ and we have that Γ̄ is the graph
of a map Φ ′ :X → Y .

The restriction of Φ ′ to X1 is equal to Φ and because its graph is closed, Φ ′ is continuous.
Finally, since X1 is invariant and nonempty, it is dense in X. By minimality and density, we
conclude that Φ ′ ◦ T = T ◦ Φ ′. �
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2.3. Nilsystems and nilsequences

Definition 2.1. Let d � 1 be an integer and assume that G is a d-step nilpotent Lie group and
that Γ ⊂ G is a discrete, cocompact subgroup of G. The compact manifold X = G/Γ is a d-step
nilmanifold and G acts naturally on X by left translations: x �→ τ.x for τ ∈ G.

If T is left multiplication on X by some fixed element of G, then (X,T ) is called a d-step
nilsystem.

A d-step nilsystem is an example of a distal system. In particular if the nilsystem is transitive,
then it is minimal. Also, the closed orbit of a point in a d-step nilsystem is topologically conjugate
to a d-step nilsystem. See [2,17], and [15] for proofs and general references on nilsystems.

We also make use of inverse limits of nilsystems and so we recall the definition of an inverse
limit of systems (restricting ourselves to the case of sequential inverse limits). If (Xi, Ti)i∈N are
systems and πi :Xi+1 → Xi are factor maps, the inverse limit of the systems is defined to be the
compact subset of

∏
i∈N

Xi given by{
(xi)i∈N: πi(xi+1) = xi

}
.

It is a compact metric space endowed with the distance

d(x, y) =
∑
i∈N

1/2idi(xi, yi).

We note that the maps Ti induce a transformation T on the inverse limit.
Many properties of the systems (Xi, Ti) also pass to the inverse limit, including minimality,

distality, and unique ergodicity.
We return to the definition of a nilsequence:

Definition 2.2. If (X = G/Γ,T ) is a d-step nilsystem, where T is given by multiplication by the
element τ ∈ G, f :X → C is a continuous function, and x ∈ X, the sequence (f (τn.x): n ∈ Z)

is a basic d-step nilsequence. A uniform limit of basic d-step nilsequences is a nilsequence.
Equivalently, a d-step nilsequence is given by (f (T nx): n ∈ Z), where (X,T ) is an inverse

limit of d-step nilsystems, f :X → C is a continuous function and x ∈ X.

The two statements in the definition are shown to be equivalent in Lemma 14 in [14]. More-
over, in the definition of a d-step nilsequence, we can assume that the system is minimal. Namely,
considering the closed orbit of x0, this is a transitive and so minimal system.

The 1-step nilsystems are translations on compact abelian Lie groups and 1-step nilsequences
are exactly almost periodic sequences (see [17]). Examples of 2-step nilsequences and a detailed
study of them are given in [12].

3. Dynamical parallelepipeds: first properties

3.1. Notation

Let X be a set, let d � 1 an integer, and write [d] = {1,2, . . . , d}. We view {0,1}d in one of two
ways, either as a sequence ε = ε1, . . . , εd of 0’s and 1’s written without commas or parentheses;
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or as a subset of [d]. A subset ε corresponds to the sequence (ε1, . . . , εd) ∈ {0,1}d such that i ∈ ε

if and only if εi = 1 for i ∈ [d].
If n = (n1, . . . , nd) ∈ Z

d and ε ⊂ [d], we define

n · ε =
d∑

i=1

niεi =
∑
i∈ε

ni .

We denote X2d
by X[d]. A point x ∈ X[d] can be written in one of two equivalent ways,

depending on the context:

x = (
xε : ε ∈ {0,1}d) = (

xε : ε ⊂ [d]).
For x ∈ X, we write x[d] = (x, x, . . . , x) ∈ X[d]. The diagonal of X[d] is Δ[d] = {x[d]: x ∈ X}.
A point x ∈ X[d] can be decomposed as x = (x′,x′′) with x′,x′′ ∈ X[d−1], where x′ = (xε0: ε ∈

{0,1}d−1) and x′′ = (xε1: ε ∈ {0,1}d−1). We can also isolate the first coordinate, writing X
[d]∗ =

X2d−1 and then writing a point x ∈ X[d] as x = (x,x∗), where x∗ = (xε : ε �= ∅) ∈ X
[d]∗ .

The faces of dimension r of a point in x ∈ X[d] are defined as follows. Let J ⊂ [d] with
|J | = d − r and ξ ∈ {0,1}d−r . The elements (xε : ε ∈ {0,1}d , εJ = ξ) of X[r] are called faces
of dimension r of x, where εJ = (εi : i ∈ J ). Thus any face of dimension r defines a natural
projection from X[d] to X[r], and we call this the projection along this face.

Identifying {0,1}d with the set of vertices of the Euclidean unit cube, a Euclidean isometry
of the unit cube permutes the vertices of the cube and thus the coordinates of a point x ∈ X[d].
These permutations are the Euclidean permutations of X[d]. Examples of Euclidean permutations
are permutations of digits, meaning a permutation of {0,1}d induced by a permutation of [d],
and symmetries, such as replacing εi by 1 − εi for some i. For d = 2, an example of a digit
permutation is the map (00,01,10,11) �→ (00,10,01,11) and an example of a symmetry is the
map (00,01,10,11) �→ (01,00,11,10).

3.2. Dynamical parallelepipeds

We recall that Q[d] is the closure in X2d
of elements of the form

(
T n1ε1+···+ndεd x: ε ∈ {0,1}d)

,

where n = (n1, . . . , nd) ∈ Zd and x ∈ X (Definition 1.1). It follows immediately from the defini-
tion that Q[d] contains the diagonal.

Some other basic structural properties of Q[d] are:

(1) Any face of dimension r of any x ∈ Q[d] belongs to Q[r]. (This condition is trivial for d = 2.)
(2) Q[d] is invariant under the Euclidean permutations of X[d].
(3) If x ∈ Q[d], then (x,x) ∈ Q[d+1].

Lemma 3.1. Let d � 1 be an integer, (X,T ) and (Y,T ) be systems, and π : X → Y be a factor
map. Then Q[d](Y ) is the image of Q[d](X) under the map π [d] := π × · · · × π (2d times).
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We can rephrase the definition of Q[d] using some groups of transformations on X[d]. We
define:

Definition 3.1. Let (X,T ) be a system and d � 1 be an integer. The diagonal transformation of
X[d] is the map given by (T [d]x)ε = T xε for every x ∈ X[d] and every ε ⊂ [d].

For j ∈ [d], the face transformation T
[d]
j : X[d] → X[d] is defined for every x ∈ X[d] and

ε ⊂ [d] by:

T
[d]
j x =

{
(T

[d]
j x)ε = T xε if j ∈ ε,

(T
[d]
j x)ε = xε if j /∈ ε.

The face group of dimension d is the group F [d](X) of transformations of X[d] spanned by the
face transformations. The parallelepiped group of dimension d is the group G[d](X) spanned by
the diagonal transformation and the face transformations. We often write F [d] and G[d] instead
of F [d](X) and G[d](X), respectively. For G[d] and F [d], we use similar notations to that used
for X[d]: namely, an element of either of these groups is written as S = (Sε : ε ∈ {0,1}d). In
particular, F [d] = {S ∈ G[d]: S∅ = Id}.

