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Abstract Magneto-active elastomers are smart materials composed of a rubber-like matrix material contain-
ing a distribution of magneto active particles. The large elastic deformations possible in the rubber-like matrix
allow the mechanical properties of magneto-active elastomers to be changed significantly by the application
of external magnetic fields. In this paper, we provide a theoretical basis for the description of the nonlinear
properties of a particular class of these materials, namely transversely isotropic magneto-active elastomers.
The transversely isotropic character of these materials is produced by the application of a magnetic field during
the curing process, when the magneto active particles are distributed within the rubber. As a result the particles
are aligned in chains that generated a preferred direction in the material. Available experimental data suggest
that this enhances the stiffness of the material in the presence of an external magnetic field by comparison with
the situation in which no external field is applied during curing, which leads to an essentially random (isotropic)
distribution of particles. Herein, we develop a general form of the constitutive law for such magnetoelastic
solids. This is then used in the solution of two simple problems involving homogeneous deformations, namely
simple shear of a slab and simple tension of a cylinder. Using these results and the experimental available data
we develop a prototype constitutive equation, which is used in order to solve two boundary-value problems
involving non-homogeneous deformations—the extension and inflation of a circular cylindrical tube and the
extension and torsion of a solid circular cylinder.

1 Introduction

Magneto active elastomers, otherwise known as magneto-sensitive (MS) elastomers, are materials comprising
a rubber like matrix within which microscopic magneto-active particles are distributed. The main characteristic
of these materials is that their mechanical properties can be changed significantly by application of an external
magnetic field. This characteristic makes them particularly suitable for applications that require a rapid change
in the material properties, such as in vibration suppression, in variable stiffness devices for electronic control,
and in tunable automotive suspensions, etc. see, for example, [1–3].

Experimental data on MS elastomers may be found in, for example, [4–10]. In particular the results in [4,5]
and in [9,10] suggest that the application of a magnetic field during the curing process, in which the particles
are added to the rubber-like base material, induces the particles to align in chain-like structures which endow
the material with a preferred direction and enhance significantly the mechanical stiffness of the material as
compared to the isotropic case in which the particles are randomly distributed. Indeed, the data illustrated in
[2], which have been used in recent theoretical works concerning isotropic MS elastomers (see, for example,
[11–15]), were actually obtained for transversely isotropic MS elastomers.
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An important early work on magnetoelastic interactions is the book by Brown [16], which has served as a
basis for most of the subsequent research in the area. More recent account, within the general context of elec-
tromagnetic continuum mechanics, may be found in, for example, [17–20], and comparisons of the different
formulations are provided in [21,22]. Interesting models of transversely isotropic MS elastomers, based on a
micromechanical approach, have been developed by, for example, Borcea and Bruno [23] and by Yin et al.
[24].

In many of the works that deal with magnetoelastic interactions the magnetization has been used as the inde-
pendent magnetic variable (see, for example, [25]). In contrast, Dorfmann and Ogden [11–15] have recently
developed the theory of MS elastomers using either the magnetic field or the magnetic induction as the indepen-
dent magnetic variable instead the magnetization and a particular form of energy density function, which leads
to relatively simple expressions for both the constitutive equations and the structure of the governing equations.
While the theory of Dorfmann and Ogden [11–15] is quite general, it was applied explicitly only to the case
of isotropic magnetoelastic solids. Their general formulation serves as a good starting point for the develop-
ment of a theory of transversely isotropic MS elastomers. A parallel theory for transversely electro-active (or
electro-sensitive) elastomers is presented in [26].

The set of all universal solutions for the electro elastic problem was found by Singh and Pipkin [27], while
the similar set of solutions for the magneto elastic case, in analogy with the above reference, was found by
Pucci and Saccomandi [28]. Universal relations for the particular case of the formulation of Dorfmann and
Ogden [12] were found, for example, by Bustamante et al. [29].

In Sect. 2, we review the basic concepts of the nonlinear theory of magnetoelasticity as developed by Dorf-
mann and Ogden [11–15]. Then, in Sect. 3 we study the particular case of an MS elastomer with a preferred
direction associated with the particle alignment in the reference configuration. We summarize the constitutive
equations based on either the magnetic field or magnetic induction vector and then, using invariants (or quasi-
invariants) that depend severally on the deformation, the preferred direction and the magnetic field, derive in
detail the specific forms of constitutive laws for transversely isotropic magnetoelastic solid.

Two basic problems involving homogeneous deformations are studied in Sect. 4. The simple shear of
a slab and the simple tension of a circular cylinder, are used subsequently in Sect. 5 in order to develop a
specific prototype model, or first approximation, for the energy function. Here, we use the experimental data
provided in [4,5,8], which were obtained essentially for the first two problems mentioned above, to provide a
procedure for characterizing the magnetoelastic energy function.

In Sect. 6, two boundary-value problems involving non-homogeneous deformations and cylindrical
symmetry are solved: the inflation and extension of a cylindrical tube, and the combined extension and torsion
of a solid circular cylinder (see [15,12] for the counterparts of these problems for isotropic materials). The
particular form of the constitutive equation developed in Sect. 5 is used in order to obtain closed-form solu-
tions for these problems. Numerical results are then presented to illustrate the dependence of the mechanical
characteristics on the magnitude of the mechanical field.

Finally, Sect. 7 contains some concluding remarks and outlines some possible directions for further research.
Most of this paper is based on Chapter 5 of the Ph.D. thesis by Bustamante [30].

2 Basic equations

2.1 Kinematics

Consider a magnetoelastic material occupying the reference configuration B0 when undeformed and in the
absence of a magnetic field. Let a material point in B0 be defined by its position vector X relative to an arbi-
trarily chosen origin. When the body is subjected to the deformation χ the point X assumes a new position
x = χ(X) in the resulting deformed configuration, which we denote by B. We are considering quasi-static
deformations with no time dependence. The deformation gradient tensor F relative to B0 and its determinant
are [31],

F = Gradχ , J = det F > 0, (1)

respectively, where Grad is the gradient operator with respect to X and wherein the notation J is defined. The
corresponding left and right Cauchy-Green deformation tensors, denoted here by b and c, respectively, are
defined by

b = FFT, c = FTF. (2)
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2.2 Magnetic field equations

Suppose that the deformed configuration B arises from the combined application of a magnetic field and
boundary tractions. The magnetic field vector is denoted by H and the magnetic induction vector by B. In
the absence of material these are related by the standard equation (see, for example, [20] for a recent text on
electromagnetic theory)

B = µ0H, (3)

where µ0 is the magnetic permeability in vacuo. Inside the material, on the other hand, the two vectors are
connected via

B = µ0(H + M), (4)

where M is known as the magnetization field.
In either case, the field equations

curlH = 0, divB = 0, (5)

are satisfied, where curl and div, respectively, are the curl and divergence operators with respect to x. We are
assuming here that there are no free currents.

Equation (5) is expressed in Eulerian form. Within a deformed material pull-back operations from B to
B0 give the corresponding Lagrangian forms of the magnetic field vector, denoted Hl , and magnetic induction
vector, denoted by Bl . The connections are (see, for example, [11,12,32])

Hl = FTH, and Bl = JF−1B, (6.1, 2)

where T signifies the transpose of a second-order tensor. The counterparts of Eq. (5) for these vectors are
(within the material)

CurlHl = 0, DivBl = 0, (7.1, 2)

where Curl and Div, respectively, are the curl and divergence operators with respect to X.

2.3 Mechanical balance equations

Let ρ0 and ρ be the mass densities of the material in the reference and deformed configurations, B0 and B,
respectively. Then, recalling that J = det F, the conservation of mass equation can be written simply as

Jρ = ρ0. (8)

The influence of the magnetic field on the mechanical stress in the deforming body may be incorporated
through magnetic body forces or through a magnetic stress tensor. Here, we adopt the latter approach and
denote the resulting total (Cauchy) stress tensor by τ , which has the advantage of being symmetric. In the
absence of mechanical body forces, the equilibrium equation for a magnetoelastic solid has the (Eulerian)
form

divτ = 0. (9)

For more details we refer to, for example, [12,13,25,32].
As in conventional nonlinear elasticity theory [31], we may define a ‘nominal’ stress tensor, here denoted

T and referred to as the total nominal stress tensor, which is related to τ by

T = JF−1τ . (10)

The equilibrium equation (9) may then be expressed simply in Lagrangian form as

DivT = 0. (11)
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2.4 Boundary conditions

At the interfaces between the considered material body and its exterior appropriate boundary conditions must
be satisfied by the fields H, B and τ . In particular, the vector fields H and B satisfy the standard jump conditions
(see, for example, [20])

n × [[H]] = 0, n · [[B]] = 0, (12.1, 2)

where [[ · ]] signifies the difference between the value of the enclosed quantity on the outside and the inside of
the boundary ∂B of B, and n is the outward unit normal to ∂B. It is assumed here that there are no surface
currents. The continuity condition involving the stress τ may be written in the form

[[τ ]]n = 0, (13)

and we note that the traction τn on the inner boundary must be matched to the combination of the traction
associated with the Maxwell stress and any active (applied) mechanical traction [33] (or passive traction asso-
ciated with a displacement boundary condition). Outside the material the Maxwell stress, denoted τm , has the
standard form

τm = H ⊗ B − 1

2
(H · B)I, (14)

where I is the identity tensor and B = µ0H.
Equations (12.1, 2) and (13) may also be expressed in terms of the Lagrangian quantities Hl , Bl and T

evaluated on the reference boundary (denoted ∂B0), for details of which we refer to [13], for example.

2.5 Constitutive equations

To solve boundary value problems we need to have available, in addition to mechanical and magnetic gov-
erning equations, constitutive equations for the total stress tensor τ and one of the magnetic vectors. Here,
we summarize briefly the formulation of Dorfmann and Ogden [11–13], initially adopting F and Bl to be
independent variables for this purpose and defining an energy function � per unit mass: � = �(F, Bl). For
an unconstrained material, the total stress tensor is given by

τ = ρF
∂�

∂F
+ µ−1

0 [B ⊗ B − 1
2 (B · B)I], (15)

where B = J−1FBl . In vacuum, � ≡ 0 and the stress τ reduces to the Maxwell stress, here denoted τm and
given by

τm = µ−1
0 [B ⊗ B − 1

2 (B · B)I], (16)

with B = µ0H.
In terms of � the magnetization vector is

M = −ρ JF−T ∂�

∂Bl
. (17)

Following Dorfmann and Ogden [12] we now supplement the energy function and define the new energy
function � (per unit reference volume) as

�(F, Bl) = ρ0� + 1

2
µ−1

0 J−1Bl · (cBl), (18)

which leads to the particularly simple forms

T = ∂�

∂F
, Hl = ∂�

∂Bl
(19)
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of the nominal stress tensor and the Lagrangian magnetic field, as in [12,13]. The corresponding total Cauchy
stress tensor and Eulerian magnetic field are

τ = J−1F
∂�

∂F
, H = F−T ∂�

∂Bl
. (20)

For an incompressible material, with the constraint

det F ≡ 1, (21)

the total Cauchy and nominal stresses are given by

τ = F
∂�

∂F
− pI, T = ∂�

∂F
− pF−1, (22)

where p is a Lagrange multiplier associated with the incompressibility constraint.
While Bl satisfies (7.2) and can therefore be expressed in terms of a magnetic vector potential, Hl satisfies

(7.1) and is expressible in terms of a scalar potential, which has certain advantages, in particular in the formu-
lation of variational principles [33] and the solution of boundary-value problems. It is therefore convenient to
consider the alternative formulation of the constitutive laws based on use of Hl as the independent magnetic
variable. We define another energy function, denoted �∗, as a function of F and Hl via the partial Legendre
transformation [12,13]

�∗(F, Hl) = �(F, Bl) − Hl · Bl . (23)

This requires, in particular, that for every F there is a one-to-one relationship between Bl and Hl and, physically,
that there is no magnetic hysteresis. Then, the counterparts of the Eqs. (19) and (20) are, respectively

T = ∂�∗

∂F
, Bl = −∂�∗

∂Hl
, (24)

and

τ = J−1F
∂�∗

∂F
, B = −J−1F

∂�∗

∂F
, (25.1, 2)

while for an incompressible material equation (22) is replaced by

τ = F
∂�∗

∂F
− p∗I, T = ∂�∗

∂F
− p∗F−1, (26.1, 2)

where we have used p∗ for the Lagrange multiplier in this case.
Note that neither of the above two formulations involves the magnetization.

