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a b s t r a c t

This study deals with a modeling approach that integrates shear and flexure interaction to predict the re-
sponse of reinforced concrete squatwalls. Themodel incorporates RC panel behavior into a displacement-
based column model by prescribing the average horizontal strain, at different wall heights, which is cal-
ibrated using a 2D finite element formulation model (2D-FEM) that incorporated identical RC panel be-
havior. Experimental evidence shows relatively good correlation of the maximum and distribution over
the wall height of the average horizontal strain prediction, with drift variation. The model shear strength
was also compared to a database of 252 specimens, resulting in an average ratio of the predicted over the
experimental shear strength (Vmodel/Vexp) of 1.13 for all the cases, with a coefficient of variation of 0.25,
indicating a reasonably good correlationwith the tests results. A sensitivity study indicates that themodel
strength prediction ratio, that is, the model over the experimental strength value, is almost nil sensitive
to the vertical and horizontal web reinforcement strength ratio, as well as the longitudinal boundary re-
inforcement strength ratio, cross-sectional shape (rectangular or enlarged section), boundary condition
(cantilever or fixed-end condition) and the axial load level supporting the reliability of the model.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Walls are commonly used in structural configurations that re-
quire strong and stiff elements. In low-rise constructions or in long
walls with perforations for window and door openings, short or
squat walls (with aspect ratios typically less than 1.5) are found.
Current design approaches, such as ACI 318-08 (Section 21.9) [1],
promote a seismic design that prevents shear failure, in favor of
a more ductile behavior like, flexural failure. When short or squat
walls are considered, applied shear forces tend to control the wall
response over applied moments, which explains common shear
cracking or shear failure in these types of elements. In such cases,
to promote flexural yielding, shear strength prediction becomes
significant. On the other hand, in structural buildings the distri-
bution of forces also necessitates a reasonable estimate of element
stiffness values, as is also the case for structural walls. Therefore, a
model capable of accurately determining strength and stiffness is
desirable in design.
Although separating the flexural and shear behaviors is com-

mon practice, experimental evidence revealed that flexural and
shear deformation interaction exists even for relatively slender
walls dominated by flexural yielding (aspect ratio of three to four),
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resulting in nonlinear shear deformations contributing to approxi-
mately 10% of the roof level lateral displacement, andwith an even
higher degree of lateral displacement contribution at the plastic
hinge zone [2].
The simplicity of formulating a column-type element, such as a

displacement-based elementmakes it more suited to system stud-
ies, and therefore for implementation in computational platforms,
which engineers could use to model and design structural walls.
Thus, a simple, column-type modeling approach capable of incor-
porating shear–flexure interaction, originally calibrated for a lim-
ited number of wall tests, is generalized within a wide range of
wall parameter values using analytical results from a 2D finite el-
ement formulation (2D-FEM). The overall load–displacement re-
sponse is compared with selected experimental results. Themodel
lateral strength is also compared with a large database of 252 wall
specimens.

2. Research significance

Low aspect ratio reinforced concrete walls are common in low-
rise and perforated wall-type construction. Accurate modeling of
the load vs. deformation response and particularly the capacity es-
timation of wall elements are essential in wall design. A column-
type model that captures coupling of shear–flexure behavior is
calibrated using expressions obtained by a 2D-FEMmodel utilizing
identical material properties, and model results are validated by
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Fig. 1. Element models: (a) MVLEM element, (b) Coupledmodel element—Shear–flexure interactionmodel, (c) RC panel model (fiber or strip level)—Strain field to resultant
stress field, (d) Shear–flexure interaction—Wall model and (e) 2D-FEM—Wall model.
comparison with test results from heavily instrumented wall seg-
ments. Strength predictions, based on the calibrated column-type
model, are obtained for a database collected from the literature,
resulting in good agreement with experimental evidence.

3. Model description and background

Experimental evidence showed that even for relatively slender
wall specimens, shear displacement components provide a much
larger and nonlinear contribution than do traditional estimations,
using elastic shear response [3,4].Models that combine flexure and
shear can introduce nonlinearity in the shear component, captur-
ing the experimental evidence. An analytical model that combines
flexural and shear responses was proposed by Massone et al. [3,5]
based on the framework proposed by Petrangeli et al. [6]. The
model originally verified for slender elements has also successfully
predicted the response of short walls [4,5], although such findings
have been validated only for a limited number of specimens. The
model formulation, based on a fiber model (e.g., Multiple Vertical
Line Element Model, MVLEM [7,8], Fig. 1(a)), involves modifying
the traditional uniaxial fiber element by assigning a shear spring to
each fiber of the macro-element (Fig. 1(b)). Each modified fiber is
then treated as an RC panel element, subjected to in-plane uniform
normal and shear stresses (Fig. 1(b)), resulting in the interaction
between flexure (contribution of normal/longitudinal stresses)
and shear. To represent constitutive panel behavior, a rotating-
angle modeling approach such as the Modified Compression Field
Theory (MCFT [9]) or the Rotating-Angle Softened-Truss-Model
(RA-STM [10]), among other models, can be used. An adaptation
of the RA-STM is used in the present study.
For each fiber, based on the constitutive RC panel element, a

