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Abstract. — We construct a new class of entire solutions for the Allen-Cahn equation

∆u + (1 − u2)u = 0, in R2(∼ C). Given k ≥ 1, we find a family of solutions whose

zero level sets are, away from a compact set, asymptotic to 2k straight lines (which
we call the ends). These solutions have the property that there exist θ0 < θ1 < . . . <

θ2k = θ0 +2π such that limr→+∞ u(reiθ) = (−1)j uniformly in θ on compact subsets

of (θj , θj+1), for j = 0, . . . , 2k − 1.

1. Introduction and statement of main results

1.1. Introduction. — In this paper, we are interested in the construction of a new
class of entire solutions, in the entire space RN , for the semilinear elliptic equation

(1.1) ∆u+ (1− u2)u = 0 ,

known as the Allen-Cahn equation. This problem has its origin in the gradient theory
of phase transitions [2], a model in which two distinct phases (represented by the
values u = ±1) try to coexist in a domain Ω while minimizing their interaction which
is proportional to the (N − 1)-dimensional volume of the interface. Idealizing the
phase as a regular function which takes values close to ±1 in most of the domain,
except in a narrow transition layer of width ε, one defines the Allen-Cahn energy,

Jε(u) :=
ε

2

∫
Ω

|∇u|2 dx +
1
4ε

∫
Ω

(1− u2)2 dx,

whose critical points satisfy the Euler-Lagrange equation

(1.2) ε2∆u+ (1− u2)u = 0 in Ω.

Replacing u by u(·/ε) we obtain the equation

(1.3) ∆u+ (1− u2)u = 0 in ε−1 Ω.
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Therefore, equation (1.1) appears as the limit problem in the blow up analysis of (1.2)
as ε tends to 0. The relation between interfaces of least volume and critical points of
Jε was first established by Modica in [26]. Let us briefly recall the main results in
this direction : If uε is a family of local minimizers of Jε for which

(1.4) sup
ε>0

Jε(uε) < +∞,

then, up to a subsequence, uε converges in L1 to 1Λ − 1Λc , where ∂Λ has minimal
volume. Here 1Λ (resp. 1Λc) is the characteristic function of the set Λ (resp. Λc =
Ω− Λ). Moreover, Jε(uε) −→ 1√

2
HN−1(∂Λ).

For critical points of Jε which satisfy (1.4), a related assertion is proven in [19]. In
this case, the convergence of the interface holds with certain integer multiplicity to
take into account the possibility of multiple transition layers converging to the same
minimal hypersurface.

These results provide a link between solutions of equation (1.1) and the theory of
minimal hypersurfaces which has been widely explored in the literature. For example,
solutions concentrating along non-degenerate, minimal hypersurfaces of a compact
manifold were found in [28] (see also [22]). As far as multiple transition layers are
concerned, given a minimal hypersurface Γ (subject to some additional property on
the sign of the potential of the Jacobi operator about Γ, which holds on manifolds
with positive Ricci curvature) and given an integer k ≥ 1, solutions of (1.2) with
multiple transitions near Γ were built in [30] (see [13] for the 2-dimensional case, and
[11] for the euclidean case), in such a way that Jε(uε) −→ k√

2
HN−1(Γ).

This paper is concerned with the construction of a new and rather unexpected
class of entire solutions of equation (1.1) satisfying the energy growth condition (1.5).
Recall that, in dimension 1, solutions satisfying (1.5) are given by translations of the
function H which is the unique solution of the problem

(1.5) H ′′ + (1−H2)H = 0, with H(±∞) = ±1 and H(0) = 0 .

In fact, the function H is explicitly given by

H(y) = tanh
(
y√
2

)
.

Then, in any dimension and for all a ∈ RN with |a| = 1 and for all b ∈ R, the
function u(x) = H(a · x + b) solves (1.1). A celebrated conjecture due to De Giorgi
states that, in dimension N ≤ 8, these solutions are the only ones which are bounded
and monotone in one direction. Let us recall that the monotonicity property is related
to the fact that solutions u are local minimizers [14], [15].

In dimensions N = 2, 3, De Giorgi’s conjecture has been proven in [16], [3] and
(under some extra assumption) in the remaining dimensions in [29] (see also [14],
[15]). When N = 2, the monotonicity assumption can even be replaced by a weaker
stability assumption [18]. Finally, counterexamples in dimension N ≥ 9 have re-
cently been built in [12], using the existence of non trivial minimal graphs in higher
dimensions.

In light of these results, it is natural to study the set of entire solutions of (1.1).
The functions u(x) = H(a · x + b) are obvious solutions. In dimension N = 2,
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nontrivial examples (whose nodal set is the union of two perpendicular lines) were
built in [7] using the following strategy : A positive solution to (1.1) in the quadrant
{(x, y) : x > |y|} with zero boundary conditions is built by constructing appropriate
super and subsolutions. This solution is then extended by odd reflections through
the lines x = y and x = −y to yield u2, a solution of (1.1) in all R2. The function
u2 is a solution of (1.1), whose 0-level set is the union of the two axis. It can easily
be generalized to obtain solutions with dihedral symmetry by considering, for k ≥ 3,
the corresponding solution within the sector {(r cos θ, r sin θ) : r > 0 , |θ| < π

2k} and
extending it by 2k − 1 consecutive reflections to yield a solution uk (we refer to [17]
for the details, see also [6] where higher dimensional versions of this construction is
given). The zero level set of uk is constituted outside any ball by 2k infinite half lines
with dihedral symmetry. To our knowledge, no other nontrivial examples of solutions
are known in dimension N = 2 (up to the action of rigid motions).

1.2. Statement of the result. — We assume from now on that the dimension is
equal to N = 2.

Definition 1. — We say that u, solution of (1.1), has 2k-ends if, away from a
compact set, its nodal set is given by 2k connected curves which are asymptotic to
2k oriented half lines aj · x + bj = 0, j = 1, . . . , 2k (for some choice of aj ∈ R2,
|aj | = 1 and bj ∈ R) and if, along these curves, the solution is asymptotic to either
H(aj · x + bj) or −H(aj · x + bj).

Given any k ≥ 1, we prove in this paper the existence of a wealth of 2k-ended
solutions of (1.1). In a forthcoming paper [8], we will complete this analysis and
show that the solutions we construct in the present paper belong to some smooth
2k-parameter family of 2k-ended solutions of (1.1).

To state our result in precise way, we assume that we are given a solution q :=
(q1, . . . , qk) of the Toda system

(1.6) c0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1) ,

for j = 1, . . . , k, where c0 =
√

2
24 and we agree that

q0 ≡ −∞ and qk+1 ≡ +∞ .

The Toda system (1.7) is a classical example of integrable system which has been
extensively studied. It models the dynamics of finitely many mass points on the line
under the influence of an exponential potential. We recall in the next section some of
the results which are concerned with the solvability of (1.7) and which will be needed
for our purposes. We refer to [21] and [27] for the complete description of the theory.
Of importance for us is the fact that solutions of (1.7) can be described (almost
explicitly) in terms of 2k parameters. Moreover, if q is a solution of (1.7), then the
long term behavior (i.e. long term scattering) of the qj at ±∞ is well understood
and it is known that, for all j = 1, . . . , k, there exist a+

j , b
+
j ∈ R and a−j , b

−
j ∈ R, all

depending on the solution q, such that

(1.7) qj(t) = a±j |t|+ b±j +OC∞(R)(e−τ0 |t|) ,
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as t tends to ±∞, for some τ0 > 0. Moreover, a±j+1 > a±j for all j = 1, . . . , k − 1.
Given ε > 0, we define the vector valued function qε, whose components are given

by

(1.8) qj,ε(x) := qj(ε x)−
√

2
(
j − k + 1

2

)
log ε .

It is easy to check that the qj,ε are again solutions of (1.7).
Observe that, according to the description of the asymptotics of the functions qj ,

the graphs of the functions qj,ε are asymptotic to oriented half lines at infinity. In
addition, for ε > 0 small enough, these graphs are disjoint and in fact their mutual
distance is given by −

√
2 log ε+O(1) as ε tends to 0.

It will be convenient to agree that χ+ (resp. χ−) is a smooth cutoff function defined
on R which is identically equal to 1 for x > 1 (resp. for x < −1) and identically equal
to 0 for x < −1 (resp. for x > 1) and additionally χ− + χ+ ≡ 1. With these cutoff
functions at hand, we define the 4 dimensional space

(1.9) D := Span {x 7−→ χ±(x), x 7−→ xχ±(x)} ,

and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C2,µ
τ (R) of C2,µ functions h

which satisfy

‖h‖C2,µτ (R) := ‖(coshx)τ h‖C2,µ(R) <∞ .

Keeping in mind the above notations, we have the :

Theorem 1.1. — For all ε > 0 sufficiently small, there exists an entire solution uε
of the Allen-Cahn equation (1.1) whose nodal set is the union of k disjoint curves
Γ1,ε, . . . ,Γk,ε which are the graphs of the functions

x 7−→ qj,ε(x) + hj,ε(ε x) ,

for some functions hj,ε ∈ C2,µ
τ (R)⊕D satisfying

‖hj,ε‖C2,µτ (R)⊕D ≤ C ε
α .

for some constants C,α, τ, µ > 0 independent of ε > 0.

In other words, given a solution of the Toda system, we can find a one parameter
family of 2k-ended solutions of (1.1) which depend on a small parameter ε > 0. As ε
tends to 0, the nodal sets of the solutions we construct become close to the graphs of
the functions qj,ε.

Going through the proof, one can be more precise about the description of the
solution uε. If Γ ⊂ R2 is a curve in R2 which is the graph over the x-axis of some
function, we denote by dist (·,Γ) the signed distance to Γ which is positive in the
upper half of R2 \ Γ and is negative in the lower half of R2 \ Γ. Then, we have the :

Proposition 1.1. — The solution of (1.1) provided by Theorem 1.1 satisfies

‖eε α̂ |x| (uε − u∗ε)‖L∞(R2) ≤ C εᾱ ,
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for some constants C, ᾱ, α̂ > 0 independent of ε, where

(1.10) u∗ε :=
k∑
j=1

(−1)j+1H
(
dist(·,Γj,ε)

)
− 1

2
((−1)k + 1) .

It is interesting to observe that, when k ≥ 3, there are solutions of (1.7) whose
graphs have no symmetry and our result yields the existence of entire solutions of
(1.1) without any symmetry provided the number of ends is larger than or equal to
6.

1.3. Comments and open problems. — Our result raises some interesting ques-
tions :

(i) The classification of entire solutions of (1.1) remains an important and rather
unexplored problem. In particular, the classification of entire solutions with
finite Morse index is certainly an interesting problem (the Morse index of an
entire solution u being defined as the supremum of the dimension of the space
of smooth functions with compact support over which the quadratic form

φ 7−→
∫

RN
(|∇φ|2 − (1− 3u2)φ2) dx

is negative definite). In dimension N = 2, we believe that these solutions are
precisely the solutions with finitely many ends. In addition, there is strong evi-
dence that the solutions with 2k ends we construct have Morse index equal to
the Morse index of the Toda system.

(ii) Still in dimension N = 2, the understanding of the moduli space of all 2k-ended
solutions is far from being complete : the result in Theorem 1.1 (see also [7])
implies that this space is non empty and contains smooth families of solutions.
Moreover, the result of [8] shows that this moduli space has formal dimension
equal to 2k (the formal dimension is the dimension of the moduli space close
to any non-degenerate solution). The main result of the present paper asserts
that, there is a one to one correspondence between an open set of solutions of
(1.7) and solutions of (1.1). In particular, this result provides a 2k dimensional
family of solutions (even if it is not clear from our construction that this family
is smooth) and this dimension count is in agreement with the result of [8]. Let
us also mention that some balancing conditions on the directions of the ends
is available (see [17]), it states that the sum of the unit vectors of the ends
(oriented toward the ends) has to be 0.

(iii) It is tempting to conjecture that the solution uk (whose nodal set has dihedral
symmetry and whose construction is described in [17] and outlined before the
statement of Definition 1) and the solutions given in Theorem 1.1 belong to the
same connected component of the moduli space of 2k-ended solutions.

