
Autom Softw Eng (2010) 17: 181–212
DOI 10.1007/s10515-010-0064-x

Improving code completion with program history

Romain Robbes · Michele Lanza

Received: 26 January 2010 / Accepted: 1 February 2010 / Published online: 12 February 2010
© Springer Science+Business Media, LLC 2010

Abstract Code completion is a widely used productivity tool. It takes away the bur-
den of remembering and typing the exact names of methods or classes: As a developer
starts typing a name, it provides a progressively refined list of candidates matching
the name. However, the candidate list usually comes in alphabetic order, i.e., the en-
vironment is only second-guessing the name based on pattern matching, relying on
human intervention to pick the correct one. Finding the correct candidate can thus be
cumbersome or slower than typing the full name.

We present an approach to improve code completion based on recorded program
histories. We define a benchmarking procedure measuring the accuracy of a code
completion engine and apply it to several completion algorithms on a dataset con-
sisting of the history of several systems. Further, we use the change history data to
improve the results offered by code completion tools. Finally, we propose an alterna-
tive interface for completion tools that we released to developers and evaluated.

Keywords Software evolution · First-class changes · Integrated development
environments · Code completion · Benchmark

1 Introduction

Murphy et al. (2006) published an empirical study on how 41 Java developers used
the Eclipse IDE. One of their findings was that every developer in the study used the

R. Robbes (�)
PLEIAD Lab, Computer Science Department (DCC), University of Chile,
Blanco Encalada 2120, of. 308, Santiago, Chile
e-mail: rrobbes@dcc.uchile.cl

M. Lanza
REVEAL @ Faculty of Informatics, University of Lugano, Via G. Buffi 13, 6904 Lugano,
Switzerland
e-mail: michele.lanza@usi.ch

mailto:rrobbes@dcc.uchile.cl
mailto:michele.lanza@usi.ch

182 Autom Softw Eng (2010) 17: 181–212

code completion feature. Among the top commands executed across all developers,
code completion came sixth with 6.7% of the number of executed commands, sharing
the top spots with basic editing commands such as copy, paste, save and delete. It is
hardly surprising that this was not discussed much: Code completion is one of those
features that once used becomes second nature. Nowadays, every major IDE features
a language-specific code completion system, while any text editor has to offer at least
some kind of word completion to be deemed usable for programming.

What is surprising is that not much is being done to advance code completion.
Beyond taking into account the programming language used, there have been few
documented efforts to improve completion engines. This does not mean that code
completion cannot be improved, far from it: The set of possible candidates (referred
to from now on as suggestions or matches) returned by a code completion engine is
often inconveniently large, and the match a developer is actually looking for can be
buried under several irrelevant suggestions. If spotting it takes too long, the context
switch risks breaking the flow the developer is in.

Language-specific completion engines can alleviate this problem as they signifi-
cantly reduce the number of possible matches by exploiting the structure or the type
system of the program under edition. However, if an API is inherently large, or if the
programming language used is dynamically typed, the set of candidates to choose
from will still be too large. Given the limitations of current code completion engines,
we argue that there are a number of reasons for the lack of work being done to im-
prove it:

1. There is no obvious way to improve language-dependent code completion: Code
completion algorithms already take into account the structure of a program, and
if possible the structure of the APIs the program uses. To improve the state of the
art, additional sources of information are needed.

2. Beyond obvious improvements such as using the program structure, there is no
way to assert that a completion mechanism is “better” than another. A standard
measure of how a completion algorithm performs compared to another on some
empirical data is missing, since the data itself is not there. The only possible as-
sessment of a completion engine is to manually test selected test cases.

3. “If it ain’t broken, don’t fix it”. Users are accustomed to the way code completion
works and are resistant to change. This healthy skepticism implies that only a
significant improvement over the default code completion system can change the
status quo.

Ultimately, these reasons are tied to the fact that code completion is “as good as
it gets” with the information provided by current IDEs. To improve it, we need addi-
tional sources of information, and provide evidence that the improvement is worth-
while.

In our previous work, we implemented Spyware, a framework which records the
history of a program under development with great accuracy and stores it in a change-
based repository (Robbes 2007; Robbes and Lanza 2007b). Our IDE monitoring plug-
in is notified of the programmer’s code edits, analyzes them, and extracts the actual
program-level (i.e., not text-based) changes the developer performed on the program.
These are stored as first-class entities in a change-based software repository, and later
used by various change-aware tools.

Autom Softw Eng (2010) 17: 181–212 183

In this article we illustrate how one can improve code completion with the use of
change-based information. As a prerequisite, we define a benchmark to test the ac-
curacy of completion engines. In essence, we replay the entire development history
of the program and call the completion engine at every step, comparing the sugges-
tions of the completion engine with the changes that were actually performed on the
program. With this benchmark as a basis for comparison, we define alternative com-
pletion algorithms using change-based historical information to different extents, and
compare them to the default algorithm which sorts matches in alphabetical order. We
validate our algorithms by extensively testing each variant of the completion engine
on the history of a medium-sized program developed for a number of years, as well
as several smaller projects, testing the completion engine several hundred thousand
times. In this article we make the following contributions:

– The definition of a benchmarking procedure for code completion engines based on
the recorded, real-world usage of the IDE by programmers.

– The definition of several variants of completion engines, completing method calls,
and their evaluation on a benchmark with several programmers, against standard
completion algorithms.

– Following the same procedure, we evaluate several variants of completion engines
for class names on the same dataset.

– The implementation of our algorithms in a tool named OCompletion, which takes
advantage of the increased accuracy of the algorithms to automatically propose
completions without explicit user interaction.

– A qualitative evaluation of OCompletion. We released it to the open source com-
munities around the Squeak and the Pharo projects, and collected their feedback in
the form of a survey.

Structure of the article. Section 2 details code completion algorithms and exposes
the main shortcomings of these. We classify those algorithms as “pessimistic”, and
introduce requirements for “optimistic” ones. Section 3 contrasts benchmark-style
evaluations with user studies and motivates our choice for a benchmark-style evalu-
ation. Section 4 details the kind and the format of the data that we gather and store
in change-based repositories, and how it can be accessed later on. Next, Section 5
presents the benchmarking framework we defined to measure the accuracy of com-
pletion engines. Section 6 introduces several optimistic code completion strategies
beyond the default pessimistic one. Each strategy is evaluated according to the bench-
mark we defined. Section 7 introduces several completion algorithms at the class level
evaluated with the same benchmark-style evaluation. Section 8 presents a prototype
implementation of a UI better suited for optimistic completion algorithms. Section 9
presents a qualitative evaluation of our code completion tool based on the feedback
we received after its public release. Finally, after a brief discussion in Section 10 and
related work review (Section 11), we conclude in Section 12.

2 Code completion

Word completion predates code completion and is present in most text editors. Since
the algorithms used for text completion are different from the ones used in code

184 Autom Softw Eng (2010) 17: 181–212

completion, we do not cover these, referring Fazly’s work for a state of the art (Fazly
2002).

Code completion uses the large amount of information it can gather about the
code base to significantly reduce the number of matches proposed to a user when
he triggers it. For instance, when a Java-specific code completion engine is asked
to complete a method call to a String instance, it will only return the names of
methods implemented in the class String. When completing a variable name, it
will only consider variables which are visible in the scope of the current location.
Such a behaviour is possible thanks to the amount of analysis performed by modern
IDEs.

2.1 Code completion in the real world

In the following, we focus on the completion engine, i.e., the part of the code comple-
tion tool which takes as input a token to be completed and a context used to access all
the information necessary in the system, and outputs an ordered sequence of possible
completions. We describe code completion in three IDEs: Eclipse (for Java), Squeak
and VisualWorks (for Smalltalk).

Code completion in Eclipse. Code completion in Eclipse for Java is structure-
sensitive, i.e., it can detect when it completes a variable/method name, and proposes
different completions. It is also type-sensitive: If a variable is an instance of class
String, the matches returned when auto-completing a method name will be looked
for in the classes “String” and “Object”, i.e., the class itself and all of its super-
classes.

Figure 1 shows Eclipse code completion in action: The programmer typed “re-
move” and attempts to complete it via the completion engine, named “Content As-
sist”. The system determines that the object to which the message is sent is an instance
of “javax.swing.JButton”. This class features a large API of more than 400 methods,
of which 22 start with “remove”. These 22 potential matches are all returned and dis-
played in a popup window displaying roughly 10 of them, the rest needing scrolling
to be accessed. The matches are sorted in alphabetical order, with the shorter ones
given priority (the first 3 matches would barely save typing as they would only in-
sert parentheses). This example shows that sometimes the completion system, even
in a typed programming language, can be more of a hindrance than an actual help.
As APIs grow larger, completion becomes less useful, especially since some prefixes
tend to be shared by more methods than other prefixes: For instance, more than a
hundred methods in JButton’s interface start with the prefix “get”.

