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Abstract The multi-Gaussian model is used in geosta-

tistical applications to predict functions of a regionalized

variable and to assess uncertainty by determining local

(conditional to neighboring data) distributions. The model

relies on the assumption that the regionalized variable can

be represented by a transform of a Gaussian random field

with a known mean value, which is often a strong

requirement. This article presents two variations of the

model to account for an uncertain mean value. In the first

one, the mean of the Gaussian random field is regarded as

an unknown non-random parameter. In the second model,

the mean of the Gaussian field is regarded as a random

variable with a very large prior variance. The properties of

the proposed models are compared in the context of non-

linear spatial prediction and uncertainty assessment prob-

lems. Algorithms for the conditional simulation of

Gaussian random fields with an uncertain mean are also

examined, and problems associated with the selection of

data in a moving neighborhood are discussed.

Keywords Spatial prediction � Conditional expectation �
Spatial uncertainty � Conditional distributions �
Ordinary kriging � Moving neighborhood

1 Introduction and scope of the work

Determining whether a regionalized variable at a specific

location exceeds or falls short of a threshold is a prob-

lem commonly met in the geosciences. Examples of

applications include the delineation of areas where a pol-

lutant concentration is greater than a threshold, the

prediction of deficiencies or excesses in soil properties, or

the calculation of mineral resources that can be recovered

above a given cutoff.

Because it produces smoothed predictions, linear kriging

is not suitable for predicting a regionalized variable in

relation to a threshold value. Instead, one can use nonlinear

methods (e.g. indicator, disjunctive or multi-Gaussian

kriging; Bayesian maximum entropy approaches) or con-

ditional simulation (Journel and Huijbregts 1978;

Christakos 1990; Rivoirard 1994; Goovaerts 1997; Chilès

and Delfiner 1999; Chilès and Lantuéjoul 2005). The

implementation of these techniques usually relies on a

transformation of the original data into indicator data or

into normal scores and on the knowledge of the mean value

of the transformed data. This last assumption is critical

when the data are scarce and their true mean value is

uncertain.

This work focuses on the Gaussian random field model,

which is used in mineral resource evaluation (Journel

1974), oil reservoir characterization (Delfiner and Chilès

1977), stochastic hydrology (Delhomme 1979), environ-

mental engineering (Gotway 1994) and soil science (Chilès

and Allard 2005). The purpose here is the accounting for an

uncertain mean value of the normal scores data. Two

applications are of particular interest and will be distin-

guished: (1) the prediction of functions of the regionalized

variable and (2) the assessment of local uncertainty through

the modeling of posterior distributions, i.e., probability

distributions conditioned to the information brought by

surrounding data.

One goal of this paper is to provide an overview of

models useful for kriging and simulation in the presence

of an uncertain mean value. These models have been
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presented separately and variously in earlier papers (Emery

2006a, b, 2007, 2008), reason for which several mathe-

matical demonstrations will be left to references rather than

being reprinted in this article. Other goals—and new con-

tributions with respect to the previous papers—are: to

compare and contrast the model properties in view of both

prediction and uncertainty modeling; to decide to which

application each model is better suited; and to present

implementation issues and guidelines for good practice, in

particular regarding the use of moving neighborhoods in

conditional simulation.

The outline of the paper is as follows. In the next

section, we briefly recall the traditional Gaussian random

field model (with a known mean) and two variations that

account for an uncertain mean value. Then we discuss

the weaknesses and strengths of each model in the

context of spatial prediction and uncertainty assessment

problems. In the last section, we examine algorithms that

can be used for conditional simulation and highlight

some problems related to the selection of data in a

moving neighborhood.

2 Three variations of the multi-Gaussian model

2.1 Model presentation

The regionalized variable of interest is regarded as a

realization of a random field Z = {Zx, x [ D} over a given

spatial domain D. Throughout this paper, we assume that Z

is the transform of a stationary Gaussian random field

Y = {Yx, x [ D}, i.e., a random field whose finite-dimen-

sional distributions are multivariate normal (or multi-

Gaussian) and invariant under a translation in space:

8x 2 D; Zx ¼ /ðYxÞ; ð1Þ

where / is a non-decreasing function called anamorphosis

function. In the following, we will denote by CY and cY the

covariance function and semi-variogram of Y, respectively.