uniaxial constitutive stress–strain model for concrete is applied
along the principal directions to obtain the stress field, assuming
that the principal stress and strain directions coincide (Fig. 1(c)).
The constitutive relationship employed in the analytical model
for concrete considers the effects of biaxial compression softening
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(reduction in the principal compressive stresses in concrete due
to tensile strains in the orthogonal direction), and tension stiff-
ening (average post-peak tensile stresses in concrete due to the
bonding of concrete and reinforcing steel between the cracks). To
incorporate the tension stiffening effect into the stress–strain char-
acteristic of concrete, the stress–strain relationship proposed by
Belarbi and Hsu [11] is implemented. To describe the stress–strain
behavior of concrete in compression, the Thorenfeldt-based curve
is calibrated [12,13] and updated by introducing the compres-
sion softening parameter proposed by Vecchio and Collins [14].
Reinforcement steel is represented using a uniaxial constitutive
stress–strain model along the longitudinal direction of the bars
(parallel to x or y directions), assuming perfect bonding between
steel and concrete. The reinforcement is modeled using the Mene-
gotto and Pinto model [15], with a softened transition between
the initial and post-yield asymptotes accounting for the effects
of tension stiffening, that is, softening of the average (smeared)
stress–strain relationship of reinforcing bars embedded in concrete
(due to concentration of strains in the steel, at crack locations) [11].
More details on the model and material properties are presented
elsewhere [3,4].
At the macro-element level, the longitudinal normal (axial)

strain (εy) and shear distortion (γxy) components are determined
from the six prescribed degrees of freedom (ux, uy and θ at both
ends of the model element) assuming that the shear strain is uni-
form along the section and that the plane sections remain plane
(Fig. 1(b)). The horizontal or transverse normal strain within each
strip or fiber (εx) is estimated to complete the definition of the
strain field, thus determining the stresses and forces from the
constitutive material relationships and geometric properties (di-
mensions and reinforcement and concrete areas for each strip). The
unknown quantity εx is numerically solved to achieve the horizon-
tal equilibrium for a given resultant transverse normal stress, σx
(resultant of horizontal normal stress components in concrete and
reinforcing steel). Or, as dealtwith in this study, the horizontal nor-
mal strains are known (prescribed by a calibrated expression), and
therefore this iteration is not necessary. The assembly of several
elements stacked one over the other allows wall modeling (e.g.,
Fig. 1(d) for a cantilever wall with a top lateral load).
Studies byMassone et al. [3,5] revealed that assuming zero hor-

izontal normal strain (εx = 0), which may be appropriate for wall
specimens with large top and bottom pedestals that constrain lat-
eral expansion, or assuming zero resultant horizontal normal stress
(σx = 0) along the entire wall height, which is consistent with
boundary conditions at the sides of a wall with no horizontal loads
applied over its height, are not capable of correctly reproducing the
experimental responses observed in walls with low shear span-
to-depth ratios (lower than 0.5). However, the use of an experi-
mentally calibrated expression for the average horizontal normal
strain (εx) along with a rotational spring to incorporate the rein-
forcing bar extension within the pedestals resulted in good predic-
tions of lateral force vs. displacement, as well as the contribution
of flexure and shear to the top displacement [5]. Such calibration,
validated for only a limited number of specimens, cannot neces-
sarily be extended to other specimens with different geometrical
and material properties, and a different experimental setup. The
following section describes the calibration of the average horizon-
tal normal strain (εx) for a variety of test parameters based on a
2D-FEM formulation utilizing the same RC panel material model
as the shear–flexure interaction model.

4. Analytical model calibration

To calibrate an average horizontal normal strain to fully com-
plete the strain field of the shear–flexure interaction model, a con-
ventional 2D finite element model (2D-FEM) is formulated. In this
study, the wall element is discretized in a series of 4-node rect-
angular elements that are connected to each other. The 4-node el-
ements use linear interpolation between the nodal displacements
and consider reduced integration (one Gauss point at element cen-
troid). The 2D-FEM and shear–flexure interaction models require
constitutive laws for the reinforced concrete units, that is, for the
4-node elements and the fibers, respectively. Therefore, for model
consistency, the 4-node elements are characterized by the same
material models (RC panel behavior) used for the fibers in the
shear–flexure interaction model (column-type model); however,
in the 2D-FEM case, the horizontal normal strain (εx) is part of the
equilibrium equations, and therefore no assumptions are required.
The 2D-FEM incorporated the traditional boundary conditions

observed for wall tests. Wall specimens are commonly tested un-
der either cantilever condition with a top lateral load, or a double
curvature (or zero-end rotation condition) applying a lateral load
at specimen mid-height and transferring the load using frames to
provide identical moments at both specimen ends (with different
sign), or simply applying a lateral load and axial loads to provide
the required end moment, resulting in a zero rotation condition at
the wall ends. Wall specimens are also generally free to move ver-
tically for a prescribed axial load. To reproduce the boundary con-
ditions, the model was discretized in eight (8) vertical and eight
(8) horizontal panels (e.g., Fig. 1(e) for cantilever wall with top lat-
eral load). Further refinement did not modify the overall response
significantly. All the nine nodes at wall bottom endwere fixed ver-
tically and horizontally, whereas the top nine nodes were forced
to move the same prescribed top displacement laterally, assum-
ing there is a constraining effect from the top pedestal. The verti-
cal displacement of the top nodes was differentiated depending on
the boundary condition: for cantilever specimens, the vertical dis-
placement moved assuming that the section, which was originally
plane, remains plane giving the large rigidity of the top pedestal;
and for the double curvature specimens the vertical displacement
was set identical for all the nodes.
The model response was analyzed for different parameters,