We note that the group G[d] satisfies the three properties (3.2)–(3.2) above, with Q[d] replaced
by G[d]. Moreover, for S ∈ F [d], we have that (S,S) ∈ F [d+1]. As well, F [d] is invariant under
digit permutations.

The following lemma follows directly from the definitions:

Lemma 3.2. Let (X,T ) be a system and let d � 1 be an integer. Then Q[d] is the closure in X[d]
of {

Sx[d]: S ∈ F [d], x ∈ X
}
.

If x is a transitive point of X, then Q[d] is the closed orbit of x[d] under the group G[d].

3.3. Definition of the regionally proximal relations

In this section, we discuss the relation RP[d] and its relation to Q[d+1].

Definition 3.2. Let (X,T ) be a system and let d � 1 be an integer. The points x, y ∈ X are
said to be regionally proximal of order d if for any δ > 0, there exist x′, y′ ∈ X and a vector
n = (n1, . . . , nd) ∈ Z

d such that d(x, x′) < δ, d(y, y′) < δ, and

d
(
T n·εx′, T n·εy′) < δ for any nonempty ε ⊂ [d].

(In other words, there exists S ∈ F [d] such that d(Sε · x′, Sε · y′) < δ for every ε �= ∅.) We call
this the regionally proximal relation of order d and denote the set of regionally proximal points
by RP[d] (or by RP[d](X) in case of ambiguity).

Since RP[d+1] is finer than RP[d], we have defined a nested sequence of closed and invariant
relations.
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Lemma 3.3. Assume that (X,T ) is a transitive system and that d � 1 is an integer. Then (x, y) ∈
RP[d] if and only if there exists a∗ ∈ X

[d]∗ such that

(x,a∗, y,a∗) ∈ Q[d+1].

Proof. Assume that (x, y) ∈ RP[d]. Let δ > 0 and let x′, y′ and S be as in the definition of
regionally proximal points. As transitive points are dense in X, there exists a transitive point z

with d(z, x′) < δ and, for every ε �= ∅, d(Sε · z, Sε · x′) < δ. There exists an integer k such that
d(T kz, y′) < δ and that, for every ε �= ∅, d(Sε · T kz, Sε · y′) < δ. We have that d(z, x) < 2δ,
d(T kz, y) < 2δ and d(Sε · T kz, Sε · z) < 3δ.

Define z ∈ X[d+1] by zε0 = Sε · z and zε1 = Sε · T kz for ε ∈ {0,1}d . Then z =
(S,S)(T

[d+1]
d+1 )kz[d+1] and thus this point belongs to Q[d+1]. We have that d(z∅, x) < 2δ,

d(z00...01, y) < 2δ and d(zε0, zε1) < 3δ for every ε ∈ {0,1}d different from ∅. Letting δ → 0
and passing to a subsequence, we have a point of Q[d+1] of the announced form.

Conversely, if (x,a∗, y,a∗) ∈ Q[d+1] with a∗ ∈ X
[d]∗ , then for every δ > 0, there exist

z ∈ X, n ∈ Z
d , and p ∈ Z such that d(z, x) < δ, d(T pz, y) < δ, and d(T n·εz, aε) < δ and

d(T n·ε+pz, aε) < δ for every nonempty ε ⊂ [d]. Thus (x, y) ∈ RP[d]. �
Corollary 3.1. Assume that (X,T ) is a transitive system and that d � 1 is an integer. The relation
RP[d](X) is a closed, symmetric relation that is invariant under T .

If φ :X → Y is a factor map and if (x, y) ∈ RP[d](X), then (φ(x),φ(y)) ∈ RP[d](Y ).

Proof. This follows immediately from the definition and Lemma 3.3. �
If the first property of Theorem 1.2 holds, then the relation RP[d] is trivial: if (x,a∗, y,a∗) ∈

Q[d+1], then (x,a∗) ∈ Q[d] and so (x,a∗, x,a∗) ∈ Q[d+1]. By the first property of Theorem 1.2,
x = y.

3.4. Reduction to the distal case

We show that systems verifying the conditions of Theorem 1.2 are distal.

Proposition 3.1. Assume (X,T ) is a transitive system and that d � 1 is an integer. If x and y are
proximal and the closed orbit of y is a minimal set, then (x, y, y, . . . , y) ∈ Q[d].

Proof. First we claim that for every η > 0, there exists n ∈ N such that d(T nx, y) < η and
d(T ny, y) < η. Since x and y are proximal, there exists a sequence (mi : i � 1) and a point z ∈ X

such that T mi x → z and T mi y → z. We have that z belongs to the closed orbit of y, which is min-
imal, and so y belongs to the closed orbit of z. Thus there exists p such that d(T pz, y) < η/2. By
continuity of T p , for i sufficiently large we have that d(T mi+px, y) < η and d(T mi+py, y) < η.
Setting n = mi + p for some sufficiently large i, we have n that satisfies the claim.

Fix δ > 0. Applying the claim for η = δ/d , we find some n1 such that d(T n1x, y) < δ/d and
d(T n1y, y) < δ/d .

Taking η with 0 < η < δ/d such that d(T n1u,T n1v) � δ/d when d(u, v) � η, and then
taking n2 associated to this η, from the claim we have that: d(T n1ε1+n2ε2x, y) < 2δ/d and
d(T n1ε1+n2ε2y, y) < 2δ/d for all ε1, ε2 ∈ {0,1}2 other than ε1 = ε2 = 0.
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Thus by induction, there is a sequence of integers n1, . . . , nd such that d(T n·εx, y) < δ for all
∅ �= ε ⊂ [d]. Taking δ → 0, we have the statement of the proposition. �
Corollary 3.2. Assume that (X,T ) is a transitive system. If the second property of Theorem 1.2
holds, then X is distal.

Proof. We first show that any point in X is minimal, i.e. its closed orbit is minimal, and so the
system is minimal. Every x ∈ X is proximal to some minimal point y (see [1]). By the previous
proposition and the hypothesis, x = y and so x is a minimal point. Applying the proposition to
any pair of proximal points, the statement follows. �
4. Parallelepipeds in distal systems

4.1. Minimal distal systems and parallelepiped structures

Lemma 4.1. Let (X,T ) be a minimal distal system and let d � 1 be an integer. Then (Q[d], G[d])
is a minimal distal system.

Proof. Since (X,T ) is distal, so is the system (X[d], G[d]). Since Q[d] is a closed and invariant
subset of X[d] under the face transformations, the system (Q[d], G[d]) is also distal. By the second
part of Lemma 3.2, the system is transitive and thus is minimal. �

Using the Ellis semigroup, Eli Glasner [6] showed us a proof that this lemma holds without
the assumption of distality.

Although we do not make use of the following proposition in the sequel, we include it as it is
an analog of the geometric property of parallelepipeds in a vector space:

Proposition 4.1. Let (X,T ) be a minimal distal system and let d � 1 be an integer. The relation
∼d−1 defined on Q[d−1] by

x ∼d−1 x′ if and only if the element
(
x,x′) ∈ X[d] belongs to Q[d]

is an equivalence relation.