(iv) When k = 2, it turns out that solutions of (1.7) are symmetric with respect
to the reflections through two perpendicular lines. Equivalently, one can prove
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that, when k = 2, the solutions of (1.1) which are provided by Theorem 1.1 also
share this symmetry. In fact, we believe that any solution of (1.1) with 4 ends
is symmetric with respect to reflections through two perpendicular lines.

These questions hint towards the classification of finite Morse index entire solutions
of (1.1), a program on generalizing De Giorgi’s conjecture.

1.4. Description of the proof. — Let us briefly describe the proof of Theorem
1.1. The method is based on an infinite dimensional version of the standard Lyapunov
Schmidt reduction argument, as introduced in [28] or in [11] (see also [10], [13], [22]
and [23], [24]).

Given a solution q of (1.7), we first build some infinite dimensional family of
approximate solutions uε,h, which depend on a small parameter ε > 0 and a some
(small) vector valued function h = (h1, . . . , hk) whose components belong to C2,µ

a (R)⊕
D, for some a > 0, where D has been defined in (1.10). In essence, these approximate
solutions are defined as in (1.11), the curves Γj,ε,h being the graphs of the functions
qj,ε + hj(ε ·).

For all ε small enough, we explain how these approximate solutions can be per-
turbed into genuine solutions of (1.1). To do so, we look for a solution of (1.1) of the
form

u := uε,h + φ,

where the function φ is small in a sense to be made precise. Substituting this expres-
sion of u in (1.1), we reduce the problem to the solvability of the following nonlinear
equation

(∆ + 1− 3u2
ε,h)φ+ S(uε,h)−N(uε,h, φ) = 0(1.11)

where we have defined
S(u) := ∆u+ (1− u2)u ,

and
N(u, φ) := φ3 + 3uφ2 .

One of the important task will be to analyze, as ε tends to 0, the mapping properties
of the linear operator ∆ + 1 − 3u2

ε,h which appears on the left hand side of (1.12).
It turns out that this analysis is quite delicate and involves some carefully designed
weighted spaces. It also requires some Lyapunov-Schmidt type reduction argument.

To set up the analysis of the linearized operator ∆+1−3u2
ε,h, we let ρj be a cutoff

function such that ρj ≡ 1 in a tubular neighborhood of Γj,ε,h and identically equal
to 0 outside some larger tubular neighborhood of Γj,ε,h. We will show that for all f
in a suitable weighted function space, there exists a function φ : R2 7−→ R and, for
j = 1, . . . , k, a function κj : R2 7−→ R which is defined in a tubular neighborhood of
Γj,ε,h and only depend on the projection onto Γj,ε,h, solutions of

(∆ + 1− 3u2
ε,h)φ+

k∑
j=1

κj ρj H
′(dist (·,Γj,ε,h)) = f ,(1.12)
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and whose norms are uniformly controlled as ε tends to 0. Observe that we have
introduced new unknown functions κj . These will be needed to overcome the fact
that the solution of (∆ + 1 − 3u2

ε,h)φ = f blows up as ε tends to 0 unless some
orthogonality conditions are imposed on the function f .

In view of this result, instead of solving (1.12), we will look for φ and functions κj ,
for j = 1, . . . , k, solutions of the following nonlinear problem

(∆ + 1− 3u2
ε,h)φ+

k∑
j=1

κj ρj H
′(dist (·,Γj,ε,h)) + S(ûε,h)−N(uε,h, φ) = 0 .(1.13)

Now, a solution of (1.14) is a solution of (1.12) provided all functions κj are identi-
cally equal to 0. At this stage, it is worth remembering that our approximate solution
uε,h depends on the vector valued functions h and we will see that it is possible to
choose h appropriately so that the solution of (1.14) satisfies κj = 0, for j = 1, . . . , k.
This will complete the proof of the result.

2. The Toda system and its linearization

In this section, we gather some information about the theory which is necessary
for solving (1.7) since this system is at the heart of our construction.

2.1. The Toda system. — We are interested in the understanding of the solutions
of the Hamiltonian system

(2.14) c0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1),

where c0 =
√

2
24 and we agree that q0 ≡ −∞ and qk+1 ≡ +∞.

We introduce the functions

(2.15) rj :=
√

2 (qj+1 − qj) + log
(
c0√

2

)
,

for j = 1, . . . , k − 1. It is easy to check that, if q is a solution of (2.15), then
r := (r1, . . . , rk−1) is a solution of the following nonlinear system

r′′ −M e−r = 0(2.16)

where the (k − 1)× (k − 1) matrix M is given by

M :=



2 −1 0 . . . 0

−1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2


,

and where e−r is the vector whose entries are given by

e−r :=
(
e−r1 , . . . , e−rk−1

)
.
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Conversely, given a solution r of (2.17) and p̄, q̄ ∈ R, the functions

(2.17) qj =
1
k

(
j−1∑
i=0

i ri −
k−j∑
i=0

i rk−i

)
+ p̄ t+ q̄ +

1√
2

(
k − 1

2
− j
)

log
(
c0√

2

)
,

for j = 1, . . . , k (we agree that r0 = rk ≡ 0), are solutions of (2.15).
The system (2.17) is an integrable system which has been extensively studied for

example by J. Moser [27] and B. Kostant [21]. Some explicit formula of all solutions
of (2.17) is available as well as a precise description of the asymptotic behavior of the
solutions as t tends to ±∞. We briefly recall the main features of this theory.

The expression of the solutions of (2.17) can be found in section 7.7 of [21]. To
describe it, we need to be given w := (w1, . . . , wk) ∈ Rk such that

k∑
j=1

wj = 0, and wj+1 > wj , j = 1, . . . , k − 1(2.18)

and g := (g1, . . . , gk) ∈ Rk such that
k∏
j=1

gj = 1, and gj > 0, for j = 1, . . . , k .(2.19)

Finally, for j = 2, . . . , k − 1, we define the function

Φj(g,w; t) :=
∑

1≤ii<···<ij≤k

Ri1...ij (w) gi1 . . . gij e
−t (wi1+...+wij ) ,

(see formula 7.7.10 in [21]) where Ri1...ij are rational functions of the entries of the
vector w whose precise form can be found in section 7.5 of [21]. We also agree that

Φ0 = Φk ≡ 1 .

It is proven in [21] that all solutions of (2.15) are of the form

rj(t) = − log Φj−1(g,w; t) + 2 log Φj(g,w; t)− log Φj+1(g,w; t)(2.20)

for some choice of g and w. Observe that we have a 2k family of solutions of (2.17)
since g and w provide 2(k− 1) independent parameters to which we have to add the
parameters p̄ and q̄.

The next result is also borrowed from [21], [27]. It describes the asymptotics of
the solutions of (2.17) (see Theorem 7.7.2 of [21]) :

Lemma 2.1. — Let τ0 > 0 be defined by

(2.21) τ0 := min
j=1,...,k−1

(wj+1 − wj) .

Then, for j = 1, . . . , k − 1, the following expansion holds

rj(t) = cj t− dj + e+
j (c) +OC∞((cosh t)−τ0),

as t tends to +∞ and

rj(t) = −ck−jt+ dk−j + e−j (c) +OC∞((cosh t)−τ0),
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as t tends to −∞, where, for j = 1, . . . , k − 1,

(2.22) cj := wj+1 − wj , dj := log gj+1 − log gj ,

and where e±j are smooth functions of c := (c1, . . . , ck−1).

Proof. — Thanks to (2.21), we can write as t tends to +∞

Φj(g,w; t) = R1...j (w) g1 . . . gj e
−(w1+...+wj)t (1 +OC∞((cosh t)−τ0)) ,

while we can write, as t tends to −∞

Φj(g,w; t) = Rk−j...k−1 (w) gk . . . gk−j+1 e
−(wk+...+wk−j+1)t (1 +OC∞((cosh t)−τ0)) .

The expansions follow at once from elementary computations together with the defi-
nition of rj . We leave the details to the reader.

2.2. The linearized Toda system. — We assume that q = (q1, . . . , qk) is a solu-
tion of (2.15) described in the previous section. The linearized system associated to
linearization of (2.15) about the solution q, reads as

c0 v′′ + N v = z,(2.23)

where the k × k matrix N has coefficients which are exponentially decaying at ±∞
(this follows from Lemma 2.1 which implies that the functions rj tend to +∞ as t
tends to ±∞). We analyze the solvability of the above linear problem in the space
C`,µτ (R; Rk) of C`,µ vector valued functions v which satisfy

‖v‖C`,µτ (R;Rk) := ‖(coshx)τ v‖C`,µ(R) <∞ .(2.24)

We take advantage of the fact that the solution q, as described in (2.18), depends
smoothly on the parameters c1, . . . , ck−1 and d1, . . . , dk−1 as well as the parameters
q̄ and p̄. Differentiating with respect to any of these parameters yields 2k linearly
independent solutions of the homogeneous problem c0 v′′ + N v = 0. We will write

v]j := ∂cj q and v[j := ∂dj q ,

for j = 1, . . . , k − 1, and

v]k := ∂p̄ q and v[k := ∂q̄ q .

It follows from the result of Lemma 2.1 that the vector valued functions v]j are linearly
growing at ±∞ while the vector valued functions v[j are bounded. More precisely, it
follows from Lemma 2.1 that

Lemma 2.2. — As t tends to ±∞, the vector valued functions v]j and v[j can be
decomposed as

v]j = a]j,± t+ b]j,± +OC∞((cosh t)−τ0) ,
and

v[j = b[j,± +OC∞((cosh t)−τ0) ,

where a]j,± and b]j,±,b
[
j,± are fixed vectors in Rk. Moreover, {a]j,ι : j = 1, . . . , k} and

{b[j,ι : j = 1, . . . , k} are basis of Rk, for ι = ±.
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We now define the deficiency space

(2.25) D := Span
{
χ± v]j , χ

± v[j : j = 1, . . . , k
}
,

where we recall that χ+ (resp. χ−) is a cutoff function identically equal to 1 for
t > 1 (resp. for t < −1) and identically equal to 0 for t < −1 (resp. for t > 1) and
χ+ + χ− ≡ 1. Observe that D is 4k dimensional and contains

K := Span
{

v]j , v[j : j = 1, . . . , k
}
,

which is the 2k dimensional space of homogeneous solutions of c∗ v′′ + N v = 0.
Therefore, we can certainly decompose

(2.26) D = K ⊕ E .

where E is a complement of K in D. With this decomposition at hand, we have
the following result which follows from standard arguments in ordinary differential
equations.

Lemma 2.3. — Assume that τ > 0. Then the mapping

T : C2,µ
τ (R; Rk)⊕ E −→ C0,µ

τ (R; Rk)

v 7−→ c0 v′′ + N v

is an isomorphism.

Proof. — Standard arguments in ordinary differential equations imply that there ex-
ists a unique solution of (2.24) which satisfies v(0) = v′(0) = 0. We will denote
v = S0(z).

We now prove that v ∈ C2,µ
τ (R; Rk) ⊕ D. To do so, we observe that one can also

find a (unique) solution v̄ of (2.24) which satisfies

|v̄(t)| ≤ C eτt ‖z‖C0,µτ (R;Rk),

in (−∞, 0]. Indeed, using the variation of parameters formula it is easy to show
the existence of a unique solution decaying to 0 at −∞ at some exponential rate.
Integrating the equation twice over (−∞, t] shows that in fact v̄ ∈ C2,µ

τ ((−∞, 0]; Rk).
Then v − v̄ is a linear combination of the functions v]j and v[j . This proves that, in
(−∞, 0], the vector valued function v can be decomposed into the sum of a linear
combination of elements in D and a vector valued function which is bounded by a
constant times eτt. A similar decomposition can be derived on [0,+∞). Once this
decomposition is proven, the estimates for the Hölder norm of v follow at once.

In other words, S0 : C0,µ
τ (R; Rk) −→ C2,µ

τ (R; Rk)⊕D is a right inverse for T . The
decomposition D = K ⊕ E induces the decomposition S0(z) = S̄0(z) + e(z) + k(z),
where S̄0(z) ∈ C2,µ

τ (R; Rk), e(z) ∈ E and k(z) ∈ K. The operator S := S0 − k is also
a right inverse of T and maps onto C2,µ

τ (R; Rk) ⊕ E as desired. This completes the
proof of the Lemma.
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3. Linearized operator for a single interface

In this section we develop the relevant analysis which will allow us to find a right
inverse for the operator which will appear in the linearization of (1.1) about an ap-
proximate solution.