such as: aspect ratio (hw/`w), vertical web distributed reinforce-
ment ratio (ρwv), horizontal web distributed reinforcement ratio
(ρwh), longitudinal boundary reinforcement ratio (ρb), axial load
(N), compressive strength of concrete (f ′c ) and yield strength of
steel (fy). An average horizontal normal strain (εx) was obtained
at each vertical level by summing the horizontal expansion contri-
bution of all the eight horizontal panel elements and averaged over
the wall length. A preliminary analysis revealed that the impact of
the material properties (f ′c varying between 30 and 50 MPa, and fy
varying between 280 and 420MPa) over εxwas less important than
the other parameters (maximum strain values in average varied
about 5% and 10% for the extreme values of thematerial properties
of steel and concrete, respectively) given the relatively small range
of material property values. For the remaining parameters, a wide
range of parameter values was used (hw/`w = 1.4, 0.33; ρwh =
0, 1%; ρwv = 0, 1%; ρb = 1, 6%; N = 0, 0.3f ′cAg , where Ag corre-
sponds to the wall cross-sectional area) resulting in 131 cases for
analysis, for each boundary condition (262 total cases).
The model results revealed that the average horizontal normal

strain (εx) reaches its maximum value at wall mid-height in the
case of double curvature walls, and normally at a relatively lower
location for cantilever walls. The magnitude of the maximum εx
also increases with the lateral top displacement, which is also
considered for the analysis, in terms of drift (δ), that is, the lateral
top displacement (∆) over the height of the wall (δ = ∆/hw). All
the parameters were incorporated in the analysis by formulating
the equation εx = εx0 (param1)α1 · · · (paramN)αN such that,
after applying the least square method, the unknown variables
are uniquely determined. Regarding double curvature walls, the
calibrated expression for the maximum εx, for the most decisive
parameters, becomes:
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1)
εx,max = 0.0033 (100ρh + 0.25)−0.53
(
hw
`w
+ 0.5

)0.47 (100N
f ′cAg

+ 5
)0.25
· (100δ)1.4 . (

Box I.
The maximum εx value occurs at wall mid-height (εx,max =
εx (hw/2)), whereas the horizontal strain tends to reduce to zero
at the wall top and the bottom ends. Although the shape of the
average horizontal strain along the height is not the same for all
prescribed top lateral displacement, in this study such variation is
ignored. Another best-fit analysis is performed, but in this instance
a sine function is considered to better represent the average
horizontal strain profile, resulting in the following expression,

εx (y)
εx,max

= sin0.75
(
y
hw
π

)
(2)

where εx(y) is the average horizontal strain at a specific position
(level) along the wall height, y is the distance from that specific
position to the bottom boundary of the wall, and hw is the wall
height.
In the case of cantilever walls, the maximum horizontal strain

tends to move towards the bottom of the wall (y < hw/2),
where the bending moment reaches its maximum value. On an
average, the location of maximum horizontal strain occurs at y =
0.38hw , which also varies with drift. Such variation is neglected
for simplicity. In this case, the maximum horizontal strain is
characterized by,

εx,max = 0.0055 (100ρh + 0.25)−0.44 · (100δ)1.4 . (3)

The same shape is selected in this case to characterize the horizon-
tal strain distribution over the wall height, although themaximum
is no longer atwallmid-height. Thus, the expression ismodified as,

εx (y)
εx,max

=


sin0.75

(
y

0.76hw
π

)
0 ≤ y ≤ 0.38hw

sin0.75
(
(y+ 0.24hw)
1.24hw

π

)
0.38hw < y ≤ hw.

(4)

Asmentioned prior, the calibration of the average horizontal strain
was performed for a wide range of parameters. However, only
a few of them were considered to better represent a character-
istic equation for the horizontal strain. Thus, analytical calibra-
tion is not intended to obtain an exact or unique expression, but
rather a simple, verifiable term. A reasonable estimate of the av-
erage horizontal strain was observed [5] to improve the response
of the shear–flexure interaction model, even if several assump-
tions are maintained (e.g., uniform shear strain across the section).
Further refinement of an average horizontal strain expression
might not necessarily considerably improve the model vs. test re-
sponse agreement, while maintaining the model assumptions.
In the next two sections, the analytically derived horizontal

strain expression is compared with experimental data, as well
as the overall response of the walls predicted using the 2D-FEM
model in order to validate it.

5. Experimental verification—double curvature tests

Relatively few tests have been instrumented to determine
among other things, the average horizontal strain, and therefore
only limited information can be included in this section. The speci-
mens describedhere, are all testedunder the double curvature con-
dition having an aspect ratio of about one Box I, and correspond to
only a small group of thewide range ofwall parameters considered
for the model calibration.
5.1. Specimen description and instrumentation

The experimental program carried out at UCLA [4,16] involved
testing of 14, lightly reinforced wall pier (WP) and wall spandrel
specimens (WS), with dimensions, reinforcement configurations,
and material properties selected to represent perimeter wall seg-
ments constructed in California, approximately between 1940 and
1970, which included some specific features observed in older
buildings. The spandrel specimens were 152 cm tall, 152 cm long,
and 15 cm thick, and the piers were 122 cm tall, 137 cm long, and
15 cm thick with a shear span-to-depth ratio (M/(Vlw)) of 0.5 and
0.44, respectively. The shear span-to-depth ratio (M/(Vlw)) is used
in this publication to characterize boundary condition effect, such
as cantilever walls (zero-end moment condition) or walls under
double curvature (zero-end rotation condition), that would reflect
the impact of shear in the cases of walls with identical aspect ra-
tio, but different boundary condition. The specimens were tested
under the double curvature condition, keeping the bottom and top
rotations fixed. The reinforcing steel ratios of the specimens dis-
tributed in longitudinal and transverse directions (ρl and ρt ), the
corresponding boundary reinforcement ratio (ρb), and the axial
load levels applied on the specimens during the tests, as well as
other specimen characteristics are presented in Table 1 (selected
specimens are shown). Four and three test groups, with two iden-
tical (companion) specimens in each group, were tested for the
wall spandrel (WS) and wall pier (WP) specimen configurations,
respectively.
Each test specimen was provided with a very detailed set of