Proof. By Property (2) of Section 3.2, we have that the relation is symmetric and by Property (3),
it is reflexive. We are left with showing that the relation is transitive. Let u,v,w ∈ Q[d−1] and
assume that (u,v) ∈ Q[d] and (v,w) ∈ Q[d].

Choose z ∈ X. By Lemma 4.1, the system (Q[d], G[d]) is minimal and so it is the closed orbit
of z[d] under the group G[d]. There exists a sequence (Si : i � 1) such that Si(u,v) → z[d] =
(z[d−1], z[d−1]) as i → ∞. Writing Si = (S′

i , S
′′
i ) with S′

i , S
′′
i ∈ G[d−1], we have that S′

iu → z[d−1]
and S′′

i v → z[d−1].
Passing to a subsequence if needed, we can assume that S′′

i w converges to some point
ẑ ∈ X[d−1] as i → ∞. We have that

(
S′′, S′′)(v,w) → (

z[d−1], ẑ
) ∈ X[d].
i i
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But for each i ∈ N, (S′′
i , S′′

i ) ∈ G[d] and thus (z[d−1], ẑ) belongs to the closed orbit of (v,w) under
G[d] and so (z[d−1], ẑ) ∈ Q[d].

On the other hand, Si(u,w) = (S′
iu, S′′

i w) converges to (z[d−1], ẑ) and this point belongs to the
closed orbit of (u,w) under G[d]. By distality this orbit is minimal and so it follows that (u,w)

also belongs to the orbit closure of (z[d−1], ẑ). In particular, (u,w) ∈ Q[d] and the relation ∼d−1
is transitive. �
Corollary 4.1. Let (X,T ) be a minimal distal system and let d � 1 be an integer. If x,y ∈ Q[d+1]
and xε = yε for all ε �= ∅, then (x∅, y∅) ∈ RP[d].

Proof. We write x = (x∅,a∗, z) with a∗ ∈ X
[d]∗ and z ∈ Q[d]. By hypothesis, y = (y∅,a∗, z)

and by transitivity of relation ∼d+1, we have that (x∅,a∗, y∅,a∗) ∈ Q[d+1]. We conclude via
Lemma 3.3. �
4.2. Completing parallelepipeds

Notation. For x ∈ X and d � 1, write

Q[d](x) = {
y ∈ Q[d]: y∅ = x

}
.

In this section, we show:

Proposition 4.2. For x ∈ X and d � 1, Q[d](x) is the closed orbit of x[d] under the action of the
group F [d].

Proposition 4.2 follows from the more general Proposition 4.3 below.
In this section (and only in this section), we make use of yet another notation for the points

of X[d]:

Notation. For ε ⊂ [d], define

σd(ε) =
d∑

k=1

εk2k−1.

For 0 � j < 2d , set

E(d, j) = {
ε ⊂ [d]: σd(ε) � j

}
.

For x ∈ X and d � 1, let K[d](x) denote the closed orbit of x[d] under F [d].

We remark that K[d](x) is minimal under the action of F [d]. Moreover, if d � 2 and
y ∈ K[d−1](x), then (y,y) ∈ K[d](x). As well, K[d](x) is invariant under digit permutations.

Proposition 4.3. Assume that d � 1 is an integer and let 0 � j < 2d . Assume that x ∈ X[d]
satisfies the hypothesis
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H(d, j): for every r and every face F of dimension r of {0,1}d included in E(d, j), the projec-
tion of x along F belongs to Q[r].

Then there exists w ∈ K[d](x∅) such that wε = xε for every ε ∈ E(d, j).

First we remark that this proposition implies Proposition 4.2. Indeed, if x ∈ Q[d](x) then
x∅ = x. Moreover, x satisfies the hypothesis H(d,2d −1) and thus agrees with a point of K[d](x)

on E(d,2d − 1), which is the set of all ε ⊂ [d].

Proof. For d = 1, the result is obvious since K[1](x∅) = {x∅} × X. For d > 1 and j = 0, there is
nothing to prove.

We proceed by induction: take d > 1 and j > 0 and assume that the result holds for d − 1 and
all values of j and for d and j ′ < j .

Assume that x ∈ X[d] satisfies the hypothesis H(d, j) and write x = x∅.

4.2.1. We first make a reduction. We assume that the result holds under the additional hy-
pothesis

(∗) x is of the form xε = x∅ for ε ∈ E(d, j − 1)

and we show that it holds in the general case.
Assume that x satisfies H(d, j). By the induction hypothesis, there exists v ∈ K[d](x) such

that vε = xε for all ε ∈ E(d, j − 1). By minimality, the point x[d] lies in the closed F [d]-orbit
of v, meaning that there exists a sequence (S�: � � 1) in F [d] such that S�v → x[d]. Passing to a
subsequence, we can assume that S�x → x′. We have that x′

ε = x for all ε ∈ E(d, j − 1) and x′
satisfies property (∗).

Property H(d, j) is invariant under the action of F [d] and under passage to limits. Thus since
x′ lies in the closed F [d]-orbit of x, x′ satisfies H(d, j). Using the result of the proposition with
the additional assumption of (∗), we have that there exists v′ ∈ K[d](x) such that v′

ε = x′
ε for

ε ∈ E(d, j).
Since the system is distal and x′ belongs to the closed F [d]-orbit of x, we also have that x

belongs to the closed F [d]-orbit of x′. There exists a sequence (S′
�: � � 1) such that S′

�x′ → x.
Passing to a subsequence, we have that S′

�v′ → u. Thus u ∈ K[d](x) and uε = xε for ε ∈ E(d, j).

4.2.2. We now assume x satisfies H(d, j) and (∗) and assume that j �= 2d − 1. Again, we
write x = x∅.

Let η ∈ {0,1}d be defined by σd(η) = j . By hypothesis, there exists some k with 1 � k � d

such that ηk = 0. Choose k to be the largest k with this property.
Define the map Φ : {0,1}d−1 → {0,1}d by

Φ(ε) = ε1 . . . εk−10εk . . . εd−1.

Setting

θ = η1 . . . ηk−11 . . .1 ∈ {0,1}d−1,

we have that Φ(θ) = η.
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Set i = σd−1(θ). It is easy to check that for α ∈ {0,1}d−1,

σd−1(α) < i if and only if σd

(
Φ(α)

)
< σd

(
Φ(θ)

) = j. (3)

In particular, Φ(E(d − 1, i)) ⊂ E(d, j).
Define u ∈ X[d−1] to be the projection of x on X[d−1] along the face defined by εk = 0. In

other words,

uε = xΦ(ε), ε ∈ {0,1}d−1.

Moreover, if F is a face of {0,1}d−1, then Φ(F) is a face of {0,1}d . Since x satisfies H(d, j),
we have that u satisfies H(d − 1, i).

We have that u∅ = x and by the induction hypothesis, there exists v ∈ K[d−1](x) with vε = uε

for all ε ∈ E(d − 1, i).
Define the map Ψ : {0,1}d → {0,1}d−1 by

Ψ (ε) = ε1 . . . εk−1εk+1 . . . εd .

By definition, Ψ ◦Φ is the identity and Ψ (η) = θ . On the other hand, Φ ◦Ψ (ε) = ε1 . . . εk−10εk+1

. . . εd . In particular,

σd

(
Φ ◦ Ψ (ε)

)
� σd(ε) for every ε ∈ {0,1}d .