3 Transversely isotropic MS elastomers

We now consider the situation in which the material has a preferred direction in the reference configuration
denoted by the unit vector a0. For magnetoelastic elastomers this direction is generated by the alignment of
magneto-active particles during curing in the presence of a magnetic field. In the present work we make use
of the formulation based on the Lagrangian magnetic field Hl as the independent magnetic variable. A corre-
sponding development with Bl as the independent magnetic variable is contained in the thesis by Bustamante
[30]. Thus, we work with the energy function �∗, but now with the preferred direction a0 included explicitly as
an argument: �∗ = �∗(F, Hl , a0). The relevant equations for the stresses and the magnetic induction remain
in the general forms given in (25.1, 2) and (26.1, 2).

When a magnetic field is applied there are effectively two preferred directions in the reference configura-
tion, namely a0 and Hl , but the latter is not in general a unit vector. For a material with two preferred directions
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�∗ must be a function of ten invariants or quasi-invariants (see, for example, [34,35]). Here, we use the set of
invariants defined by1

I1 = trc, I2 = 1

2
[(trc)2 − trc2], I3 = det c, (27.1–3)

I4 = Hl · Hl , I5 = Hl · (cHl), I6 = Hl · (c2Hl), (28)

I7 = a0 · (ca0), I8 = a0 · (c2a0), I9 = a0 · Hl , I10 = a0 · (cHl). (29)

It should be noted that the signs of I9 and I10 are changed if either a0 is changed to −a0 or Hl is changed to
−Hl (but not both simultaneously). Thus, strictly, I9 and I10 should be replaced by their squares in the above
list or be multiplied by a0 · Hl to give invariants that are independent of the senses of the preferred directions.
However, we retain the forms as given above for simplicity since otherwise the expressions for the stress and
magnetic induction would be rather longer than those that appear below. The difference is in any case properly
accommodated in the properties of the energy function. It is also worth nothing that, according to Zheng [35],
there should be an additional invariant, say I11, defined by I11 = a0 · (c2Hl). However, this invariant is not
independent of the others, a result that is proved in Appendix B of [30].

In order to obtain explicit expressions for the total stress based on these invariants we need the derivatives

∂ I1

∂F
= 2FT,

∂ I2

∂F
= 2(I1FT − FTFFT),

∂ I3

∂F
= 2I3F−1, (30)

∂ I5

∂F
= 2Hl ⊗ FHl ,

∂ I6

∂F
= 2(Hl ⊗ FFTFHl + FTFHl ⊗ FHl), (31)

∂ I7

∂F
= 2a0 ⊗ Fa0,

∂ I8

∂F
= 2(a0 ⊗ FFTFa0 + FTFa0 ⊗ Fa0), (32)

∂ I10

∂F
= a0 ⊗ FHl + Hl ⊗ Fa0. (33)

Using these formulas it follows from (25.1) that for an unconstrained material the total Cauchy stress is given
by

τ = J−1[2�∗
1b + 2�∗

2(I1b − b2) + 2I3�
∗
3I + 2�∗

5bH ⊗ bH + 2�∗
6(bH ⊗ b2H + b2H ⊗ bH)

+2�∗
7a ⊗ a + 2�∗

8(a ⊗ ba + ba ⊗ a) + �∗
10(a ⊗ bH + bH ⊗ a)], (34)

where �∗
i stands for the partial derivative of �∗ with respect to Ii , i = 1, 2, . . . , 10, and we have introduced

the notation

a = Fa0. (35)

The corresponding result for an incompressible material is obtained from (26.1) in the form

τ = 2�∗
1b + 2�∗

2(I1b − b2) − p∗I + 2�∗
5bH ⊗ bH + 2�∗

6(bH ⊗ b2H + b2H ⊗ bH)

+2�∗
7a ⊗ a + 2�∗

8(a ⊗ ba + ba ⊗ a) + �∗
10(a ⊗ bH + bH ⊗ a), (36)

with I3 ≡ 1.
To obtain an explicit expression for the magnetic induction Bl we need the derivatives

∂ I4

∂Hl
= 2Hl ,

∂ I5

∂Hl
= 2cHl ,

∂ I6

∂Hl
= 2c2Hl ,

∂ I9

∂Hl
= a0,

∂ I10

∂Kl
= ca0. (37)

Then, from (25.2) we obtain

B = −J−1(2�∗
4bH + 2�∗

5b2H + 2�∗
6b3H + �∗

9a + �∗
10ba) (38)

for an unconstrained material, and

B = −(2bH�∗
4 + 2b2H�∗

5 + 2b3H�∗
6 + a�∗

9 + ba�∗
10) (39)

for an incompressible material.

1 In the thesis by Bustamante [30] I4, I5, I6, I9, I10 are used to denote invariants involving Bl , while invariants involving
Hl are denoted with different symbols, namely K4, K5, K6, K9, K10. Since in the present paper we only work with Hl as the
independent magnetic variable, we have not considered a different notation here.
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3.1 Some restrictions on the energy function

Some restriction on �∗ may be obtained, as has been done in [26] for the electroelastic case, for example,
by examining the situation in which there is no applied load or field. In the reference configuration we have
F = I, a = a0, and hence the invariants (27)–(29) reduce to

I1 = I2 = 3, I3 = 1, I4 = I5 = I6 = 0, I7 = I8 = 1, I9 = I10 = 0. (40)

Then, Eq. (34) reduces to

τ̄ = 2(�̄∗
1 + 2�̄∗

2 + �̄3
∗
3)I + 2(�̄∗

7 + 2�̄∗
8)a0 ⊗ a0, (41)

and (38) to

B̄ = −(�̄∗
9 + �̄∗

10)a0, (42)

where the overbar signifies evaluation for the invariants given in (40).
If there is no residual stress and no residual magnetic field or magnetization then we must have τ̄ = 0 and

B̄ = 0 and it follows from (41) and (42) that

�̄∗
1 + 2�̄∗

2 + �̄∗
3 = 0, �̄∗

7 + 2�̄∗
8 = 0, �̄∗

9 + �̄∗
10 = 0. (43.1–3)

For an incompressible material (43.1) is replaced by

2�̄∗
1 + 4�̄∗

2 − p∗ = 0, (44)

but the restrictions (43.2, 3) remain in force.
Suppose now that in a deformed configuration under the action of an applied mechanical load in the absence

of an applied magnetic field there is no induced magnetic induction (or magnetization). Then we would have
the additional restriction

I�̆∗
9 + b�̆∗

10 = 0, (45)

where �̆∗
i , i = 9, 10 indicates evaluation of �∗

i for I4 = I5 = I6 = I9 = I10 = 0, from which we deduce that

�̆∗
9 = �̆∗

10 = 0. (46)

Of course, the restrictions (46) imply (43.3) in this case. For an isotropic material the invariants I9 and I10 are
absent, �∗

9 = �∗
10 = 0 and it follows automatically from (38) that B, and hence the magnetization, vanishes

when there is no applied magnetic field. For an anisotropic material it does not necessarily follow that there is
no magnetization induced by mechanical loads. For the counterpart of this situation for electroelastic materi-
als, in particular for piezoelectric materials, deformation causes a rearrangement of the distribution of charges
leading to a non-zero polarization field (see, for example, [36]). Note that the restrictions (46) would not mean
that there is no coupling between the magnetic and mechanical effects, but it does mean that such coupling
requires the presence of an applied magnetic field.

A final special case worth mentioning corresponds to the maintenance of the undeformed configura-
tion on the application of a magnetic field. In such a configuration the invariants reduce to I1 = I2 = 3,
I3 = I7 = I8 = 1 and I4 = I5 = I6 = H · H, I9 = I10 = H · a0, and the stress required for an unconstrained
material, for example, is

τ = 2(�∗
1 + 2�∗

2 + �∗
3)I + 2(�∗

5 + �∗
6)H ⊗ H

+2(�∗
7 + 2�∗

8)a0 ⊗ a0 + �∗
10(a0 ⊗ H + H ⊗ a0), (47)

while the magnetic induction becomes

B = −2(�∗
4 + �∗

5 + �∗
6)H − (�∗

9 + �∗
10)a0. (48)
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4 Boundary value problems: homogeneous deformations

In this section, we consider two simple boundary value problems for which the deformation is homogeneous,
namely the simple shear of a slab and the uniaxial tension of a circular cylinder. The discussion of these two
problems is motivated by the fact that there are few experimental results available for magneto-active elasto-
mers suitable for a detailed characterization of the constitutive properties of such materials. Because of the
complexity of the phenomena involved it is more difficult than in the purely nonlinear elastic case to obtain
appropriate data sets, particularly because of the large number of invariants involved. As we will see in detail
in Sect. 5, most of the available data have been obtained for rather simple problems. Thus, we focus on these
two homogeneous deformation problems in order to develop a prototype specific form of �∗.

4.1 Simple shear

The simple shear problem for magnetoelastic materials has been treated several times in the literature; see, for
example, [12,15] for the isotropic problem and [37], which also deals with isotropic materials but is based on
a different formulation for the energy function. Here, we confine attention to incompressible materials.

Consider the slab described in the reference configuration by

− ∞ ≤ X1 ≤ ∞, −L/2 ≤ X2 ≤ L/2, −∞ ≤ X3 ≤ ∞. (49)

Note that here and in the following sections we use semi-infinite geometries in order to avoid problems with
the boundary conditions (12.1, 2), which for finite geometries in general lead to edge effects that discount the
possibility of having homogeneous deformations. For an example of the influence of edge effects see [38].