Code completion in Visualworks. Visualworks is a Smalltalk IDE sold by Cincom.1

Since Smalltalk is a dynamically typed language, Visualworks faces more challenges
than Eclipse to propose accurate matches. The IDE cannot make any assumption
about the type of an object since it is determined only at runtime, and thus returns

1http://www.cincomsmalltalk.com.

http://www.cincomsmalltalk.com

Autom Softw Eng (2010) 17: 181–212 185

Fig. 1 Code completion in Eclipse

potential candidates from all the classes defined in the system. Since Smalltalk con-
tains large libraries and is implemented in itself, the IDE contains more than 2,600
classes already defined and accessible initially. These 2,600 classes total more than
50,000 methods, defining around 27,000 unique method names, i.e., 27,000 poten-
tial matches for each completion. The potential matches are presented in a menu,
which is routinely more than 50 entries long. As in Eclipse, the matches are sorted
alphabetically.

Code completion in Squeak. Squeak is an open-source Smalltalk IDE.2 The com-
pletion system of Squeak has two modes. The normal mode of operation is similar
to Visualworks: Since the type of the receiver is not known, the set of candidates is
searched for in the entire system. However, Squeak features an integration of the com-
pletion engine with a type inference system, Roel Wuyts’ RoelTyper (Wuyts 2007).
When the type inference engine finds a possible type for the receiver, the candidate
list is significantly shorter than it would be if matches were searched in the entire
system (3,000 classes, 57,000 methods totalling 33,000 unique method names). The
type inference engine finds the correct type for a variable roughly half of the time.
Both systems sort matches alphabetically.

2http://www.squeak.org.

http://www.squeak.org

186 Autom Softw Eng (2010) 17: 181–212

2.2 Classifying code completion approaches

The algorithms we surveyed all share the same shortcoming: the match actually
looked for may be buried under a large number of irrelevant suggestions because
the matches are sorted alphabetically. The only way to narrow it down is to type a
longer completion prefix which diminishes the value of code completion.

To classify completion algorithms, we reuse an analogy from Software Config-
uration Management. Versioning systems have two ways to handle conflicts during
concurrent development (Conradi and Westfechtel 1998):

1. Pessimistic version control—introduced first—prevents any conflict by forcing de-
velopers to lock a resource before using it. Conflicts never happen, but this situa-
tion is inconvenient when two developers need to edit the same file.

2. In optimistic version control developers do not lock a resource to edit it. Several
developers can freely work on the same file. Conflicts can happen, but the opti-
mistic view states that they do not happen often enough to be counter-productive.
Today, every major versioning system uses an optimistic strategy.

We characterize current completion algorithms as pessimistic: They expect to re-
turn a large number of matches, and order them alphabetically. The alphabetical order
is the fastest way to look up an individual entry among a large set. This makes the en-
try lookup a non-trivial operation: As anyone who has ever used a dictionary knows,
search is still involved. The cognitive load associated to reading the list might incur
a context switch from the coding task at hand.

In contrast, we want to introduce an optimistic completion algorithm, free of the
obligation to sort matches alphabetically, under the following requirements:

– The number of matches returned with each completion attempt is small. The list of
matches must be very quick to be checked. No scrolling should be involved, and
reading it should be fast. In addition few keystrokes should be required to select
the correct match. Our implementation (Section 8) limits the number of matches
returned to 3.

– The match the programmer is looking for has a high probability of being among
the matches returned by the completion engine. Even if checking a short list of
matches is fast, it is pointless if the match looked for is not in it. Hence the match
looked for should be in the short list presented, preferably at the top spot.

– To minimize typing, the completion prefix necessary to have the correct match with
a high probability should be short. With a 10 character prefix, it is easy to return
only 3 matches and have the right one among them.

To sum up, an optimistic code completion strategy seeks to maximize the proba-
bility that the desired entry is among the ones returned, while minimizing the number
of entries returned, so that checking the list is fast. It attempts to do so even for short
completion prefixes to minimize the typing involved by the programmer.

3 Evaluating code completion

How can one accurately evaluate code completion? The problem applies to recom-
mender systems in general (of which code completion is one), and is not trivial. Since

Autom Softw Eng (2010) 17: 181–212 187

these tools are ultimately used by humans, a direct user evaluation with a controlled
experiment is a sensible choice. However these studies have shortcomings that we re-
view before motivating our use of an alternative evaluation strategy. We believe that a
combination of benchmarking, to fine-tune the recommendation algorithm, with user
surveys after longer-term usage of the recommender, to be more suited to recom-
mender systems in general and code completion in particular.

3.1 Human subject studies and benchmarks

Human subject studies have a long tradition as an evaluation method in software
engineering for methodologies and tools. They usually compare two treatments and
hence involve two groups of people assigned to perform a given task, one using the
methodology or tool under study, and a control group not using it. The performance of
the groups are measured according to the protocol defined in the study, and compared
with each other in order to determine whether the methodology or tool under study
provides an improvement for the task at hand. To have confidence in the measure, a
larger sample of individuals is needed to confirm a smaller increase in performance.
Human subject studies are the “golden standard” to measure the effect of a treatment
in a large number of cases. However some of their characteristics make them unsuited
for recommender systems in software engineering:

– They are time-consuming and potentially expensive to set up. Dry runs must be
performed first, so that the experiment’s protocol is carefully defined. Volunteers
have to be found, which may also require a monetary compensation. The most
extreme case in recent history is the pair programming study of Arisholm et al.
(2007), which tested—and compensated—295 professional programmers.

– The original authors need to document their experimental setup very carefully in
order for the experiment to be reproduced. Lung et al. (2008) documented the
difficulties they encountered while reproducing a human subject study (Dehnadi
and Bornat 2006).

– These studies are unsuited for incremental refinement of an approach, as they are
too expensive to be run repeatedly. In addition, a modest increment on an existing
approach is harder to measure and must be validated on a higher sample size,
increasing the complexity of the study.

– Comparing two approaches is difficult, as it involves running a new experiment pit-
ting the two approaches side by side. The alternative is to use a common baseline,
but variations in the setup of the experiment may skew the results.

– In the case of tools, they include a wide range of issues possibly unrelated to the
approach the tool implements. Simple UI and usability issues may overshadow the
improvements the new approach brings.

In short, controlled experiments involving human subjects give great confidence
in the results they provide, but are hard to scale for a larger number of treatments, or
small variations in the treatments.

Benchmarks are designed to automatically evaluate the performance of approaches
on a dataset (Sim et al. 2003). A benchmark delimits the problem to be solved in

188 Autom Softw Eng (2010) 17: 181–212

order to reliably measure performance against a baseline. The outcome of a bench-
mark is typically an array of measurements summing up the overall efficiency of
the approach. An example is the CppETS benchmark for C++ fact extractors (Sim
et al. 2002): Its data corpus consists of several C++ programs exercising the vari-
ous capabilities of fact extractors. A fact extractor run on the dataset returns the list
of extracted facts, which can be compared with known results to produce a perfor-
mance measurement. A benchmark has a set of characteristics that are suited to the
evaluation of recommenders:

– Automated benchmarks can be run at the press of a button. This allows each exper-
iment to be run easily, and re-run if needed. This considerably eases the replication
of experiments done by other researchers.

– Automated scoring makes it trivial to compare approaches. The accuracy of the
scoring allows one to evaluate the impact of incremental improvements.

– Benchmarks test a restricted functionality, and are impervious to usability issues.

In a nutshell, benchmarks are useful when one needs to compare a larger number
of approaches which may feature low amounts of variations.

3.2 Our evaluation procedure

Recommenders are essentially algorithms that propose a set of recommendations. As
such, they require a fair amount of fine-tuning. This involves an extensive number of
replications, re-runs and comparisons of variants of the recommendation algorithm,
which is the weak point of controlled experiments.

We advocate a two-step approach: We first determine through benchmarking the
best performing recommender algorithm, and then evaluate its impact on users.

Given that we already have carefully measured the performance of the various
recommendation algorithms, we perform a more qualitative study in the second step.
After having programmers use the recommender for a period of time, we ask them
through a survey if they perceived an improvement in their daily activities when using
the recommender, and gather additional free-form feedback. Choosing a survey after
a longer-term usage period of the tool, instead of a controlled user study, allows us to
trade precision in the measured performance (which we have thanks to the benchmark
in the first step), for impressions after real-life usage of the tool. This lets the users
determine how well the recommender actually fit in their daily workflow.

This approach assumes that we have a benchmark at our disposal. However, creat-
ing the benchmark itself and the data corpus it uses represents a considerable amount
of work. For the C++ fact extractor benchmark, it presumably involved a manual re-
view of the C++ programs in the dataset to list the expected facts to be extracted. In
the case of code completion, what is needed is a way to reproduce the usage of code
completion by developers in order to retrospectively evaluate how well an alternate
completion engine would have performed. Since 2005, we have set up and populated
a change-based software repository that contains the data needed for this. Before de-
tailing the benchmarking procedure, we first describe how a change-based software
repository works.

Autom Softw Eng (2010) 17: 181–212 189

4 Change-based software repositories

The benchmark and some of the algorithms presented here rely on our previous work
on Change-Based Software Evolution (CBSE). CBSE aims at accurately modeling
how software changes by treating change as a first-class entity. In our previous work
we used this model to perform software evolution analysis (Robbes and Lanza 2007a,
2007b).

Model and Implementation. CBSE models software evolution as a sequence of
changes that takes a system from one state to the next by means of syntactic (i.e.,
not text-based) transformations. These transformations are inferred from the activ-
ity recorded by the event notification system of IDEs such as Eclipse, whenever the
developer incrementally modifies the system. Examples are the modification of the
body of a method or a class, but also higher-level changes offered by refactoring en-
gines. In short, we do not view the history of a software system as a sequence of
versions, but as the sum of change operations which brought the system to its actual
state.