Define w ∈ X[d] by wε = vΨ (ε) for ε ∈ {0,1}d . In other words, w is obtained by duplicating v
on two opposite faces. We check that w ∈ K[d](x).

To see this, let v′ be obtained from v by the digit permutation that exchanges the digits k − 1
and d − 1. Then v′ ∈ K[d−1](x) and so (v′,v′) ∈ K[d](x). We obtain w from the point (v′,v′) by
the digit permutation that exchanges the digits k and d .

We claim that Ψ (E(d, j − 1)) ⊂ E(d − 1, i − 1). To show this, we take ε ∈ E(d, j − 1) and
distinguish two cases. First assume there exists some m with k + 1 � m � d with εm = 0. Then
one of the d − k last coordinates of Ψ (ε) = 0 and by definition of θ , σd−1(Ψ (ε)) < σd−1(θ) = i.

Now assume that there is no such m. Because σd(ε) < σd(η) and ηk = 0, we have that εk = 0.
Then Φ(Ψ (ε)) = ε. Thus

σd

(
Φ

(
Ψ (ε)

)) = σd(ε) < j

and applying (3) with α = Ψ (ε), we have that σd−1(Ψ (ε)) < i. This proves the claim.
We check that w satisfies the conclusion of the proposition. First for wη, we have that wη =

vΨ (η) = vθ = uθ since θ ∈ E(d −1, i), and uθ = xΦ(θ) = xη. Thus wη = xη. Next, if ε ∈ E(d, j −
1), then xε = x. On the other hand, wε = vΨ (ε) = uΨ (ε), where the last equality holds because by
the claim we have Ψ (ε) ∈ E(d − 1, i − 1). But uΨ (ε) = xΦ◦Ψ (ε) = x, because σd(Φ ◦ Ψ (ε)) �
σd(ε) � j − 1. This w is as announced.
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4.2.3. We are left with considering the case that j = 2d − 1. The hypothesis H(d,2d − 1)

means that x = (x, x, . . . , x, y) ∈ Q[d] and we have to show that this lies in K[d](x).
We start with a general property. Writing a point x ∈ X[d] as x = (x′,x′′), define the projection

φ : K[d](x) → Q[d−1] by φ(x) = x′′. The range of φ is invariant under the group G[d−1] and thus
by Lemma 4.1, it is equal to Q[d−1]. By distality, the map φ is open.

Assume (x, x, . . . , x, y) ∈ Q[d]. Write v = (x, . . . , x, y) ∈ X[d−1]. Let δ > 0. Since
(x[d−1], x[d−1]) ∈ K[d](x), by the openness of φ, there exists δ′ with 0 < δ′ < δ such that if
u ∈ Q[d−1] is δ′-close to x[d−1], there exists z that is δ-close to x[d−1] and (z,u) ∈ K[d](x).

Since (x[d−1],v) ∈ Q[d], there exists u ∈ Q[d−1] and n ∈ Z such that u is at most distance
δ′ from x[d−1] and (T [d−1])nu is at most distance δ from v. Taking z as above, we have that
(z, (T [d−1])nu) ∈ K[d](x) and is δ-close to (x[d−1],v).

Letting δ go to 0, we have that (x[d−1],v) ∈ K[d](x). �
The next result follows directly from Proposition 4.3 and the definition of Q[d]. It shows

that Q[d] verifies properties that are generalizations of the 2- and 3-dimensional parallelepiped
structures as defined in [14]. In particular, Q[d] satisfies the “property of closing parallelepipeds”.
This plays a key role in our study of the first condition in Theorem 1.2.

Proposition 4.4. Let (X,T ) be a minimal distal system and let d � 1 be an integer. Assume that
xε , ε ⊂ [d] with ε �= [d], are points in X such that the face (xε : j /∈ ε) belongs to Q[d−1] for
each j ∈ [d]. Then there exists x[d] ∈ X such that (xε : ε ⊂ [d]) ∈ Q[d].

Although we have given the last coordinate in the statement of this proposition a particular
role, using Euclidean permutations the analogous statement holds for any other fixed coordinate,
provided that the corresponding faces lie in Q[d−1].

4.3. Strong form of the regionally proximal relation

Corollary 4.2. Let (X,T ) be a minimal distal system and let d � 1 be an integer. Let x, y ∈ X and
b∗ ∈ X

[d+1]∗ with (x,b∗) ∈ Q[d+1]. Then (y,b∗) ∈ Q[d+1] if and only if (y, x, x, . . . , x) ∈ Q[d+1].

Proof. We write u = (x,b∗), v = (y,b∗), and y = (y, x, x, . . . , x) ∈ X[d+1]. By Proposition 4.3,
we have that u belongs to K[d+1](x) and, by minimality, there exists a sequence (Sn: n � 1)

in F [d+1] such that Snu → x[d+1]. Then Snv → y and y belongs to the closed orbit of v under
F [d+1]. By distality, this last property implies that v belongs to the closed orbit of y. Since Q[d+1]
is closed and invariant under F [d+1], we have that y ∈ Q[d+1] if and only if v ∈ Q[d+1]. �
Corollary 4.3. Let (X,T ) be a minimal distal system and let d � 1 be an integer. Let x, y ∈ X.
Then (x, y) ∈ RP[d] if and only if (y, x, x, . . . , x) ∈ Q[d+1] = K[d+1](y).

Proof. For a∗ ∈ X
[d]∗ , apply the preceding corollary with b∗ = (a∗, x,a∗) and use Lem-

ma 3.3. �
The combination of the previous corollaries allows to prove that each coordinate in a paral-

lelepiped of Q[d] can be replaced by another point that is regionally proximal of order d with it
and the resulting point is still a parallelepiped.
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We finish with a comment about the regionally proximal relation of order d . In [16], McMa-
hon (see also Auslander [1, Corollary 10, Chapter 9]) proves that in the definition of the re-
gionally proximal relation, the point x′ (see Definition 3.2 with d = 1) can be taken to be x.
The same result can be stated for the regionally proximal relation of order d in the distal
case. In fact, a similar argument to the one used to prove Lemma 3.3 allows us to show that:
(x, y, . . . , y) ∈ Q[d+1] = K[d+1](x) if and only if for any δ > 0 there exist y′ ∈ X and a vector
n = (n1, . . . , nd) ∈ Z

d such that for any nonempty ε ⊂ [d]

d
(
y, y′) < δ, d

(
T n·εx, y

)
< δ, and d

(
T n·εy′, y

)
< δ.

4.4. Summarizing

4.4.1. We show that the second property in Theorem 1.2 implies the first one. Assume that
the transitive system (X,T ) satisfies the second property. By Corollary 3.2, the system is distal.

If x,y ∈ Q[d+1] agree on all coordinates other than the coordinate indexed by ∅, then x = y by
Corollary 4.2. By permutation of coordinates we deduce that the first property of Theorem 1.2 is
satisfied.

The first two properties of this theorem are thus equivalent. From the above discussion, Propo-
sition 1.1 follows: these properties mean that the relation RP[d] is trivial.

4.4.2.