We consider the (homogenous) simple shear deformation defined by

x1 = X1 + γ X2, x2 = X2, x3 = X3, (50)

from which the component matrices of the deformation gradient and the left and right Cauchy deformation
tensors, denoted F, b, c, respectively, are calculated as

F =
⎛
⎝

1 γ 0
0 1 0
0 0 1

⎞
⎠ , b =

⎛
⎝ 1 + γ 2 γ 0

γ 1 0
0 0 1

⎞
⎠ , c =

⎛
⎝

1 γ 0
γ 1 + γ 2 0
0 0 1

⎞
⎠ . (51)

The two first invariants (27.1–3) are

I1 = I2 = 3 + γ 2, (52)

and I3 = 1.
We consider a uniform external magnetic field applied in the x2 direction with component H∗ outside

the material, so that the corresponding component of the magnetic induction is B∗ = µ0 H∗. Let H be the
corresponding (uniform) component of the magnetic field within the slab. By the continuity condition (12.1)
this is the only non-vanishing component with the material. However, B will in general have two components
for this problem, and we write B = (B1, B2, 0)T as the vector of components. The continuity condition (12.2)
gives B∗ = B2, which relates H to H∗. Parallel results for this problem based on use of the magnetic induction
as the independent magnetic variable are given in [30], while for details of the experimental counterpart of
this problem we refer to [2,8], in particular regarding the orientation field and the particle chains. Of course,
the experiments can only be conducted on a slab of finite dimensions.

From the relation Hl = FTH we find that Hl = H for this problem and the given field. Thus,

Hl = (0, H, 0)T, (53)

and it follows from (28) that

I4 = H2, I5 = H2(1 + γ 2), I6 = H2(γ 4 + 3γ 2 + 1). (54.1–3)

Options for the particle chain alignments include alignment in the x1 or x2 direction, which are the two cases
considered here. For experimental results obtained for a slab under shear with these two alignments we refer
to [8].
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4.1.1 Particle alignment in the x2 direction

In this case, the initial particle alignment is given by the field a0 = (0, 1, 0)T, and from (35) we obtain
a = (γ, 1, 0)T. The invariants (29) are then specialized to

I7 = 1 + γ 2, I8 = γ 2 + (1 + γ 2)2, I9 = H, I10 = H(1 + γ 2). (55)

The components of the total stress can now be obtained from (36) as

τ11 = −p∗ + 2(1 + γ 2)�∗
1 + 2(2 + γ 2)�∗

2 + 2H2γ 2[�∗
5 + (2 + γ 2)�∗

6]
+2γ 2[�∗

7 + 2(2 + γ 2)�∗
8 + H�∗

10], (56)

τ22 = −p∗ + 2�∗
1 + 4�∗

2 + 2H2[�∗
5 + 2(1 + γ 2)�∗

6] + 2�∗
7 + 4(1 + γ 2)�∗

8 + 2H�∗
10, (57)

τ33 = −p∗ + 2�∗
1 + 2(2 + γ 2)�∗

2, (58)

τ12 = 2γ {�∗
1 + �∗

2 + H2[�∗
5 + (3 + 2γ 2)�∗

6] + �∗
7 + (3 + 2γ 2)�∗

8 + H�∗
10}, (59)

with τ23 = τ13 = 0. From (39) the components of the magnetic induction are

B1 = −γ {2H [�∗
4 + (2 + γ 2)�∗

5 + (3 + 4γ 2 + γ 4)�∗
6] + �∗

9 + (2 + γ 2)�∗
10}, (60)

B2 = −{2H [�∗
4 + (1 + γ 2)�∗

5 + (1 + 3γ 2 + γ 4)�∗
6] + �∗

9 + (1 + γ 2)�∗
10}, (61)

with B3 = 0, as anticipated.
Now, since the invariants (53), (54.1–3) and (55) depend collectively only on γ and H , we may introduce a

reduced form of the energy function �∗ that depends on these two variables. We denote this by ω∗ = ω∗(γ, H).
Then it is straightforward to establish the simple formulas

τ12 = ω∗
γ , B2 = ω∗

H , (62)

where the subscripts γ and H signify partial derivatives.

4.1.2 Particle alignment in the x1 direction

In this case, the initial preferred direction is given by a0 = (1, 0, 0)T and hence by (35), a = (1, 0, 0)T. The
invariants we need to recalculate (29) are given by

I7 = 1, I8 = 1 + γ 2, I9 = 0, I10 = Hγ. (63.1–4)

The components of the total stress are now

τ11 = −p∗ + 2(1 + γ 2)�∗
1 + 2(2 + γ 2)�∗

2 + 2H2γ 2[�∗
5 + 2(2 + γ 2)�∗

6] + 2�∗
7

+4(1 + γ 2)�∗
8 + 2Hγ�∗

10, (64)

τ22 = −p∗ + 2�∗
1 + 4�∗

2 + 2H2[�∗
5 + (1 + γ 2)�∗

6], (65)

τ33 = −p∗ + 2�∗
1 + 2(2 + γ 2)�∗

2, (66)

τ12 = 2γ {�∗
1 + �∗

2 + H2[�∗
5 + (3 + 2γ 2)�∗

6] + �∗
8} + H�∗

10, (67)

and again τ13 = τ23 = 0. The non-zero components of the magnetic induction are given by (39) as

B1 = −{2Hγ [�∗
4 + (2 + γ 2)�∗

5 + (3 + 4γ 2 + γ 4)�∗
6] + �∗

9 + (1 + γ 2)�∗
10}, (68)

B2 = −{2H [�∗
4 + (1 + γ 2)�∗

5 + (1 + 3γ 2 + γ 4)�∗
6] + γ�∗

10}. (69)

If we define ω∗ as in the previous example then it can be shown that Eq. (62) holds again.
For each of the above two cases the difference τ22 − τm

22 is the applied mechanical traction required on the
boundary x = L/2 in order to maintain the simple shear deformation along with the shear stress τ12, where
τm

22 is the component of the Maxwell stress (14) exterior to the slab specialized for the present problem. The
non-zero components of the Maxwell stress are

τm
11 = −τm

22 = τm
33 = −1

2
µ0 H∗2

. (70)
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4.2 Uniaxial tension of a bar

The uniform uniaxial tension of a circular cylindrical bar was used by Bellan and Bossis [4] and by Bossis et
al. [5] to obtain some important experimental results, which we will use in Sect. 5 for the construction of some
preliminary forms of the energy function. The (homogeneous) deformation is described by the equations

r = λ−1/2 R, θ = 
, z = λZ , (71)

where (R, 
, Z) are cylindrical polar coordinates in the reference configuration and (r, θ, z) the corresponding
coordinates in the deformed configuration, λ being the stretch in the axial direction. For theoretical purposes
the cylinder is considered to have ‘infinite’ length so as to avoid edge effects. The deformation gradient and
the left and right Cauchy-Green tensors are diagonal with respect to the cylindrical axes, with components
given by

F =
⎛
⎝

λ−1/2 0 0
0 λ−1/2 0
0 0 λ

⎞
⎠ , b = c =

⎛
⎝

λ−1 0 0
0 λ−1 0
0 0 λ2

⎞
⎠ , (72)

and, from (27.1–3), the first and second invariants are

I1 = 2λ−1 + λ2, I2 = λ−2 + 2λ. (73)

As in the previous example, we take the magnetic field as to be the independent magnetic variable, but here
we consider only one example of the particle alignment, in the axial direction.

Let H0 denote the uniform Lagrangian axial magnetic field. Then

Hl = (0, 0, H0)
T, H = (0, 0, λ−1 H0)

T. (74)

Let the initial alignment of the magneto-active particles be a0 = (0, 0, 1)T, so that, from (35), we obtain
a = (0, 0, λ)T. Then, the invariants given by (28)–(29) specialize to

I4 = H2
0 , I5 = λ2 H2

0 , I6 = λ4 H2
0 , I7 = λ2, I8 = λ4, I9 = H0, I10 = λ2 H0. (75)

From (36) the only non-zero components of the stress are

τrr = τθθ = −p∗ + 2λ−1�∗
1 + 2λ−2(1 + λ3)�∗

2, (76)

τzz = −p∗ + 2λ2�∗
1 + 4λ�∗

2 + 2H2
0 λ2(�∗

5 + 2λ2�∗
6) + 2λ2�∗

7 + 4λ4�∗
8 + 2H0λ

2�∗
10, (77)

and from (39) the only non-zero component of the magnetic induction is

Bz = −λ(2Ho�
∗
4 + 2Hoλ

2�∗
5 + 2Hoλ

4�∗
6 + �∗

9 + λ2�∗
10). (78)

As in Sect. 4.1, we define a reduced energy function ω∗, this time as a function of λ and H0 such that
ω∗ = ω∗(λ, H0). Then, we have simply

τzz − τrr = λ ω∗
λ, Bz = −λ ω∗

H0
, (79)

where the subscripts λ and H0 indicate partial derivatives.
By the continuity condition (12.1) the magnetic field exterior to the cylinder is axial and equal to λ−1 H0.

It follows that the non-zero components of the Maxwell stress (14) are, on use of (3), given by

τm
rr = τm

θθ = −τm
zz = −1

2
µ0λ

−2 H2
0 . (80)

If we assume that there is no mechanical surface traction on the lateral surface of the cylinder then the
traction continuity condition (13) requires τrr = τm

rr , and hence this condition implies

p∗ = 2λ−1�∗
1 + 2(λ−2 + λ)�∗

2 + 1

2
µ0λ

−2 H2
0 , (81)
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and as a result we have from (77)

τzz = 2(λ2 − λ−1)�∗
1 + 2(λ − λ−2)�∗

2 + 2H2
0 λ2(�∗

5 + 2λ2�∗
6) + 2λ2�∗

7

+4λ4�∗
8 + 2H0λ

2�∗
10 − 1

2
µ0λ

−2 H2
0 , (82)

which is equivalent to τzz = λ ω∗
λ+τm

rr . For a long cylinder with an approximately uniform field the mechanical
traction required on the ends of the cylinder to maintain the deformation is approximately τzz − τm

zz , which is
given explicitly as λ ω∗

λ − µ0λ
−2 H2

0 .

5 Reduction of the energy function

From (36) and (39) we see that for the incompressible case it may be too difficult to determine all the constitu-
tive functions �∗

i from experiments. But we do need specific functions for the solution of particular boundary
value problems of practical interest, and so it is necessary to reduce the complexity of the general form of the
constitutive equation. We do this systematically in the present section in several steps. Most of the experimental
data used herein was taken from [4], in which the independent magnetic variable was the magnetic field, this
is why we only consider the function �∗.

First, we consider the invariants. In the classical theory of incompressible isotropic nonlinear elasticity
only the invariants I1 and I2 are required. A prototype model of rubber elasticity is the neo-Hookean model,
which is linear in I1 and independent of I2, and there are many other successful models that are independent of
I2 (see, for example, the collection of papers on rubber elasticity in [39]). Against this background we assume,
as a first approximation, that �∗ does not depend on I2.