CBSE is implemented in a prototype named SpyWare (Robbes and Lanza 2008)
for the Squeak Smalltalk IDE. SpyWare monitors the programmer’s activity, converts
it to changes and stores them in a change-based repository. We also implemented a
prototype for the Eclipse IDE and the Java language called EclipsEye (Sharon 2007).

Program Representation. CBSE represents programs as domain-specific entities,
e.g., classes, methods, etc. rather than text files. We represent a software system as
an evolving abstract syntax tree (AST) containing nodes which represent packages,
classes, methods, variables and statements, as shown in Fig. 2.

A node a is a child of a node b if a contains b (a superclass is not the parent of
a subclass, only packages are parents of classes). Nodes have properties, which vary
depending on the node type, such as: for classes, name and superclass; for methods,

Fig. 2 An example program AST

190 Autom Softw Eng (2010) 17: 181–212

name, return type and access modifier (public, protected or private, if the language
supports them); for variables, name, type and access modifier, etc. The name is a
property of entities since identity is provided by unique identifiers (ID).

Change operations represent the evolution of the system under study: They are ac-
tions a programmer performs when he changes a program, which in our model are
captured and reified. They represent the transition from one state of the evolving
system to the next. Change operations are executable: A change operation c applied
to the state n of the program yields the state n + 1 of the program. Some exam-
ples of change operations are: adding/removing classes/methods to/from the system,
changing the implementation of a method, or refactorings. We support atomic and
composite change operations.

Atomic Change Operations. Since we represent programs as ASTs, atomic change
operations are, at the finest level, operations on the program’s AST. Atomic change
operations are executable, and can be undone: An atomic change contains all the
necessary information to update the model by itself, and to compute its opposite
atomic change. By iterating on the list of changes we can generate all the states the
program went through during its evolution. The following operations suffice to model
the evolution of a program AST:

– Creation: Create and initialize a new node with id n of type t. The node is created,
but is not added to the AST yet. The opposite of a creation change is a Destruction.

– Destruction: Remove node n from the system. Destructions only occur as undoes
of Creations, never otherwise (removed nodes are kept as they could be moving to
a new branch).

– Addition: Add a node n as the last child of parent node p. This is the addition
operation for unordered parts of the tree. The opposite of an addition is a Removal.

– Removal: Remove node n from parent node p. The opposite of the Addition
change.

– Insertion: Insert node n as a child of node p, at position m (m is the node just before
n, after n is inserted). Contrary to an addition, an insertion addresses the edition of
ordered parts of the tree. The opposite change is a Deletion.

– Deletion: Delete node n from parent p at location m. The opposite of Insertion.
– Change Property: Change the value of property p of node n, from v to w. The

opposite operation is a property change from value w to value v. The property can
be any property of the AST node, and as such depends on the properties defined in
the model.

Composite Change Operations. While atomic change operations are enough to
model the evolution of programs, the finest level of granularity is not always the
best suited. Change operations can be abstracted into higher-level composite changes.
The first of these levels is the developer-level change, which groups atomic changes
in logical actions a developer performs. Examples are class additions (create a class,
add it to a package, set its name and superclass, as well as creating and adding in-
stance variables), or modifying a method (creating and adding a set of statements to a
method, and removing another set of statements from the same method). Since we do
not use higher-level composite changes in this article, we do not detail them further.

Autom Softw Eng (2010) 17: 181–212 191

5 A benchmark for code completion

The idea behind our benchmark is to use the information we recorded from the evo-
lution of programs, and to replay it while calling the completion engine as often
as possible. Since the information we record in our repository is accurate, we can
simulate a programmer typing program statements while maintaining the system’s
structure as an AST. While replaying the evolution of the program, we call the com-
pletion engine at every keystroke, and gather the results it would have returned, as if
it had been called at that point in time. Since we represent the program as an evolving
AST, we are able to reconstruct the context necessary for the completion engine to
work correctly, including the structure of the source code, e.g., the completion engine
is able to locate in which class it is called, thus works as if under normal conditions.

The rationale behind the benchmarking framework is to reproduce as closely as
possible the conditions encountered by the completion engine during its actual use.
Indeed, one might imagine a far simpler benchmark than ours: Rather than recording
the complete history of a program, we could simply retrieve one version of the pro-
gram, and attempt to complete every single message send occurring in it, using the
remainder of the program as the context. However, such an approach would disre-
gard the order in which the code was developed and assume that the entire code base
just “popped into existence”. More importantly, it would not provide any additional
source of information beyond the source code base, which would not permit any im-
provement over the state of the art. In contrast, by reproducing how the program was
actually changed, we can feed realistic data to the completion engine, and give it the
opportunity to use history as part of its strategy.

Replaying a Program’s Change History. To recreate the context needed by the com-
pletion engine at each step, we execute each change in the change history of the pro-
gram to recreate the AST of the program. In addition, the completion engine can use
the actual change data to improve its future predictions. To measure the completion
engine’s accuracy, we use Algorithm 1.

While replaying the history of the system, we call the completion engine whenever
we encounter the insertion of a statement including a method call. To test the accuracy
with a variable prefix length, we call the engine with every prefix of the method name
between 2 and 8 letters—a prefix longer than this would be too long to be worthwhile.
For each one of those prefixes, we collect the list of suggestions, and look up the index
of the method that was actually inserted in the list, and store it in the benchmark
results.

Using a concrete example, if a programmer inserted a method call to a method
named “hasEnoughRooms”, we would query the completion engine first with “ha”,
“has”, “hasE”, . . . , up to “hasEnoug”. For each completion attempt we measure the
index of “hasEnoughRooms” in the list of results. In our example, “hasEnough-
Rooms” could be 23rd for “ha”, 15th for “has” and 8th for “hasE”. One can picture
our benchmark as emulating a programmer compulsively pressing the completion
key.

It is also possible that the correct match is not present in the list of entries returned
by the engine. This can happen in the following cases:

192 Autom Softw Eng (2010) 17: 181–212

Input: Change history, completion engine to test
Output: Benchmark results

results = newCollection();
foreach Change ch in Change history do

if methodCallInsertion(ch) then
name = changeName(ch);
foreach Substring prefix of name between 2 and 8 do

entries = queryEngine(engine, prefix);
index = indexOf(entries, name);
increment(results[length(prefix),index]);

end
end
processChange(engine,ch);

end
return results;

Algorithm 1: The benchmark’s main algorithm

– The method called does not exist yet. There is no way to predict an entity which is
not known to the system. This happens in a few rare cases.

– The match is below the cut-off rate we set. If a match is at an index greater than 10,
we consider that the completion has failed as it is unlikely a user will scroll down
the list of matches. In the example above, we would store a result only when the
size of the prefix is 4 (8th position).

In both cases we record that the algorithm failed to produce a useful result. When
all the history is processed, all the results are analysed and summed up. For each
completion strategy tested, we can extract the average position of the correct match
in the entire history, or find how often it appears at a particular rank for a particular
prefix length.

5.1 Evaluation procedure

To compare algorithms, we need a numerical estimation of their accuracy. Precision
and recall are often used to evaluate prediction algorithms. For completion algorithms
however, the ranking of the matches plays a very important role. For this reason we
devised a grading scheme giving more weight to both shorter prefixes and higher
ranks in the returned list of matches. For each prefix length we compute a grade Gi ,
where i is the prefix length, in the following way:

Gi =
∑10

j=1
results(i,j)

j

attempts(i)
(1)

where results(i, j) represents the number of correct matches at index j for prefix
length i, and attempts(i) the number of times the benchmark was run for prefix
length i. Hence the grade improves when the indices of the correct match improves.

Autom Softw Eng (2010) 17: 181–212 193

A hypothetical algorithm having an accuracy of 100% for a given prefix length would
have a grade of 1 for that prefix length.

Based on this grade we compute the total score of the completion algorithm, using
the following formula which gives greater weight to shorter prefixes:

S =
∑7

i=1
Gi+1

i
∑7

k=1
1
k

× 100 (2)

The numerator is the sum of the actual grades for prefixes 2 to 8, with weights,
while the denominator in the formula corresponds to a perfect score (1) for each
prefix. Thus a hypothetical algorithm always placing the correct match in the first
position, for any prefix length, would get a score of 1. The score is then multiplied by
100 to ease reading.

Typed and Untyped Completion. As we have seen in Section 2, there are two kinds
of completion: Type-sensitive completion, and type-insensitive completion, the latter
being the one which needs to be improved most. To address both types of completion,
we chose the Squeak IDE to implement our benchmark. As Smalltalk is untyped, this
allows us to improve type-insensitive completion. However since Squeak features
an inference engine, we were able to test whether our completion algorithms also
improves type-sensitive completion.

5.2 Benchmark data

We used the history of SpyWare, our monitoring framework itself, to test our bench-
mark. SpyWare has currently around 250 classes and 20,000 lines of code. The data
we used spanned from 2005 to 2007, totalling more than 16,000 developer-level
changes in several hundred development sessions.

We also used the data from 6 student projects, much smaller in nature and lasting
a week. This allows us to evaluate how our algorithms perform on several code bases,
and also how much they can learn in a shorter amount of time.