instrumentation for post-test studies on model development and
validation. DC-LVDTs (DC-excited linear variable differential trans-
ducer, referred to as DCDTs) were mounted on the specimens to
provide measurements of average deformations at specified loca-
tions, to assess, for example, the contribution of shear and flexural
deformations to the relative lateral displacement over the speci-
men height. The average horizontal strain was determined at nine
locations: two of them at wall top and bottom ends, and the re-
maining seven uniformly distributed along the wall height. In this
study, only tests 1 to 9 are considered for the analysis, as they in-
cluded the required instrumentation andwere tested under a com-
mon protocol. A detailed description of the experimental program
and results can be found elsewhere [4,16].

5.2. Load vs. top displacement response

To validate the 2D-FEM model, the overall load vs. displace-
ment response has been studied. All the nine cases are considered
and the overall response is estimated for them all. An earlier work
showed that the rebar extension (strain penetration) within the
pedestal could influence the response prediction, due to the ad-
ditional flexibility of this effect [5]. An estimated top displacement
was removed from the experimental top lateral displacement as
explained byMassone et al. [5], based on cumulative displacement
as strain penetrates into the pedestal and sectional analysis. Such
corrections generally resulted in about 10% reduction of the top
displacement at peak lateral force.
Fig. 2 shows the overall lateral force vs. lateral top displacement

for test 1 and test 6 for the 2D-FEM model and experimental
results. Regarding the experimental results, an envelope of all the
cycles is shown. Analysis is performed until significant degradation
is observed, because damage localization could result in an
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Table 1
Properties of wall specimens.

Test
no.

tw
(cm)

lw
(cm)

hw
(cm)

Reinforcement Axial load Material properties Shear strength

ρt
(%)b

ρl
(%)b

Boundary N/Ag f ′c
(%)

f ′c
(MPa)

fy, φ13a
(MPa)

fy, φ16a
(MPa)

Vn,exp
(kN)

Vn,2D-FEM
(kN)

Vn,2D-FEM
Vn,exp

Rebara ρb(%)

test1 15.2 152 152 0.278 0.428 4-φ16 3.12 0 25.5 424.0 448.2 633 623 0.98
test4 15.2 152 152 0.278 0.428 4-φ16 3.12 0 43.7 424.0 448.2 749 749 1.00
test2 15.2 152 152 0.278 0.400 1-φ13+ 1-φ16 1.70 0 31.4 424.0 448.2 453 538 1.19
test3 15.2 152 152 0.278 0.400 1-φ13+ 1-φ16 1.70 0 31.0 424.0 448.2 491 536 1.09
test9 15.2 137 122 0.278 0.227 2-φ13 1.33 0 29.9 424.0 – 404 443 1.10
test7 15.2 137 122 0.278 0.227 2-φ13 1.33 5 31.9 424.0 – 648 634 0.98
test8 15.2 137 122 0.278 0.227 2-φ13 1.33 5 32.0 424.0 – 682 634 0.93
test5 15.2 137 122 0.278 0.227 2-φ13 1.33 10 28.3 424.0 – 753 706 0.94
test6 15.2 137 122 0.278 0.227 2-φ13 1.33 10 31.4 424.0 – 819 753 0.92

AVG 1.01
STD 0.09

Conversion factors: 1 cm= 0.394 in., 1 kN= 0.225 kips, 1 MPa= 0.145 ksi.
a Ribbed φ13 (13 mm diameter)= US #4; ribbed φ16 (16 mm diameter)= US #5.
b All reinforcement bars were φ13.
Fig. 2. Load vs. top displacement: (a) Test 1, and (b) Test 6.
inaccurate post-peak response. The analytical result recovers the
general shape of the test results, that is, the initial stiffness and
strength. All other specimens reveal similar trends (not shown).
In Table 1, the shear capacity estimate (Vn,2D-FEM) is compared
with the average (positive and negative directions) experimental
shear capacity (Vn,exp), indicating that generally a difference lower
than 10% exists between the prediction and the experimental
observation, and that the Vn,2D-FEM/Vn,exp ratio shows an average of
1.01 and a coefficient of variation of 0.09 for all the nine specimens.
As explained later, after the calibrated average horizontal strain
function (calibrated from the 2D-FEM) was implemented into the
shear–flexure interaction model, the shear strength ratio yielded
a value of 0.97, with a coefficient of variation of 0.12, which
reveals that the 2D-FEM model better captures the wall shear
strength, although the differences are relatively small. A similar
analysis performed by Massone et al. [5] considered a different
condition for the horizontal equilibrium: (1) zero horizontal stress
resultant and (2) zero horizontal strain value. Such cases were
regarded as extreme situations and imposed at the fiber level,
which resulted in under-predictions of the shear strength for the
zero stress case, and over-predictions of the shear strength for the
zero strain case, with a difference of about 30% on average, with
similar or even larger coefficients of variation. Among others, the
shear–flexure interaction model has assumptions not considered
in the 2D-FEM model, which are: (1) plane sections remain
plane after loading, (2) constant (uniform) horizontal strain values
used across the section, and (3) uniform shear strain across the
section. The small strength difference (and coefficient of variation)
between the 2D-FEM and the shear–flexure interaction model,
and its closeness to the experimental evidence suggests that the
impact of such assumptions have less influence than offering a
reasonably accurate average horizontal strain prediction for walls.
Thus, the shear–flexure interaction model accurately reproduces
experimental behavior, been at the same time more suitable for
implementation and system studies.
On closer study, the overall response for the shear–flexure