3.1. Injectivity result. — We start by considering the linearized operator about
H, namely

L0 := ∂2
y + 1− 3H2 .

First, we recall that L0 has a one dimensional kernel spanned by H ′ since L0H
′ = 0

as can be checked by taking the derivative of H ′′ + (1 − H2)H = 0. Since H ′ > 0
this implies that 0 is the bottom of the spectrum of −L0. In fact more is known and
we recall the following result from [1] :

Lemma 3.1. — [1] The spectrum of the operator −L0 is the union of the point
spectrum, given by 0 (associated to the eigenfunction H ′) and 3

2 (associated to the
eigenfunction H

√
H ′) and the continuous spectrum given by [2,+∞).

In particular, for all ξ 6= 0, given f ∈ L2(R), the problem

(3.27) (L0 − ξ2)φ = f,

is uniquely solvable in H1(R).
Let us consider operator

L := ∂2
x + L0 ,

acting on functions defined in the plane. Obviously, we still have LH ′ = 0. Our first
result shows any bounded solution of Lφ = 0 is colinear to H ′. The proof of this fact
follows the method first introduced in [28].

Lemma 3.2. — Let φ be a bounded solution of

(3.28) Lφ = 0 ,

in R2. Then φ is colinear to H ′.

Proof. — Let assume that φ is a bounded solution of Lφ = 0. We denote by φ̂(ξ, y)
the Fourier transform of φ(x, y) in the x variable. This distribution is defined by

〈φ̂, f〉 = 〈φ(·, y), f̂〉 =
∫

R
φ(x, y) f̂(x) dx ,

where f is any smooth rapidly decreasing function and where f̂ is its Fourier trans-
form. Let us now consider a smooth rapidly decreasing function of the two variables
ψ(ξ, y). It follows from Lφ = 0 that

(3.29)
∫

R
〈φ̂(·, y), L0 ψ − ξ2 ψ〉dy = 0.

Let ϕ(y) and µ(ξ) be smooth and compactly supported functions such that 0 does not
belong to the support of f . Then we can solve the family of equations (parameterized
by ξ ∈ R)

(L0 − ξ2)ψ(ξ, y) = f(ξ)ϕ(y) ,
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and obtain a smooth, rapidly decreasing function ψ(ξ, y) such that ψ(ξ, y) = 0 when-
ever ξ is not the support of the function f . The fact that y 7−→ ψ(ξ, y) decays
exponentially is standard and left to the reader. Using ψ in (3.30), we conclude that∫

R
〈φ̂(·, y), f〉ϕ(y) dy = 0 .

Since ϕ is arbitrary, we have proven that 〈φ̂(·, y), f〉 = 0 for all f whose support does
not meet 0. This implies that the support of φ̂(·, y) is included in {0}.

It follows that φ̂(·, y) is a linear combination (with coefficients depending on y)
of derivatives up to a finite order of Dirac masses at 0. Taking the inverse Fourier
transform, we get that φ(x, y) = Py(x), where for each y ∈ R, Py is a polynomial in x.
Since φ is assumed to be bounded, we conclude that Py(x) is a constant polynomial
and hence φ(x, y) = φ(y) is a bounded function which satisfies L0 φ = 0. Therefore,
φ is colinear to H ′.

3.2. A priori estimates. — Making use of the previous Lemma, we now obtain a
priori estimates for solutions of the problem

(3.30) Lφ = f ,

in R2. The results of Lemma 3.2 shows that such an a priori estimate will not be
possible without imposing any extra conditions on the solution φ. The classification
of the bounded solutions of Lφ = 0 suggests to impose the following orthogonality
condition on the function φ

(3.31)
∫

R
φ(x, ·)H ′ dy = 0,

for all x ∈ R. With these restrictions imposed we have the following a priori estimates
for this problem.

Lemma 3.3. — There exists a constant C > 0 such that

‖φ‖L∞(R2) ≤ C ‖Lφ‖L∞(R2) ,

provided φ ∈ L∞(R2) satisfies (3.32).

Proof. — The proof of the Lemma is by contradiction (it is actually similar to the
proof of Lemma 2.2 in [9]). If the result were not true, there would exist sequences
of bounded functions φn and fn satisfying

Lφn = fn, in R2,(3.32) ∫
R
φnH

′ dy = 0, for all x ∈ R(3.33)

with limn→∞ ‖fn‖L∞ = 0 while ‖φn‖L∞ = 1. For each n ∈ N we pick a point
(xn, yn) ∈ R2 such that

(3.34) |φn(xn, yn)| ≥ 1/2 .

We now consider the sequence of functions

φ̃n(x, y) = φn(x+ xn, y + yn) .
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Using elliptic estimates together with Ascoli’s theorem, we can assume (up to a sub-
sequence) that the sequence φ̃n converges, uniformly on compact sets, to a function
φ̃ which is defined in R2 and which is either a solution of

(∆− 2) φ̃ = 0,

if the sequence (yn)n tends to ±∞ or a solution of

(∆ + 1− 3H2) φ̃(x, · − y∞) = 0 ,

if (yn)n converges to y∞. Moreover, φ̃ is bounded and φ̃ is not identically equal to 0
since (3.35) guaranties that φ̃(0) ≥ 1/2. Finally, in the latter case, we can pass to the
limit in (3.34) to get ∫

R
φ̃(x, · − y∞)H ′ dy = 0 ,

for all x ∈ R. The maximum principle implies that the former case does not occur
and the result of Lemma 3.2 implies that the latter case does not occur either. Having
found a contradiction in all cases, this completes the proof of the result.

Using the maximum principle, we also get a priori estimates in weighted space.

Lemma 3.4. — Assume that σ ∈ [0,
√

2) is fixed. There exists C > 0 such that

(3.35) ‖(cosh y)σ φ‖C2,µ(R2) ≤ C
(
‖φ‖L∞(R2) + ‖(cosh y)σ Lφ‖C0,µ(R2)

)
.

Proof. — Since we have assumed that σ2 < 2, we can choose ν > 0 so that σ2+4 ν2 ≤
2. We consider the auxiliary function

Wν(x, y) :=
(
e−σy + ν eσy

)
cosh(ν x) .

We have
(∆− 2)Wν = −(2− σ2 − ν2)Wν .

The potential in L is given by 1− 3H2, hence, for |y| large enough, say |y| ≥ yσ, we
can write

LWν ≤ −
(

2− σ2

2
− ν2

)
Wν .

Therefore, we get

LWν ≤ −
(

2− σ2

4

)
e−σ |y| ,

in this range. We can now use the barrier Wν and the maximum principle, to conclude
that

sup
|y|≥yσ

|W−1
ν φ| ≤ C

(
‖φ‖L∞(R2) + ‖(cosh y)σ f‖L∞(R2)

)
.

Letting ν tend to 0 yields the desired estimate.
For the time being, we have only considered the decay behavior of the solution in

the y variable. The next result shows that some a priori weighted estimate with both
decay in the x and y variables is also available. The key observation is that, according
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to Lemma 3.1, the least nonzero eigenvalue of −L0 is 3
2 and its continuous spectrum

starts at 2, hence, if φ ∈ H1(R) satisfies∫
R
φH ′ dy = 0 ,

we have the inequality

(3.36)
∫

R

(
|∂yφ|2 − (1− 3H2)φ2

)
dy ≥ 3

2

∫
R
φ2 dy .

Using this, we can prove the :

Lemma 3.5. — Assume that σ ∈ (0,
√

2) is fixed. For all a ∈ [0, 1√
2
) such that

σ2 + a2 < 2 ,

there exists a constant Ca > 0, which depends on a but remains bounded as a tends
to 0, such that

‖(coshx)a (cosh y)σ φ‖L∞(R2) ≤ Ca
(
‖φ‖L∞(R2) + ‖(coshx)a (cosh y)σ Lφ‖L∞(R2)

)
,

provided φ ∈ L∞(R2) satisfies (3.32).

Before we proceed with the proof of the result, let us emphasize that the key
property is that the constant Ca remains bounded as a tends to 0, we shall further
comment on this at the end of this section. Also, the range in which the parameter a
can be chosen is not optimal and it follows from the analysis of [8] that the optimal

range is [0,
√

3
2 ) but we will not need this result in the present paper.

Proof. — We already have proven the appropriate decay in the y direction. We
will now prove that, under the assumptions of the Lemma, the function φ has the
appropriate decay in the x variable provided y remains in some compact set. Then,
the result will follow from the use of suitable barrier functions as in the proof of the
previous Lemma.

We consider the function

ψ(x) :=
∫

R
φ2(x, y) dy ,

which, thanks to the result of Lemma 3.4, is well defined (notice that here we implicitly
use the fact that σ > 0). We can compute

ψ′′(x) = 2
∫

R
|∂xφ|2 dy + 2

∫
R
φ∂2

xφdy ,

where ′ denote the derivative with respect to x. Using the fact that Lφ = f , we also
have, using some integration by parts,∫

R
φ∂2

xφdy =
∫

R

(
|∂yφ|2 + (1− 3H3)φ2 + φ f

)
dy .(3.37)
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Collecting this together with (3.37), which holds since we have assumed that the
orthogonality condition (3.32) was true for all x ∈ R, we conclude easily that

ψ′′(x) ≥ 2
∫

R
|∂xφ|2 dy + 3

∫
R
φ2 dy + 2

∫
R
φ f dy .

Using Cauchy-Schwarz inequality to estimate the last term on the right hand side, we
find that ψ satisfies the following differential inequality

ψ′′(x) ≥ 2ψ(x)−
∫

R
f2(x, y) dy .

Therefore, we conclude that

−ψ′′(x) + 2ψ(x) ≤ C e−2a|x| ‖(coshx)a (cosh y)σ f‖2L∞(R2) ,

for some constant C > 0. Observe that, thanks to the results of Lemma 3.2 and
Lemma 3.4, we know that ψ is bounded and we have

|ψ(x)| ≤ C ‖(coshx)a (cosh y)σ f‖2L∞(R2) .

Now, we can use the auxiliary function

ψ̄ν(x) := M ‖(coshx)a (cosh y)σ f‖2L∞(R2) e
−2a x + ν e2ax ,

where the constant M > 0 is chosen sufficiently large and ν > 0 is arbitrary small. If
a ∈ [0, 1√

2
), this function can be used as a barrier and the maximum principle implies

that 0 ≤ ψ ≤ ψ̄ν for all y ≥ 0 and letting ν tend to 0 we conclude that

ψ(x) ≤ C ‖(coshx)a (cosh y)σ f‖2L∞(R2) e
−2ax ,

for all x ≥ 0. A similar argument yields the corresponding estimate for x ≤ 0. Hence
we have obtained the bound

(coshx)2a

∫
R
φ2(x, y) dy ≤ C ‖(coshx)a (cosh y)σ f‖2L∞(R2) .

Local elliptic estimates then imply that, for all y0 > 0, there exists a constant C > 0
(depending on the choice of y0) such that

|φ(x, y)| ≤ C ‖(coshx)a (cosh y)σ f‖2L∞(R2) (coshx)−a ,

uniformly in x ∈ R and |y| ≤ y0.
Having established such a decay in the x variable, the relevant estimate in the com-

plementary region can be found using appropriately designed barriers. For instance,
enlarging y0 if this is necessary, in the quadrant {(x, y) : x > 0, y > y0} we may
consider a barrier of the form

φ̃ν(x, y) := M e−(ax+σy) ‖(coshx)a (cosh y)σ f‖2L∞(R2) + ν e
x
2 + y

2 ,

with ν > 0 arbitrarily small. Fixing M large enough (depending on y0) and letting ν
tend to 0 yields the desired estimate in the right upper quadrant of the plane. Similar
argument also provide the relevant estimate in the other three quadrants, we leave
the details to the reader.
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3.3. Surjectivity result. — As far as the existence of solutions of (3.31)-(3.32) is
concerned, provided we assume that

(3.38)
∫

R
f(x, ·)H ′ dy = 0 ,

for all x ∈ R, we have the following result whose proof relies on the previous analysis :

Proposition 3.1. — Assume that σ ∈ (0,
√

2) is fixed. For all a ∈ [0, 1√
2
) such that

σ2 + a2 < 2 ,

there exists a constant Ca > 0, which depends on a but remains bounded as a tends
to 0, such that, for all f satisfying the orthogonality condition (3.39) and

‖(coshx)a (cosh y)σ f‖C0,µ(R2) < +∞ ,

there exists a unique function φ, solution of (3.31)-(3.32), which satisfies

‖(coshx)a (cosh y)σ φ‖C2,µ(R2) ≤ Ca ‖(coshx)a (cosh y)σ f‖C0,µ(R2) .