Because of the stationarity assumption, these are functions

of the lag separation vector.

In the following, three models will be considered:

(1) Model with a known mean

8x 2 D; Yx ¼ mþ Ux; ð2Þ

where U = {Ux, x [ D} is a stationary, ergodic, standard

Gaussian random field (with zero mean and unit variance),

and m a known scalar parameter.

(2) Model with an unknown mean

Same model as in Eq. 2, except that m is unknown.

Actually, this model does not define a single random field

for Y, but an equivalence class of random fields, namely the

class of stationary Gaussian random fields with covariance

function CY.

(3) Model with a random mean

8x 2 D; Yx ¼ M þ Ux; ð3Þ

where M is a normal random variable (constant over D)

with a variance much greater than 1, independent of U.

This model can be seen as a particular case of the Bayesian

models used in the scope of linear kriging prediction, in

which some prior knowledge about the random variable M

is assumed (Omre 1987; Omre et al. 1989; Pilz 1994).

Here, the prior distribution of M is considered to have a

very large variance, i.e., this distribution is non-informative

and there is a complete prior uncertainty on the outcome of

M (Emery 2007).

2.2 Guidelines for parameter inference

In the model with a known mean, the anamorphosis func-

tion / and semi-variogram cY can be determined through

the following steps:

(1) Transform the original data (random field Z) into

normal scores data (random field Y). Because the

model associated with Eqs. 1, 2 admits more than one

parametrization, a way to make it single is to put

m = 0, i.e., to transform the original data into

standard normal values. The anamorphosis function

can then be modeled by means of a transformation

table (Goovaerts 1997), an expansion into Hermite

polynomials (Rivoirard 1994; Chilès and Delfiner

1999), or a Box–Cox transformation (Box and Cox

1964), to name the most common options.

(2) Calculate the sample semi-variogram of the normal

scores data, and fit a model cY.

(3) Validate the multi-Gaussian assumption, by examin-

ing lagged scatterplots, indicator variograms or

variograms of different orders (Rivoirard 1994;

Goovaerts 1997; Emery 2005).

The same steps can be followed in the model with an

unknown mean, by temporarily assuming that the mean is

zero in order to determine the anamorphosis function /
(step (1)), then by renouncing to the zero-mean assump-

tion for subsequent work. Equivalently, one assumes that

the original random field Z belongs to the class of random

fields of the form /(Y), where / is determined at step (1)

and Y is a Gaussian random field whose mean value can

be any real number. Such a procedure is debatable,

although it is formally identical to that realized in the

context of ordinary lognormal kriging (Journel 1980),

which corresponds to the case when the anamorphosis is

assumed to be an exponential function. The idea behind
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this procedure is that the ‘‘true’’ unknown mean m should

be close to 0 (experimental mean of the normal scores

data), so that the ‘‘true’’ anamorphosis function should not

be so different from that determined at step (1). Fur-

thermore, the predictors that will be constructed in the

scope of this model are expected to be robust against any

local fluctuation of the true mean (case of local or quasi

stationarity).

Finally, in what refers to parameter inference, the

model with a random mean (Eq. 3) is not different from

the model with an unknown mean. Indeed, from a prac-

tical viewpoint, a single realization of Y is available at the

data locations, hence the models with an unknown mean

and with a random mean constitute two equivalent rep-

resentations of the same reality. Put another way, for the

realization under consideration, one has M = m (unknown

value), so that the above described inference procedure

can be used.

In summary, the steps for inferring and validating the

model parameters are the same in the three proposed

models. The only difference between the models is the

decision to finally consider the mean value of the normal

scores data as known (first model) or not (last two models),

while the anamorphosis function and normal scores semi-

variogram are assumed known in every case.

3 Comparison of models and discussion

3.1 Spatial prediction problems

We are interested in predicting a function of Zx, which is

also a function of Yx, say u(Yx), given a set of data at

locations surrounding x. In the following, let us denote:

• Yx
SK and Yx

OK the simple and ordinary kriging predictors

of Yx

• lx
OK the Lagrange multiplier used in the ordinary

kriging system

• (rx
SK)2 and (rx

OK)2 the simple and ordinary kriging

variances

• g and G the standard normal probability density and

cumulative distribution function.