interaction model by separating the top displacement between
flexural and shear contribution, generally reveals the flexural con-
tribution to usually account for about 30%–40% of the top displace-
ment at small drift levels (up to 0.05%–0.1% drift), which decreases
to about 10% when lateral load capacity is reached (usually over
0.4% drift). This is consistent with the experimental evidence [5]
(after removing the predicted flexibility due to rebar extension
within the pedestal). Significantly, the small shear span-to-depth
ratio (about 0.5) increases the importance of the shear displace-
ment component (90% at a large displacement); however, at the
small drift levels, the flexural response (30%–40%) observed can-
not be ignored. Thus, using a model that can account for both de-
formation components is essential to predict stiffness and strength
correctly.



L.M. Massone / Engineering Structures 32 (2010) 922–932 927
Fig. 3. Average horizontal strains vs. drift.
5.3. Maximum average transverse strain

Fig. 3 shows the experimental and analytical (calibrated)
maximum (at wall mid-height) average horizontal strain for all the
nine specimens. The variation of εxwith drift is seen formost cases;
however, there is a tendency to overestimate the strain values for
the specimens with axial load (test 5 to test 8).

5.4. Average transverse strain profile

Fig. 4(a) and (b) show the experimental and analytical (cal-
ibrated) average horizontal strain profile, that is, the measured
strain values at all the nine locations and the model predic-
tions (calibrated εx) for two specimens (test 3 and test 5). Test 3
(Fig. 4(a)) was the only specimen where the sensors on the speci-
mens were removed after relatively large drift values (1.2%). The
drift values depicted in the figures correspond to the nominal
value, before the correction due to rebar extension within the
pedestals. The analytical magnitude and shape of the strain pro-
file recover the experimental evidence in test 3 reasonably well. In
test 5 (Fig. 4(b)), asmentioned earlier on, themodel over-estimates
the mid-height strain values (specimen with axial load), although
given that the maximum value for this particular test occurs at a
lower location, that overestimation appears less significant.

6. Experimental verification—cantilever wall tests

Maier and Thürlimann [17] conducted one of the few wall test
programs that considered a robust instrumentation layout for can-
tilever walls, consisting of a series of 10 walls with an aspect ratio
of 1.02, and a variation of boundary types, reinforcement ratios and
axial loads. Only one of them is described here for comparison pur-
poses (specimen S2).
6.1. Specimen description and instrumentation

Specimen S2, with a flanged cross-section, was monotonically
loaded under a cantilever loading condition with a lateral point
load applied at the wall top. The specimen was 1.2 m high, 1.18 m
long (boundary element length included) and 0.1 m thick. The
boundary elements were 0.4 m long and 0.1 m thick. Uniform web
reinforcement producing a web reinforcing ratio of 1% was in-
cluded vertically and horizontally. The boundaries were reinforced
with a 1.26% boundary longitudinal reinforcement ratio. The com-
pressive concrete capacity was 36.9 MPa and the yield stress of the
reinforcement was 574MPa. The specimenwas loaded with a con-
stant axial load of about 0.25Ag f ′c (where Ag corresponds to the to-
tal cross-section area).
Vertical and horizontal relative displacements were measured

at 63 points along the wall web (9 rows and 7 columns), and hori-
zontal strain values were calculated from the horizontal displace-
ment measurements obtained at each mesh point. The average
along the length of the wall resulted in the average measured hor-
izontal strain distributions for the nine height levels.

6.2. Average transverse strain profile

Fig. 4(c) shows the average horizontal strain at different levels
for three different loads or drift levels (δ = 0.65% at approximately
wall maximum capacity, δ = 0.14% at approximately wall first
yield and δ = 0.34%, an intermediate drift case). The drift val-
ues were approximately estimated as no correction is originally
included by pedestal rotation, or because the relative horizontal
displacement is given between the top and bottom pedestal in-
stead of within the wall zone. The top displacement was corrected
by subtracting the relative rotation observed between the overall
wall specimen (including top and bottom pedestal) and the wall
section, and assuming that rigid body rotation due to this move-
ment would generate a top displacement that does not correspond
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Fig. 4. Average horizontal strain profiles: (a) Test 3, (b) Test 5 and (c) Specimen S2.
to actual deformation of the wall section. Therefore, in the discus-
sion that follows, the focus is on the overall response rather than
on specific strain values. As evident in the experimental results, the
horizontal strain rapidly reduces from its maximum value close to
the central zone level towards both ends (top and bottom), as pre-
dicted by the calibrated expression (model), reproducing the shape
of the strain distribution, as well as themagnitude at different drift
levels, reasonably well.