Proof. — We first consider the equation on functions which are ζ-periodic in the x
variable for some fixed ζ > 0. Observe that 0 is in the spectrum of the operator −L
and the corresponding kernel is spanned by the function H ′. The remaining part of
the spectrum of −L is positive and (according to Lemma 3.1) is larger than or equal
to 3

2 , hence ∫
R2
ζ

(|∇φ|2 +H (1− 3H3)φ2) dx ≥ 3
2

∫
R2
ζ

φ2 dx ,

for any function φ satisfying

(3.39)
∫

R2
ζ

φH ′ dx = 0 ,

where R2
ζ := (R/ζZ)× R.

As a consequence, given f ∈ L2(R2
ζ) satisfying∫

R2
ζ

f H ′ dx = 0 ,

there exists a unique solution φ ∈ H1(R2
ζ), also satisfying (3.40), of Lφ = f and

‖φ‖H1(R2
ζ) ≤ C ‖f‖L2(R2

ζ). Elliptic regularity theory then implies that

‖φ‖L∞(R2
ζ) ≤ C

(
‖f‖L∞(R2

ζ) + ‖f‖L2(R2
ζ)

)
.

Now, let us assume that, in addition the function f satisfies (3.39). Multiplying the
equation Lφ = f by functions of the form ψ(x)H ′(y) and integrating by parts, one
checks that ∫ ζ

0

(∫
R
φH ′ dy

)
∂2
xψ dx = 0 ,

for any ζ-periodic function ψ. This implies that the function

x 7−→
∫

R
φH ′ dy
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does not depend on x and, since its integral over [0, ζ] is 0, we conclude that φ satisfies
(3.32).

We can now apply the result of Lemma 3.3 and 3.4 to get the estimate

‖(cosh y)σ φ‖L∞(R2
ζ) < C ‖(cosh y)σ f‖L∞(R2

ζ) ,

where the constant C > 0 does not depend on ζ.
Now, given a function f satisfying the assumptions of the Proposition, we define

fζ to be the restriction of f to [0, ζ] × R which is extended by periodicity in the x
variable. Let φζ be the corresponding solution of Lφζ = fζ obtained above. Elliptic
estimates together with a simple compactness argument allows one to pass to the
limit as ζ tends to ∞ to get the existence of φ, a bounded solution of (3.31)-(3.32).
The estimate of φ follows from Lemma 3.5 together with classical elliptic estimates
and the uniqueness of φ follows from Lemma 3.2.

We end up this section with some comment on the orthogonality condition we
impose on the function f . Given any (bounded) function f , with the appropriate
decay as in the statement of Proposition 3.1, we want to solve the equation Lφ = f .
We can certainly find a function x 7−→ c(x) such that f − cH ′ satisfies (3.39). And
then, we can apply the result of Proposition 3.1 to solve Lφ = f − cH ′. Therefore,
it just remains to solve the equation Lψ = cH ′, but this is rather easy since it is
enough to look for ψ of the form ψ(x, y) = d(x)H ′(y) in which case the equation
reduces to the solvability of the equation d′′ = c. Observe that, it is not possible to
find a solution to this ordinary differential equation which decays exponentially at
±∞ unless the function c satisfies∫

R
c(x) dx =

∫
R
x c(x) dx = 0 .

In fact this solution is explicitly given by

d(x) = x

∫ x

−∞
c(z) dz −

∫ x

−∞
z c(z) dz .

Now if c is bounded by a constant times (coshx)−a, and satisfies the two conditions
above, it is easy to check that d is also bounded by a constant (independent of
a ∈ (0, 1)) times a−2 (coshx)−a. In particular, this solution blows up as a tends to 0.
In the next section we will need to invert L on functions spaces corresponding to a
tending to 0 and, in order to get a right inverse whose norm does not blow up, is will
be necessary to impose the restriction (3.39) on the functions f .

4. The approximate solutions and the general set up

4.1. Description of the nodal curves of the approximate solutions. — We
keep the notations introduced in the introduction and in section 2 to describe an
infinite dimensional family of approximate solutions to our problem. We first choose
the data which allow us to describe the curves which will be very close to the nodal
sets of our solutions.
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Remark 4.1. — In order to simplify notations, if ζ 7−→ Ξ(π1, . . . , πm; ζ) is a func-
tion or operator acting on ζ, which depends on parameters π1, . . . , πm (which might
be integers, real numbers, functions, ....), we agree that we simply write Ξ instead of
Ξ(π1, . . . , πm; ·) when no confusion is possible.

Let us assume that we are given a solution q := (q1, . . . , qk) of the Toda system
(1.7), we define qε to be the vector valued function whose components are given by

qj,ε(x) := qj(ε x)−
√

2
(
j − k + 1

2

)
log ε .

We also assume that we are given v := (v1, . . . , vk) ∈ E (see section 2 for a precise
definition of E) such that

(4.40) ‖v‖E ≤ δ1 εα1 ,

where the constants α1 ∈ (0, 2) and δ1 > 0 will be fixed later, independent of ε ∈
(0, 1/2].

Remark 4.2. — In the following we have to estimate various quantities Ξ(ε,v,h; ·)
which depend on ε, v or h. In general, we will prove statements of the following form :
there exists constants C0, β0 > 0 which does not depend on the choice of the parameters
δ1 and α1 such that ‖Ξ(ε,v,h; ·)‖ ≤ C0 ε

β0 , provided ε is chosen small enough, say
ε ∈ (0, ε0). And in general, ε0 does depend on δ1 and α1. The idea behind this type
of estimates is that there exists constants C0, β0 > 0 such that ‖Ξ(ε,0,0; ·)‖ ≤ C0

2 εβ0 ,
while ‖Ξ(ε,v,h; ·)‖ ≤ C0

2 εβ0 +C1 ε
β1 provided (4.41) is satisfied. Here C1 and β1 do

depend on δ1 and α1 but β1 > β0 and hence, for ε small enough, the term C1 ε
β1 is

certainly controled by C0
2 εβ0 and this explains the general claim.

With these data at hand, we define the planar curve Γ̄j(ε,v) to be the image of

γj(x) := (x, qj,ε(x) + vj(ε x)) .

Even though the definition of Γ̄j also depends on the choice of q, the solution of the
Toda system, we shall not make this dependence explicit in the notation since we will
assume from now on that q is fixed. Roughly speaking, the curves Γ̄j will describe
the nodal sets of our solution, or at least they will be close to them.

For each j = 1, . . . , k, we introduce the Fermi coordinates (xj , yj) which are asso-
ciated to the curve Γ̄j . More precisely, we consider the parameterization of a tubular
neighborhood of Γ̄j by Xj = Xj(ε,v; ·)

(4.41) Xj(xj , yj) := γj(xj) + yj nj(xj) ,

where nj is the normal vector about Γ̄j (the curves are assumed to be positively
oriented). Observe that the coordinate yj is nothing but the signed distance to Γ̄j .
In the sequel, we will make use of the convenient notation

X∗j f(xj , yj) = (f ◦Xj)(xj , yj),

where f is a function defined in a neighborhood of Γ̄j .
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4.2. An infinite dimensional family of approximate solutions. — Now that
we have described the possible candidates for the nodal sets of our approximate so-
lution, the basic idea is to consider the approximate solution which is close to the
function ±H(dist(·, Γ̄j)) (with alternative signs according to wether j is odd or even).
A possible choice could be the function

k∑
j=1

(−1)j+1H(dist(·, Γ̄j))−
1
2

((−1)k+1 + 1) .(4.42)

We need to take care of two technical problems. The first one concerns the regu-
larity of the distance function to the curves Γ̄j . This distance function is smooth in
the neighborhood of Γ̄j but is not smooth in the whole plane. More precisely, it is a
simple exercise to check that, there exists Cq > 0 (only depending on q) such that
the distance function to Γ̄j , is smooth in the set

V :=
{

(x, y) ∈ R2 : |y| ≤ Cq ε
−1
√

1 + |x|2
}
.(4.43)

This follows at once from the structure of q at infinity which implies that the curve
Γ̄j is exponentially close to half lines at infinity. Observe that the constant Cq > 0
can be chosen independently of ε ∈ (0, 1/2) and also observe that

Γ̄j ⊂ V ,(4.44)

for ε small enough.
To overcome the regularity issue, we take advantage of the fact that the function

H is almost constant (equal to either +1 or −1) away from 0 and we make use of an
appropriate cutoff function to connect the approximate solution (4.43) to the constant
functions ±1 away from the curves Γ̄j .

The second problem we have to face is more delicate to explain. As we will see
shortly, it takes its origin in the orthogonality condition (3.39) we have to impose to
produce a right inverse of L whose norm does not blow up as the weight parameter
a tends to 0. This problem translates into the fact that, even though the nodal
sets of the solutions we will construct are close to the curves Γ̄j (say in Hausdorff
topology), this topology is not refined enough to perform the construction. Hence,
in some sense we need to improve the definition of the nodal sets of the approximate
solutions by allowing more flexibility in the definition of the curves Γ̄j . This is the
reason why we have already introduced the vector valued function v in the definition
of Γ̄j . Unfortunately this is not quite enough and we need to introduce another vector
valued function h := (h1, . . . , hk) ∈ C2,µ(R; Rk) satisfying

‖h‖C2,µτ (R;Rk) := ‖(coshx)τ h‖C2,µ(R;Rk) ≤ δ1 εα1 ,(4.45)

where τ > 0 and the constants α1 ∈ (0, 2) and δ1 > 0 will be fixed later on (indepen-
dently of ε). It will be convenient to define the functions Hj = Hj(ε,v,h; ·) by the
identity

X∗j Hj(xj , yj) := H(yj − hj(ε xj)) .(4.46)
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With these data and notations, we are now in a position to define a multiple-end
approximate solution of (1.1). We start with the definition of ū0 = ū0(ε,v,h; ·) given
by

ū0 :=
k∑
j=1

(−1)j+1Hj −
1
2

((−1)k+1 + 1) .

We let t 7−→ η(t) be a smooth cutoff function such that η(t) ≡ 1 for |t| ≤ 1/2 and
η(t) ≡ 0 for |t| ≥ 1 and we define for all ε > 0 small enough the function

ηε(x, y) := η

(
ε y

Cq

√
1 + |x|2

)
,

where the constant Cq is the one introduced in the definition of V .
The cutoff function ηε is now used to smooth this function and define the approx-

imate solution ū = ū(ε,v,h; ·) in the following way

ū := ηε ū
0 + (1− ηε)

ū0

|ū0|
.

Let us emphasize that the approximate solution ū depends on the choice of ε, v ∈ E
and h ∈ C2,µ

τ (R; Rk).

4.3. The set up of the nonlinear problem. — We now define an appropriate
weighted norm for functions defined in R2. For all σ, a > 0, we need to build a weight
function Wσ,a = Wσ,a(ε,v; ·) which is defined to be equal to

Wσ,a :=
k∑
j=1

Wσ,a,j

where
X∗j Wσ,a,j(xj , yj) = (coshxj)−a (cosh yj)−σ ,

in V . In the lower part of R2 \ V , the weight function Wσ,a is designed in such a way
that

c e−(a |x1|+σ |y1|) ≤Wσ,a(x, y) ≤ C e−(a |x1|+σ |y1|),

for all (x1, y1) ∈ R2 such that x1 is coordinate in Γ̄1 of the point which realizes the
(signed) distance y1 from the point (x, y) to Γ̄1. Here c < 1 < C are fixed constants.