Second, we recall the definitions of the invariants I4 = Hl · Hl , I5 = Hl · (cHl) and I6 = Hl · (c2Hl), the
first of which accounts for the ‘magnitude’ of the (Lagrangian) field in the response of the material and will
be retained in the energy function. The interaction of the magnetic field with the deformation is embodied in
the two invariants K5 and K6. Of these two we include only K5 in the energy function in order to reflect this
interaction.

Next, we consider the invariants I7 = a0 · (ca0), I8 = a0 · (c2a0). These are independent of the applied
magnetic field and account for the ‘transverse isotropy’ associated with the particle alignment, as in the pure
elasticity of transversely isotropic materials. The preferred direction a0 has an important influence on the
materials (see [4]), and in the first instance we include this effect through I7 alone.

Finally, there remain the ‘invariants’ I9 = a0 · Hl , I10 = a0 · (cHl). The first of these accounts for the
interaction between the applied field and the particle alignment. This interaction has a key role in distinguishing
the response of these materials from those without particle alignment. Indeed, some micro-mechanical models
developed recently (see for example, [23,24]) incorporate the interaction of the magnetic field with the particle
alignment as an important ingredient. Thus, we include I9 in the energy function. We shall also include I10
since it provides a three-way coupling between the magnetic field, the particle alignment and the deformation.
Note that if the magnitude of Hl is denoted by δ then I4, I5 and I6 are all of order δ2, while I9 and I10 are of
order δ.

Thus, from the above considerations only the invariants I1, I4, I5, I7, I9, I10 are retained in the energy
function:

�∗ = �∗(I1, I4, I5, I7, I9, I10). (83)

The total Cauchy stress and the magnetic induction in Eulerian form now specialize to

τ = 2b�∗
1 − p∗I + 2bH ⊗ bH�∗

5 + 2a ⊗ a�∗
7 + (a ⊗ bH + bH ⊗ a)�∗

10 (84)

and

B = −(2bH�∗
4 + 2b2H�∗

5 + a�∗
9 + ba�∗

10). (85)

Thus far, three invariants have been removed from the original list, leaving a function of six invariants.
However, it remains a difficult task to characterize the form of �∗, as it is the analogous case of purely elastic
deformations of a transversely isotropic material, and further simplifications are necessary.

The next step is to draw on the example of a transversely isotropic material (see, for example, [40,41]),
for which the energy function is decomposed into the sum of two terms. Here, we separate �∗ in the form
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�∗ = �̂∗ + �̃∗, where �̂∗ corresponds to the contribution to the energy function from factors that do not
depend on the orientation of the particles, while �̃∗ is due to the particle alignment and its interaction with the
magnetic field and the deformation. Thus, �̂∗ is the ‘isotropic’ part and �̃∗ the ‘anisotropic’ part of the energy
function. Explicitly, we then have

�∗(I1, I4, I5, I7, I9, I10) = �̂∗(I1, I4, I5) + �̃∗(I7, I9, I10). (86)

The simplifications (83, 86) are substantial, but even so it may still be difficult to find an appropriate form
for the energy function from the limited experimental data available. Thus, further assumptions are needed. It
should be emphasized, however, that the simplifications to be introduced in what follows are not necessarily
appropriate for representing the full range of magnetoelastic behaviour of a magneto-active elastomeric, and
they must be considered only as a first attempt to develop a specific form of the constitutive equation that can
be used in the solution of some boundary-value problems. Consider the form for �̂∗ given by

�̂∗(I1, I4, I5) = f (I1)g(I4) + ν(I4) + ϑ(I5), (87)

which is a slight generalization of the isotropic model used in [15]. We have assumed here that �̂∗(I1, I4, I5)
depends primarily on I1 and I4 and is separable in these variables. In the absence of a magnetic field the term
f (I1) described the mechanical response of the isotropic part of the energy, while the factor g(I4) reflects the
change in this response due to the applied magnetic field. The function ν(I4) represents the energy that the body
accumulates due to the magnetic field alone when there is no deformation. It has been necessary to include the
function ϑ(I5) (which also contributes to the electroelastic energy in the undeformed configuration) in order
to accommodate the Maxwell stresses in the traction boundary conditions, as will be seen in the examples in
the following sections.

For the function �̃∗ we suggest the form

�̃∗(I7, I9, I10) = h(I7)ω(I9, I10) + η(I9), (88)

which is motivated by a corresponding decomposition for transversely isotropic elastic materials (see, for
example, [40,41]). The function h(I7) described the transversely isotropic mechanical response of the mate-
rial when there is no applied magnetic field, and, similarly to g(I4), the factor ω(I9, I10) determines how that
response changes on application of a magnetic field. The term η(I9) represents the magnetic energy associ-
ated with the ‘anisotropy’ when there is no deformation, and reflects, in particular, the effect of the relative
alignment of the magnetic field and the particles.

5.1 Application of some restrictions for �∗

We recall that the conditions that ensure that there is no residual stress and no residual magnetic induction in
the reference configuration include (43.2, 3), which, for our specialization, become

�̄∗
7 = 0, �̄∗

9 + �̄∗
10 = 0, (89)

evaluated for I1 = 3, I4 = I5 = 0, I7 = 1, I9 = I10 = 0. These can be used to obtain some restrictions on the
functions h, η and ω, namely

h′(1)ω(0, 0) = 0, h(1)ω9(0, 0) + η′(0) + h(1)ω10(0, 0) = 0, (90.1, 2)

where a prime signifies differentiation with respect to the argument of the function, and ω9 and ω10 represent
partial derivatives of ω with respect to I9 and I10, respectively.

The conditions (90.1, 2) admit several options for the individual functions. To examine the possibilities we
replace in (84) the particular form of the energy given by (86) with (87) and (88), so that

τ = 2 f ′(I1)g(I4)b − p∗I + 2ϑ ′(I5)bH ⊗ bH + 2h′(I7)ω(I9, I10)a ⊗ a
+h(I7)ω10(a ⊗ bH + bH ⊗ a). (91)

The option ω(0, 0) = 0 must be excluded since for H = 0 there would be no transversely isotropic contribu-
tion to the (purely) mechanical stress, and a material with aligned particles could not be distinguished from
an isotropic material. Thus, ω(0, 0) �= 0 and from (90.1) we deduce that h′(1) = 0. Given this, we must then
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rule out the option h(1) = 0 for the same reason. Next, we assume that the conditions (46) hold, i.e. in the
absence of an applied magnetic field there is no residual magnetic induction whatever the deformation. Since
I7 (> 0) is arbitrary this yields the conditions ω9(0, 0) = ω10(0, 0) = η′(0) = 0, and Eq. (90.2) then holds.
In summary, therefore, we adopt the restrictions

h′(1) = 0, ω9(0, 0) = ω10(0, 0) = η′(0) = 0, (92)

and we insist that ω(0, 0) �= 0 and h(1) �= 0.

5.2 Results for the uniaxial tension of a bar

Consider two cylindrical samples of an MS elastomer, one with a random distribution of particles and the
other with a distinguished particle alignment, in this case in the axial direction. We suppose that the volume
fraction of particles is the same in each cylinder. For each cylinder a uniaxial tension test is performed, and the
axial stress is measured as a function of the axial stretch λ, without a magnetic field and with a uniform axial
magnetic field. For a given magnitude of the magnetic field these experiments yield four separate profiles for
the stress against the stretch. Of course, more data may be obtained by performing the experiment with different
magnitudes of the external magnetic field, as has been done by Bellan and Bossis [4] (see, in particular, Figs.
2 and 4 therein).

We recall from Sect. 4.2 that, on accounting for the exterior Maxwell stress, the required mechanical axial
load on the ends of the cylinder is given by λω∗

λ − µ0λ
−2 H2

0 , which we denote by tz . With respect to the
energy function (83) this gives explicitly

tz = 2(λ2 − λ−1)�∗
1 + 2H2

0 λ2�∗
5 + 2λ2�∗

7 + 2H0λ
2�∗

10 − µ0λ
−2 H2

0 , (93)

the last term of which comes from the exterior Maxwell stress components. The relevant invariants are obtained
from (73) and (75) as

I1 = 2λ−1 + λ2, I4 = H2
0 , I5 = λ2 H2

0 , I7 = λ2, I9 = H0, I10 = λ2 H0. (94)

We emphasize that the problem considered here is idealized in that the magnetic field is assumed uniform
both within the cylinder and its exterior and edge effects at the cylinder ends are neglected. We now write
down the equations for the four experiments mentioned above.

• Isotropic case, H0 = 0. For an isotropic cylinder with no external magnetic field, Eq. (93) with (87) yields

tz = 2(λ2 − λ−1) f ′(I1)g(0). (95)

Consider the function f to be given by

f (I1) = 1

k

[
(I1 − 1)k

2k
− 1

]
, (96)

where k is a constant such that k ≥ 1/2 (see [42] for the derivation of this model in nonlinear elasticity).
• Isotropic material with H0 �= 0. For an isotropic material with H0 �= 0, Eq. (93) coupled with (87) and

(88) yields

tz = 2(λ2 − λ−1) f ′(I1)g(I4) + 2H2
0 λ2ϑ ′(I5) − µ0λ

−2 H2
0 . (97)

As a simple model for the function g we consider the linear approximation

g(I4) = g0 + g1 I4, (98)

where g0 and g1 are constants.
Regarding the function ϑ , the results in [4] suggest that there is no effect of the Maxwell stress at the end
of the cylinder when λ = 1. From (97), we see that the term contributes a compressive stress of magnitude
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−µ0λ
−2 H2

0 for H0 �= 0, in particular when λ = 1. The invariant I5 has been included in our formulation
in order to rectify this discrepancy.2 We assume that ϑ has the linear form

ϑ(I5) = ϑ0 I5, (99)

where ϑ0 is a constant. The Maxwell stress can be nullified for λ = 1 if we set ϑ0 = µ0/2, and (97) then
reduces to

tz = 2(λ2 − λ−1) f ′(I1)g(I4) + µ0 H2
0 (λ2 − λ−2). (100)

• Transversely isotropic material with H0 = 0. For a transversely isotropic cylinder with no applied
magnetic field we have

tz = 2(λ2 − λ−1) f ′(I1)g(0) + 2λ2h′(I7)ω(0, 0). (101)

A possible function h compatible with (92) is

h(I7) = h0 + h1 ln I7 − h1

m
I m
7 , m < 0. (102)

We can check that for any I7 > 0 the first and second derivatives of h(I7) exist. The second derivative is
needed in the calculations of the moduli tensors.