The number of tests for each system we used is shown in Table 1. In total, more
than 175,000 method calls were inserted, resulting in the same number of tests for
our algorithm, and more than a million individual calls to the completion engine.

Table 1 Benchmark data
Project Completion attempts

SpyWare 131,000

(SpyWare typed) (49,000)

S1 5,500

S2 8,500

S3 10,700

S4 5,600

S5 5,700

S6 9,600

Total 176,600

194 Autom Softw Eng (2010) 17: 181–212

6 Code completion algorithms

We evaluate a series of completion algorithms, starting by recalling and evaluating
the two default pessimistic strategies for typed and untyped completions. For each
algorithm we describe its principles and detail its overall performance on our larger
case study, SpyWare, with a table showing the algorithm’s results for prefixes from
2 to 8 characters. Each column represents a prefix size. The results are expressed in
percentages of accurate predictions for each index. The first rows gives the percent-
age of correct prediction in the first place, ditto for the second and third. The fourth
rows aggregates the results for indices between 4 and 10. Anything beyond 10 is con-
sidered a failure since it would require scrolling to be selected. We provide the global
accuracy score for each algorithm, computed from the results. At the end, we discuss
all the algorithms and their performances on the six other projects.

6.1 Default untyped strategy (score: 12.15)

Principle: The match we are looking for can be anywhere in the system. The al-
gorithm searches through all methods defined in the system that match the prefix on
which the completion is attempted. It sorts the list alphabetically.

Results (Table 2): The algorithm barely, if ever, places the correct match in the
top position. However it performs better for the second and third places, which rise
steadily: By the time the prefix reaches a length of 7, nearly 50% of the correct
matches are in the second or third position. However these longer prefixes contribute
little to the overall score.

6.2 Default typed strategy (score: 47.95)

Principle: The match is one of the methods defined in the hierarchy of the class of
the receiver. The algorithm searches through all the methods defined in the class hier-
archy of the receiver, as indicated by the programmer or as inferred by the completion
engine.

Results (Table 3): Only the results where the type inference engine found a type
were considered. The algorithm consistently achieves more than 25% of matches in
the first position, which is much better than the untyped case. On 2-letter prefixes, it
still has a less than 50% chance to get the right match in the top 3 positions.

Table 2 Results for the default
untyped strategy algorithm Prefix 2 3 4 5 6 7 8

% 1st 0.00 0.33 2.39 3.09 0.00 0.03 0.13

% 2nd 2.89 10.79 14.35 19.37 16.39 23.99 19.77

% 3rd 0.70 5.01 8.46 14.39 14.73 23.53 26.88

% 4–10 6.74 17.63 24.52 23.90 39.18 36.51 41.66

% fail 89.63 66.20 50.24 39.22 29.67 15.90 11.53

Autom Softw Eng (2010) 17: 181–212 195

Table 3 Results for the default
typed strategy algorithm Prefix 2 3 4 5 6 7 8

% 1st 31.07 36.96 39.14 41.67 50.26 51.46 52.84

% 2nd 10.11 11.41 13.84 16.78 13.13 13.51 12.15

% 3rd 5.19 5.94 4.91 5.15 3.20 1.94 2.00

% 4–10 16.29 12.54 12.24 8.12 6.29 4.14 2.79

% fail 37.30 33.11 29.83 28.24 27.08 28.91 30.18

Table 4 Results for the
optimistic structural completion
algorithm

Prefix 2 3 4 5 6 7 8

% 1st 12.70 22.45 24.93 27.32 33.46 39.50 40.18

% 2nd 5.94 13.21 18.09 21.24 20.52 18.15 22.40

% 3rd 3.26 5.27 6.24 7.22 10.69 14.72 10.77

% 4–10 14.86 16.78 18.02 17.93 17.23 20.51 20.75

% Fail 63.20 42.26 32.69 26.26 18.07 7.08 5.87

6.3 Optimistic structural completion (score: 34.15)

Principle: Local methods are called more often than distant ones (i.e., in other pack-
ages). The algorithm searches first in the methods of the current class, then in its
package, and finally in the entire system.

Results (Table 4): This algorithm does not use the history of the system, only its
structure, but is still an optimistic algorithm since it does not order the matches al-
phabetically. This algorithm represents how far we can go without using an addi-
tional source of information. Its results are a definite improvement over the default
algorithm, since even with only two letters it gets more than 10% of correct matches.

6.4 Recently modified method names (score: 36.57)

Principle: Programmers are likely to use methods they have just defined or modi-
fied. Instead of ordering all the matches alphabetically, they are ordered by date, with
the most recent date being given priority. Upon initialization, the algorithm creates a
new dated entry for every method in the system, dated as January 1, 1970. Whenever
a method is added or modified, its entry is changed to the current date, making it
much more likely to be selected.

Results (Table 5): Using a little amount of historical information is slightly better
than using the structure. The results increase steadily with the length of the prefix,
achieving a very good accuracy (nearly 75% in the top three) with longer prefixes.
However the results for short prefixes are not as good. In all cases, results for the
first position rise steadily from 16 to 40%. This puts this first optimistic algorithm
slightly less than on par with the type-aware algorithm, albeit without the need for
type information.

196 Autom Softw Eng (2010) 17: 181–212

Table 5 Results for the recently
modified method names
algorithm

Prefix 2 3 4 5 6 7 8

% 1st 16.73 23.81 25.87 28.34 33.38 41.07 41.15

% 2nd 6.53 12.99 17.41 19.30 18.23 16.37 21.31

% 3rd 4.56 6.27 6.83 7.70 11.53 15.58 10.76

% 4–10 15.53 17.00 20.16 20.73 20.34 20.65 21.55

% fail 56.63 39.89 29.70 23.90 16.47 6.30 5.18

Table 6 Results for the recently
modified method bodies
algorithm

Prefix 2 3 4 5 6 7 8

% 1st 47.04 60.36 65.91 67.03 69.51 72.56 72.82

% 2nd 16.88 15.63 14.24 14.91 14.51 14.04 14.12

% 3rd 8.02 5.42 4.39 4.29 3.83 4.09 4.58

% 4–10 11.25 7.06 6.49 6.64 6.51 5.95 5.64

% fail 16.79 11.49 8.93 7.09 5.60 3.33 2.81

6.5 Recently modified method bodies (score: 70.14)

Principle: Programmers work with a vocabulary which is larger than the names
of the methods they are currently modifying. We need to also consider the methods
which are called in the bodies of the methods they have recently visited. This vocab-
ulary evolves, so only the most recent methods are to be considered. A set of 1000
entries is kept which is considered to be the “working vocabulary” of the program-
mer. Whenever a method is modified, its name and all the methods which are called
in it are added to the working set. All the entries are sorted by date, favoring the most
recent entries. To better match the vocabulary the programmer is currently using, the
names of the method called which are in the bodies of the methods which have been
recently modified is also included in the list of priority matches.

Results: Considering the vocabulary the programmer is currently using yields much
better results. With a two-letter prefix, the correct match is in the top 3 in more than
two thirds of the cases (71.94%). With a six-letter prefix, in two-third of the cases it
is the first one, and it is in the top three in close to 90% of the cases (87.85%). This
level of performance is worthy of an optimistic algorithm.

6.6 Recently inserted code (score: 62.66)

Principle: The vocabulary taken with the entire methods bodies is too large, as some
of the statements included in these bodies are not relevant anymore. Only the most
recent inserted statements should be considered. The algorithm is similar to the previ-
ous one. However when a method is modified, we only refresh the vocabulary entries
which have been newly inserted in the modified method as well as the name, instead
of taking into account every method call. This algorithm makes a more extensive use
of the change information we provide.

Autom Softw Eng (2010) 17: 181–212 197

Table 7 Results for the recently
inserted code algorithm Prefix 2 3 4 5 6 7 8

% 1st 33.99 52.02 59.66 60.71 63.44 67.13 68.10

% 2nd 15.05 16.4 15.44 16.46 16.38 17.09 16.52

% 3rd 9.29 7.46 5.98 5.64 5.36 4.74 5.45

% 4–10 22.84 11.05 8.53 8.65 8.45 7.23 6.71

% fail 18.79 13.03 10.35 8.50 6.33 3.77 3.17

Table 8 Results for the
per-session vocabulary
algorithm

Prefix 2 3 4 5 6 7 8

% 1st 46.9 61.98 67.82 69.15 72.59 75.61 76.43

% 2nd 16.88 15.96 14.41 15.01 14.24 14.44 13.80

% 3rd 7.97 5.73 4.64 4.30 3.45 3.00 3.40

% 4–10 14.66 8.18 6.50 6.19 5.44 4.53 4.16

% fail 13.56 8.12 6.58 5.32 4.25 2.39 2.17

Results: In this case our intuition was wrong, since this algorithm is less precise
than the previous one, especially for short prefixes. In all cases, this algorithm still
performs better than the typed completion strategy.