7. Shear strength test database comparison

The earlier sections validated the response observed using the
2D-FEM model, which generates the calibrated expression for the
average horizontal normal strain (εx). This expression is now used
in the shear–flexure interaction model, and validated by compar-
ing the strength prediction with a large collection of wall test data
reported in the literature. The strength predictions are also com-
paratively studied with a common expression from the ACI 318-
08 [1] code. Thus, strength and dispersion of such prediction, as
well as dependency to model parameters can be revised.
A database of relevant test results (252 specimens) was

collected by reviewing the available research, includingwork sum-
marized by Hirosawa [18] and Mohammadi-Doostdar and Saat-
cioglu [19], and the publications by Massone et al. [5], Hidalgo
et al. [20], Yamada et al. [21], Antebi et al. [22], Barda et al. [23],
Benjamin andWilliams [24], Cardenas et al. [25], and Galletly [26].
The database includes walls with enlarged end sections such as
flanged or barbell section (68%) and rectangular cross-sections
(32%). The wall specimens were tested either as cantilever walls
with a top point load (under single curvature, 85%) or under a
fixed rotation condition at both ends by either applying an exter-
nalmoment or imposing zero rotation at thewall ends (under dou-
ble curvature, 15%). The longitudinal reinforcement boundary ratio
for the test specimens in the database ranged between 0.7% and
11% measured over the boundary cross-section (enlarged section
in the case of barbell walls and 10% of the cross-section for rect-
angular walls); the longitudinal and transverse web reinforcement
ratios varied between 0% and 3.7%, and the yield strength of all re-
inforcing bars ranged between 209MPa and 624MPa. The concrete
compressive strength varied between 12.4 MPa and 63.4 MPa. The
axial load, although applied in a few cases (axial load greater than
0.01f ′c lwtw , 15%) reached values of 0.27f

′
c lwtw , where lw and tw are

the length and thickness of the wall, respectively. The shear span-
to-depth ratio (M/(Vlw)) varied between 0.29 and 2, which was
similar for the wall aspect ratio (hw/lw).
Shear strength is also determined based on the ACI 318-08

[1] code (Equation 21-7), as Vn = Acv(αcλ
√
fc ′ + ρt fy), where

the coefficient λ is 1.0 for normal-weight concrete, and αc is 0.25
(fc ′ in MPa) for hw/lw ≤ 1.5, and is 0.17 for hw/lw ≥ 2.0,
and linearly interpolated between the limit aspect ratios. Acv
represents the cross-sectional web area of a wall, ρt is the
transverse reinforcement ratio, fy is the yield strength of the
transverse reinforcement, and f ′c is the compressive strength of
concrete. The nominal shear strength for individual walls cannot
be greater than 0.83Acw

√
fc ′(MPa)where Acw represents the entire

cross-sectional area of the wall.
All the 252 specimens were modeled using the interaction

model, assuming a fixed condition at the wall base and laterally
loaded with a point load. The specimens tested under cantilever
condition were free to rotate at wall top end, whereas for the spec-
imens loaded under double curvature condition, a zero rotation
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Fig. 5. Shear strength ratio (Vmodel/Vtest) vs. vertical web reinforcement.

condition was imposed. The wall models were discretized in eight
elements and eight fibers, and the samematerial models as for the
2D-FEM model were used, and calibrated with the as-tested ma-
terial properties. The shear strength, that is, the maximum lateral
force attainedwas obtained by performing a top displacement con-
trol analysis for all thewall cases, and comparingwith the observed
(experimental) shear strength.
The ratio of the predicted over the experimental shear strength,

or strength ratio,was determined for all cases (Vmodel/Vexp). The av-
erage strength ratio for the shear–flexure interaction model for all
the wall specimens was 1.13, with a coefficient of variation of 0.25,
indicating a reasonably good correlationwith the test results, and a
relatively small dispersion. The maximum and minimum strength
ratios were 1.97 and 0.56, respectively, although the majority of
them ranged between 1.6 and 0.7 (89%). Identical analysis was per-
formed with the ACI 318-08 shear strength equation; however,
in this instance, a few cases that were expected to have a flexu-
ral failure were removed. To estimate the flexural capacity (Mn)
a sectional analysis was performed, according to ACI 318 (Section
10) recommendations. Based on the moment or flexural capacity,
the shear force required to reach such a moment was estimated
and compared with the shear strength of a shear failure (Vn) to
clearly distinguish possible flexural failure from shear failure. Thus,
only cases controlled by shear failure (according to this analysis)
were considered to eliminate distortions in the analysis either from
tests expected to fail in flexure or an expression estimating flexural
capacity. These cases were maintained for the shear–flexure in-
teraction model to validate the ability of such a model to also
predict their shear strength. Thus, for the ACI 318 equation, the
number of tests was reduced to 205 (81% of the original database).
The average strength ratio for the ACI 318 expression was 0.80,
with a coefficient of variation of 0.37,which indicates amuch larger
dispersion than the shear–flexure interaction model, although the
model tends to bemore conservative. Themaximumandminimum
strength ratios were 1.93 and 0.21, respectively, although in this
case themajority ranged between 1.3 and 0.3 (93%). It is important
to indicate that the strength ratio (Vmodel/Vexp)was selected tohave
in the numerator the model capacity to correlate such value, nor-
malized to the observed strength, to wall parameters. Taking the
inverse of the strength ratio definition (Vexp/Vmodel) would show
similar extreme values for the interactionmodel (0.51 to 1.77) and
identical coefficient of variation. On the contrary, the ACI expres-
sion would reveal a much larger range (0.52 to 4.74) and a larger
coefficient of variation (0.48), given that the ACI expression is in-
tended to be conservative.
Although the shear–flexure interaction model presents good

correlation of the shear strength with test results, it is interest-
ing to observe if the model adequately predicts the shear strength
Fig. 6. Shear strength ratio (Vmodel/Vtest) vs. horizontal web reinforcement.