This being understood, we have the :

Definition 2. — Given σ, a > 0, we define C`,µσ,a(R2) to be the space of C`,µ functions
for which the following norm is finite

‖φ‖C`,µσ,a(R2) := sup
x∈R2

(
W−1
σ,a(x) ‖φ‖C`,µ(B1(x))

)
.(4.47)

In other words, σ is related to the rate of decay of the functions in the direction
transverse to the curves Γ̄j and a is related to the rate of decay of the functions along
the curves Γ̄j . Observe that these definitions depend on ε even though this is not
clear in the notations.
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Granted the above notations and definitions, the equation we want to solve reads

(4.48) ∆(ū+ φ) + ū+ φ− (ū+ φ)3 = 0 ,

where ū = ū(ε,v,h; ·) for some φ ∈ C2,µ
σ,ετ (R), some vector valued function h ∈

C2,µ
τ (R; Rk) and some v ∈ E . We can then formally rewrite the equation (4.49)

as
Lφ = Q(φ),

where the linear operator L = L(ε,v,h; ·) is defined by

L := ∆ + 1− 3 ū2 ,

and where the nonlinear operator Q = Q(ε,v,h; ·) is defined by

(4.49) Q(φ) := −(∆ū+ (1− ū2) ū) + φ3 + 3 ū φ2 .

We now study the mapping properties of the linear operator L and the nonlinear
operator Q when defined between appropriate weighted function spaces.

5. The linear theory for multiple interfaces

5.1. Laplacian in Fermi coordinates. — It will be useful to have the expres-
sion of the Laplacian in the above defined Fermi coordinates. Observe that in the
coordinates (xj , yj) the Euclidean metric reads

X∗j (dx2 + dy2) = Aj dx2
j + dy2

j ,

where the function Aj is explicitly given by

Aj := 1 + ε2B2
j − 2 yj

ε2 Cj
(1 + ε2B2

j )1/2
+ y2

j

ε4 C2
j

(1 + ε2B2
j )2

,

where
Bj(xj , yj) := (qj + vj)′(εxj) ,

and
Cj(xj , yj) := (qj + vj)′′(εxj) .

In these coordinates, the expression of the Laplacian is given by

∆ = ∂2
xj + ∂2

yj +
(

1
Aj
− 1
)
∂2
xj +

1
2
∂yjAj

Aj
∂yj −

1
2
∂xjAj

A2
j

∂xj

Observe that, there exists a constant c > 0 such that

ε2 |yj | (coshxj)−τ0 ≤ C ,
in V , uniformly as ε tends to 0. Using this, it is an easy exercise to check that the
following estimates hold in V

Aj = 1 +OC∞(V )(ε2) +OC∞(V )(ε2 |yj | e−τ0 ε |xj |)
and hence(

1− 1
Aj

)
= OC∞(V )(ε2) +OC∞(V )(ε2 (1 + y2

j )1/2 (coshxj)−τ0) ,
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∂yjAj

Aj
= OC∞(V )(ε2 (coshxj)−τ0)

and
∂xjAj

A2
j

= OC∞(V )(ε3 (1 + y2
j )1/2 (coshxj)−τ0).

We will also need the elementary fact which follows from the definition of the curves
Γ̄j and the Fermi coordinates together with elementary geometry. In V we have

yi = (i− j)
√

2 log ε+OC∞(V )(1) + (1 +OC∞(V )(ε2)) yj

+ ε (a±j − a
±
i +OC∞(V )(δ1 εα1) +OC∞(V )(ε2))xj ,

(5.50)

as ε tends to 0 (the superscript ± is equal to + (resp. −) when xj ≥ 0 (resp. xj ≤ 0).
Recall that the parameters a±j have been defined in (1.8). In other words, we evaluate
the sign distance to Γ̄i in therm of the Fermi coordinates associated to Γ̄j .

Observe that the term OC∞(V )(δ1 εα1) depends on δ1 and α1 and since we assume
that α1 ∈ (0, 2), we can absorb the term OC∞(V )(ε2) into it, keeping in mind that the
estimate does depend on δ1 and α1.

5.2. Linear theory for multiple interfaces. — We now want to study the map-
ping properties of the operator

L := ∆ + 1− 3 ū2 ,

where the potential is built using the approximate solution ū = ū(ε,v,h; ·). The idea
is to glue together parametrices which have been obtained in the previous section for
the model operator L = ∆+1−3H2, using a perturbation argument. We make use of
the weighted function spaces C2,µ

a,σ(R2), C2,µ
a (R; Rk) which have already been defined

in (4.48) and (2.25), respectively.
Following (4.47), we introduce the functions H ′j = H ′j(ε,v,h; ·) by the identity

X∗k H
′
j(xj , yj) := H ′(yj − hj(ε xj)) .

We also define the cutoff functions ρj = ρj(ε,v,h; ·) by

X∗j ρj(xj , yj) := ρε(yj − hj(ε xj)) ,
where

ρε(t) :=

(
4t√

2 log 1
ε

)
,(5.51)

and where ρ is a cutoff function identically equal to 1 on |t| < 1
2 and identically equal

to 0 for |t| > 1 (Remember that the distance between two consecutive curves Γ̄j and
Γ̄j+1 can be estimated by −

√
2 log ε + O(1), so the supports of the cutoff functions

ρj are disjoint for ε small).
We will consider the solvability of the linear problem

(5.52) Lφ+
k∑
j=1

κj ρj H
′
j = f ,
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in R2, where the unknowns are the function φ and the functions κj which are defined
in V in such a way that X∗j κj only depends on xj . To keep notations short, we set

L(φ, κ) := Lφ+
k∑
j=1

κj ρj H
′
j ,

where we have set κ := (κ1, . . . , κk). Here, one has to keep in mind that L, ρj and
H ′j all depend on ε, v and h and hence so does L. We will always assume that

(5.53) ‖h + v‖C2,µτ (R;Rk)⊕E ≤ δ1 ε
α1 ,

for some constants α1 ∈ (0, 2) and δ1 > 0 which will be fixed later on. Building on
the analysis of the previous section, we prove the :

Proposition 5.1. — Assume that σ ∈ (0,
√

2) and τ > 0 are fixed and assume that
(5.54) is satisfied for some fiixed α1 and δ1. Then, ther e exists ε0 > 0 (depending on
α1 and δ1) such that for all ε ∈ (0, ε0), there exists a linear operator G = G(ε,v,h; ·)

G : C0,µ
σ,ετ (R2) −→ C2,µ

σ,ετ (R2)× C0,µ
ετ (R; Rk) ,

whose norm is bounded by a constant (independent of ε, δ1 and α1), such that,
(φ;κ) := G(f) is the unique solution of (5.53) which satisfies

(5.54)
∫

R
X∗j (ρj H ′j φ) dyj = 0 ,

for all xj ∈ R.

The main idea in the proof of this proposition is to first handle the case where
h = 0. In this case we glue together parametrices of L which were obtained in
Proposition 3.1 to get an approximate right inverse of L which is then perturbed into
a genuine right inverse of L. The general case, when h 6= 0, can then be handled
using a simple perturbation argument. We decompose the proof of this proposition
in a sequence of intermediate results.

We start by considering the case where h = 0 and v ∈ E is fixed and prove the
existence of G(ε,v,0; ·) in this case. This is the content of the following :

Lemma 5.1. — Assume that h = 0. Then, for all ε > 0 small enough, the existence
of G(ε,v,0) satisfying the statement of Proposition 5.1 holds.

Proof. — We decompose the proof in three steps.
Step 1 - We make use of Proposition 3.1 to get the existence of φj solution of(

∂2
xj + ∂2

yj + 1− 3H2
)

(X∗j φj) = ρε (X∗j f − κ0
j H
′)

where H, H ′ and ρε are functions of yj and κ0
j are functions of xj . The functions

κ0
j are chosen so that the right hand side of this equation satisfies the orthogonality

condition (3.39), hence

κ0
j (xj)

∫
R
ρε (H ′)2 dyj =

∫
R
ρεH

′X∗j f dyj .



24 M. DEL PINO, M. KOWALCZYK, F. PACARD & J. WEI

Observe that X∗j κ
0
j only depends on xj . It is easy to check that

‖κ0‖C0,µετ (R;Rk) +

∥∥∥∥∥∥
k∑
j=1

ρj φj

∥∥∥∥∥∥
C2,µσ,ετ (R2)

≤ C ‖f‖C0,µσ,ετ (R2),(5.55)

for some constant C > 0 independent of ε, δ1 and α1. The estimate for κ0
j follows at

once from the definition while the estimate for
∑k
j=1 ρj φj follows directly from the

result of Proposition 3.1. Observe that, by construction, we have

(5.56)
∫

R
H ′X∗j φj dyj = 0 .

We define

f0 := f − L

 k∑
j=1

ρj φj

− k∑
j=1

κ0
j ρj H

′
j .

Observe that there are two main reasons why f0 is not identically equal to 0. The first
being the effect of the cutoff function which implies that, away from the support of
the functions ρj , we have f0 = f . The second being that, close to the curves Γ̄j , even
though ρj = 1, there is a small discrepancy between the Laplacian and the operator
∂2
xj + ∂2

yj .
We now give a more quantitative statement of these two facts. First we compute

f0 =

1−
k∑
j=1

ρj

 f −
k∑
j=1

(φj ∆ρj + 2∇ρj∇φj) +
k∑
j=1

ρj (∂2
xj + ∂2

yj −∆)φj .

It is easy to check that we have

‖f0‖C0,µσ,ετ (R2) ≤ C‖f‖C0,µσ,ετ (R2).

Moreover, in the region where ρj ≡ 1 we simply have f0 = (∂2
xj +∂2

yj −∆)φj and still
using the expression of the Laplacian in Fermi coordinates, once can check that the
operator ∆− (∂2

xj + ∂2
yj ) is a second order differential operator in ∂xj and ∂yj whose

coefficients are bounded by a constant times ε2 log 1
ε in this region. Hence, we get

(5.57) ‖χj f0‖C0,µσ,ετ (R2) ≤ C ε
2 log 1

ε ‖f‖C0,µσ,ετ (R2) ,

where the cutoff function χ1, . . . , χk are defined by X∗j χj(xj , yj) := ρε(2 yj) .
Step 2 - We now solve

(5.58) (∆− 2)ψ = f0 .

The existence of ψ, bounded solution of this equation, is straightforward. We claim
that

‖ψ‖C2,µσ,ετ (R2) ≤ C ‖f‖C0,µσ,ετ (R2),(5.59)

for some constant C > 0 independent of ε, α1 and δ1. Indeed, the maximum principle
immediately implies that

‖ψ‖L∞(R2) ≤ C ‖f‖C0,µσ,ετ (R2) .
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Next, arguing as in the proof of Lemma 3.4, we define the auxiliary function W̄σ,ετ,ν

by
X∗j W̄σ,ετ,ν = e−σyj

(
(coshxj)−ετ + ν (coshxj)ετ

)
,

and, using once more the expression of the Laplacian in Fermi coordinates, we check
that

(5.60) (∆− 2) W̄σ,ετ,ν = −(2− σ2 +O(ε2 log 1
ε )) W̄σ,ετ,ν ,

in the region V̄j where yj ≥ −ε τ |xj | and yj+1 ≤ ε τ |xj+1| (i.e. in a region which
slightly encompasses the region between the curves Γ̄j and Γ̄j+1). The maximum
principle can then be used in V̄j to prove that ψ is bounded by a constant (independent
on ν) times W̄σ,ετ,ν times the norm of f in V̄j . Letting ν tend to 0 we obtain the
estimate (5.60). A similar analysis can be carried out in the region of the plane which
is above Γ̄k or below Γ̄1.

We define the cutoff functions χ̂1, . . . , χ̂k by X∗j χ̂j(xj , yj) := ρε(4 yj). Observe
that we also have the following estimate

‖χ̂j ψ‖C2,µ0,ετ (R2) ≤ C (ε2 log 1
ε + ε

√
2σ
16 ) ‖f‖C0,µσ,ετ (R2),(5.61)

which again follows from the maximum principle, using the barrier function, W̄0,ετ,ν

together with (5.58) to evaluate the right hand side in (5.59) and (5.60) to evaluate
ψ the boundary of the set {Xj(xj , yj) : |yj | ≤

√
2

16 log 1
ε}.

Step 3 - We set

φ̄ := ψ +
k∑
j=1

ρj φj −
k∑
j=0

λj ρj H
′
j ,

and
κ̄j := κ0

j + ∆λj ,

where the functions λ1, . . . , λk are defined by the identity

X∗j λj(xj , yj)
∫

R
ρ2
ε (H ′)2 dyj =

∫
R
ρεH

′X∗j

ψ +
k∑
j=1

ρj φj

 dyj .