• Transversely isotropic material with Ho �= 0. In the previous cases the particular forms given for the
functions f , g and h were designed in order to fit the data in Fig. 2 of [4]. The situation is more delicate
with respect to the function ω. Remembering (99) we note that the required mechanical stress on the ends
of the cylinder in the presence of an axial magnetic field is

tz = 2(λ2 − λ−1) f ′(I1)g(I4) + 2λ2h′(I7)ω(I9, I10)

+2H0λ
2h(I7)ω10(I9, I10) + µ0 H2

0 (λ2 − λ−2). (103)

Figure 4 of [4] shows the result for the difference between the axial loads with and without a magnetic field
for different values of the external magnetic field. The difference between (103) and (101), written �tz , is

�tz = 2(λ2 − λ−1) f ′(I1)[g(I4) − g(0)] + 2λ2h′(I7)[ω(I9, I10) − ω(0, 0)]
+2H0λ

2h(I7)ω10(I9, I10) + µ0 H2
0 (λ2 − λ−2). (104)

It has not been possible to find a simple form for the function ω such that (92.2, 3) hold and such that the
behaviour of �tz fits the data accurately. We therefore adopt a simple bi-quadratic form for ω that satisfies
(92.2, 3), which nevertheless works well for the data presented in Fig. 2 of [4]. We have

ω(I9, I10) = ω0 + ω1 I 2
9 + ω2 I 2

10 + ω3 I9 I10, (105)

where ωi , with i = 0, 1, 2, 3, are constants. A problem with truncated Taylor expansions of this kind is
that the choice of the optimal constants may not be unique and there may be other sets of values that might
be equally suitable3.

The resulting form for the energy function is

�∗ = 1

k

[
(I1 − 3)k

2k
− 1

]
(g0 + g1 I4) + ν(I4) + µo

2
I5 +

(
h0 + h1 ln I7 − h1

m
I m
7

)
(ω0 + ω1 I 2

9

+ω2 I 2
10 + ω3 I9 I10) + η(I9) + �∗

0, (106)

where �∗
0 is a constant satisfying ν(0) + h0 ω0 + �∗

0 = 0.

2 Another way to handle this problem would be not to consider the Maxwell stress for the extremes of the cylinder; however,
we would still have this stress around the lateral surface of the cylinder, and from the expression for p∗ we would end up with a
factor −1/2µ0λ

−2 H2
0 instead of −µ0λ

−2 H2
0 in (97).

3 In fact, we tried higher order Taylor expansions to see whether we could find better approximations for �tz in relation with
the data shown in Fig. 4 of [4]; however, those attempts proved to be a failure, truncated Taylor expansions of higher order did
not do better. We could try an expression of the form

ω = ω0 + ω1 I n1
9 + ω2 I n2

10 + ω3 I n3
9 I n4

10 ,

but for such function we could have problems if ni , i = 1, 2, 3, 4, are not integers for negatives values of I9 and I10.
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5.2.1 Fitting the different constants

Now, we need to find suitable values for the different constants that appear in (106) to fit the data presented in
[4], but before that consider the following remarks:

• We only use the data of Fig. 2 of [4]. First, we start with the isotropic case with and without magnetic field,
finding appropriate values for k, g0 and g1.

• Then, we proceed with the transversely isotropic material, with and without magnetic field, looking for h0,
h1, m, ω0, ω1 and ω2.

• There is a problem with the data presented in Fig. 2 of [4]. It is possible to see that the upper limit for
the stretching λ is λ = 1.1, the question is: what was the reason that a higher stretching could not be
reached? The magneto-active particles are usually made of iron or iron composites [4,5], therefore, they
can be considered as almost rigid in comparison with the surrounding rubber-like matrix (see [23]). As a
result, the stiffness of the MS elastomer increases, and we can expect a ‘lower’ level of deformation in
comparison with a pure rubber-like material. Nevertheless, λ = 1.1 seems to be too low (some additional
experimental results can be found in [9,10,43]). The new question is: what should we assume about the
behaviour of the MS elastomers for values of λ greater than 1.1?
The answer to the previous question is not simple, because we are using a truncated Taylor expansion (see
105), a good fitting for 1 ≤ λ ≤ 1.1 may mean an unacceptable behaviour for λ > 1.1.

• Another issue is related with the behaviour of the transversely MS elastomer in compression. If we are
considering a material composed of a rubber-like matrix with particles aligned in chain-like structures, in
the case the particle alignment is in the axial direction for the cylinder, we can expect that the behaviour
in tension and compression will be different, as was hinted in [9,10,43]. Unfortunately, we do not have
data for the same samples as used by Bellan and Bossis [4] for compression tests, which is particularly
problematic in the case of the transversely isotropic MS elastomers (see in particular the phenomenon
described in Fig. 14 of [43]).

From Fig. 2 of [4] for the isotropic part of �∗ we obtain the results shown in Table 1.
As for the values of the constants that appear in the anisotropic part of �∗, we study three different cases

shown in Table 2.
The value of m in (102) is equal to −10 for all these three cases. In Table 2 the units of ω0 are kPa, and the

units of ω1, ω2 and ω3 are kPa/(kA/m)2.
Now, for the cases (b) and (c) we simply proposed some ‘reasonable’ values for tz for higher values of λ.

In Fig. 1 we see the behaviour of tz for the transversely isotropic case with H0 = 123[kA/m] calculated with
(106) and (103) using the three sets of values presented in Table 2.

• The set (a) of Table 2 was obtained fitting the data presented in Fig. 2 of [4]. In Fig. 1 we see the behaviour
of tz for three different ranges of values for λ. It is clear that for this set the behaviour of tz may not be
physically reasonable for λ > 1.5, where tz would become negative (with H0 constant) in tension.

• The set (b) of Table 2 was obtained using the same data from [4], but extrapolating linearly the last values
of Fig. 2 of that paper to the range 1.1 < λ ≤ 1.5. We see on the left side of Fig. 1 that its behaviour is
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Fig. 1 Behaviour of tz for three different sets of values for the constants for the transversely isotropic MS elastomer
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Table 1 Values of the constants used in the isotropic part of the energy function

k 1
g0 100 kPa
g1 −0.001 kPa/(kA/m)2

1 1.02 1.04 1.06 1.08 1.1
0
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Fig. 2 Plots of tz against λ for simple tension: case 1, isotropy, H0 = 0; case 2, isotropy, H0 = 123 [kA/m]; case 3, transverse
isotropy H0 = 0; case 4, transverse isotropy H0 = 123 [kA/m]

reasonable for higher values of λ, but from the figure on the right, the fitting is not as good as using the set
(a).

• Finally, the set of values (c) of Table 2 was obtained with an extrapolation into the range 1.1 < λ ≤ 2,
assuming the typical behaviour of a rubber-like material for high values of the stretching. From the left
side of Fig. 1 we see an even poorer fitting for 1 ≤ λ ≤ 1.1 as using the set (b).

Since, we do not know the actual behaviour of this material for λ > 1.1, but, nevertheless, we want a mod-
erately reasonable behaviour for some values of the stretching larger than 1.1, we choose the set (b) of values
from Table 2 for the different constants that appear in (106) (including the values in Table 1). Additionally, we
have used µ0 = 1.2566 × 10−3kN/kA2. In Fig. 2 the stress tz is plotted for the four different cases mentioned
in this section using these values of the constants. Note, in particular, that the difference between the stresses
is much larger for the transversely isotropic material than for the isotropic material.

5.3 Results for simple shear

There remain parts of the energy function that have not yet been used, in particular the functions ν and η.
In order to determine these, two additional sources of experimental results are particularly useful. One is the
paper by Jolly et al. [2], wherein Fig. 7 shows results for the ‘shear modulus’ as a function of the ‘flux density’
(magnetic induction) for a block, which is a problem very similar to that described in Sect. 4.1. Another
important paper containing experimental results for the shear problem is that by Ginder et al. [8], especially
Fig. 4, where the magnetization is plotted as a function of the magnetic field for a block under shear, for the
two different alignments of the particles described in Sect. 4.1.

We now assess the data in these two papers on the basis of the particular form of the energy function
�∗. We aim to calculate the ‘shear modulus’ for our problem and then to study its behaviour as a function
of the magnetic field. Unfortunately, Fig. 7 of [2] was obtained assuming the magnetic induction B as the
independent magnetic variable; moreover, the volume fraction of particles was different from that in [4], so
we do not attempt to fit the data directly, but only to study quantitatively the behaviour of the model for this
experiment.
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Table 2 Proposed values of the constant for the transversely isotropic part of the energy function, for different limits for the
stretching

(a) 1 ≤ λ ≤ 1.1 (b) 1 ≤ λ ≤ 1.5 (c) 1 ≤ λ ≤ 2

h0 0.113578 h0 0.010560 h0 0.002881
h1 0.007633 h1 0.019229 h1 0.012741
ω0 2227.236 ω0 884.0905 ω0 1334.296
ω1 0.040182 ω1 −0.077869 ω1 −0.063748
ω2 −0.007653 ω2 −0.005384 ω2 0.198605
ω3 0.019688 ω3 0.061262 ω3 −0.228273

• Particle alignment in the x2 direction. Consider then the problem discussed in Sect. 4.1, with the particles
aligned in the x2 direction. Then, from (52), (54.1–3) and (55), we have

I1 = 3 + γ, I4 = H2
0 , I5 = H2

0 (1 + γ 2), I7 = 1 + γ 2, I9 = H0, I10 = H0(1 + γ 2). (107)

For the form of the constitutive equation we are using, the shear component of the total Cauchy stress and
the x2 component of the magnetic induction are given by (59) and (61) as

τ12 = 2(�∗
1 + H2

0 �∗
5 + �∗

7 + H0�
∗
10)γ, (108)

B2 = −[2H0�
∗
4 + 2H0(1 + γ 2)�∗

5 + �∗
9 + (1 + γ 2)�∗

10]. (109)

In the linear theory of elasticity a shear deformation can be produced by application of a shear stress alone.
This is not the case in nonlinear elasticity and certainly not here since, as can be seen from Sect. 4.1, normal
components of stress are also necessary.
Let us write (108) in the form τ12 = Gγ , where G is a shear modulus given by

G(γ, H0) = 2(�∗
1 + H2

0 �∗
5 + �∗

7 + H0�
∗
10), (110)

which depends on both the amount of shear γ and the magnetic field H0. Substituting (106) into the above
equation we obtain, after some algebraic manipulations,

G(γ, H0) = α0(γ ) + α1(γ )H2
0 , (111)

where for brevity α0 and α1 are not given here.
Figure 7 of [2] shows the difference between the shear modulus for the cases either in the presence or
absence of an external field. We form this difference

�G ≡ G(γ, H0) − G(γ, 0) = α1(γ )H2
0 . (112)

Thus, independently of the value of α1(γ ), the ‘shape’ of the curve �G is a parabola in H0. The results
shown in Fig. 7 of [2] (see also Fig. 3 of [8]) suggest that the difference in the shear modulus increases
until H0 reaching a certain value (probably associated with magnetic saturation), and then tends to remain
constant as H0 increases further. This is not, of course, the behaviour of (112), so in the light of this data
our model does not seem to work.
In order to use the data provided by Ginder et al. [8], let us determine the form of the B2 component of the
magnetic induction as a function of the external magnetic field. For this purpose, we use (106) in (109),
which leads to

B2 = −(β0 + β1 H0), (113)

where β0 and β1 are given by

β0 = η′(K9), (114)

β1 = γ 2g1 + 2ν′(K4) + (1 + γ 2)µ0 +
[

h0 + h1 ln(1 + γ 2) − h1

m
(1 + γ 2)m

]
[2ω1

+ω3(1 + γ 2)] + (1 + γ 2)

[
h0 + h1 ln(1 + γ 2) − h1

m
(1 + γ 2)m

]
[2ω2(1 + γ 2)

+ω3]. (115)
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• Particle alignment in the x1 direction. We also require results for the shear problem when the particles
are aligned in the x1 direction. The only invariants that we need to recalculate are I7, I9 and I10, which,
from (63.1, 3, 4) are I7 = 1, I9 = 0, I10 = H0γ . From (67) and (69) we have

B2 = −[2H0�
∗
4 + 2H0(1 + γ 2)�∗

5 + γ�∗
10]. (116)

Again using (106) and some manipulations, we obtain the expression

B2 = −
{
γ 2

[
g0 + 2ω2

(
h0 − h1

m

)]
+ (1 + γ 2)µ0 + 2ν′(I4)

}
H0 (117)

for the x2 components of the magnetic induction.