for different values of the model parameters. Thus, this enables in-
vestigating if the model can correctly predict increments or decre-
ments of shear strength to parameter variations. Considering that
most tests correspond to different experimental programs and that
identical specimenswith only one variable variation are few, a sen-
sitivity analysis of the shear strength ratio (Vmodel/Vexp) to different
model parameter variables to the entire database was performed.
Steel reinforcing ratios, concrete compressive strength, level of ax-
ial load, cross-section type, boundary condition, shear span-to-
depth ratio, and observed average shear stress are considered for
the sensitivity analysis (Figs. 5–12).
In Figs. 5–12 a dotted line indicates the perfect correlation

between the model and the tests (Vmodel/Vtest = 1). The general
trend is characterized by a linear best-fit analysis of the data, with
respect to different variables. Although only the data obtained for
the shear–flexure interaction model is shown (Figs. 5–12(a), and
only Fig. 12(b) shows the ACI 318 prediction data), the linear trend
is also presented for the shear strength predictionwith the ACI 318
expression in all the figures.

7.1. Sensitivity—vertical and horizontal web reinforcement ratio

Figs. 5 and 6 show the model prediction sensitivity to the ver-
tical and horizontal reinforcing steel ratio times its yield strength.
The yield strength was incorporated into the parameter to account
for the force that the steel can develop per unit area rather than
just the steel ratio. The general trend (linear) indicates that there
is little correlation of the observed strength ratio obtainedwith the
shear–flexure interactionmodel and the vertical or horizontal rein-
forcement, indicating that such parameter variations are well cap-
tured with the model. On the contrary, the linear trend obtained
with the ACI 318 strength equation is highly dependent on both
the variables, with differences in prediction up to about 80% for
the overall range.

7.2. Sensitivity—longitudinal boundary reinforcement ratio

Fig. 7 shows themodel prediction sensitivity to the longitudinal
boundary reinforcing steel ratio times its yield strength. The
general trend (linear) shows relatively small dependency on such
a parameter (about 10% variation over the whole range) when
considering the shear–flexure interactionmodel, as well as the ACI
318 strength prediction. This indicates that because the ACI 318
strength equation is not dependent on the amount of boundary
reinforcement it is only relevant to predict the lateral strength for
flexural failure. This supports the idea that the specimens, although
they could have been influenced by flexural response, such an
influence is not relevant to estimate the shear strength using the
ACI 318 equation.
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Fig. 7. Shear strength ratio (Vmodel/Vtest) vs. longitudinal boundary reinforcement.

Fig. 8. Shear strength ratio (Vmodel/Vtest) vs. concrete compressive strength.

Fig. 9. Shear strength ratio (Vmodel/Vtest) vs. shear span-to-depth ratio.

7.3. Sensitivity—concrete compressive strength and shear span-to-
depth ratio

Figs. 8 and 9 show the model prediction sensitivity to the
concrete compressive strength and shear span-to-depth ratio, re-
spectively. The general trend (linear) indicates an important de-
pendency on both parameters (about 30% variation over the whole
range) when considering the shear–flexure interaction model, re-
sulting in over-predictions for small compressive strength values,
as well as for small shear span-to-depth ratio values. The ACI 318
strength prediction equation is less dependent on both parame-
ters (almost insensitive to shear span-to-depth ratio). The impor-
Fig. 10. Shear strength ratio (Vmodel/Vtest) vs. axial load level.

Fig. 11. Shear strength ratio (Vmodel/Vtest) vs. cross-sectional shape and boundary
condition.

tant differences observed in the interaction model compared with
the ACI expression in the case of shear span-to-depth ratio (Fig. 9)
are partly because of the specimens considered for the interac-
tion model that are not considered for the ACI expression. As these
specimens are assumed to have flexural failure, and therefore with
a tendency towards a larger shear span-to-depth ratio, they are
placed to the right of the figure. Such cases show conservative val-
ues of the strength ratio, promoting a negative slope of the trend
line (shear–flexure interactionmodel). The ACI expression, already
conservative, includes a few specimens with a large shear span-to-
depth ratio (trend line rises up toM/(Vlw) = 1.75 for the ACI and
M/(Vlw) = 2.0 for the interaction model) resulting in a decreased
impact to sensitivity in this parameter.

7.4. Sensitivity—axial load

Fig. 10 shows the model prediction sensitivity to the level of
axial load. Although there are only a few specimens with an axial
load higher than 0.01fc ′tw lw (15% of the database), the general
trend (linear) shows little dependency to such a parameter (less
than 10% variation over the whole range) when considering the
shear–flexure interaction model. On the contrary, the ACI 318
strength equation results in an under-prediction of the shear
strength (over 20% variation for the whole range), especially for
specimens with high axial load, consistent with the fact that such
expression does not account for shear strength improvement with
axial load.
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a

b

Fig. 12. Shear strength ratio (Vmodel/Vtest) vs. experimental shear stress: (a)
shear–flexure interaction model, and (b) ACI 318.

7.5. Sensitivity—wall shape and boundary condition

Fig. 11 shows the model prediction sensitivity to the cross-
sectional wall shape and boundary condition. The results reveal
that the average strength ratio for rectangular and enlarged cross-
section walls (barbell and flanged walls), as well as walls in the
cantilever condition (single curvature) and double curvature (zero-
end rotation) is similar for the shear–flexure interaction model as
well as for the ACI 318 strength equation, indicating observation of
no cross-sectional shape nor boundary condition dependency.