Observe that X∗j λj only depends on xj . We consider the operator

Ḡ(f) :=
(
φ̄, κ̄

)
.

It follows from (5.56), (5.60) that

Ḡ : C0,µ
σ,ετ (R2) −→ C2,µ

σ,ετ (R2)× C0,µ
ετ (R; Rk) ,

is well defined and has norm bounded by a constant independent of ε, δ1 and α1.
We compute

L φ̄+
k∑
j=1

κ̄j ρj H
′
j = f + 3 (1− ū2)ψ − 2

k∑
j=1

∇(λj ρj)∇H ′j

−
k∑
j=1

λj ρj LH ′j −
k∑
j=1

(λj ∆ρj + 2∇λj ∇ρj)H ′j .
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Using (5.57), we can estimate

‖λj‖C2,µετ (R) ≤ C ε
α ‖f‖C0,µσ,ετ (R2) ,

and using (5.62) together with the fact that σ <
√

2, we check that

‖(1− ū2)ψ‖C0,µσ,ετ (R2) ≤ C ε
α ‖f‖C0,µσ,ετ (R2) ,

for some α > 0 (independent of ε and f). Then, it is easy to check that

‖L ◦ Ḡ(f)− f‖C0,µσ,ετ (R2) ≤ C ε
α ‖f‖C0,µσ,ετ (R2),

for all ε small enough. When h = 0, the existence of G(ε,v,0; ·) follows at once from
a standard perturbation argument. This completes the proof of the Lemma.

We now assume that h 6= 0 and, using the previous Lemma together with a per-
turbation argument, we prove the :

Lemma 5.2. — For all ε > 0 small enough, the existence of G(ε,v,h; ·) satisfying
the statement of Proposition 5.1 holds.

Proof. — Again, the proof of this result relies on some perturbation argument. To
distinguish the operators when h = 0 and h 6= 0, we adorn them with the subscript h
writing for example Lh, Gh, Hj,h, . . . instead of L(ε,v,h; ·), G(ε,v,h; ·), Hj(ε,v,h; ·),
. . . .

We set (φ, κ) := G0(f) and define the operator Ḡh by Ḡh(f) := (φ̄, κ̄) where

φ̄ := φ−
k∑
j=0

λj ρj,hH
′
j,h and κ̄j := κj + ∆λj ,

and where the functions λ1, . . . , λk are defined by the identity

X∗j λj(xj , yj)
∫

R
ρ2
ε (H ′)2 dyj =

∫
R
X∗j (ρj,hH ′j,h φ) dyj .

Observe that X∗j λj only depends on xj and, by construction, we have∫
R
X∗j (ρj,0H ′j,0 φ) dyj = 0 ,

hence we can also write

X∗j λj(xj , yj)
∫

R
ρ2
ε (H ′)2 dyj =

∫
R
X∗j

(
(ρj,hH ′j,h − ρj,0H ′j,0)φ

)
dyj .

Since we already know that ‖φ‖C2,µσ,ε τ (R2) ≤ C ‖f‖C0,µσ,ε τ (R2), we get

(5.62) ‖λj‖C2,µε τ (R;Rk) ≤ C ‖h‖C0,µε τ (R;Rk) ‖f‖C0,µσ,ε τ (R2) .

In particular, this implies that

Ḡh : C0,µ
σ,ετ (R2) −→ C2,µ

σ,ετ (R2)× C0,µ
ετ (R; Rk)

is well defined and has norm bounded by a constant independent of ε, α1 and δ1.
We claim that

‖Lh ◦ Ḡh(f)− f‖C0,µσ,ετ (R2) ≤ C ‖h‖C0,µε τ (R;Rk) ‖f‖C0,µσ,ετ (R2) .
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Assuming we have already proved the claim, the existence of G(ε,v,h; ·) follows again
from a standard perturbation argument. Therefore, it remains to prove the claim. To
this aim, we compute

Lh(φ̄, κ̄)− f = 3 (ū2
0 − ū2

h)φ+
k∑
j=1

κj (ρj,hH ′j,h − ρj,0H ′j,0)

− 2
k∑
j=1

∇(λj ρj,h)∇H ′j,h −
k∑
j=1

λj ρj,h
(
∆ + 1− 3 ū2

h̄

)
H ′j,h

−
k∑
j=1

(λj ∆ρj,h + 2∇λj ∇ρj,h)H ′j,h .

Using the result of the previous proposition to evaluate the norm of f and κ in terms
of the norm of f and using (5.63), it is straightforward to check that∥∥Lh(φ̄, κ̄)− f

∥∥
C0,µσ,ετ (R2)

≤ C ‖h‖C0,µσ,ετ (R2) ‖f‖C0,µσ,ετ (R2) ,

for some constant C > 0 which does not depend on ε. This completes the proof of
the claim.

Finally, it remains to prove the uniqueness of G. This is the content of :

Lemma 5.3. — For all ε > 0 small enough, the operator G described in the state-
ment of Proposition 5.1 is unique.

Proof. — The proof is decomposed into two steps.
Step 1 - We first prove an a priori estimate for the solutions of the homogeneous

problem L(φ, κ) = 0 satisfying (5.55). More precisely, we claim that there exists a
constant C > 0 and α > 0 (independent of ε, φ and κ) such that

‖κ‖C2,µετ (R;Rk) ≤ C ε
α ‖φ‖C2,µσ,ετ (R2) ,

for any such solution.
To simplify notations, we identify X∗j φ with φ and X∗j ū with ū. We start by

multiplying L(φ, κ) = 0 by ρj H ′j and integrate over yj to get with little work

−X∗j κj
∫

R
ρ2
ε (H ′)2 dyj =

∫
R
ρj H

′
j ∂

2
xjφdyj

+
∫

R
ρj H

′
j (∂2

yj + 1− 3H2
j )φdyj

+ 3
∫

R
ρj H

′
j (H2

j − ū2)φ dyj

+
∫

R
ρj H

′
j (∆− ∂2

xj − ∂
2
yj )φdyj .

We evaluate each consecutive term. Observe that thanks to (5.55) we can write∫
R
ρj H

′
j ∂

2
xjφdyj = −

∫
R
φ∂2

xj (ρj H
′
j) dyj − 2

∫
R
∂xjφ∂xj (ρj H

′
j) dyj .
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Since
∂xj (ρj H

′
j) = −ε h′j

(
ρ′j H

′
j + ρj H

′′
j

)
,

and

∂2
xj (ρj H

′
j) = ε2 (h′j)

2
(
ρ′′j H

′
j + 2 ρ′j H

′′
j + ρj H

′′′
j

)
− ε2 h′′j

(
ρ′j H

′
j + ρj H

′′
j

)
,

it is easy to check that

‖
∫

R
ρj H

′
j ∂

2
xjφdyj‖C2,µετ (R) ≤ C ε

α ‖φ‖C2,µσ,ετ (R2) ,

for some α > 0 which does not depend on ε, φ and κ.
Using an integration by parts and the fact that (∂2

yj + 1 − 3H3
j )H ′j = 0, we see

that the second term can also be written as∫
R
ρj H

′
j (∂2

yj + 1− 3H3
j )φdyj =

∫
R
(ρ′′j H

′
j + 2 ρ′j H

′′
j )φ dyj

from which it follows at once that (reducing α if this is necessary)∥∥∥∥∫
R
ρj H

′
j (∂2

yj + 1− 3H3
j )φ dyj

∥∥∥∥
C2,µετ (R)

≤ C εα ‖φ‖C2,µσ,ετ (R2) .

Using the fact that the approximate solution ū is close to Hj near Γ̄j , we check
that (reducing α if this is necessary)∥∥∥∥∫

R
ρj H

′
j (H2

j − ū2)φ dyj

∥∥∥∥
C2,µετ (R)

≤ C εα ‖φ‖C2,µσ,ετ (R2) .

Finally, using the expansion of the Laplacian in Fermi coordinates, we check that
(reducing α if this is necessary)∥∥∥∥∫

R
ρj H

′
j (∆− ∂2

xj − ∂
2
yj )φdyj

∥∥∥∥
C2,µετ (R;Rk)

≤ C εα ‖φ‖C2,µσ,ετ (R2) .

Collecting these estimates completes the proof of the claim.
Step 2 - We now assume that φ ∈ C2,µ

σ,ετ (R2) and κ ∈ C2,µ
ετ (R; Rk) satisfy L(φ, κ) =

0. We prove that φ = 0 and κ = 0 provided ε is close to 0. The proof is by
contradiction and close to the proof of Lemma 3.3. Assume that for a sequence εn
tending to 0 there exist φn 6= 0 and κn solution of L(φn;κn) = 0. We normalize φn
so that

‖W−1
σ,ετ φn‖L∞(R2) = 1 .

We pick up a point (xn, yn) ∈ R2 such that W−1
σ,ετ (xn, yn)φn(xn, yn) ≥ 1

2 . We define
the sequence φ̃n by

φ̃n(x, y) := W−1
σ,ετ (xn, yn)φn(x− xn, y − yn).

Using elliptic estimates together with Ascoli-Arzela’s theorem, we can assume that
(up to a subsequence) the sequence φ̃n converges uniformly, as n tends to +∞, to
some function φ̃ on compacts of R2. The choice of the point (xn, yn) implies that
φ̃(0, 0) ≥ 1

2 and hence is not identically equl to 0. To identify the equation satisfied
by φ̃, we distinguish two cases according to the behavior of the sequence (xn, yn).
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If, for some subsequence, (xn, yn) stays at finite distance from any curve Γ̄j , then
φ̃ satisfies

(∆ + 1− 3H2(· − y0)) φ̃ = 0 ,
for some y0 ∈ R. Moreover ∫

R
φ̃H ′(· − y0) dy = 0 .

Finally, |φ̃| ≤ C (cosh y)−σ in R2. However, the result of Lemma 3.2 shows that φ̃ = 0,
which is a contradiction.

If, for no subsequence (xn, yn) stays at finite distance from the curves Γ̄j , then φ̃
satisfies

(∆− 2) φ̃ = 0 .

Finally, either |φ̃| ≤ C (cosh y)σ (or |φ̃| ≤ C eσy or |φ̃| ≤ C e−σy ) in R2. We then
consider the function W̃a,b(x, y) := cosh(a x) cosh(b y) which satisfies (∆− 2) W̃a,b =
−(2− a2 − b2) W̃a,b. Taking a ∈ (σ,

√
2) and b > 0 such that a2 + b2 < 2, we can use

W̃a,b as a barrier to prove that |φ̃| ≤ ν W̃a,b for all ν > 0. Letting ν tend to 0 we
conclude that φ ≡ 0 which is again a contradiction.

Having reached a contradiction in all cases, the proof of the claim is complete.

Observe that, thanks to the uniqueness result, one can also obtain G(ε,v, h̃; ·) from
G(ε,v,h; ·) using a perturbation argument as in the proof of Lemma 5.3. Hence we
obtain the :

Corollary 5.1. — There exists a constant C > 0 (independent of ε, α1 and δ1) such
that,

‖G(ε,v, h̃; f)−G(ε,v,h; f)‖C2,µσ,ετ (R2) ≤ C ‖h̃− h‖C2,µσ,ετ (R,Rk) ‖f‖C0,µσ,ετ (R2) ,

provided ε > 0 is small enough.

5.3. Estimates. — We now measure how far the function ū = ū(ε,v,h; ·) is from
a genuine solution of (1.1). To do so, we analyze the nonlinear operator Q(ε,v,h; 0)
which has been defined in (4.50). Recall that

Q(ε,v,h; 0) = −(∆ū+ ū− ū3)

where ū = ū(ε,v,h; ·). The following result is close to the corresponding analysis
performed in [11].

Proposition 5.2. — Assume that σ ∈ (0,
√

2] and τ > 0 are fixed so that

τ <
τ0√

2
.

Further assume that δ1 and α1 (defined in (5.54)) are fixed. Then, there exists a
constant C > 0 independent of ε, : alpha1 and δ1 and there exists ε0 > 0 such that,
for all ε ∈ (0, ε0), we have :

‖Q(ε,v,0; 0)‖C0,µσ,ετ (R2) ≤ C ε
2− σ√

2 ,(5.63)



30 M. DEL PINO, M. KOWALCZYK, F. PACARD & J. WEI

and

‖Q(ε,v, h̃; 0)−Q(ε,v,h; 0)‖C0,µσ,ετ (R2) ≤ C ε
2− σ√

2 ‖h̃− h‖C2,µετ (R;Rk).(5.64)

Proof. — The proof is fairly technical and, in order to enlighten the key points and
the ideas involved as clearly as possible, we will assume that k = 2. The estimates in
the general case follow from similar considerations but notations are more involved.