5.3.1 A model for ν and η

Figure 4 of the paper by Ginder et al. [8] presents results for the magnetization M as a function of the magnetic
field for the shear problem and for each of the two particle alignments considered. The material they used,
however, had a different volume fraction of particles from that used in [4]. Nevertheless, since we do not expect
at this stage to obtain definite expressions for the energy function, but rather a first approximation (as good as
possible from the qualitative point of view), we will use this data, in particular to obtain the functions ν and
η. In order to do so, consider the results for the case where the particle alignment is in the x1 direction. Then,
using (4) and (117) we have

µ0 M2 = −[ζ0 + 2ν′(I4)]H0, (118)

where ζ0 is defined by

ζ0 = γ 2
0

[
g0 + 2ω2

(
h0 − h1

m

)]
+ µ0(γ

2
0 + 2), (119)

and γ0 is a given (small) value of the shear.
Now, the data of Fig. 4 in [8] suggest that the magnetization is an odd function of H0, and for values of

|H0| greater than a certain threshold remains constant. This indicates that the magnetization has reached the
saturation point for the magneto-active particles. We must also expect hysteresis, but here we assume that this
effect is negligible. Then, an appropriate function that may be used in order to model the behaviour of M2 is
given by

µ0 M2 = m0 tanh

(
H0

m1

)
, (120)

where the constant m1 is related to the magnetic field necessary in order to reach the saturation point, while
the constant m0 corresponds to the value of the magnetization (times the magnetic constant µ0) for that point
of saturation.

From (118), (119), the particular value of I4 for this problem given by (54.1) and (120), we obtain

ν(I4) = −m0m1 ln

[
cosh

(√
I4

m1

)]
− 1

2
ζ0 I4 + ν0, (121)

where ν0 is an arbitrary constant.
Next, in order to obtain η we consider the particles to be aligned in the x2 direction and define η′ as

η′(I9) = η̃(I9)I9, (122)

recalling that for this problem I9 = H0.
We also define ζ1 as

ζ1 = (1 + γ 2)µ0 +
[

h0 + h1 ln(1 + γ 2) − h1

m
(1 + γ 2)m

]
[2ω1 + ω3(1 + γ 2)]

+(1 + γ 2)

[
h0 + h1 ln(1 + γ 2) − h1

m
(1 + γ 2)m

]
[2ω2(1 + γ 2) + ω3]. (123)
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Fig. 3 Results for the shear experiment. Magnetization as a function of the magnetic field H [kA/m]. Case 1: parallel alignment
(direction 2), theoretical model. Case 2: parallel alignment, experimental results. Case 3: perpendicular alignment (direction 1),
theoretical model. Case 4: perpendicular alignment, experimental results

Then (113) becomes

B2 = −[η̃(I9) + ζ1 + 2ν′(I4)]H0, (124)

and the magnetization M2 is then given from (4) by

µ0 M2 = −[η̃(I9) + ζ1 + µ0 + 2ν′(I 2
9 )]I9. (125)

As in the case of the alignment in the x2 direction, the experimental data may be fitted by an hyperbolic
tangent function, in this case

µ0 M2 = m0 tanh

(
I9

m2

)
, (126)

where m2 is a constant. Note that the experimental data suggest the same level of saturation for the magneti-
zation for the two cases, which is to be expected since the volume fraction of particles is the same.

Then, using (126) and (121) in (125), we obtain

η̃(I9) = m0

I9

[
tanh

(
I9

m2

)
− tanh

(
I9

m1

)]
− ζ1 − µ0 + ζ0. (127)

As a result, from (122), we have

η(I9) = m0 ln

⎡
⎣coshm2

(
I9

m2

)

coshm1

(
I9

m1

)
⎤
⎦ + (ζ0 − ζ1 − µ0)

I 2
9

2
+ η0, (128)

where η0 is an arbitrary constant.
Figure 3 shows the results for the magnetization for our model and the data provided in Fig. 4 of the paper

by Ginder et al. [8]. The values of the constants m0, m1 and m2 are

m0 = 0.4998[T], m1 = 309.3395[kA/m], m2 = 199.1828[kA/m]. (129)

It can be sen that the theory provides a good fit to the data.
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5.4 Summary of results for the energy function

To summarize, we have constructed an energy function of the form

�∗ =
(

I1 − 3

2

)
(g0 + g1 I4) − ln

[
cosh

(√
I4

m1

)]
m0m1 − 1

2
ζ0 I4 + 1

2
µ0 I5

+
(

h0 + h1 ln I7 − h1

m
I m
7

)
(ω0 + ω1 I 2

9 + ω2 I 2
10 + ω3 I9 I10)

+m0 ln

[
coshm2(I9/m2)

coshm1(I9/m1)

]
+ (ζ0 − ζ1 − µ0)

I 2
9

2
+ �∗

0, (130)

where the numerical values of the different constants that appear in the above expression are given in Tables 1,
2(b) and in (129). The values of ζ0 and ζ1 may be obtained from the above expressions by evaluating for a
given shear γ0, which may be chosen to be small in the light of the small deformations used in the experiments.
Finally, �∗

0, as indicated earlier, is given by the requirement that the energy is zero in the absence of both
deformation and magnetic field.

We also record here the partial derivatives of �∗ since they will be used in Sect. 6:

�∗
1 = 1

2
(g0 + g1 I4), (131)

�∗
4 = 1

2
(I1 − 3)g1 − 1

2
tanh

(√
I4

m1

)
m0√

I4
− 1

2
ζ0, (132)

�∗
5 = µ0

2
, (133)

�∗
7 =

(
h1

I7
− h1 I m−1

7

)
(ω0 + ω1 I 2

9 + ω2 I 2
10 + ω3 I9 I10), (134)

�∗
9 =

(
h0 + h1 ln I7 − h1

m
I m
7

)
(2ω1 I9 + ω3 I10) + m0

[
tanh

(
I9

m2

)
− tanh

(
I9

m1

)]

+(ζ0 − ζ1 − µ0)I9, (135)

�∗
10 =

(
h0 + h1 ln I7 − h1

m
I m
7

)
(2ω2 I10 + ω3 I9). (136)

Note that (132) cannot be evaluated directly at I4 = 0, but the limit as I4 → 0 exists. From (135) and (136) it
is easy to check that the conditions (46) hold.

6 Boundary value problems: non-homogeneous deformations

In this section, the energy function (130) is used to obtain results for some controllable non-homogeneous
deformations. Two problems with cylindrical symmetry are treated herein, namely the extension and inflation
of a tube, and the extension and torsion of a cylinder.

Strictly, from the theoretical standpoint, these problems correspond to tubes and cylinders of ‘infinite’
lengths, which avoids difficulties with the magnetic boundary conditions [38]. In practice, specimens with
length much larger than the diameter are used. For an isotropic magnetoelastic problem the effect of the
boundary conditions (12.1, 2) on the magnetic field has been illustrated for a finite length tube in [38].

The general problem of finding controllable solutions for an isotropic magnetoelastic material was treated
in [28]. In order to study the controllability here we consider the equations

divτ = 0, curlH = 0, divB = 0, (137)
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which, when specialized in cylindrical polar coordinates with no dependence on the angle θ , become (see, for
example, [31])

∂τrr

∂r
+ ∂τr z

∂z
+ 1

r
(τrr − τθθ ) = 0, (138)

∂τrθ

∂r
+ ∂τθ z

∂z
+ 2

r
τrθ = 0, (139)

∂τr z

∂r
+ ∂τzz

∂z
+ 1

r
τr z = 0, (140)

∂ Hθ

∂z
= 0,

∂ Hr

∂z
− ∂ Hz

∂r
= 0,

1

r

∂

∂r
(r Hθ ) = 0, (141)

1

r

∂

∂r
(r Br ) + ∂ Bz

∂z
= 0, (142)

respectively.

6.1 Extension and inflation of a tube

Consider a circular cylindrical tube with reference geometry defined in cylindrical polar coordinates R, 
, Z
by Ai ≤ R ≤ Ae, 0 ≤ 
 < 2π and −∞ ≤ Z ≤ ∞. The extension and inflation of the tube is described by
the equations

r2 = a2
i + λ−1

z (R2 − A2
i ), θ = 
, z = λz Z , (143)

where ai is the interior radius of the tube in the deformed configuration and λz is the (uniform) axial stretch.
The corresponding exterior radius is denoted by ae. The isotropic counterpart of this problem has been analysed
in [15].

The deformation gradient, and the left and right Cauchy-Green deformation tensors have components

F =
⎛
⎝ (λzλ)−1 0 0

0 λ 0
0 0 λz

⎞
⎠ , b = c =

⎛
⎝

(λzλ)−2 0 0
0 λ2 0
0 0 λ2

z

⎞
⎠ , (144.1, 2)

where λ = r/R. The first and second invariants (27.1, 2) specialize to

I1 = trc = λ2 + λ2
z + λ−2λ−2

z , I2 = 1

2
[(trc)2 − trc2] = λ−2 + λ−2

z + λ2
zλ

2. (145)

There are several options for the magnetic field and the particle alignment, we study one case.