6.7 Per-session vocabulary (score: 71.67)

Principle: Programmers have an evolving vocabulary representing their working
set. However it changes quickly when they change tasks. In this case they reuse and
modify an older vocabulary. It is possible to find that vocabulary when considering
the class which is currently changed. This algorithm uses fully the change informa-
tion we provide. In this algorithm, a vocabulary (i.e., still a set of dated entries) is
maintained for each programming session in the history. A session is a sequence of
dated changes separated by at most an hour. If a new change occurs after a delay
longer than an hour, a new session is started. In addition to a vocabulary, each ses-
sion contains a list of classes which were changed (or had methods changed) during
it. When looking for a completion, the class for the current method is looked up. To
reconstruct the vocabulary the most relevant to that class, the vocabulary of all the
sessions in which the class was modified is taken into account and given priority over
the other vocabularies.

Results: This algorithm is the best we found as it reacts more quickly to the devel-
oper changing tasks, or moving around in the system. Since this does not happen that
often, the results are only marginally better. However when switching tasks the addi-
tional accuracy helps. It seems that filtering the history based on the entity in focus
(at the class level) is a good fit for an optimistic completion algorithm.

6.8 Typed optimistic completion (score: 76.79)

Principle: Merging optimistic completion and type information should give us the
best of both worlds. This algorithm merges two previously seen algorithms. It uses

198 Autom Softw Eng (2010) 17: 181–212

Table 9 Results for the typed
optimistic completion algorithm Prefix 2 3 4 5 6 7 8

% 1st 59.65 64.82 70.09 73.49 76.39 79.73 82.09

% 2nd 14.43 14.96 14.1 13.87 13.17 13.09 12.08

% 3rd 4.86 4.64 3.89 3.27 2.92 2.23 1.85

% 4–10 8.71 7.04 5.86 4.58 4.09 3.37 2.50

% Fail 12.31 8.51 6.03 4.75 3.40 1.54 1.44

the data from the session-based algorithm (our best optimistic algorithm so far), and
merges it with the one from the default typed algorithm. The merge works as follow:
The list of matches for the two algorithms are retrieved (Msession and Mtyped). The
matches present in both lists are put at the top of Msession, which is returned.

Results: The result is a significant improvement by 5 points (we ran it on SpyWare
only for the same reasons as the default typed algorithm). This algorithm indeed
performs better than the others, since it merely reuses the already accurate session
information, but makes sure that the matches corresponding to the right type are put
before the other matches. In particular, with a two letter prefix, it gets the first match
correctly 60% of the time.

6.9 Discussion of the results

Most of our expectations on what helps code completion were correct, except “Re-
cently inserted code”. We expected it to perform better than using the entire method
bodies, but were proven wrong. We need to investigate if merging the two strategies
yields any benefits over using only “Recent modified bodies”. On the other hand, us-
ing sessions to order the history of the program is still the best algorithm we found,
even if by a narrow margin. This algorithm considers only inserted calls during each
session, perhaps using the method bodies there could be helpful as well.

When considering the other case studies (Table 10), we see that the trends are the
same for all the studies, with some variations. Globally, if one algorithm performs
better than another for a case study, it tends to do so for all of them. The only ex-
ception is the session-aware algorithm, which sometimes performs better, sometimes
worse, than the one using the code of all the methods recently modified. One reason
for this may be that the other case studies have a much shorter history, diminishing
the roles of sessions. The algorithm has hence less time to adapt.

Considering type information, we saw that it gives a significant improvement
on the default strategy. However, the score obtained by our optimistic algorithms—
without using any type information—is still better. Further, our optimistic algorithms
work even in cases where the type inference engine does not infer a type, and hence
is more useful globally. Merging the two strategies, e.g., filtering the list of returned
matches by an optimistic algorithm based on type information, gives even better re-
sults.

Autom Softw Eng (2010) 17: 181–212 199

Table 10 Scores of each algorithm, for all projects

Project SW S1 S2 S3 S4 S5 S6

Baseline (Section 6.1) 12.15 11.17 10.72 15.26 14.35 14.69 14.86

Structure (Section 6.3) 34.15 23.31 26.92 37.37 31.79 36.46 37.72

Names (Section 6.4) 36.57 30.11 34.69 41.32 29.84 39.80 39.68

Bodies (Section 6.5) 70.14 82.37 80.94 77.93 79.03 77.76 67.46

Inserted (Section 6.6) 62.66 75.46 75.87 71.25 69.03 68.79 59.95

Sessions (Section 6.7) 71.67 79.23 78.95 70.92 77.19 79.56 66.79

Typed (Section 6.2) 47.95 – – – – – –

Typed Optimist (Section 6.8) 76.79 – – – – – –

7 Class-level code completion algorithms

As we present later in Section 9, we released our tool to the developers of two open-
source communities in order to gather feedback and improve the usability of our
tool. One of the first requests we received after releasing our code completion tool to
the Squeak and Pharo (a derivative of Squeak) communities was to make it support
class-name completion. Our first version initially supported only the completion of
method names, using the default pessimistic algorithm in the case of classes. Such
a request is sound, since the number of classes available in an IDE is the second
most numerous category of entities after methods: If methods number in the tens of
thousands, classes number in the thousands. We hence applied the same evaluation
strategy, with the following changes:

– Instead of testing the completion engine each time a method call was inserted, we
test it when a reference to a class is added to the program.

– The completion algorithm is aware that classes are expected, and returns a list of
candidate classes.

Before detailing the four algorithms we investigated, we make a few observations:

– The tests are much less numerous than for methods, since referencing a class di-
rectly is a much less common activity. All in all, we tested the completion engines
for classes around 8,000 times—an order of magnitude less than for methods. The
number of classes is lower as well (by an order of magnitude). This impacts the
results and makes the algorithms score better overall.

– As Squeak lacks the concept of namespaces, classes have often—by convention—
their names prefixed by a two letter abbreviation identifying the application they
belong to. This may impact the results by lowering them for short prefixes.

– Type-aware completion does not help, since we are inserting a type itself.

7.1 Default strategy for classes (score: 41.37)

Principle: The match we are looking for may be any class in the system. The al-
gorithm searches through all the classes defined in the system whose name matches
the prefix on which the completion is attempted. The algorithm sorts the resulting
matches alphabetically.

200 Autom Softw Eng (2010) 17: 181–212

Table 11 Results for the default
strategy for classes algorithm Prefix 2 3 4 5 6 7 8

% 1st 5.02 27.8 58.76 57.92 60.41 72.0 76.15

% 2nd 7.75 14.39 14.57 15.86 15.97 8.66 6.93

% 3rd 1.59 3.73 3.35 3.94 3.58 3.19 2.45

% 4–10 2.64 9.83 3.6 1.97 1.7 1.5 1.51

% fail 82.96 44.21 19.69 20.27 18.31 14.61 12.92

Table 12 Results for the
structure-aware completion
algorithm

Prefix 2 3 4 5 6 7 8

% 1st 8.71 32.5 61.72 60.01 62.48 74.07 78.76

% 2nd 8.78 13.29 16.1 17.26 17.48 9.76 6.71

% 3rd 2.21 6.79 2.76 3.42 2.93 2.75 2.17

% 4–10 3.76 9.53 3.37 2.3 2.01 1.74 1.63

% fail 76.5 37.85 16.01 16.98 15.07 11.65 10.68

Results: Due to the reduced number of entities, the pessimistic algorithm fares
much better in the case of classes than methods. It reaches a very high probability
of putting the right match on top if the prefix is long enough (4 letters or more). The
score for a two-letter prefix is much lower, due to the convention of prefixing classes
to indicate which package they belong to.

7.2 Structure-aware completion (score: 45.36)

Principle: Classes in the same package are more often used than classes outside of
it. When using code completion in a given class, the algorithm prioritizes the classes
that belong to the same package over those of the whole system.

Results: The algorithm is more precise than the default algorithm overall, but not by
much. One reason for that is that the assumption behind the algorithm is sometimes
invalidated: Developers often use base classes from libraries that are outside of the
application, such as string, collection or file classes. In that case, this algorithm fares
no better than the previous one. The accuracy for two-letter prefixes is improved, but
remains still overall quite low.

7.3 Recently used classes (score: 79.29)

Principle: Classes used in methods the programmer change have more chances to
be used again in the future. All the class entries have an associated date, initialized to
January 1st 1970. Whenever the programmer changes a method, all the references to
classes in its body are updated to the date of the change. Entries are ordered by date,
with the most recent first.

Autom Softw Eng (2010) 17: 181–212 201

Table 13 Results for the
recently used classes algorithm Prefix 2 3 4 5 6 7 8

% 1st 58.78 77.66 85.04 84.01 84.97 86.85 88.0

% 2nd 7.55 9.65 6.63 7.04 6.76 5.56 4.95

% 3rd 6.34 2.97 1.23 1.39 1.28 1.0 0.81

% 4–10 5.95 2.25 1.21 0.93 0.69 0.59 0.47

% Fail 21.35 7.44 5.86 6.6 6.26 5.97 5.73

Table 14 Results for the
recently inserted classes
algorithm

Prefix 2 3 4 5 6 7 8

% 1st 60.14 77.94 85.34 84.17 85.22 86.88 88.29

% 2nd 7.62 9.49 6.16 6.65 6.32 5.41 4.5

% 3rd 6.73 2.94 1.39 1.64 1.56 1.21 1.1

% 4–10 5.02 2.18 1.16 0.87 0.58 0.47 0.34

% fail 20.46 7.41 5.91 6.63 6.29 6.0 5.73

Results: This algorithm takes into account usage recency, and again the benefits
are clearly visible, as its score is nearly double that of the previous best-performing
algorithm. Scores are much higher for all prefix lengths, but the most contributing
factor is the short prefixes. For a length of 2, the algorithm puts the right match in the
right position nearly seven times as often as the previous best performer. Indeed, only
a recency factor could help differentiating between a large number of classes which
all share the same two-letter prefix.