7.6. Sensitivity—average observed (experimental) shear stress

Fig. 12 shows the model prediction sensitivity to the average
observed (experimental) shear stress. Although this value is not
a model parameter, the comparison is included to verify if the
model is capable of reproducing the shear strength for walls un-
der low and high shear stress levels. Fig. 12(a) includes the an-
alytical results for the shear–flexure interaction model, as well
as its linear trend, and the linear trend obtained for the ACI 318
strength equation. Fig. 12(b) includes the analytical results for the
ACI 318 strength equation. In this instance, the entire test database
was included (252 specimens), that is, the tests expected to show
flexural failure were also considered (47 specimens), although dif-
ferent symbology was used (flexural failure and shear failure dif-
ferentiated). Shear capacity of specimens expected to show shear
failure were determined based on the shear strength prediction
(Vn), whereas the specimens expected to fail in flexure were deter-
mined based on the moment capacity (Mn). Additionally, the shear
capacity based on the shear strength prediction is also included for
comparison, for those expected to show flexural failure.
The strength ratio for the shear–flexure interaction model re-
veals somedependency to the observed average shear stress (about
20% variation over the whole range), whereas the ACI 318 strength
equation shows a variation of about 40%over the entire shear stress
range (Fig. 12(a)). Such dependency is even more pronounced
(about 70% over the entire shear stress range—not shown) when
the shear strength ratio is investigated for the entire database
without distinguishing between shear and flexural failure (shear
strength based on Vn, Fig. 12(b)). Large over-predictions are ob-
served for specimens likely to fail in flexure (experimental aver-
age shear stress values lower than 4 MPa), but with shear capacity
estimated based on the shear strength equation (Vn), which are
partially corrected when the strength is based on flexural capacity
(Mn). Over-predictions are expected as a different mode of failure
governs the response. Thismight indicate that the ACI 318 strength
equation, with a 40% variation of its trend line, fails to correctly
capture the walls’ failure mode and therefore their capacity, even
when the specimens are expected to show shear failure, as seen
in Fig. 12(a). The shear–flexure interaction model could reveal a
similar situation, although the dependency is about half the value
observed with the ACI 318 expression.

8. Summary and conclusions

This study investigated, verified and generalized a modeling
approach integrating flexure and shear interaction to reasonably
predict the inelastic response of reinforced concrete squat walls.
The model incorporates RC panel behavior into a displacement-
based column model by prescribing the average horizontal strain
(εx) at different wall heights. The average horizontal strain equa-
tion is calibrated using a 2D-FEM model that incorporated identi-
cal RC panel behavior, but in this case satisfying the equilibrium
allowed, thus generalizing the expressions for the strain. The an-
alytical study of 262 cases, where the variation of aspect ratio,
vertically and horizontally distributed web reinforcement ratio,
longitudinal boundary reinforcement ratio and axial load level, as
well as the boundary condition (cantilever and zero-end rotation),
were performed to propose an analytical expression to estimate
the average horizontal strain. An experimental program was used
to verify the proposed expressions, although only a limited number
of specimens was considered, and therefore, only a limited range
of variables were compared. To improve the validity of the ana-
lytical model, a database was assembled for relatively short walls
(aspect ratio lower than 2) with predominant shear failure. The
model shear strength, that is, the maximum lateral wall capacity
was compared to the database, as well as the prediction estimated
using the ACI 318 code.
The analytical evidence, based on the 2D-FEM formulation,

indicates that the average horizontal strain is mainly dependent
on parameters such as: aspect ratio, horizontally distributed web
reinforcement ratio, and axial load level, as well as lateral drift.
The experimental evidence shows relatively good correlation to
the analytical expressions when considering the variation of the
maximum strain with the drift and the strain distribution over the
wall height.
Comparisons with a database involving 252 wall specimens

resulted in an average ratio of the predicted over the experimental
shear strength (Vmodel/Vexp) of 1.13 for all the cases for the
shear–flexure interaction model with a coefficient of variation of
0.25, indicating a reasonably good correlation with tests results;
however, for the ACI 318-08 shear strength equation, the average
strength ratio was 0.80 with a coefficient of variation of 0.37, for
a reduced database (expected flexural-dominated specimens were
removed, reducing the database by 19%).
A sensitivity study, based on a linear trend estimation, indi-

cates that the shear–flexure interaction model strength prediction
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ratio, that is, the model over the experimental strength value, is
almost nil sensitive to the vertical and horizontal web reinforce-
ment strength ratio, and to the longitudinal boundary reinforce-
ment strength ratio, cross-sectional shape (rectangular or enlarged
section), boundary condition (cantilever or zero-end rotation con-
dition) and axial load level (generally less than 10% variation over
the whole range). More significant dependency is observed in the
shear–flexure interaction model to the shear span-to-depth ratio,
compressive concrete strength and experimental shear stress.
Thus, the shear–flexure interaction is a mechanical model that,

with an adequate calibration of the average horizontal strain, not
only results in reasonable good strength predictions, but also in a
more consistent response, whose strength ratio is not as sensitive
to model parameters as the ACI 318 expression, even if assump-
tions such as: plane section remain plane, constant horizontal nor-
mal and shear strain across the section aremaintained. Besides, the
shear–flexure interaction model is also capable of giving load vs.
displacement response (this study focuses on strength prediction),
aswell as other information such as flexural and shear contribution
to top displacement, important for performance assessment.
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