In each of the three models, a multi-Gaussian kriging

predictor of u(Yx) can be designed.

(1) Model with a known mean (Rivoirard 1994)

½uðYxÞ��1 ¼
Zþ1

�1

uðYSK
x þ rSK

x tÞ gðtÞ dt: ð4Þ

(2) Model with an unknown mean (Emery 2006a, b)

½uðYxÞ��2 ¼
Zþ1

�1

uðYOK
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrOK

x Þ
2 þ 2lOK

x

q
tÞ gðtÞ dt: ð5Þ

Note that this predictor coincides with the well-known

ordinary lognormal kriging predictor (Journel 1980) when

u is an exponential function.

(3) Model with a random mean (Emery 2008)

½uðYxÞ��3 ¼
Zþ1

�1

uðYOK
x þ rOK

x tÞ gðtÞ dt: ð6Þ

The model with a known mean is often criticized

because the associated predictor (Eq. 4) is inaccurate if

the assumed mean departs from the true mean. This

situation is likely to occur when the mean value can be

considered constant only at a local scale (quasi

stationarity) and/or when it is poorly estimated because

of data scarcity (Guibal and Remacre 1984; Rivoirard

1994).

In contrast, in the two models with uncertain means,

the predictors (Eqs. 5, 6) do no longer rely on the mean

value of the Gaussian random field. They are therefore

robust to variations of this mean value in space, provided

that it remains constant at the scale of the kriging

neighborhood. At this stage, one may wonder which of

the two models should be used for prediction. Actually,

both models are theoretically sound and are therefore

valid options, although there are several reasons for pre-

ferring the model with an unknown mean, as explained

hereunder.

One reason is that the predictor in Eq. 5 is established

without any assumption on the mean, while the predictor in

Eq. 6 is based on stronger assumptions (namely, that M has

a normal distribution with a very large variance and is

independent of the residual random field U).

The other reason relates to the practical significance of

the notion of unbiasedness. By construction, the predictor

associated with the unknown mean model (Eq. 5) is unbi-

ased, therefore (because the random field model is ergodic)

the spatial average of predicted values is expected to be

close to that of the unknowns. In contrast, in the random

mean model (Eq. 3), ergodicity does not hold any more, so

that prediction errors may not cancel in space, although the

predictor in Eq. 6 (the conditional expectation of u(Yx)) is

conditionally unbiased.

For example, suppose that the kriging neighborhood

contains only one datum at location x1. In the model with

an unknown mean, the predictor is:
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½uðYxÞ��2 ¼ uðYx1
Þ; ð7Þ

while the random mean model yields:

½uðYxÞ��3 ¼
Zþ1

�1

u Yx1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cYðx1 � xÞ

p
t

� �
gðtÞ dt: ð8Þ

In particular, if u is a convex function (e.g., an

exponential function), then the predictor in Eq. 8 is

greater than that in Eq. 7:

½uðYxÞ��3�u
Zþ1

�1

ðYx1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cYðx1 � xÞ

p
tÞ gðtÞ dt

0
@

1
A

¼ uðYx1
Þ;

ð9Þ

whereas the opposite inequality holds if u is a concave

function. These inequalities lead to a curious situation:

although one has designed two unbiased predictors, one of

them is systematically greater than the other one. This

proves that the notion of ‘‘unbiasedness’’ is not absolute,

but relative to a model.

The only practical requirement for calculating the pre-

dictor associated with the unknown mean model (Eq. 5) is

the non-negativity of the term under the square root, which

is not automatically fulfilled (Table 1). The occurrence of a

negative term can however be avoided by modifying the

ordinary kriging system so as to constrain the weights to be

nonnegative (Barnes and Johnson 1984; Herzfeld 1989).