Proposition 4.5. Let (X,T ) be a minimal distal system and let d � 1 be an integer. Then the
relation RP[d] is a closed invariant equivalence relation on X.

The quotient of X under this equivalence relation is the maximal factor of order d of X.

The second statement means that this quotient is a system of order d and that every system of
order d which is a factor of X is a factor of this quotient.

Proof. In order to prove the first statement, we are left with showing that the relation is tran-
sitive. Assume that (x, y) and (y, z) ∈ RP[d]. By Corollary 4.3 applied to the pair (x, y),
(y, x, x, . . . , x) ∈ Q[d+1]. By Corollary 4.2 applied to the pair (y, z), (z, x, x, . . . , x) ∈ Q[d+1]
and by Corollary 4.3 again, (x, z) ∈ RP[d].

We show now the second part of the proposition. Let Y be the quotient of X under the
equivalence relation RP[d] and let φ denote the factor map. Let (a, b) ∈ RP[d](Y ). Then
(a, b, b, . . . , b) ∈ Q[d+1](Y ). By Lemma 3.1, there exists x ∈ Q[d+1](X) satisfying φ[d+1](x) =
(a, b, b, . . . , b).

Write x∅ = x and x00...01 = y. For every ε �= ∅, φ(xε) = b = φ(y). Thus (xε, y) ∈ RP[d](X).
Using Corollary 4.3 and Corollary 4.2, we can replace xε by y in x and obtain an element of
Q[d+1](X). Doing this for all ε �= ∅, we have that (x, y, y, . . . , y) ∈ Q[d+1](X). By Corollary 4.3,
this means that (x, y) ∈ RP[d](X). Thus that φ(x) = φ(y) and so a = b.

Let W be a system of order d and let ψ :X → W be a factor map. Take Y and φ as above and
let x, y ∈ X. If φ(x) = φ(y), then (x, y) ∈ RP[d](X). Thus by Corollary 3.1, (ψ(x),ψ(y)) ∈
RP[d](W) and thus ψ(x) = ψ(y). �

4.4.3. In order to complete the proofs of Theorems 1.2 and 1.3, we are left with showing
that the notions of a system of order d and an inverse limit of d-step minimal nilsystems are
equivalent.
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In one direction, a result from Appendix B of [13], translated into our current vocabulary,
states that a d-step minimal nilsystem is a system of order d . This property easily passes to
inverse limits, and so we have:

Proposition 4.6. Let (X,T ) be an inverse limit of minimal (d − 1)-step nilsystems and let d � 2
be an integer. Then (X,T ) is a system of order d − 1.

We are left with showing the converse, which is:

Theorem 4.1. Assume that (X,T ) is a transitive system of order d − 1. Then it is an inverse limit
of (d − 1)-step minimal nilsystems.

We recall that the hypothesis of this theorem means that if x,y ∈ Q[d] have 2d −1 coordinates
in common, then x = y. In particular, this implies that the system is distal and minimal.

The proof of this theorem is carried out in the next two sections.

5. Ergodic preliminaries

The result of Theorem 4.1 is established in the next section using invariant measures on X. In
this section, we summarize the background material and give some preliminary results.

5.1. Inverse limits of nilsystems

A measure preserving system is defined to be a quadruple (X, B,μ,T ), where (X, B,μ) is a
probability space and T :X → X is a measure preserving transformation. In general, we omit the
σ -algebra B from the notation and write (X,μ,T ).

Throughout, we make use both of the vocabulary of topological dynamics and of ergodic
theory, leading to possible confusion. In general, it is clear from the context whether we are
referring to a measure preserving system or a topological system, and so we just refer to either
as a system. Topological factor maps were already defined. We recall that an ergodic theoretic
factor map between the measure preserving systems (X,μ,T ) and (X′,μ′, T ) is a measurable
map π :X → X′ (defined almost everywhere), mapping the measure μ to μ′ and commuting
with the transformations (almost everywhere). If the map π is invertible (almost everywhere),
we say that the two systems are isomorphic.

Inverse limits of nilsystems in the topological sense were discussed in Section 2.3. We make
this notion precise in the measure theoretic sense, in this case also we consider only sequential
inverse limits. A d-step nilsystem (X,T ), endowed with its Haar measure μ, is ergodic if and
only if (X,T ) is a minimal topological system; in this case, μ is its unique invariant measure.
Therefore, every inverse limit (in the topological sense) of d-step minimal nilsystems is uniquely
ergodic.

Now, let (X,μ,T ) = lim←−(Xj ,μj , Tj ) be an inverse limit in the ergodic theoretic sense of a
sequence of d-step ergodic nilsystems. Recall that each nilsystem (Xj ,T ) is endowed with its
Borel σ -algebra and μj its Haar measure. This means that for every j ∈ N, there exist ergodic
theoretic factor maps πj : (Xj+1,μj+1, T ) → (Xj ,μj , T ) and pj : (X,μ,T ) → (Xj ,μj , T )

satisfying πj ◦ pj+1 = pj for every j such that the Borel σ -algebra B of X is spanned by the
σ -algebras p−1(Bj ), where Bj denotes the Borel σ -algebra of Xj .
j



120 B. Host et al. / Advances in Mathematics 224 (2010) 103–129
Every ergodic theoretic factor map between ergodic nilsystems is equal almost everywhere
to a topological factor map. A short proof of this fact is given in Appendix A (Theorem A.1).
Therefore, the factor maps πj in the definition of an inverse limit (in the ergodic sense) can
be assumed to be topological factor maps. It follows that (X,μ,T ) can be identified with the
topological inverse limit.

This allows us, in the sequel, to not distinguish between the notions of topological and ergodic
theoretic inverse limits of d-step ergodic nilsystems.

5.2. Ergodic uniformity seminorms and nilsystems

Let (X,μ,T ) be an ergodic system. For points in X[d] and transformations of these spaces
we use the same notation as in the topological setting. In Section 3 of [10], a measure μ[d] on
X[d] and a seminorm ||| · |||d on L∞(μ) are constructed.

We recall the properties of these objects:

Proposition 5.1. Assume (X,μ,T ) is an ergodic system and that d � 1 is an integer.

(1) The measure μ[d] is invariant and ergodic under the action of the group G[d].
(2) Each one-dimensional marginal of μ[d] is equal to μ and each of its two-dimensional

marginals (meaning the image under the map x �→ (xε, xθ ) for ε �= θ ⊂ [d]) is equal to
μ × μ.

(3) If p : (X,μ,T ) → (Y, ν, T ) is a factor map then, ν[d] is the image of μ[d] under the map
p[d] :X[d] → Y [d].

For every f ∈ L∞(μ), the d-th seminorm |||f |||d of f is defined by

|||f |||2d

d =
∫ ∏

ε⊂[d]
f (xε) dμ[d](x). (4)

We have that:

Lemma 5.1. Assume that (X,μ,T ) is an ergodic system and let d � 1 be an integer.

(1) For every f ∈ L∞(μ), | ∫ f dμ| � |||f |||d .
(2) If p : (X,μ,T ) → (Y, ν, T ) is a factor map, then |||f |||d = |||f ◦ p|||d for every function

f ∈ L∞(ν).