7.4 Recently inserted classes (score: 79.86)

Principle: Classes previously used the by the programmer have a higher probability
of being reused. Whenever a reference to a class is added in the system, its entry’s
date is changed to the current time. Entries are ordered by date, with the last used
first.

Results: This algorithm provides a slight improvement over the previous one. Nev-
ertheless, favoring class references that were actually inserted gives a slight edge all
over the board, as opposed to the method case, where it was slightly detrimental. We
are unsure about the causes. Since the improvement was so small, we are convinced
we reached a point of diminishing returns, after which increases in accuracy will be
minimal.

7.5 Discussion of the results

The problem of class completion is simpler than the one of method completion, as the
entities to choose from are less numerous by an order of magnitude. There is however
space for valuable improvement, as we have shown: A history-aware completion al-
gorithm can easily improve over the default or structure-aware algorithms. Moreover,
the improvements are considerable for short prefixes.

202 Autom Softw Eng (2010) 17: 181–212

Table 15 Scores for the class
completion algorithms of all
projects

Project SW S1 S2 S3 S4 S5 S6

Baseline 41.37 18.27 29.26 57.30 46.79 53.49 65.84

Structure 45.36 18.85 29.43 70.45 47.42 56.19 72.87

Used 79.29 86.22 88.47 92.51 92.76 95.46 93.35

Inserted 79.86 87.12 88.80 92.51 92.76 95.46 93.22

The overall results for each project are shown in Table 15. We observe variations
in accuracy in each of the projects, as we saw previously, but the algorithms stay in
the same order across projects. Of course, smaller projects also had a higher accu-
racy as the number of classes defined for each project was much lower. This makes
completion of domain classes significantly easier. This did not affect the completion
of library classes, which are still used a significant portion of the time. Depending
on the usage patterns of classes in projects, the improvement given by the structural
algorithm ranges from very significant (for project S4 that uses mainly classes it de-
fined), to nearly insignificant (for project S3 that uses a large number of base classes).
Project S1 is a bit of an outlier as the performance of the default algorithms is decid-
edly lower than other projects: It is using a restricted number of classes that happen to
have rather ambiguous names. Of note, if the default and structural algorithms have
relatively large variations, the history-aware algorithms are much more stable across
all projects, suggesting that we reached a plateau of efficiency. Comforting this point,
the difference between the algorithms is negligible to the point that on some case
studies the algorithm perform identically, with very high scores.

8 A user interface for optimistic completion

All user interfaces for completion tools suit pessimistic completion algorithms: the
interface is a menu invoked by the programmer via a keyboard shortcut. Arrow keys
are then used to select the right match. Thus code completion is used explicitly by
the programmer, who may underuse it and still type entire methods and class names,
even when the completion engine would have been successful. The alternative is to
have the completion engine propose candidates constantly, without explicit interven-
tion by the programmer. This maximizes the chances that the programmer uses code
completion, but induces the risk of distractions when the propositions are too of-
ten inaccurate. Considering the accuracy of pessimistic code completion algorithms,
having an explicit access to completion is reasonable. With the increased accuracy of
optimistic completion algorithms, it may be time to revisit this choice.

We implemented OCompletion3 (see Fig. 3), which uses optimistic completion
together with an implicit invocation interface. As the programmer types the names
of identifiers, a short list is permanently shown and interactively updated as the pro-
grammer types. We call the suggestions on this list “Automatic Suggestions” as it
appears without explicit user interaction. Pressing tab inserts the first candidate in

3Available at http://www.squeaksource.com/OCompletion.

http://www.squeaksource.com/OCompletion

Autom Softw Eng (2010) 17: 181–212 203

Fig. 3 Optimistic completion in
action

the list, while pressing the down arrow causes the menu to scroll down. Scrolling
down also signifies interest in the matches, so the menu expands to show up to seven
matches, a number that can still be easily processed by humans (Miller 1956). Ini-
tially, we show only up to three matches to minimize the reading effort. Based on
our empirical data, this is sufficient to show the expected match close to 75% of the
time.

As for the algorithm we implemented in the tool, the empirical results on our
dataset allowed us to make an informed decision, taking other parameters than raw
performance into account, such as the simplicity of implementation. We chose the
“recently changed method bodies” algorithm for methods, as it has a performance
close to the ideal without needing to store a lot of usage data. For classes, we chose
“recently used classes”, which had a performance close to the best performing algo-
rithm. Choosing these algorithms limits the amount of parsing we have to perform
in the tool, as we do not have to differentiate two versions of a method to extract
changes. This makes the released tool lighter overall. Since upon installation, OCom-
pletion has not gathered usage data yet, it asks the user for a list of packages he or
she is working on in order to have a reasonable initial set of matches.

9 A qualitative evaluation of optimistic completion

We decided that the best course of action to evaluate how well our tool works in
practice was to release OCompletion to the developer community, have them use it in
their habitual work environment, and collect their feedback. We preferred this over a
controlled experiment for the following reasons:

– The tool is used in a real-world setting. The tool was mature enough so that de-
velopers used it over several weeks in their daily activities. As such they could get
familiar with it and give us detailed feedback, both of which would not have been
possible over a short usage period as in a controlled experiment.

– Controlled experiments of recommenders are hard to set up. As we already men-
tioned in Section 3, the numbers of variables one has to account for in a program-
ming task can be so large that isolating the variable of interest can be difficult. On
the other hand, gathering feedback about the overall usefulness of OCompletion
over time is much more straightforward.

– We already have solid empirical evidence that our algorithms significantly improve
on current algorithms. Since we are able to precisely isolate and measure the accu-
racy of code completion over time using benchmarks, gathering subjective devel-
oper feedback is sufficient.

204 Autom Softw Eng (2010) 17: 181–212

– The real-world impact is greater. By releasing the tool to the community, we had
to take care of a number of usability issues to make sure people are willing to use it
daily. We know of several people who have integrated OCompletion in their daily
toolset. It is even included by default in one of the programming environments for
which we released it.

Initial Release and Feedback. We publicly released OCompletion at the beginning
of May 2009 to the Squeak and Pharo development communities. Squeak is an open
source implementation of a Smalltalk programming environment aimed at research,
teaching and multimedia activities. Pharo is a fork of Squeak aimed at a more profes-
sional development of applications. The feedback we received was very positive as
quotes from the mailing lists show:

– “I like [OCompletion’s] non-intrusive smartness.”
– “I love OCompletion, first time I’ve found completion in Smalltalk actually help-

ful.”
– “In my opinion this could be in the Pharo dev image by default.”

As a consequence, the Pharo maintainers decided to include OCompletion in the
standard development distribution of Pharo, Pharo-dev. Independently, OCompletion
has been downloaded more than a thousand times as of February 2010. OCompletion
users also quickly reported bugs and feature requests, such as making OCompletion
work also for class names (see Section 7). We addressed these issues and released a
second version of OCompletion, at which point we decided to collect more formal
feedback using a survey.

9.1 OCompletion user survey

The goal of the survey was to assess with greater accuracy how people felt about
OCompletion and how well it fares compared to its predecessor, eCompletion. eCom-
pletion is the tool currently used by most users of the Squeak community. It mimics
the way code completion in Eclipse works, and as such uses a pessimistic completion
algorithm. Our survey consisted of 10 questions (to keep the user’s time investment
low), separated into five categories:

1. The first question assessed the experience of the participants using the develop-
ment environment;

2. the next three questions assessed how the respondents used the previous comple-
tion tool, eCompletion;

3. the following three questions compared OCompletion to eCompletion with similar
questions;

4. the next two questions addressed the automatic suggestions of OCompletion and
how the participants perceived them;

5. finally, a space for free-form feedback collected general impressions, requests for
enhancements, etc.

We advertised the survey on the Squeak and Pharo mailing list, attracting 29 re-
spondents, of which 20 had used OCompletion. 8 others had used eCompletion but

Autom Softw Eng (2010) 17: 181–212 205

Table 16 Experience of responders using Squeak

Answers Responses Percent Count

Q1: How long have you been using Squeak? 29 answers, 0 skipped

less than 3 months 3.4% 1

3 months to a year 13.8% 4

1 to 4 years 51.7% 15

5 years or more 31% 9

did not try OCompletion, and one did not use code completion tools at all. In the
following tables, questions marked with a star allowed multiple answers. The survey
kept track of how many people answered each question (which may be distinct from
the number of answers), and of how many people skipped it. We now comment on
the results of each question.

9.2 Experience of the respondents (Table 16)

Q1. We can see that the respondents are overall quite experienced with the IDE, and
as such are educated in the available tools in the IDE. More than 80% have been
using the IDE for more than a year, and nearly a third of the respondents for 5 years
or more.

9.3 Usage of eCompletion (Table 17)

Q2. This question addresses the usage patterns of eCompletion users. Two persons
did not use eCompletion: one was not using completion tools at all, and the second
switched from no completion tool to OCompletion. More than 25% of the respon-
dents ended up stopping to use eCompletion. A minority were wary of eCompletion’s
accuracy and deliberately typed longer prefixes to be sure that the tool would propose
the right match. The majority used OCompletion fairly often.