3.2 Uncertainty modeling

Another problem of interest in applications is to quantify

local uncertainty by determining probability intervals for

the unknown values. To estimate the probability that the

actual value of Yx falls short of a specific threshold y, it

suffices to use the previous predictors (Eqs. 4–6), with u as

the indicator function at threshold y. It comes:

(1) Model with a known mean

½FxðyÞ��1 ¼ G
y� YSK

x

rSK
x

� �
: ð10Þ

(2) Model with an unknown mean

½FxðyÞ��2 ¼ G
y� YOK

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrOK

x Þ
2 þ 2lOK

x

q
0
B@

1
CA: ð11Þ

(3) Model with a random mean

½FxðyÞ��3 ¼ G
y� YOK

x

rOK
x

� �
: ð12Þ

By varying the value of y, one obtains three conditional

distribution functions: ½Fx��1, ½Fx��2 and ½Fx��3. Note that, in

the model with a deterministic mean (Eq. 2), the true

conditional distribution is given by ½Fx��1 (irrespective of

whether the mean is known or not), whereas in the model

with a random mean, it is given by ½Fx��3. In contrast, ½Fx��2
is only an estimate of the conditional distribution of Yx and,

as such, may not yield accurate measures of uncertainty. To

corroborate this assertion, consider the following three

examples:

(1) If the kriging neighborhood contains only one datum,

then ½Fx��2 is a step function: the variance of the

estimated conditional distribution is zero, but the

variance of the true conditional distribution ½Fx��1
(simple kriging variance) is strictly positive at

locations without data.

Table 1 Properties of predictors associated with proposed models

Model with a

known mean

Model with an

unknown mean

Model with a random

mean

Exact interpolation at data locations? Yes Yes Yes

Predictor is globally unbiased? Yes Yes ?

Predictor is conditionally unbiased? Yes No Yes

Prediction errors are expected to cancel

in space?

Yes Yes No

Predictor is robust to local variations of

the mean value?

No Yes Yes

Requirements for practical

implementation

Stationarity Quasi stationarity Quasi stationarity

Multivariate normal

distributions

Multivariate normal distributions Multivariate normal distributions

At least one datum in the kriging

neighborhood

At least one datum in the kriging

neighborhood

Variance of ordinary kriging predictor

not greater than 1
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(2) If Yx has a pure nugget semi-variogram with sill 1,

then the variance of ½Fx��2 at a location without data is

equal to 1 – 1/n, where n is the number of data. This

variance is less than the unit variance of the true

conditional distribution, which here coincides with

the prior distribution.

(3) If location x is located far from the data (beyond the

range of the semi-variogram), then the variance of the

true conditional distribution is equal to the prior

variance (i.e., 1), while that of the estimated distri-

bution is 1 – (rm
OK)2, where (rm

OK)2 is the variance of

the ordinary kriging estimator of m.

In conclusion, although ½Fx��2 is an unbiased estimate of

½Fx��1; it usually has a too small variance and does not

reflect the actual uncertainty in the outcome of Yx. The

deterministic mean model (Eq. 2) therefore turns out to be

inappropriate for deriving conditional distributions when

the mean value is unknown. In such a case, the true con-

ditional distribution of Yx (Eq. 10) is inaccessible. One

could think of replacing the simple kriging predictor in

Eq. 10 by the ordinary kriging predictor, leaving unchan-

ged the simple kriging variance, but this approach is not

theoretically sound and may still yield biased measures of

uncertainty.

In contrast, the random mean model provides true con-

ditional distributions and uncertainty measures. In

particular, the conditional variance of Yx is its ordinary

kriging variance (Eq. 12) and is always greater than the

simple kriging variance, a result that is intuitive insofar as

not knowing the mean value should increase the uncer-

tainty in the outcome of Yx. With respect to the traditional

approach (model with a known mean, Eq. 10), one just has

to replace simple kriging by ordinary kriging when deter-

mining the conditional distributions (Table 2).

4 Conditional simulation

4.1 Sequential Gaussian simulation

The previous results about uncertainty modeling can be

used for simulating the Gaussian random field Y at a set of

locations without data. One option is the sequential algo-

rithm, in which the variable at each location is simulated

according to its distribution conditioned to the original data

and to the previously simulated variables. Now, although

this approach is theoretically correct, it becomes imprac-

tical when the number of variables to simulate is large (say,

more than a few thousands). To reduce the computational

burden, the conditioning data must be limited to that

located in a moving neighborhood.

4.1.1 Biases caused by moving neighborhood restrictions

To understand the impact caused by omitting data in the

conditioning process, we will assume that there exist n ? k

data at locations {x1,…,xn?k}, but that the random variable

Yx is simulated conditionally to the data located at

{x1,…,xn}.