We summarize some of the main results of [10]:

Theorem 5.1. Assume that (X,μ,T ) is an ergodic system and that d � 1 is an integer. The
following properties are equivalent:

(1) (X,μ,T ) is measure theoretically isomorphic to an inverse limit of (d − 1)-step ergodic
nilsystems.

(2) ||| · |||d is a norm on L∞(μ) (equivalently |||f |||d = 0 implies that f = 0).
(3) There exists a measurable map J :X[d]∗ → X such that x∅ = J (xε : ∅ �= ε ⊂ [d]) for μ[d]-

almost every x ∈ X[d].
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Using these properties, it follows that any measure theoretic factor of an inverse limit of
(d −1)-step nilsystems is isomorphic in the ergodic theoretic sense to an inverse limit of (d −1)-
step nilsystems.

Theorem 5.2. (See [10, Theorem 1.2].) Assume that (X,μ,T ) is an ergodic system, d � 1 is an
integer, and fε ∈ L∞(μ) for ∅ �= ε ⊂ [d]. The averages

1

Nd

∑
0�n1,...,nd<N

∏
ε⊂[d]
ε �=∅

fε

(
T n·εx

)
(5)

converge in L2(μ) as N → +∞.
Letting F denote the limit of these averages, we have that for every g ∈ L∞(μ),∫

g(x)F (x)dμ(x) =
∫

g(x∅)
∏

ε⊂[d]
ε �=∅

fε(xε) dμ[d](x). (6)

Lemma 5.2. Let (X,μ,T ), d , fε , ∅ �= ε ⊂ [d], and F be as in Theorem 5.2. Then

‖F‖L∞(μ) �
∏

ε⊂[d]
ε �=∅

‖fε‖L2d−1(μ)
.

Proof. Let g ∈ L∞(μ) and choose a function h with h2d−1 = g. By (6) and the Hölder Inequal-
ity,

∣∣∣∣ ∫ gF dμ

∣∣∣∣ �
( ∏

ε⊂[d]
ε �=∅

∫ ∣∣h(x∅)fε(xε)
∣∣2d−1

dμ[d](x)

)1/2d−1

.

Since each two-dimensional marginal of μ[d] is equal to μ × μ, this can be rewritten as

( ∏
ε⊂[d]
ε �=∅

∫ ∣∣h(x)fε(y)
∣∣2d−1

dμ(x)dμ(y)

)1/2d−1

= ‖g‖L1(μ)

∏
ε⊂[d]
ε �=∅

‖fε‖L2d−1(μ)

and the result follows. �
5.3. Dual functions

Here again, (X,μ,T ) is an ergodic system. Following the notation and terminology of [13],
for every f ∈ L∞(μ), the limit function

lim
N→+∞

1

Nd

N−1∑ ∏
f

(
T n·εx

)
(7)
n1,...,nd=0 ∅�=ε⊂d
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is called the dual function of order d of f and is written Ddf . It is worth noting that Ddf is only
defined as an element of L2(μ), and thus is defined almost everywhere.

By (6) and (4), for every f ∈ L∞(μ) we have that∫
f Ddf dμ = |||f |||2d

d . (8)

It follows from Lemma 5.2 that:

Lemma 5.3. If (X,μ,T ) is an ergodic system and d � 1 is an integer, then for every f ∈ L∞(μ):

‖Ddf ‖L∞(μ) � ‖f ‖2d−1
L2d−1(μ)

.

Moreover, the map Dd extends to a continuous map from L2d−1(μ) to L∞(μ).

We remark that if 0 � f � g, then 0 � Ddf � Ddg.

Lemma 5.4. If (X,μ,T ) is an ergodic system and d � 1 is an integer, then for every A ⊂ X we
have Dd1A(x) > 0 for μ-almost every x ∈ A.

Proof. Let B = {x ∈ A: Dd1A(x) = 0}. By part (5.1) of Lemma 5.1 and (8), since Dd1B �
Dd1A we have that

μ(B)2d � |||1B |||2d

d =
∫
B

Dd1B(x)dμ(x) �
∫
B

Dd1A(x)dμ(x) = 0.

Thus μ(B) = 0. �
Using the definition (7) of the dual function, we immediately deduce:

Lemma 5.5. Let p : (X,μ,T ) → (X′,μ′, T ) be a measure theoretic factor map. For every
f ∈ L∞(μ′) we have (Ddf ) ◦ p = Dd(f ◦ p).

Using Theorem 5.2, we deduce that:

Lemma 5.6. Let (X,T ) be a minimal topological dynamical system and μ be an invariant er-
godic measure on X. Then the measure μ[d] is concentrated on the subset Q[d] of X[d].

Proof. By Theorem 5.2, the measure μ[d] is a weak limit of averages of Dirac masses at points
of the form (T n·εx: ε ⊂ [d]) for n ∈ Z

d and x ∈ X. Since all of these points belong to Q[d], the
measure μ[d] is concentrated on this set. �
Lemma 5.7. Let (X,T ) be a minimal system of order d − 1 and let μ be an invariant ergodic
measure on X. Let dX denote a distance on X defining the topology of this space and for ev-
ery x ∈ X and r > 0, let B(x, r) denote the ball centered at x of radius r with respect to the
distance dX . Then for every η > 0, there exists δ > 0 such that for every x ∈ X, Dd1B(x,δ) = 0
μ-almost everywhere on the complement of B(x,η).
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Proof. By definition of a system of order d − 1, the last coordinate of an element of Q[d] is a
function of the other ones. Using the symmetries of Q[d], we have that the same property holds
with the first coordinate substituted for the last one. Therefore, writing Q[d]∗ for Q[d] without the
first coordinate, there exists a map J : Q[d]∗ → X such that for every x ∈ Q[d],

x∅ = J
(
xε : ε ⊂ [d], ε �= ∅)

.

The graph of this map is the closed subset Q[d] of Q[d]∗ × X and thus is continuous.
Fix η > 0. Since J is uniformly continuous and satisfies J (x, . . . , x) = x for every x, there

exists δ > 0 such that for every x ∈ X, the set(
X \ B(x,η)

) × B(x, δ) × · · · × B(x, δ)

has empty intersection with Q[d]. Thus by Lemma 5.6 it has zero μ[d]-measure. By Theorem 5.2
and the definition of Dd1B , we have that∫

1X\B(x,η)Dd1B(x,δ) dμ = 0. �
5.4. Systems with continuous dual functions

It is convenient to give a name to the following, although we only make use of it within proofs:

Definition 5.1. Let (X,T ) be a minimal system and let μ an ergodic invariant measure on X.
We say that (X,T ,μ) has property P (d) if whenever fε , ∅ �= ε ⊂ [d], are continuous functions
on X, the averages (5) converge everywhere and uniformly.

If this property holds, then in particular, for every continuous function f on X, the aver-
ages (7) converge everywhere and uniformly for every continuous function f on X. The limit
of these averages coincides almost everywhere with the function Ddf defined above and so we
also denote it by Ddf .

Proposition 5.2. Let (X,T ) be an inverse limit of minimal (d − 1)-step nilsystems and let μ be
the invariant measure of this system. Then (X,μ,T ) has property P (d).

Proof. Assume first that (X,μ,T ) is a (d − 1)-step ergodic nilsystem. In [13] (Corollary 5.2),
the convergence of the averages (5) is shown to hold everywhere and this convergence is uniform
when the functions fε , ∅ �= ε ⊂ [d], are continuous.