We first derive the estimates where the cutoff function ηε = 1. In this case, we
simply have

ū = H1 −H2 − 1 ,
and, we can reorganize Q(ε,v,h; 0) as follows

∆ ū+ (1− ū2) ū = (∆H1 +H1 −H3
1 )− (∆H2 +H2 −H3

2 )

− (H1 −H2 − 1)3 +H3
1 −H3

2 − 1.

We now restrict our attention to the subregion V− in V where y1 + y2 ≤ 0 (similar
estimates are available in the region where y1 + y2 ≥ 0). In V−, we write

(H1 −H2 − 1)3 −H3
1 +H3

2 + 1 = 3(H2 + 1)2 (H1 − 1) + 3
√

2H ′1 (H2 + 1)

since 1 − H2
1 =

√
2H ′1. Taking advantage of the fact that H ′′ + H − H3 = 0, and

using the expansion of the Laplacian in Fermi coordinates, we realize that
(5.65)

∆ ū+ (1− ū2) ū =
(

1
2
∂y1A1

A1
− ε2 h

′′
1

A1
−3
√

2 (H2 + 1) +
1
2
∂x1A1

A2
1

h′1

)
H ′1

−
(

1
2
∂y2A2

A2
− ε2 h

′′
2

A2
+

1
2
∂x2A2

A2
2

h′2

)
H ′2

− 3 (H2 + 1)2 (H1 − 1) + ε2

(
1
A1

(h′1)2H ′′1 −
1
A2

(h′2)2H ′′2

)
,

where we have defined

X∗j,εH
′
j(xj , yj) := H ′(yj) and X∗j,εH

′′
j (xj , yj) := H ′′(yj) .

To evaluate these terms, we will use the following facts

H ′2 = OC∞((−∞,0))(e
√

2 y2) and H2 + 1 = OC∞(−∞,0)(e
√

2 y2)

while

H1 − 1 = OC∞(0,∞)(e−
√

2 y1) and H1 − 1 = OC∞(−∞,0)(1) .

And we also make use of (5.51) which gives y2 in terms of y1 and x1

(5.66)
y2 = (1 +OC∞(V )(ε2)) y1 + ε (a±1 − a

±
2 +OC∞(V )(δ1 εα1)) |x1|+

√
2 log ε+OC∞(V )(1)

with ± according to wether x1 ≥ 0 or x1 ≤ 0 (remember that α1 ∈ (0, 2)). We find
with some work

(5.67) sup
x∈V

W−1
σ,ε τ ‖∆ ūε + (1− ū2

ε) ūε‖C0,µ(B1(x)) ≤ C ε
2− σ√

2 .

Let us now explain where the estimate comes from. It turns out that the parameters
σ and τ which define the weights have to be chosen so that σ ∈ (0,

√
2) and also
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τ ∈ (0, τ0√
2
). This is needed to ensure that the function we evaluate has the appropriate

decay in both the x and y directions so that its weighted norm is finite. With this
choice, a quick inspection of the structure of ∆ ūε+(1− ū2

ε) ūε shows that, to estimate
the norm of this function, there are two region of interest (namely regions where the
norm is actually achieved) : the region close to the curve defined by y1 = 0 (namely
the curve Γ̄1) and the region close to the curve defined by y1 + y2 = 0. It turns out
that the estimate comes from the evaluation of the term (H2 +1)2H ′1 along the curve
y1 + y2 = 0. Indeed, we have

W−1
σ,ετ (H2 + 1)2H ′1 ∼ e

√
2y2(cosh y1)σ−

√
2 (coshx1)ετ ,

when y1 + y2 ≤ 0. Therefore, we find that

W−1
σ,ετ (H2 + 1)2H ′1 ∼ e(σ−2

√
2)y1 (coshx1)ετ ,

when y1 + y2 = 0. Now, along this curve, we have from (5.67)

y1 =
ε

2
(a±2 − a

±
1 +O(δ1εα1)) |x1| −

1√
2

log ε+O(1) .

again with ± according to wether x1 ≥ 0 or x1 ≤ 0. Therefore, we conclude that

sup
y1+y2=0

W−1
σ,ετ (H2 + 1)2H ′1 ≤ C ε

2− σ√
2 .

Observe that we have implicitly used the fact that

τ <
(√

2− σ

2

)
(a±2 − a

±
1 ) ,

so that the above supremum is finite. Since, by definition of τ0 we have a±2 − a
±
1 ≥ τ0

and since we assume that σ ∈ (0,
√

2), then one can check that this inequality holds
provided τ < τ0√

2
.

Using similar arguments, we find that the terms
∂yjAj

Aj
H ′j contribute to the estimate

by at most a constant times ε2 and the term (H2 + 1)2 (H1 − 1) contributes to the
estimate by at most a constant times ε2. All other quantities involving the functions
hj give a contribution of size a constant (depending on δ1) times ε2+α1 to the estimate,
and hence this contribution can be absorbed into C ε2− σ√

2 provided ε is chosen small
enough.

We finally have to take into account the effect of the cutoff function ηε. We denote
by V̄ ⊂ V the set where ηε is not equal to either 0 or 1. It is easy to check that

(5.68) sup
x∈V̄

W−1
σ,ε τ ‖∆ ūε + ūε (1− ū2

ε)‖C0,µ(B1(x)) ≤ C ε2 .

The estimate then follows from (5.68) and (5.69).

We are now interested in the estimates of the functions

Fj(ε,v,h; ·) :=
∫

R
(∆ū+ ū− ū3) ρj H ′j dyj ,



32 M. DEL PINO, M. KOWALCZYK, F. PACARD & J. WEI

as functions of x (or xj). As we will see in the proof of the next result, there exists
β > 0 such that

Fj(ε,0,0;x) = −ε2
(
c∗ q
′′
j + c∗

(
e
√

2 (qj−qj+1) − e
√

2(qj−1−qj)
)

(εx) +O(ε2+β) ,

on any compact of R. Here the constants c∗ and c∗ are given by

c∗ := 6
√

2
∫

R
e
√

2t(H ′(t))2 dt = 12
∫

R
e2t (cosh t)−4 dt = 32 ,

and

c∗ :=
∫

R
(H ′(t))2 dt =

√
2
∫

R
(cosh t)−4 dt =

4
3

√
2 .

The estimate we have obtained in the previous proposition is quite general and does
not use the fact that the functions qj are required to be solutions to the Toda system
(1.7). In contrast, this expansion shows that the estimates of Fj strongly relies on
this assumption and indeed, Fj(ε,0,0; ·) = O(ε2+β) if q is a solution of (1.7).

It will be convenient to define

F 0
j (ε,v,h;x) := −ε2

(
c∗ (vj + hj)′′ + c∗

√
2
(
e
√

2 (qj−qj+1)(vj + hj − vj+1 − hj+1)

− e
√

2(qj−1−qj)(vj−1 + hj−1 − vj − hj)
))

(εx) ,

and we finally define F̊ := (F̊1, . . . , F̊k) where

F̊j := Fj − F 0
j .

We have the :

Proposition 5.3. — Assume that σ ∈ (0,
√

2) and τ ∈ (0, τ0) are fixed. Further
assume that α1 and δ1 are fixed. Then, there exists β1 ∈ (0, 1) and C > 0 (which
neither depend on ε, α1 and δ1, nor on σ and τ) such that the following estimates
hold

‖F̊(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C ε
2+β1 ,

and

‖F̊(ε,v, h̃; ·)− F̊(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C ε
2+β1 ‖h̃− h‖C2,µετ (R;Rk) ,

for all ε small enough and provided v, h and h̃ satisfy (5.54).

Proof. — Again, we only consider the case where k = 1 since this simplifies the
notations.

The starting point if the formula (5.66) which was obtained in the proof of the
previous Proposition. The result then follows at once from the integration of this for-
mula against ρ1H

′
1. Let us mention the most important aspects of this computation.

For brevity we will denote q̃ = q + v.
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We can write∫
R

1
2
∂yjAj

Aj
(H ′j)

2 ρj dyj = −
ε2 q̃′′j

(1 + ε2(q̃′j)2)1/2

∫
R

1
Aj

(H ′j)
2 ρj dyj

+
ε4 (q̃′′j )2

(1 + ε2(q̃′j)2)2

∫
R

1
Aj

yj (H ′j)
2 ρj dyj .

Since Aj is close to 1, we can estimate∫
R

1
2
∂yjAj

Aj
(H ′j)

2 ρj dyj = −ε2 q̃′′j

∫
R
(H ′j)

2 ρj dyj +O(ε4 (coshx1)−2ετ0) .

Now ∫
R

(H ′j)
2 ρj dyj =

∫
R

(H ′)2 dy +O(εβ) ,

where β > 0 is fixed (and in fact depends on the definition of the cutoff function ρε
see (5.52)). Hence, reducing β if this is necessary, we conclude that

(5.69)
∫

R

1
2
∂y1Aj
Aj

(H ′j)
2 ρj dyj = −ε2 q̃′′j

∫
R

(H ′)2 dy +O(ε2+β (coshxj)−ετ ) .

Similarly, we have

−ε2h′′j

∫
R

1
Aj

(H ′j)
2ρj dyj = −ε2h′′j

∫
R

(H ′)2 dy +O(ε2+β (coshx1)−ετ ) ,(5.70)

for some β > 0.
Considering in (5.66) the remaining terms which carry the factor H ′1, we have∫

R
(H2 + 1) (H ′1)2 ρ1 dy1 =

∫
R

(
H(y2 − h2(εx2)) + 1

) (
H ′(y1 − h1(εx1))

)2
ρ1 dy1

Elementary geometry and the fact that q̃j ∼ εxj at ±∞ yields the following estimates
(please compare with (5.51))

y2 = q̃1(εx1)− q̃2(εx1) +
√

2 log ε+ y1(1 +O(ε2)) +O
(
ε3 |x1|),

and

x2 = (1 +O(ε2))x1 +O(ε y1) +O
(
ε log 1

ε ),

in the region where y1+y2 ≤ 0. Using this together with the estimate H2+1 ∼ 2 e
√

2y2 ,
which holds in a tubular neighborhood of Γ̄1, we conclude that∫

R

(
H(y2 − h2(εx1)) + 1

) (
H ′(y1 − h1(εx1))

)2
ρ1 dy1

= −2 ε2

∫
R
e
√

2y (H ′)2 dy e
√

2(q1−q2)(εx1)

− 2
√

2 ε2

∫
R
e
√

2y (H ′)2 dy e
√

2(q1−q2)(εx1) (v1 + h1 − v2 − h2)(εx1)

+O(ε2+β (coshx1)−ετ ) ,

(5.71)
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for some constant β > 0.
As already mentioned, the fact that qj is a solution of the Toda system implies that

the leading parts in (5.70), (5.71) and (5.72) cancel. The other terms resulting from
multiplication of (5.66) by H ′1ρ1 can easily be estimated by O(ε2+β (coshx1)−ετ ) and
similar estimates can be obtained for the Hölder derivatives, completing the proof of
the first estimate. The other estimate follows using similar arguments.

5.4. Solvability of the nonlinear problem. — We are now in a position to apply
a first fixed point theorem, to find, close to the approximate solution ū a solution of
(1.1) which has the desired features. First, we assume that we are given v ∈ E and
h ∈ C2,µ

τ (R; Rk) satisfying (5.54) and we look for a function φ = φ(ε,v,h; ·) solution
of

(5.72) L(ε,v,h;φ, κ) = Q(ε,v,h;φ)

Thanks to the result of Proposition 5.1, this equation can be rewritten as a fixed point
problem

(5.73) (φ, κ) = G(ε,v,h;Q(ε,v,h;φ))

We choose σ ∈ (0,
√

2) and τ ∈ (0, τ0√
2
) so that the results of the previous sections

apply for ε small enough. Collecting the results of the previous sections, we prove
the :

Proposition 5.4. — Assume that σ ∈ (0,
√

2) and τ ∈ (0, τ0√
2
) are fixed. Further

assume that α1 and δ1 are fixed. Then, there exists C0 > 0 (independent of the choice
of α1 and δ1) and there exists ε0 > 0 such that, for all ε ∈ (0, ε0), there exists a
unique (φ, κ) ∈ C2,µ

σ,ετ (R2)× C2,µ
ετ (R; Rk) solution of (5.73) which satisfies

‖φ‖C2,µσ,ετ (R2) + ‖κ‖C2,µετ (R;Rk) ≤ C0 ε
2− σ√

2 .