Q3 investigates why people stopped to use eCompletion. The main reason for
people stopping to use eCompletion was its lack of precision, followed by a perceived
slowness. One respondent states that he switched to OCompletion, another does not
remember exactly (–“It probably got on my nerves”) and a third did not install it again
when he changed environments (probably because the benefits were not important
enough to him). A larger number of people responded to Q3 than the number of
people who said that they stopped using eCompletion in Q2. This also applies to Q5
and Q6; we do not know the reason of the discrepancy.

Q4 gathers impressions about eCompletion’s accuracy. We see that the curve is
balanced, with small minorities choosing extreme choices. A small minority found it
really imprecise, and an even smaller minority (one respondent) found it very precise.
The two main blocks state that either using eCompletion required a lot of scrolling
and typing (somewhat imprecise), or that it was satisfactory overall.

206 Autom Softw Eng (2010) 17: 181–212

Table 17 Experience of responders using eCompletion

Answers Responses Percent Count

Q2: How often did you use eCompletion? 29 answers, 0 skipped

I didn’t use it 6.9% 2

I used it but eventually stopped 27.6% 8

Only when it would save me keystrokes 6.9% 2

Regularly, but I sometimes type full names 20.7% 6

As much as possible 37.9% 11

Q3: If you stopped using eCompletion, why did you?* 14 answers, 15 skipped

Unclear benefits 14.3% 2

Imprecise 64.3% 9

Too slow 50% 7

Buggy 7.1% 1

Other 21.4% 3

Q4: Where would you find the match you needed? 28 answers, 1 skipped

I rarely got the match I wanted 10.7% 3

After a lot of scrolling and typing 37.9% 11

In the first few menu items 46.4% 13

In the top position 3.6% 1

9.4 Usage of OCompletion (Table 18)

Q5 is about OCompletion and its usage patterns. Since the user interface is different
(OCompletion’s user interface is always there and not summoned on demand), some
of the possible answers differ from Q2. Beyond people not using OCompletion, we
see that fewer people stopped using OCompletion (7.7%) than eCompletion (27.6%).
This leaves us under the impression that its behavior is overall very satisfactory. Sev-
eral users responded that they depended on it enough to install it if it is missing, while
others (Pharo users) have it installed by default.

Q6. Few people stopped using OCompletion. Nobody stopped because of a lack
of precision. Reasons cited include OCompletion not working with class names (this
problem was fixed in the second version), and slowness. In the informal feedback we
received, we associated slowness with the class name issue: Attempts to complete
a class name in the first version of OCompletion fell back to eCompletion’s algo-
rithm, which was indeed slow. We suspect these respondents did not try the second
version.

Autom Softw Eng (2010) 17: 181–212 207

Table 18 Experience of responders using OCompletion

Answers Responses Percent Count

Q5: How often do you use OCompletion? 26 answers, 3 skipped

I didn’t use it 23.1% 6

I used it, but eventually stopped 7.7% 2

I use it regularly 26.9% 7

If it is not installed, I install it 15.4% 4

It is installed by default in my environment 26.9% 7

Q6: If you stopped using OCompletion, why did you?* 4 answers, 25 skipped

Unclear benefits 25% 1

Imprecise 0% 0

Too slow 25% 1

Buggy 0% 0

Other 50% 2

Q7: Where would you find the match you needed? 20 answers, 9 skipped

I rarely got the match I wanted 0% 0

After a lot of scrolling and typing 10% 2

In the first few menu items 65% 13

In the top position 25% 5

Q7. In terms of accuracy, we see a large difference with eCompletion. None of the
respondents said that they had trouble finding the match they needed. On the other
hand, people finding OCompletion extremely precise are now the second largest cat-
egory. Overall, the shape is much more skewed towards accuracy, whereas eComple-
tion’s was centered.

9.5 Impressions about OCompletion’s automatic suggestions (Table 19)

Q8 investigates how people react to the automatic suggestions. If OCompletion gave
inaccurate suggestions, people would find automatic suggestions annoying, or stop
using the tool altogether. The respondents are overwhelmingly in favor of automatic
suggestions, as nobody stated that they were annoyed by the suggestions.

Q9. This is also reflected in what people think are the advantages of OCompletion.
Again, a strong majority find that the combination of an increased accuracy with
automatic suggestions is worth more than both improvements considered on their
own. A small minority of respondents did not see visible improvements with the tool.
We hope to win them over with subsequent versions of OCompletion.

208 Autom Softw Eng (2010) 17: 181–212

Table 19 OCompletion’s automatic suggestions

Answers Responses Percent Count

Q8: How useful do you find automatic suggestions? 18 answers, 11 skipped

I stopped using OCompletion because of them 0% 0

Somewhat annoying 0% 0

I don’t mind them 22.2% 4

I find them useful 61.1% 11

I use them all the time 16.7% 3

Q9: What is the main improvement of OCompletion? 18 answers, 11 skipped

Increased accuracy 16.7% 3

Automatic suggestions 11.1% 2

The combination of both 61.1% 11

Neither/No significant improvement 11.1% 2

Other 0% 0

9.6 Detailed feedback

Q10 was a detailed feedback form. Only 8 users chose to fill it, a bit below half of
the respondents who browsed the last page of the survey (which contained Q8, Q9
and Q10). Common suggestions included:

– Add support for other language constructs beyond methods, with an emphasis on
classes. This has been added in the second version of the tool.

– Restore one feature that eCompletion has, but OCompletion does not: the ability
to explore the matches in detail. Since we propose a small list of matches, users
cannot explore many methods in the list even if they would like to.

– Perform cosmetic changes such as a better integration with the IDE’s look and feel.
– Make OCompletion work in all parts of the IDE. OCompletion right now works in

the most common tools, but not all of them.

9.7 Conclusions on the survey

This survey comforted our opinion that optimistic completion algorithms are more
accurate than pessimistic ones, and that the improvement is perceptible in real-world
usage. In addition, it validated our expectation that an alternative completion inter-
face would benefit optimistic completion, as it maximizes completion opportunities
without distracting the user with too many wrong suggestions. The respondents to our
survey were overwhelmingly in favor of this. Finally, the user feedback we gathered
by publicly releasing the tool pointed us to what users really wanted to see improved
in subsequent versions of the tool (e.g., class name completion, and restoring the ex-
ploration possibilities), changes that were included in the second version of the tool.

Autom Softw Eng (2010) 17: 181–212 209

10 Discussion

Despite the provably more efficient completion algorithms we presented—and their
usefulness in practice—our approach has a few shortcomings:

Applicability to other programs. We have tested several programs, but can not ac-
count for the general validity of our results. However, our results are consistent
among the different programs we tested. If an algorithm performs better in one,
it tends to perform better on the others. Moreover, the respondents to our survey
reported real-world improvements over the default completion algorithm.

Applicability to other languages. Our results are currently valid for Smalltalk only.
However, the tests showed that our optimistic algorithms perform better than the
default algorithm using type inference, even without any type information. Merging
the two approaches shows another improvement. An intuitive reason for this is that
even if only 5 matches are returned due to the help of typing, the position they
occupy is still important. Thus we think our results have some potential for typed
object-oriented languages such as Java. In addition, we are confident they could
greatly benefit any dynamic language, such as Python, Ruby, Erlang, etc.

Other uses of code completion. Programmers use code completion in IDEs at least
for two reasons: (1) To complete the code they are typing, which is the part that we
optimize, and (2) as a quick alternative to documentation. Code completion allows
programmers to quickly discover the methods at their disposal on any object. Our
completion algorithms do not provide this, and one could argue that they are detri-
mental to this usage, since they return only a small number of matches. Indeed, two
of the survey respondents specifically reported that they wished this behavior back.
Programmers could use optimistic completion while typing (without explicit invoca-
tion), and still invoke the regular code completion algorithm using the old keyboard
shortcut if they wish to explore the system. This would make the two approaches
complementary.

Resource usage. Our benchmark in its current form is resource-intensive. Testing the
completion engine several hundred thousands times in a row takes a few hours for
each benchmark. We are looking at ways to make this faster. On the other hand,
since the best performing algorithm uses a more limited number of matches, an
optimistic code completion tool can actually be faster than a pessimistic one.

11 Related work

We reviewed a number of completion approaches used in practice in Section 2. We re-
view here the few academic contributions we are aware of in the domain of code com-
pletion. Beyond the classical completion algorithms, few works can compare with our
approach, for the reasons we mentioned in Section 1: The lack of new data sources
to improve code completion, the difficulty of evaluation without a benchmark-type
approach such as ours, and the necessity of a large improvement to convince users.

Mylyn by Kersten and Murphy (2006) features a form of code completion based
on task contexts prioritizing elements belonging to the task at hand, which is similar
to our approach. We could however not reproduce their algorithm since our recorded

210 Autom Softw Eng (2010) 17: 181–212

information focuses on changes, while theirs focuses on interactions (they also record
which entities were changed, but not the change extent, which amounts to the “re-
cently modified method names” algorithm). The data we recorded includes interac-
tions only on a smaller period and could thus not be compared with the rest of the
data. Mylyn’s completion is mentioned as a minor contribution in their paper, and is
not evaluated separately.