Assume now that (X,μ,T ) is as in the statement. Every continuous function on X can be
approximated uniformly by a continuous function arising from one of the nilsystems which are
factors of X. By density, the result also holds in this case. �

We now establish some properties of systems with property P (d). We write C(X) for the
algebra of continuous functions on X. We always assume that C(X) is endowed with the norm
of uniform convergence.

By Lemma 5.3 and density:
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Lemma 5.8. Assume that the ergodic system (X,μ,T ) has property P (d).

• For every f ∈ L2d−1(μ), the function Ddf is equal μ-almost everywhere to a continuous
function on X, which we also denote by Ddf , called the dual function of f .

• The map f �→ Ddf is continuous from L2d−1(μ) to C(X).

Lemma 5.9. Let (X,μ,T ) be a system with property P (d), (Y,T ) be a minimal system,
p :X → Y a topological factor map, and ν be the image of μ under p. Then (Y,T , ν) has prop-
erty P (d).

Proof. Let fε , ∅ �= ε ⊂ [d], be continuous functions on Y . Then the averages

1

Nd

∑
0�n1,...,nd<N

∏
ε⊂[d]
ε �=∅

fε

(
T n·εp(x)

)

converge uniformly on X and thus the averages (5) converge uniformly on Y . �
6. Using a measure

In this section, we prove Theorem 4.1 which completes the proof of Theorem 1.2: any tran-
sitive system (X,T ) of order d − 1 is an inverse limit of (d − 1)-step minimal nilsystems. By
Corollary 3.2, (X,T ) is distal and thus is minimal. The method we use is completely different
from that used in [14] for d = 3, and proceeds by introducing an invariant measure on X.

We start by reducing the proof of Theorem 4.1 to the following:

Proposition 6.1. Let (X,T ) be a minimal system of order d − 1, μ be an invariant ergodic
measure on X, and let (Y,T ) be an inverse limit of minimal (d − 1)-step nilsystems with Haar
measure ν. Let Ψ : (Y, ν, T ) → (X,μ,T ) be a measure theoretic isomorphism. Then Ψ coincides
ν-almost everywhere with a topological isomorphism.

Proof of Theorem 4.1 (assuming Proposition 6.1). By Lemma 5.6, the measure μ[d] is con-
centrated on the subset Q[d] of X[d]. Since (X,T ) is a system of order d − 1, there exists a
continuous map J : Q[d]∗ → X such that

x∅ = J
(
xε : ε ⊂ [d], ε �= ∅)

for every x ∈ Q[d]

and so this property holds μ[d]-almost everywhere. (Again, Q[d]∗ denotes Q[d] without the first
coordinate.) By Theorem 5.1, (X,μ,T ) is isomorphic in the ergodic theoretic sense to an inverse
limit (Y, ν, T ) of (d − 1)-step ergodic nilsystems. By Proposition 6.1, (X,T ) and (Y,S) are
isomorphic in the topological sense and we are finished. �
6.1. Proof of Proposition 6.1

To prove Proposition 6.1, we start with a lemma:
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Lemma 6.1. Let (Y, ν, T ) be a system with Property P (d), (X,T ) be a minimal system of order
d − 1, μ be an invariant probability measure on X, and Ψ : (Y, ν, T ) → (X,μ,T ) be a mea-
sure theoretic factor map. Then Ψ agrees ν-almost everywhere with some topological factor
map.

Proof. We can assume that there exists a Borel invariant subset Y0 of full measure and that Ψ is a
Borel map from Y0 to X, mapping the measure ν to the measure μ and such that Ψ (T x) = T Ψ (x)

for every x ∈ Y0.
We claim that:

Claim 6.1. For every open subset U of X, there exists an open subset Ũ of Y equal to Ψ −1(U)

up to a ν-negligible set.

To see this, if (X,μ) is a probability space and A,B ⊂ X, write A ⊂μ B if μ(A \B) = 0. The
notations A ⊃μ B and A =μ B are defined similarly.

Assume that U �= ∅, as otherwise the claim holds trivially. Let x ∈ U . By Lemma 5.7 there
exists an open subset Wx containing x and included in U such that the set

Ux := {x ∈ X: Dd1Wx > 0}

satisfies

Ux ⊂μ U. (9)

Define

Ũx = {
y ∈ Y : Dd(1Wx ◦ Ψ )(y) > 0

}
.

By Lemmas 5.8 and 5.5, Ũx is an open subset of Y and

Ũx =ν Ψ −1(Ux).

We have that U is the union of the open sets Wx for x ∈ U . Since U is σ -compact, there exists
a countable subset Γ of U such that the union

⋃
x∈Γ Ux is equal to U . Define

Ũ =
⋃
x∈Γ

Ũx.

Then

Ũ =ν Ψ −1
( ⋃

x∈Γ

Ux

)
.

By (9), Ũ ⊂ν Ψ −1(U). By Lemma 5.4, for every x ∈ Γ we have that Ux ⊃μ Wx . Thus Ũx ⊃ν

Ψ −1(Wx) and
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Ũ ⊃ν

⋃
x∈Γ

Ψ −1(Wx) = Ψ −1
( ⋃

x∈Γ

Wx

)
= Ψ −1(U).

This completes the proof of the claim.

Claim 6.2. There exists an invariant subset Y1 of full measure such that the restriction of Ψ to
Y1 (endowed with the induced topology) is continuous.

To prove this claim, we let (Uj : j � 1) be a countable basis for the topology of X.
For every j � 1, by Claim 6.1 there exists an open subset Ũj of Y such that the symmetric

difference

Zj := ŨjΔΨ −1(Uj )

has zero ν-measure. Define

Y1 = Y0 \
⋃
n∈Z

⋃
j�1

T nZj .

(Recall that Y0 is the invariant subset of Y where the map Φ is defined.)
For every j � 1, Ψ −1(Uj ) ∩ Y1 = Ũj ∩ Y1. Every nonempty open subset U of X is the

union of some of the sets Uj , and if Ũ is the union of the corresponding sets Ũj we have that
Ψ −1(U) ∩ Y1 = Ũ ∩ Y1. This proves the claim.

We combine these results to complete the proof of Lemma 6.1. Since (Y,T ) is minimal, the
measure ν has full support in Y and the subset Y1 given by Claim 6.2 is dense in Y . Since (X,T )

is distal, the result now follows from Lemma 2.1. �
Using this, we return to the proposition:

Proof of Proposition 6.1. There exist a Borel invariant subset Y0 of Y of full measure, a Borel
invariant subset X0 of full measure, and a Borel bijection Ψ :Y0 → X0 with Borel inverse, map-
ping ν to μ and commuting with the transformations.

Recall that (X,T ) is a system of order d − 1 and that (Y, ν, S) satisfies property P (d). By
Lemma 6.1, there exist a subset Y1 of Y0 of full measure and a topological factor map Φ :Y → X

that coincides with Ψ on Y1.
By Lemma 5.9, (X,μ,T ) has property P (d). Recall that (Y,T ) is a system of order d − 1.

Using Lemma 6.1 again, there exist a subset X1 of X0 of full measure and a topological factor
map Θ :X → Y that coincides with Ψ −1 on X1.