Ideally, the simulated variable for Yx should be

ðYxÞideal ¼ YOK
x

��
nþk data

þrOK
x

��
nþk data

T ð13Þ

with T a standard normal random variable independent of

the data. However, because of neighborhood restrictions,

the actually simulated variable is:

ðYxÞactual ¼ YOK
x

��
n data
þrOK

x

��
n data

T ð14Þ

By denoting by ka|n?k (x) the ordinary kriging weight

assigned to xa when kriging Yx from the n ? k data, one

has (Emery 2009):

YOK
x

��
n data
¼ YOK

x

��
nþk data

þ
Xnþk

a¼nþ1

kajnþkðxÞ YOK
xa

��
n data
�Yxa

� �

ð15Þ

rOK
x

��
ndata

� �2

¼ rOK
x

��
nþkdata

� �2

þ
Xnþk

a¼nþ1

k2
ajnþkðxÞ rOK

xa

� ��
ndata

�2

ð16Þ

Accordingly, the difference between (Yx)ideal and

(Yx)actual will be greater when:

(a) the number of omitted data (k) increases (summations

in Eqs. 15 and 16 contain more terms);

Table 2 Properties of

conditional distributions

associated with proposed

models

Model with a

known mean

Model with an

unknown mean

Model with a

random mean

Conditional distributions account for an

uncertain mean value?

No Yes Yes

Conditional distributions suffer from

order-relation violations/inconsistencies?

No No No

Conditional distributions allow assessing

uncertainty?

Yes No Yes

Stoch Environ Res Risk Assess (2010) 24:211–219 215

123



(b) the kriging weights that these data would receive in a

unique neighborhood implementation are strongly

different from 0;

(c) the omitted data cannot be predicted accurately from

the remaining n data.

Point (c) is critical in the presence of a nugget effect or a

short-range structure in the semi-variogram of the random

field Y to be simulated, while point (a) is critical when

many locations are targeted for simulation. In this respect,

experience with the known mean model (using simple

kriging to determine the conditional distributions) has

shown that too restrictive neighborhoods may introduce

biases in the reproduction of the model statistics on large

grids (Gómez-Hernández and Cassiraga 1994; Tran 1994;

Emery 2004).

Defining the neighborhood is even more important when

using ordinary kriging, because of point (b). Indeed, the

simple kriging weights assigned to the data located far

from the target location are usually very small, whereas

this is not necessarily the case with ordinary kriging, in

particular when the mean value is assigned a large simple

kriging weight (Rivoirard 1987). This difference between

the behavior of simple and ordinary kriging weights is

likely to be of utmost relevance in the context of sequential

simulation (simulated variables are re-used as conditioning

data for subsequent variables, hence errors are likely to

propagate), as it will be shown hereafter on a few

examples.

4.1.2 Numerical experiments

To determine the sensitivity of the neighborhood definition

on the reproduction of the semi-variogram, we now present

numerical results obtained by simulating a Gaussian ran-

dom field with a prescribed semi-variogram over a regular

grid with size 300 9 300, conditioned to one hundred data

randomly located on the grid. The exercise consists in

constructing 100 realizations, each one obtained via the

following steps:

(1) Simulate a Gaussian random field with zero mean at

the data locations by using the non-conditional

version of the covariance matrix decomposition

algorithm (Davis 1987). Since this simulation algo-

rithm is perfect, no approximation is made at this

stage.

(2) Simulate the Gaussian random field at the target grid

nodes, conditionally to the variables obtained in the

previous step, by using the sequential algorithm (with

ordinary kriging to determine conditional distribu-

tions) and visiting the grid nodes according to a

random path.

Because at each realization the conditioning data are

generated from the non-conditional distribution (step (1)),

the experimental semi-variograms of the realizations

obtained at step (2) are expected to fluctuate around the

prior (non-conditional) semi-variogram model.

Four models are put to the test: a pure nugget effect

(Fig. 1a), a spherical (Fig. 1b), a spherical plus nugget

(Fig. 1c) and a cubic model (Fig. 1d), each with a unit sill.

For each model, three neighborhoods are considered, with

10, 20 and 50 conditioning data (original data and previ-

ously simulated variables) respectively. It is seen that the

reproduction of the semi-variogram turns out to be poor in

the presence of a nugget effect (Fig. 1). This can be

explained because the nugget effect lifts the screening

effect (Chilès and Delfiner 1999): the moving neighbor-

hood omits data that would receive non-negligible weights

if a unique neighborhood were used. As for the models

without nugget effect, one needs at least 50 conditioning

data in the kriging neighborhood to reproduce the semi-

variogram fairly well.