6.1.1 Axial magnetic field and axial particle alignment

We consider a uniform magnetic field with Lagrangian value H0. Then, on use of (6.1) and (144.1),

Hl = (0, 0, H0)
T, H = (0, 0, λ−1

z H0)
T, (146)

and Eq. (141) is satisfied automatically.
The invariants I4, I5 and I6 are obtained from (28) as

I4 = H2
0 , I5 = λ2

z H2
0 , I6 = λ4

z H2
0 . (147.1–3)

Consider also an initial uniform axial particle alignment and recall (35). Then, using (144.1), we obtain

a0 = (0, 0, 1)T, a = Fa0 = (0, 0, λz)
T. (148)
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The remaining invariants (29) are

I7 = λ2
z , I8 = λ4

z , I9 = H0, I10 = H0λ
2
z . (149)

The non-zero components of the total Cauchy stress (36) are

τrr = −p∗ + 2(λλz)
−2�∗

1 + 2(λ−2 + λ−2
z )�∗

2, (150)

τθθ = −p∗ + 2λ2�∗
1 + 2[λ−2

z + (λλz)
2]�∗

2, (151)

τzz = −p∗ + 2λ2
z�

∗
1 + 2[λ−2 + (λλz)

2]�∗
2 + 2H2

0 λ2
z�

∗
5 + 4H2

0 λ4
z�

∗
6 + 2λ2

z�
∗
7

+4λ4
z�

∗
8 + 2H0λ

2
z�

∗
10, (152)

while the magnetic induction (39) has a single non-zero component

Bz = −(2H0λz�
∗
4 + 2H0λ

3
z�

∗
5 + 2H0λ

5
z�

∗
6 + λz�

∗
9 + λ3

z�
∗
10). (153)

In what follows we shall require the components of the Maxwell stress. From (146), (14) and (3) the
non-zero components of the Maxwell stress are4

τm
rr = τm

θθ = −τm
zz = −1

2
µ0λ

−2
z H2

0 . (154)

From (145), (147.1–3), (149) and the definition λ = r/R we have that �∗
i , i = 1, 2, . . . , 10 depend on r ,

λz and H0 only, and so from (152) and (140) we conclude that p∗ = p∗(r). Therefore, integrating (138) in r
we obtain

τrr (r) =
r∫

ai

1

r̄
[τθθ (r̄) − τrr (r̄)] dr̄ + c, (155)

where r̄ is a dummy variable of integration, and c is a constant to be determined from the boundary conditions
for the stress.

We assume that the outer surface of the tube is free of mechanical loads, so that

τrr (ae) − τm
rr (ae) = 0, (156)

and from (155) we obtain for c

c =
ae∫

ai

1

r̄
[τrr (r̄) − τθθ (r̄)] dr̄ + τm

rr (ae). (157)

On the inner boundary the tube is subjected to a uniform pressure P , and hence

τrr (ai ) = −P + τm
rr (ai ), (158)

and from (155), (157) and (158), considering that in this problem τm
rr (ai ) = τm

rr (ae), we obtain for the pressure

P =
ae∫

ai

[τθθ (r̄) − τrr (r̄)]dr̄

r̄
. (159)

Hence, from (150) and (151), we obtain

P =
ae∫

ai

[(λ̄2 − λ̄−2λ−2
z )�∗

1 + (λ̄2λ2
z − λ̄−2)�∗

2]
dr̄

r̄
, (160)

4 We assume that the body is completely surrounded by a free space, as a result we need to consider the presence of the Maxwell
stresses for the extremes of the cylinder as external loads.
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where λ̄ is the value of λ for r = r̄ . This expression for P is the same as for an isotropic material except that
�∗

1 and �∗
2 depend in general on the ‘anisotropic’ invariants I7, I8, K9 and K10. Moreover, it is unaffected by

Maxwell stress, which has the same value on the inner and outer boundaries.
To extend the tube an axial mechanical load is required on the ends of the tube. We denote by N the

resultant axial load. This is given by

N = 2π

ae∫

ai

tz rdr, (161)

where tz = τzz − τm
zz is the axial component of the mechanical traction applied on the ends of the tube. Thus,

N = 2π

ae∫

ai

τzzrdr − π(a2
e − a2

i )τm
zz . (162)

From (150) and (155), (157) we can obtain the explicit expression for p∗ = p∗(r), and so N would be com-
pletely determined as a function of �∗

i , λz and the external magnetic field, for brevity we do not show its full
expression here.

6.1.2 Application to a particular energy function

For the energy function (130), we have �∗
1 = 1

2 (g0 + g1 I4), �∗
2 = 0. As a result, after integrating (160) and

after some manipulations, we obtain

P = 1

2λz
(g0 + g1 H2

0 )

[
λ−1

z ln

(
λi

λe

)
− 1

2
λ−2

i (λ−2
i − λ−2

e )

]
, (163)

where λi = ai/Ai and λe = ae/Ae, the values of λ on the inner and outer boundaries, with

λ2
i λz − 1 = (λ2

eλz − 1)ς2, (164)

and ς = Ae/Ai .
Remembering that the above expression for P is valid for both transversely isotropic and isotropic materials,

Fig. 4 shows the function (163) for different values of the parameters λi , ς , λz and H0.
For the energy function (130), Eq. (162) becomes

N = 2π

ae∫

ai

[(2λ2
z − λ2 − λ−2λ−2

z )�∗
1 + 2H2

0 λ2
z�

∗
5 + 2λ2

z�
∗
7 + 2H0λ

2
z�

∗
10]rdr

+πa2
i P − π(a2

e − a2
i )µ0λ

−2
z H2

0 , (165)

where P is given by (163). Because of the presence of the terms �∗
7 and �∗

10 the difference between the results
for transversely isotropic and isotropic materials is apparent, and we now consider two cases separately.

Isotropic case For the isotropic case the terms �∗
7 and �∗

10 are absent in (165) and the integration leads to the
explicit result

λ2
zN

π A2
i

= (g0 + g1 H2
0 )

[
ln

(
λi

λe

)
+ 2

(λ4
z − 1)(λ2

i − λ2
e)

λ2
e(λ

2
eλz − 1)

− λ2
i − λ2

e

λ2
e

]

+µ0π H2
0 (λ4

z − 1)(λ2
eς

2 − λ2
i ). (166)

Figure 5 shows the normal force for different values of the parameters.
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Fig. 4 Plot of the pressure P from (163) for selected values of λi , χ , λz and H0 [kA/m]
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Fig. 5 Plot of the scaled axial load N̄ = N
π A2

i
from (166) for selected values of λi , ς , λz and H0 [kA/m]

Transversely isotropic case. For a transversely isotropic material, the terms �∗
7 and �∗

10 are given by (134)
and (136), and the invariants I7, I9, I10 in (149) are independent of r . Equation (165) may then be written as

Ntran

π A2
i

= Nisot

π A2
i

+ 2λ2
z [�∗

7 + H0�
∗
10](ς2 − 1), (167)
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Fig. 6 Plot of the difference �N̄ of the scaled axial loads against λz , ς and H0 [kA/m]

where Ntran and Nisot correspond to the axial load for the transversely isotropic and for the isotropic cases,
respectively. Consider the difference Ntran − Nisot, which we denote �N . Figure 6 illustrates the behaviour
of �N , in the form �N̄ = �N

π A2
i

for a range of parameter values.

Some remarks: From Figs. 4 and 5 we see that the magnetic field has only a moderate effect in the elastic
response of the MS elastomer, for the internal pressure and the normal force needed for the inflation and exten-
sion of the tube in the ‘isotropic’ case. From the first three plots of Figs. 4 and 5 we see that for a certain range
of the parameters the pressure P and the normal force N decrease for higher values of H0. The ‘isotropic’
part of the behaviour of our MS elastomer is influenced in particular by the values of the constants shown in
Table 1, where we see that g1 is negative, being this the reason of the above phenomenon.

From Fig. 6 we see that for the normal force the difference between the ‘isotropic’ and ‘transversely
isotropic’ parts of the response is rather marked, and that for higher values of the external field H0 we have
obtained larger values for �N , thus confirming that an alignment for the MS particles enhances significantly
the response of the material to external magnetic fields.

In Figs. 4 and 5 we see, for example, that λz goes from 0.5 to 2. We have mentioned that the experimental
data provided in [4] covers the range [1 , 1.1] for the stretch, therefore, we must take carefully the results
presented in Figs. 4 and 5, especially for 0.5 ≤ λz ≤ 1 and 1.1 < λz .

For the same reason, considering the different problems we faced while fitting the energy function in the
transversely isotropic case, in Fig. 6 we have only considered λz ≥ 1 and for the first panel in Fig. 6 we have
1 ≤ λz ≤ 1.1.

Other possibilities for the magnetic field and the particle alignment might be considered. For example,
Hl = (0, 0, H0)

T and a radial uniform particle alignment field a0 = (1, 0, 0)T. But, in this case, from (36),
it is not difficult to see that in general τr z �= 0, as a result, from the normal components of the stress and
from (140) we would find that p∗ would be a function of r and z. Thus, this solution is not controllable in
general.

Another simple possibility may be to work with a radial uniform particle alignment as before, and a radial
uniform magnetic field Hl = (H0, 0, 0)T. In such a case, we would have that τrθ = τr z = τθ z = 0, then p∗
may be obtained by simple integration from (138), but from (39) we would have that Br = Br (r), thus, this
implies that Br would be singular at r = 0. Therefore, this solution is not admissible either.
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Other possibilities may arise. We could try to work with the magnetic induction as the independent magnetic
variable, but we do not study the problem of finding more controllable solutions for this case here.

6.2 Extension and torsion of a cylinder

The problem of extension and torsion for a cylinder has been studied previously in the context of isotropic
magnetoelastic materials by Dorfmann and Ogden [12]. In reference cylindrical polar coordinates the cylinder
is defined as 0 ≤ R ≤ A, 0 ≤ 
 ≤ 2π , −∞ ≤ Z ≤ ∞, and the deformation is described by

r = λ
−1/2
z R, θ = 
 + λzτ Z , z = λz Z , (168)

where (r, θ, z) are cylindrical polar coordinates in the deformed configuration and τ is the angle of twist per
unit deformed length of the cylinder. Referred to the two sets of coordinates, the deformation gradient has
components

F =
⎛
⎝

λ
−1/2
z 0 0
0 λ

−1/2
z λzγ

0 0 λz

⎞
⎠ , (169)

where γ is defined by

γ = τr. (170)

The associated left and right Cauchy-Green deformation tensors have components

b =
⎛
⎝

λ−1
z 0 0
0 λ−1

z + λ2
zγ

2 λ2
zγ

0 λ2
zγ λ2

z

⎞
⎠ , c =

⎛
⎝

λ−1
z 0 0
0 λ−1

z λ
1/2
z γ

0 λ
1/2
z γ λ2

z (1 + γ 2)

⎞
⎠ , (171)

and the first and second invariants in (27.1–3) are calculated as

I1 = 2λ−1
z + λ2

z (1 + γ 2), I2 = 2λz + λ−2
z + λzγ

2. (172)

6.2.1 Axial magnetic field and axial particle alignment

As in the problem of extension and inflation of a tube, we consider a uniform (Lagrangian) axial magnetic
field Hl = (0, 0, H0)

T, and a uniform axial particle alignment a0 = (0, 0, 1)T. Then H is given by (146) and
I4 by (147.1). The invariants I5 and I6 in (28) become

I5 = H2
0 λ2

z (1 + γ 2), I6 = H2
0 λz[γ 2 + (1 + γ 2)2λ3

z ], (173)

while, from (169) and (35), we obtain a = (0, γ λz, λz)
T. The remaining invariants are obtained from (29) as

I7 = (1 + γ 2)λ2
z , I8 = γ 2λz + (1 + γ 2)2λ4

z , I9 = H0, I10 = H0(1 + γ 2)λ2
z . (174)

The components of the total Cauchy stress are given by (36) as

τrr = −p∗ + 2λ−1
z �∗

1 + 2λ−2
z [1 + (1 + γ 2)λ3

z ]�∗
2, (175)