The subset Y1 ∩ Ψ −1(X1) has full measure in Y and for y in this set, we have Θ ◦ Φ(y) = y.
Since the measure ν has full support, this equality holds everywhere and Θ ◦ Φ = IdY . By the
same argument, Φ ◦ Θ = IdX and we are done. �
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Appendix A. Rigidity properties of inverse limits of nilsystems

In this section, we assume that d > 1 is an integer and establish some “rigidity” properties of
inverse limits of (d − 1)-step nilsystems, meaning some continuity properties.

A property of nilsystems of this type (Theorem A.1) was used in Section 5.1 in the discussion
on the definition of inverse limits, and so the reader may be concerned about a possible vicious
circle in the argument. The way to avoid this is to first carry out the results in this section for
nilsystems, and not inverse limits of nilsystems. This suffices to establish the property needed in
Section 5.1. Then it is easy to check that the same proofs extend to the general case.

Throughout the remainder of this section, we assume that (X,T ) is an inverse limit of minimal
(d − 1)-step nilsystems and that μ is the invariant measure of this system. We recall that (X,T )

is a system of order d −1 and has property P (d) of continuity of dual functions (Proposition 5.2).
We first give a slight improvement of Lemma 5.7, maintaining the same notation:

Lemma A.1. For every x ∈ X and every neighborhood U of X, there exists a neighborhood V

of x such that if f is a continuous function on X whose support lies in V , then the support of the
function Ddf is contained in U .

Proof. Pick η > 0 such that the ball B(x,2η) is contained in U . Let δ be as in Lemma 5.7 and
let V = B(x, δ).

Assume that f ∈ C(X) has support contained in V and assume that |f | � 1. We have that
|Ddf | � Dd |f | � Dd1B(x,δ). By the choice of δ, Ddf is equal to zero almost everywhere on the
complement of B(x,η).

Since the function Ddf is continuous and since the measure μ has full support in X, Ddf

vanishes everywhere outside the closed ball B̄(x, η), which is included in U . �
Lemma A.2. If f is a nonnegative continuous function on X, then Ddf (x) > 0 for every x ∈ X

such that f (x) > 0.

Proof. It follows immediately from property P (d) that for every x ∈ X, there exists a probability
measure μ

[d]
x on X

[d]∗ such that

1

Nd

∑
0�n1,...,nd<N

∏
ε⊂[d]
ε �=∅

fε

(
T n·εx

) →
∫ ∏

ε⊂[d]
ε �=∅

fε(yε) dμ[d]
x (y∗)

as N → +∞ for any continuous functions fε , ∅ �= ε ⊂ [d], on X.
By construction, the measure δx × μ

[d]
x is concentrated on the closed orbit K[d](x) of the

point x[d] ∈ X[d] under the group of face transformations F [d], and is invariant under these
transformations. Since (X,T ) is distal, the action of these transformations on K[d](x) is minimal
and thus the topological support of the measure δx × μ

[d]
x is equal to K[d](x). Therefore, the

point x
[d]∗ ∈ X

[d]∗ belongs to the topological support of the measure μ
[d]
x .

If f is a nonnegative continuous function on X with f (x) > 0 then,

Ddf (x) =
∫ ∏

ε⊂[d]
f (yε) dμ[d]

x (y∗) > 0,
ε �=∅
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because the function in the integral is positive at the point x
[d]∗ which belongs to the support of

the measure μ
[d]
x . �

Lemma A.3. The algebra of functions spanned by {Ddf : f ∈ C(X)} is dense in C(X) under the
uniform norm.

Proof. By Lemmas A.1 and A.2, for distinct x, y ∈ X, there exists a continuous function f on X

with Ddf (x) �= Ddf (y). Recall that Ddf is a continuous function on X. Noting that Dd1 = 1,
the statement follows from the Stone–Weierstrass Theorem. �
Theorem A.1. Let p : (X,μ,T ) → (X′,μ′, T ′) be a measure theoretic factor map between in-
verse limits of (d − 1)-step ergodic nilsystems. Then the factor map p :X → X′ is equal almost
everywhere to a topological factor map.

Proof. Let A be a countable subset of C(X′) that is dense under the uniform norm. By Lem-
mas 5.8 and A.3, {Ddf : f ∈ A} is included in C(X′) and is dense in this algebra.

By Lemma 5.5, for every f ∈ A we have that Ddf ◦ p = Dd(f ◦ p) almost everywhere. By
Lemma 5.8, Dd(f ◦ p) is μ-almost everywhere equal to a continuous function on X. Therefore,
there exists X0 ⊂ X of full measure such that for every f ∈ A, the function (Ddf ) ◦ p coincides
on X0 with a continuous function on X. The same property holds for every function belonging to
the algebra spanned by A. Since X0 is dense in X, by density the same property holds for every
continuous function on X.

This defines a homomorphism of algebras κ : C(X′) → C(X) with κf (x) = f (p(x)) for every
x ∈ X0 and every f ∈ C(X′), and κ commutes with the transformations T and T ′. Thus there
exists a continuous map p′ :X → X′ such that κf = f ◦ p′ for all f ∈ C(X′). �
Theorem A.2. Let (X,T ,μ) be an ergodic inverse limit of (d −1)-step nilsystems, G be a Polish
group, and (g, x) �→ g · x be a Borel action of G on X by measure preserving transformations
commuting with T . There exists a continuous action (g, x) �→ g ∗ x of G on X, commuting
with T , such that for every g ∈ G, g ∗ x = g · x for μ-almost every x ∈ X.

By hypothesis, the map (g, x) �→ g · x is Borel from G × X to X. The action of G on X we
want must be such that the map (g, x) �→ g ∗ x is continuous from G × X to X.

Proof. By Theorem A.1, for every g ∈ G there exists a continuous map x �→ g ∗ x, commuting
with T and preserving the measure μ, such that g ∗ x = g · x for μ-almost every x ∈ X. For
g,h ∈ G, we have that for μ-almost every x ∈ X, g ∗ (h · x) = gh ∗ x. By density, the same
equality holds everywhere. Therefore, the map (g, x) �→ g ∗ x is an action of G on X. We are
left with showing that this map is jointly continuous.

Let f ∈ C(X). For g ∈ G, write fg(x) = f (g ∗ x). For each g ∈ G, the function fg is contin-
uous and the map x �→ g ∗ x commutes with T . By Proposition 5.2, Ddfg(x) = Ddf (g ∗ x) for
every x ∈ X.

For each g ∈ G, the functions fg and x �→ g · x are equal almost everywhere and repre-

sent the same element of L2d−1(μ). Since the action (g, x) �→ g · x of G on X is Borel and
measure preserving, by [3] we have that the map g �→ fg is continuous from G to L2d−1(μ).
By Lemma 5.3, the map g �→ Ddfg is continuous from G to C(X), meaning that the function
(g, x) �→ Ddfg(x) = Ddf (g ∗ x) is continuous on G × X.
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By density (Lemma A.3), for every function h ∈ C(X), the function (g, x) �→ h(g ∗ x) is con-
tinuous on G × X. We deduce that the map (g, x) �→ g ∗ x is continuous from G × X to X. �
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