4.1.3 Conditions for exact semi-variogram reproduction

To find out the semi-variogram models that can be repro-

duced exactly when using a moving neighborhood, let us

go back to Eqs. 15 and 16. These equations indicate that

the omission of part of the data will alter the ordinary

kriging prediction and variance, unless the kriging weights

associated with the omitted data are equal to zero (perfect

screening effect). Such a circumstance is exceptional and

occurs only with the linear semi-variogram in one-dimen-

sional spaces (Chilès and Delfiner 1999).

To corroborate this statement, consider the case when

the Gaussian random field Y is known at location x1 and

one looks for simulating Y at locations x2 and x3. Due to

neighborhood restrictions, also assume that the simulation

at x3 only relies on the variable simulated at x2, i.e., the

original datum at x1 is omitted because it is located outside

the neighborhood. Under these conditions, the sequential

simulation algorithm yields:

Yx2
¼ Yx1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cYðx2 � x1Þ

p
T1

Yx3
¼ Yx2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cYðx3 � x2Þ

p
T2

(
ð17Þ

where T1 and T2 are independent standard normal random

variables. Accordingly, the semi-variogram between Yx1

and Yx3
is:

1

2
varfYx3

� Yx1
g ¼ cYðx2 � x1Þ þ cYðx3 � x2Þ: ð18Þ

This is equal to cY(x3 – x1) only if x1, x2, x3 are aligned

in this order, i.e., simulation is performed in a one-

dimensional space following a regular sequence, and cY is a
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linear semi-variogram, a condition that is not compatible

with the assumption of stationarity. It is concluded that no

stationary semi-variogram model can be reproduced

exactly with the sequential algorithm when using a

moving neighborhood and ordinary kriging.

4.2 Two-step simulation

Another option for simulation is a two-step approach

consisting in generating a non-conditional simulation and

adding the simple kriging predictor of the ‘‘residuals’’

between the data and the variables simulated at the data

locations (Journel and Huijbregts 1978). In the random

mean model (Eq. 3), conditioning is done by ordinary

kriging instead of simple kriging. Note that the non-con-

ditional simulation is involved only through the difference

with its kriging predictor and can therefore have a mean set

to an arbitrary value, say 0. Any multi-Gaussian simulation

algorithm can be used at this stage (discrete of continuous

spectral methods, convolution methods, turning bands, or

the sequential Gaussian algorithm with use of simple kri-

ging to determine conditional distributions).

Conditioning simulations by ordinary kriging has

already been suggested by Journel and Huijbregts (1978) in

the scope of a stationary Gaussian field model with a non-

random mean (Eq. 2). In this model however, the method is

approximate since kriging errors are correlated with the

conditioning data. Ordinary kriging is also used for con-

ditioning simulations of intrinsic random fields with

normal increments, in which case the semi-variogram is

perfectly reproduced (Delfiner 1976; de Fouquet 1994).

The non-ergodic model introduced in Eq. 3 provides a

justification for conditioning stationary Gaussian random

fields by ordinary kriging, and therefore offers a unified

framework between stationary random fields with uncertain

mean values and intrinsic random fields.

It is worthy to note that conditioning kriging only

involves the original data, unlike the sequential algorithm,

for which the already simulated variables have to be con-

sidered. This implies the following advantages:

• Much less calculations are required to search for nearby

data and to solve the kriging system.

• Because the semi-variogram model and configuration

of data locations are unchanged from one realization to

another, a single kriging system has to be solved for

conditioning multiple realizations.