τθθ = −p∗ + 2(λ−1
z + γ 2λ2

z )�
∗
1 + 2γ 2λ2

z (H2
0 �∗

5 + �∗
7 + H0�

∗
10)

+2λ−2
z

[
1 + (1 + γ 2)λ3

z

] [
�∗

2 + 2γ 2λ2
z

(
H2

0 �∗
6 + �∗

8

)]
, (176)

τzz = −p∗ + 2λ2
z�

∗
1 + 4λz�2 + 2λ2

z

(
H2

0 �∗
5 + �∗

7 + H0�
∗
10

)

+4(1 + γ 2)λ4
z

(
H2

0 �∗
6 + �∗

8

)
, (177)

τθ z = 2γ λ2
z�

∗
1 + 2γ λz�

∗
2 + 2γ λ2

z

(
H2

0 �∗
5 + �∗

7 + H0�
∗
10

)

+2γ λz
[
1 + 2(1 + γ 2)λ3

z

] (
H2

0 �∗
6 + �∗

8

)
, (178)
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with τrθ = τr z = 0, and from (39) we obtain for the components of the magnetic induction

Bθ = − {
2H0γ λz�

∗
4 + 2H0γ

[
1 + (1 + γ 2)λ3

z

]
�∗

5 + 2H0γ
[
λ−1

z + (1 + 2γ 2)λ2
z

+(1 + γ 2)2λ5
z

]
�∗

6 + γ λz�
∗
9 + γ

[
1 + (1 + γ 2)λ3

z

]
�∗

10

}
, (179)

Bz = − {
2H0λz�

∗
4 + 2H0(1 + γ 2)λ3

z�
∗
5 + 2H0λ

2
z

[
γ 2 + (1 + γ 2)2λ3

z

]
�∗

6 + λz�
∗
9

+λ3
z (1 + γ 2)�∗

10

}
, (180)

with Br = 0.
Without giving all the details we now discuss briefly the controllability of the above solution. Since γ , and

hence the invariants, depend only on r then �∗ depends only on r . It follows from the above components of
the stress that (139) is satisfied trivially, and from (140) we conclude that p∗ = p∗(r). As a result p∗ may
be obtained by integration from (138). Since Bθ and Bz also depend only on r , Eq. (142) is likewise satisfied
trivially. Hence the considered solution is controllable.

6.2.2 Boundary conditions

Regarding the boundary conditions, we have essentially two quantities to calculate. One of these is the resul-
tant mechanical traction N applied on the ends of the cylinder, and the other is the torque on the ends of the
cylinder, denoted M, required to effect the torsion. These are given by

N = 2π

a∫

0

tzr dr, M = 2π

a∫

0

τθ zr
2 dr, (181)

where tz is the axial mechanical load per unit area applied at the ends of the cylinder.
Since H is the same as in the previous problem, the non-zero components of the Maxwell stress are given

by (154). Then, on specializing (13), we obtain

tz = τzz − τm
zz . (182)

Hence

N = 2π

a∫

o

τzzrdr − πa2τm
zz , (183)

which, on use of the radial equilibrium equation in the form

τrr + τθθ = 1

r

d

dr
(r2τrr ), (184)

can be rewritten as

N = π

a∫

0

(2τzz − τrr − τθθ )rdr + πa2τrr (a) − πa2τm
rr . (185)

If no mechanical tractions are applied on the surface r = a, then from (182) we obtain τrr (a) = τm
rr .

It is convenient to introduce a reduced energy function, here a function of λz , γ and H0. We write this as
ω∗ = ω∗(λz, γ, H0). Then, it is easy to show that

τθ z = ω∗
γ , 2τzz − τrr − τθθ = 2λz ω∗

λz
− 3γ ∗

γ , Bz = −λz ω∗
H0

, (186)

where the subscripts λz , γ and H0 represent partial derivatives.
Thus, we have the formulas

N = π

a∫

o

(2λz ω∗
λz

− 3γ ω∗
γ )rdr − πa2µ0λ

−2
z H2

0 , (187)

and
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M = 2π

a∫

0

ω∗
γ r2dr, (188)

which apply for a general form of the energy function within the considered class.

6.2.3 Boundary conditions for a particular energy function

For the energy function (130), the constitutive terms in the integrals (187) and (188) specialize to

ω∗
γ = 2γ λ2

z (�
∗
1 + H2

0 �∗
5 + �∗

7 + H0�
∗
10), (189)

and, with the above,

2λz ω∗
λz

− 3γ ω∗
γ = (2 − γ 2)

ω∗
γ

γ
− 4λ−1

z �∗
1. (190)

First, we examine the isotropic case, for which �∗
7 = �∗

10 = 0.

Isotropic case. For the isotropic specialization we have

N = 2π

a∫

0

[λ2
z (2 − γ 2)(�∗

1 + H2
0 �∗

5) − 2λ−1
z �∗

1]rdr − πa2µ0λ
−2
z H2

0 (191)

and

M = 4πλ2
z

a∫

0

γ (�∗
1 + H2

0 �∗
5)r

2dr. (192)

Since we have taken �∗
1 and �∗

5 to be constant, we obtain finally

N = 1

2
πa2λ2

z (�
∗
1 + H2

0 �∗
5)(4 − τ 2a2) − 2πa2λ−1

z �∗
1 − πa2µ0λ

−2
z H2

0 (193)

and

M = πa4λ2
zτ(�∗

1 + H2
0 �∗

5). (194)

Figure 7 illustrates the behaviour of N̄ = N
πa2 and M̄ = M

πa3 for selected values of λz , γa = τa and H0.
The special case in which λz = 1 is worth highlighting since we have �∗

5 = µ0/2 and hence

N = −1

2
πτ 2a2(2�∗

1 + µ0 H2
0 ) = −1

2
τM. (195)

This generalizes a result which holds in nonlinear elasticity for the neo-Hookean material, for which 2�∗
1 is

the shear modulus of the material in the reference configuration, and shows that the presence of the magnetic
field enhances the compressive axial load generated by the purely mechanical torsion.

Transversely isotropic case. For the transversely isotropic material, based on the energy function (130), the
differences in the values of N and M compared with the isotropic case are obtained from (187), (188), (193)
and (194) as
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Fig. 7 Plot of the scaled axial load N̄ and the scaled torque M̄ from (193) and (194) for selected values of λz , γa and H0 [kA/m].
For the two graphs on the right we have: a λz = 0.5, H0 = 0; b λz = 0.5, H0 = 60; c λz = 0.5, H0 = 123; d λz = 1, H0 = 0;
e λz = 1, H0 = 60; f λz = 1, H0 = 123; g λz = 1.5, H0 = 0; h λz = 1.5, H0 = 60; i λz = 1.5, H0 = 123

Ndiff = 2π

a∫

0

(2 − γ 2)(�∗
7 + H0�

∗
10)rdr, (196)

Mdiff = 4π

a∫

0

γ (�∗ + H0�
∗
10)r

2dr. (197)

With �∗
7 and �∗

10 given by (134) and (136) these integrals can be evaluated in closed form. The resulting
expressions are very lengthy and we do not include them here. Instead, we illustrate the results numerically,
remembering the definition γa = τa. Figures 8 and 9 show the results for N̄diff = Ndiff

πa2 and M̄diff = Mdiff
πa3 .

Like in the problem presented in the previous section, here from Figs. 7, 8, and 9 we see that an alignment
for the particles enhances significantly the response of our MS elastomer in the presence of a magnetic field.

7 Conclusions

The general formulation presented in this paper can be used as a background against which the results of
experiments on transversely isotropic magnetoelastic materials, in particular MS elastomers, can be assessed.
These materials appear to be more important in terms of their capacity to respond to magnetic fields than
isotropic MS elastomers (see, for example, [2,4]).

From Sect. 3, we see that these materials possess characteristics that are similar in terms of mechanics
to those of fibre-reinforced materials with two families of fibres [40,41]. The number of invariants present
in the energy function in its general form is too large to be able to fully characterize the material properties,
and reduced forms for the energy function must be considered in order to make meaningful comparisons with
currently available experimental data. Such reductions must at the same time produce physically meaningful
forms of the energy function and lead to mathematical formulations that are well posed.



212 R. Bustamante

1 1.1 1.2 1.3 1.4 1.5
10

20

30

40

50

60

70

0 50 100
0

20

40

60

80

100

1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

30

0 50 100
0

10

20

30

40

50

Fig. 8 Plots of the scaled difference in the axial load N̄diff and the scaled difference in torque M̄diff from (196) and (197) against
λz and H0 [kAm] for selected parameter values
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Fig. 9 Plot of the scaled difference in axial load N̄diff and the scaled difference in torque M̄diff from (196) and (197) against γa
for selected parameter values. In this figure H0 has units [kA/m]

There are a number of problems and simplifications that must be addressed in subsequent work. For exam-
ple, the boundary-value problems presented in this paper assumed that the material is completely surrounded
by free space (see [33]). This idealization is not realistic since application of mechanical traction to the surface
of the material requires contact between the loading device and the material. Thus, formulations are needed
that include the possible magnetic interaction between the material body and the material of the loading device.
A preliminary formulation has recently been proposed by Bustamante [44].

Another problem is that in order to deal with the magnetic boundary conditions (12.1, 2) we have considered
bodies of ‘infinite’ or ‘semi-infinite’ geometries, such as tubes and cylinders of finite radius but infinite length.
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The boundary conditions (12.1, 2) make it difficult, if not impossible, in the nonlinear theory to obtain closed-
form solutions of boundary-value problems with finite geometries. No exact solution of Eqs. (5) and (9) and the
associated boundary conditions have yet been found for such problems. Thus, the solution requires a numerical
approach, as exemplified in [38] using a finite difference method. For more complicated problems it would be
natural to employ finite element methods, for which a suitable principle of virtual work or variational principle
is required. Towards this objective certain magnetoelastic variational principles have been recently developed
by Bustamante et al. [33].

The Mullins effect, which is a well-known (inelastic) stress softening in rubber-like materials containing
particle fillers has also been detected recently in MS elastomers by Coquelle and Bossis [45]. An extension of
the present theory to include this effect is a possible direction of future research. The question of the stability
of bodies subjected to finite deformation and a magnetic field is also of interest. For example, Varga et al. [43]
found that for a cube made of a transversely isotropic MS elastomer with a ‘high’ volume fraction of particles
when under compression in the direction of the particle alignment there is a sort of ‘collapse’ or instability of
the material (see Figs. 14 and 15 in [43]).

In a recent paper, Criscione [46] criticized the use of the invariants I1 and I2 for the characterization of
isotropic hyperelastic materials. In accordance with his results, experimental errors are significantly magnified
if an energy function W is defined in terms of such invariants, thus making impossible to find acceptable and
accurate expressions for such a function for certain ranges of values for I1 and I2. Considering that for MS
elastomers there is still little experimental data to start any discussion about which set of invariants may be
better in order to characterize the behaviour of these materials, in our research we have used the classical set
of invariants found, for example in [34].

The preliminary form of the energy function presented in (130) is just a first approximation. The develop-
ment of improved models must wait until more experimental data becomes available.
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