Another completion mechanism is Keyword Programming by Little and Miller
(2007), in which free-form keywords are replaced by valid code found in the model
of the program. It functions quite differently from standard completion algorithms,
and hence could not be directly compared with other completion strategies. We see
this approach as halfway between code completion and code search engines such
as Google code search,4 Koders5 or academic source code search engines such as
Sourcerer by Bajracharya et al. (2006) or S6 by Reiss (2009).

A final completion mechanism is the one proposed by Bruch et al. (2009). They
propose 3 completion algorithms based on the existing usage of classes in the code
base, and compare their accuracy with the default completion mechanism by having
their algorithms train on a part of the code base, and propose completions on the
remaining part of the code base. There are several differences with our approach.
First, the algorithms they propose learn from existing code, while the algorithms we
experimented with use recent change information. Our algorithm are lighter-weight,
and may adapt more quickly to the developer’s actions in the case where examples are
not yet available to learn from. Second, their evaluation uses existing code bases that
are divided in a training set and a testing set, while we use actual, recorded sequence
of changes. Third, they evaluate their completion mechanism without prefixes, while
we study the behavior of our algorithms for a varying length of prefixes. Similarly
to us, they perform a second validation by having users perform a coding task with
their best-performing mechanism and having them fill a questionnaire afterwards.
A difference in the second step of evaluation is that we released the tool and let
developers use it for a longer period of time during their actual coding activities,
while they specified a task that developers worked on using one of their previously
trained completion algorithms.

12 Conclusion

Code completion is a tool used by every developer, yet improvements have been
few and far-between: Additional data is needed to both improve it and measure the
improvement. We defined a benchmark to measure the accuracy of code completion
by replaying the entire change history of seven projects, while calling the completion
engine at every step. Using this historical information as an additional source of data
for the completion engine, we significantly improved its accuracy by changing the
alphabetical ordering of the results to an ordering based on entity usage. We applied

4http://www.google.com/codesearch.
5http://www.koders.com/.

http://www.google.com/codesearch
http://www.koders.com/

Autom Softw Eng (2010) 17: 181–212 211

our approach to the two most numerous kind of entities in a software system, class
and method names, and saw significant improvements in both areas.

Our optimistic completion algorithms return the correct match in the top 3 in close
to 75% of the cases, whereas pessimistic algorithms always have the correct match,
but in a much larger list of candidates, and usually at a worse rank since the matches,
when sorted alphabetically, have no semantic ordering. Hence using an optimistic
algorithm involves less navigation and a lesser cognitive load to select a match.

We integrated our improved completion algorithm in a code completion tool
named OCompletion, and we released it in two open-source communities. The in-
formal feedback we received was very positive and guided us in our subsequent im-
provements of the tool. In addition, a survey of the users showed that they found it
significantly more accurate than the previous tool they used, and that OCompletion’s
user interface, optimized for optimistic completion, was also a part of the increased
usability of the tool. More telling to us is the fact that OCompletion is now included
in the Pharo development environment and is as such used daily by its developers.

Acknowledgements We thank D. Pollet and S. Krishnamurthi for discussions about this work. We ac-
knowledge the financial support of the Swiss National Science foundation for the project “REBASE” (SNF
Project No. 115990). We also thank the Squeak and Pharo users that downloaded OCompletion, gave us
feedback, and answered our survey.

References

Arisholm, E., Gallis, H., Dybå, T., Sjøberg, D.I.K.: Evaluating pair programming with respect to system
complexity and programmer expertise. IEEE Trans. Softw. Eng. 33(2), 65–86 (2007)

Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C.: Sourcerer: a search engine for
open source code supporting structure-based search. In: OOPSLA ’06: Companion to the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and Applications,
pp. 681–682. ACM, New York (2006). http://doi.acm.org/10.1145/1176617.1176671

Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion systems.
In: ESEC/FSE’09: Proceedings of the 7th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 213–222 (2009)

Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM Comput. Surv.
30(2), 232–282 (1998)

Dehnadi, S., Bornat, R.: The camel has two humps (working title) (2006). http://www.cs.mdx.ac.uk/
research/PhDArea/saeed/paper1.pdf

Fazly, A.: The use of syntax in word completion utilities. Master’s thesis, University of Toronto (2002)
Murphy, G., Kersten, M., Findlater, L.: How are java software developers using the eclipse ide? IEEE

Softw. (2006)
Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity. In: FSE ’06: Proceed-

ings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 1–11 (2006)

Little, G., Miller, R.C.: Keyword programming in Java. In: ASE ’07: Proceedings of the 22nd International
Conference on Automated Software Engineering, pp. 84–93 (2007)

Lung, J., Aranda, J., Easterbrook, S.M., Wilson, G.V.: On the difficulty of replicating human subjects
studies in software engineering. In: ICSE ’08: Proceedings of the 30th International Conference on
Software Engineering, pp. 191–200 (2008)

Miller, G.A.: The magical number seven. plus or minus two: Some limits on our capacity for process-
ing information. Psychol. Rev. 63, 81–97 (1956). http://users.ecs.soton.ac.uk/~harnad/Papers/Py104/
Miller/miller.html

Reiss, S.P.: Semantics-based code search. In: ICSE ’09: Proceedings of the 31st International Conference
on Software Engineering, pp. 243–253 (2009)

http://doi.acm.org/10.1145/1176617.1176671
http://www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://users.ecs.soton.ac.uk/~harnad/Papers/Py104/Miller/miller.html
http://users.ecs.soton.ac.uk/~harnad/Papers/Py104/Miller/miller.html

212 Autom Softw Eng (2010) 17: 181–212

Robbes, R.: Mining a change-based software repository. In: MSR ’07: Proceedings of Fourth International
Workshop on Mining Software Repositories, p. 15. ACM Press, New York (2007)

Robbes, R., Lanza, M.: An approach to software evolution based on semantic change. In: FASE ’07: Pro-
ceedings of the 10th International Conference on Fundamental Approaches to Software Engineering,
pp. 27–41 (2007a)

Robbes, R., Lanza, M.: Characterizing and understanding development sessions. In: ICPC ’07: Proceed-
ings of the 15th International Conference on Program Comprehension, pp. 155–164 (2007b)

Robbes, R., Lanza, M.: Spyware: a change-aware development toolset. In: ICSE ’08: Proceedings of the
30th International Conference on Software Engineering, pp. 847–850 (2008)

Sharon, Y.: Eclipseye—spying on eclipse. Bachelor’s thesis, University of Lugano (2007)
Sim, S.E., Easterbrook, S.M., Holt, R.C.: Using benchmarking to advance research: A challenge to soft-

ware engineering. In: ICSE ’03: Proceedings of the 25th International Conference on Software Engi-
neering, pp. 74–83 (2003)

Sim, S.E., Holt, R.C., Easterbrook, S.: On using a benchmark to evaluate C++ extractors. In: IWPC ’02:
Proceedings of the 10th International Workshop on Program Comprehension, p. 114. IEEE Computer
Society, Washington (2002)

Wuyts, R.: Roeltyper: a fast type reconstructor for smalltalk. http://decomp.ulb.ac.be/roelwuyts/smalltalk/
roeltyper/ (2007)

http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/
http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/

	Improving code completion with program history
	Abstract
	Introduction
	Structure of the article.

	Code completion
	Code completion in the real world
	Code completion in Eclipse.
	Code completion in Visualworks.
	Code completion in Squeak.

	Classifying code completion approaches

	Evaluating code completion
	Human subject studies and benchmarks
	Human subject studies
	Benchmarks

	Our evaluation procedure

	Change-based software repositories
	Model and Implementation.
	Program Representation.
	Change operations
	Atomic Change Operations.
	Composite Change Operations.

	A benchmark for code completion
	Replaying a Program's Change History.
	Evaluation procedure
	Typed and Untyped Completion.

	Benchmark data

	Code completion algorithms
	Default untyped strategy (score: 12.15)
	Principle:
	Results (Table 2):

	Default typed strategy (score: 47.95)
	Principle:
	Results (Table 3):

	Optimistic structural completion (score: 34.15)
	Principle:
	Results (Table 4):

	Recently modified method names (score: 36.57)
	Principle:
	Results (Table 5):

	Recently modified method bodies (score: 70.14)
	Principle:
	Results:

	Recently inserted code (score: 62.66)
	Principle:
	Results:

	Per-session vocabulary (score: 71.67)
	Principle:
	Results:

	Typed optimistic completion (score: 76.79)
	Principle:
	Results:

	Discussion of the results

	Class-level code completion algorithms
	Default strategy for classes (score: 41.37)
	Principle:
	Results:

	Structure-aware completion (score: 45.36)
	Principle:
	Results:

	Recently used classes (score: 79.29)
	Principle:
	Results:

	Recently inserted classes (score: 79.86)
	Principle:
	Results:

	Discussion of the results

	A user interface for optimistic completion
	A qualitative evaluation of optimistic completion
	Initial Release and Feedback.
	OCompletion user survey
	Experience of the respondents (Table 16)
	Usage of eCompletion (Table 17)
	Usage of OCompletion (Table 18)
	Impressions about OCompletion's automatic suggestions (Table 19)
	Detailed feedback
	Conclusions on the survey

	Discussion
	Related work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