• The number of data dropped by using a moving

neighborhood instead of a unique one is significantly

less than in the sequential algorithm, which decreases

the biases caused by neighborhood restrictions (see

Sect. 4.1.1) and facilitates the design of the kriging

neighborhood, see Rivoirard (1987), Chilès and Delfiner

Fig. 1 Semi-variogram model

(solid line) and average regional

semi-variograms of 100

sequential Gaussian realizations

obtained by using a

neighborhood with 10

conditioning data (dots), 20

conditioning data (dash-dots)

and 50 conditioning data

(dashed lines). In each case,

there is a total of 100 original

conditioning data, and ordinary

kriging is used for constructing

conditional distributions
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(1999) and Emery (2009) for practical recommendations

on this matter. As an illustration, the same exercise as in

Sect. 4.1.2 has been made, by using the turning bands

algorithms for the non-conditional simulation and

considering the same numbers of neighboring data (10,

20 and 50) for conditioning kriging: the improvement in

semi-variogram reproduction (Fig. 2) is notorious in

comparison with the results obtained with the sequential

Gaussian approach (Fig. 1), in particular for semi-

variograms having a nugget effect.

5 Conclusions

So far, the multi-Gaussian model has been mainly used

under the assumption of a known mean for the Gaussian

random field. This paper presented two extensions of this

model that account for an uncertainty in the mean value

and use ordinary kriging instead of simple kriging. The first

extension is suited to prediction, while the second exten-

sion is adequate for uncertainty modeling and for

conditional simulation. The recourse to one or to the other

extension therefore depends on the application at hand.

Attention has to be paid to the definition of the kriging

neighborhood, especially in the case of sequential simula-

tion when the semi-variogram has a nugget effect.

Ordinary kriging is commonly used in linear geostatis-

tics as it ensures robustness of the predictor to spatial

variations of the mean value. It outperforms simple kriging

with a locally varying mean when the local mean is poorly

estimated because of data scarcity. It is hoped that its

application to the multi-Gaussian model will be of interest

to practitioners concerned with non-linear spatial predic-

tion and with the characterization of spatial uncertainty.

Further extensions of the models proposed in this work

can be designed. In the case of prediction or uncertainty

modeling with a change of support, one can work with the

joint distributions of Y at a set of locations discretizing the

block under consideration. When the mean varies in space

and can be represented by a polynomial drift, the models

can be extended by using intrinsic kriging instead of

ordinary kriging. As for multivariate problems, it suffices

to substitute co-kriging for kriging.
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Chilès JP, Lantuéjoul C (2005) Prediction by conditional simulation:

models and algorithms. In: Bilodeau M, Meyer F, Schmitt M

(eds) Space, structure and randomness. Springer, New York, pp

39–68

Christakos G (1990) A Bayesian/maximum-entropy view to the

spatial estimation problem. Math Geol 22(7):763–777

Davis MW (1987) Production of conditional simulations via the LU

triangular decomposition of the covariance matrix. Math Geol

19(2):91–98

de Fouquet C (1994) Reminders on the conditioning kriging. In:

Armstrong M, Dowd PA (eds) Geostatistical simulations.

Kluwer, Dordrecht, pp 131–145

Delfiner P (1976) Linear estimation of nonstationary spatial phenom-

ena. In: Guarascio M, David M, Huijbregts CJ (eds) Advanced

geostatistics in the mining industry. Reidel, Dordrecht, pp 49–68

Delfiner P, Chilès JP (1977) Conditional simulations: a new Monte-

Carlo approach to probabilistic evaluation of hydrocarbon in

place. SPE paper 6985, p 32

Delhomme JP (1979) Spatial variability and uncertainty in ground-

water flow parameters: a geostatistical approach. Water Resour

Res 15(2):269–280

Emery X (2004) Testing the correctness of the sequential algorithm

for simulating Gaussian random fields. Stoch Environ Res Risk

Assess 18(6):401–413

Emery X (2005) Variograms of order x: a tool to validate a bivariate

distribution model. Math Geol 37(2):163–181

Emery X (2006a) Multigaussian kriging for point-support estimation:

incorporating constraints on the sum of the kriging weights.

Stoch Environ Res Risk Assess 20(1–2):53–65

Emery X (2006b) Ordinary multigaussian kriging for mapping

conditional probabilities of soil properties. Geoderma 132(1–

2):75–88

Emery X (2007) Conditioning simulations of Gaussian random fields

by ordinary kriging. Math Geol 39(6):607–623

Emery X (2008) Uncertainty modeling and spatial prediction by

multi-Gaussian kriging: accounting for an unknown mean value.

Comput Geosci 34(11):1431–1442

Emery X (2009) The kriging update equations and their application to

the selection of neighboring data. Comput Geosci. doi:

10.1007/s10596-008-9116-8
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