Proof. — The result of Proposition 5.2 and Proposition 5.1 show that

‖G(ε,v,h;Q(ε,v,h; 0))‖C2,µσ,ετ (R2)×C2,µετ (R;Rk) ≤ C̄ ε
2− σ√

2

for some constant C̄ > 0 which does not depend on ε. We now choose C0 = 2 C̄. Next,
observe that the nonlinearity with respect to φ in Q is simply given by φ3 + 3 ū φ2

and it is easy to check that

‖Q(ε,v,h; φ̃)−Q(ε,v,h;φ)‖C0,µσ,ετ (R2) ≤ C ε
2− σ√

2 ‖φ̃− φ‖C0,µσ,ετ (R2) ,

provided φ̃, φ are both in the ball of radius C0 ε
2− σ√

2 in C2,µ
σ,ετ (R2). It is now standard

to prove that, provided ε is chosen small enough, (5.74) has a solution which can be
obtained as a fixed point for contraction mapping in this ball.

The solution we have obtained in the previous proposition will be denoted by
(φ(ε,v,h; ·), κ(ε,v,h; ·)). It is standard to check that, reducing ε0 if this is necessary,
φ depends smoothly on the parameter h and, in some sense to be made precise, also
depends continuously on v. However, more will be needed and, with little work, we
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can estimate the Lipschitz dependence of this solution with respect to h. This is the
content of the following :

Lemma 5.4. — Under the assumptions of the previous Proposition, there exists C >
0 such that the following estimate holds

‖φ(ε,v, h̃; ·)− φ(ε,v,h; ·)‖C2,µσ,ετ (R2) ≤ C ε
2−
√

2σ ‖h̃− h‖C2,µετ (R;Rk).

Proof. — To distinguish the operators depending on different values of h we will
adorn the operators and functions with a subscript h, writing Lh, ūh, . . . instead of
L, ū, . . . We also write Qh = Q(ε,v,h;φh).

Taking the difference between the equation satisfied by φh and the equation satis-
fied by φh̃, we find

(φh̃ − φh, κh̃ − κh) = G(ε,v,h;Qh −Qh̃) + G(ε,v,h;Qh̃)−G(ε,v, h̃;Qh̃) .

We have

Qh −Qh̃ =
(
∆ūh + ūh − ū3

h −∆ūh̃ − ūh̃ + ū3
h̃

)
+ φ3

h̃
− φ3

h + 3 ūh (φ2
h̃
− φ2

h) + 3 (ū2
h̃
− ū2

h)φ2
h̃
.

We evaluate each term on the right hand side. Making use of the bound of the
solutions of (5.73) which have been obtained in Proposition 5.4, we can write

‖3 (ū2
h̃
− ū2

h)φ2
h̃
‖C0,µσ,ετ (R2) ≤ C ε

2− σ√
2 ‖h̃− h‖C2,µετ (R;Rk) .

Similarly, we get

‖φ3
h̃
− φ3

h + 3 ūh (φ2
h̃
− φ2

h)‖C0,µσ,ετ (R2) ≤ C ε
2− σ√

2 ‖φh − φh̃‖C2,µετ (R;Rk) .

Finally, Proposition 5.2 yields

‖∆ūh + ūh − ū3
h −∆ūh̃ − ūh̃ + ū3

h̃
‖C0,µσ,ετ (R2) ≤ C ε

2− σ√
2 ‖h̃− h‖C2,µετ (R;Rk) .

Therefore, we conclude that

‖Qh −Qh̃‖C0,µσ,ετ (R2) ≤ C ε
2− σ√

2
(
‖φh − φh̃‖C2,µσ,ετ (R2) + ‖h̃− h‖C2,µετ (R;Rk)

)
.

On the other hand, using Corollary 5.1 and Proposition 5.2, we get

‖G(ε,v,h;Qh̃)−G(ε,v, h̃;Qh̃)‖C2,µσ,ετ (R2)×C2,µετ (R;Rk) ≤ C ε
2− σ√

2 ‖h̃− h‖C2,µσ,ετ (R,Rk) .

Summarizing the above we have:

‖φh − φh̃‖C2,µσ,ετ (R2) ≤ C ε
2− σ√

2

(
‖φh − φh̃‖C2,µετ (R;Rk) + ‖h̃− h‖C2,µετ (R;Rk)

)
.

The desired estimate follows by taking ε small enough.

We now explain in which sense the solution φ(ε,v,h; ·) depends continuously on
v. To this aim, let us denote by Xj,v instead of Xj the parameterization defined in
(4.42) so that its dependence with respect to v becomes apparent. Similarly, we will
write ρj,v, instead of ρj , H ′j,v instead of H ′j , . . . We define a family of diffeormorphism



36 M. DEL PINO, M. KOWALCZYK, F. PACARD & J. WEI

Yv smoothly depending on v ∈ E (satisfying (4.46)) and designed in such a way that
Y0 ≡ Id and that

‖∇(Yv − Id)‖C∞(R2) ≤ C ε ‖v‖E ,
and, for all j = 1, . . . , k,

Yv(Xj,v(xj , yj)) = Xj,0(xj , yj) ,

for all (xj , yj) such that |yj | ≤ 4
√

2
3 log 1

ε . Observe that, with this choice

ρj,v = ρj,0 ◦ Yv ,

and
H ′j,v = H ′j,0 ◦ Yv ,

on the support of ρj .

Lemma 5.5. — The mapping

v ∈ E 7−→ φv ◦ Y −1
v ∈ C2,µ

σ,ε τ (R2) ,

is continuous (beware that the weighted space of the right had side is the one corre-
sponding to v = 0).

Proof. — We denote by φv the solution obtained in Proposition 5.73. We can write

(∆ + 1− 3ū2
v)φv = −

(
∆ūv + uv − u3

v

)
+ φ3

v + 3 ūv φ
2
v .

We can write
φv = φ̃v ◦ Yv

and, composing with Y −1
v , we can write the equation satisfied by φ̃v as

(5.74)
(∆ + 1− 3 ū2

0) φ̃v = −
(
∆ūv + uv − u3

v

)
◦ Y −1

v + φ̃3
v + 3 ūv ◦ Y −1

v φ̃2
v

+ 3 (ū2
v ◦ Y −1

v − ū2
0) φ̃v +

(
∆(φ̃v ◦ Yv) ◦ Y −1

v −∆φ̃v

)
.

By definition of Yv, we see that φ̃v satisfies the orthogonality condition (5.55) with
v = 0. It is easy to check that φ̃v is also the unique solution of (5.75) whose norm
is bounded by a constant times ε2− σ√

2 and which can be obtained as a fixed point
for contraction mapping (this implicitly uses the uniqueness result of Lemma 5.3).
Observe that we are now working in a fixed function space C2,µ

σ,ε τ (R2) whose definition
corresponds to v = 0. Using this formulation we can check that the mapping v ∈
E 7−→ φv ◦ Y −1

v is continuous.

We now explain how to choose v and h so that

(5.75) κ(ε,v,h; ·) = 0 .

Observe that, multiplying the equation (5.73) by ρj H
′
j we see that the equation

κ(ε,v,h; ·) = 0 can be written as∫
R
(∆ū+ ū− ū3) ρj H ′j dyj +

∫
R

(∆φ+φ−3 ū2 φ)ρj H ′j dyj =
∫

R
(φ3 +3 ū φ2) ρj H ′j dyj ,
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for j = 1, . . . , k. It is worth mentioning that both ū and φ depend on ε, v and h. We
study each of the three terms which compose this equation. First we observe that in
Proposition 5.3 we have already derived an estimate for F = (F1, . . . , Fk), where

Fj(ε,v,h; ·) :=
∫

R
(∆ū+ ū− ū3) ρj H ′j dyj .

Next, let us define E := (E1, . . . , Ek) where

Ej(ε,v,h; ·) :=
∫

R
(∆φ+ φ− 3 ū2 φ)ρj H ′j dyj .

We have the following :

Lemma 5.6. — Assume that σ ∈ (0,
√

2) and τ ∈ (0, τ0√
2
) are fixed. Further assume

that α1 and δ1 are fixed. Then, there exist a constant β2 > 0 (which does not depend
on ε, σ, α1 and δ1) and a constant C > 0 such that

‖E(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C ε
2− σ√

2
+β2 ,

and

‖E(ε,v, h̃; ·)−E(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C ε
2− σ√

2
+β2 ‖h̃− h‖C2,µετ (R;Rk) ,

for all ε small enough, provided v, h and h̃ satisfy (5.54).

Proof. — The proof is very close to the analysis we have a already performed in the
proof of Lemma 5.3. Indeed, following a similar computation we can rewrite Ej as

Ej = 2 ε h′j

∫
R

(
ρ′j H

′
j + ρj H

′′
j

)
∂xjφdyj + ε2 h′′j

∫
R

(
ρ′j H

′
j + ρj H

′′
j

)
φ dyj

− ε2 (h′j)
2

∫
R

(
ρ′′j H

′
j + 2 ρ′j H

′′
j + ρj H

′′′
j

)
φdyj

+
∫

R
(ρ′′j H

′
j + 2 ρ′j H

′′
j )φdyj + 3

∫
R
ρj H

′
j (H2

j − ū2)φdyj

+
∫

R
ρj H

′
j (∆− ∂2

xj − ∂
2
yj )φdyj .

Instead of going through a technical proof, we simply explain where the estimate
comes from. We observe that, thanks to the result of Proposition 5.4, all the terms
which carry a factor of h′j , (h

′
j)

2 or h′′j in front can be estimated by a constant times
ε

3− σ√
2

+α1 .
Using the definition of the cutoff function ρj and the exponential decay of functions

1±H, H ′ and H ′′, we can estimate∥∥∥∥∫
R
(ρ′′j H

′
j + 2 ρ′j H

′′
j )φ dyj + 3

∫
R
ρj H

′
j (H2

j − ū2)φ dyj

∥∥∥∥
C0,µετ (R;Rk)

≤ C ε2− σ√
2

+β
,

where β > 0 only depends on the definition of ρε given in (5.52). The estimate for
the last term in the expression for Ej is straightforward using the expression of the
Laplacian in Fermi coordinates.
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The second estimate follows from similar consideration together with the result of
Lemma 5.4. We leave the details to the reader.

Let us define Ē := (Ē1, . . . , Ēk) where

Ēj(ε,v,h; ·) :=
∫

R
(φ3 + 3 ū φ2) ρj H ′j dyj .

We have the:

Lemma 5.7. — Under the assumptions of the previous Lemma, there exists C > 0
such that the following estimates hold

‖Ē(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C ε
4−
√

2σ ,

and
‖Ē(ε,v, h̃; ·)− Ē(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C ε

4−
√

2σ ‖h̃− h‖C0,µετ (R;Rk) ,

for all ε small enough, provided v, h and h̃ satisfy (5.54).

Proof. — The proof follows at once from Lemma 5.4 and the estimates for the solu-
tions of (5.73) provided by Proposition 5.4.

We are now in a position to explain how the constant α1, which was used in
(5.54), is fixed. We fist assume that σ ∈ (0,

√
2) and µ ∈ (0, 1) are chosen so that

2−
√

2−µ > 0, − σ√
2

+β2−µ > 0 and β1−µ > 0, where β1 and β2 are the constants
which appear in the last Lemmas. Observe that it is crucial that β2 > 0 could be
chosen not to depend on σ. Then we define

α1 = min
{

2−
√

2− µ,− σ√
2

+ β2 − µ, β1 − µ
}
.

With this choice, it follows from Proposition 5.3, Lemma 5.6 and Lemma 5.7 that the
condition (5.76) is equivalent to

ε2 (c0(v + h)′′ + N(v + h))j = Êj(ε,v,h; ·)(5.76)

where N is the matrix of the linearized Toda system associated to linearization of
(2.15) about the solution q (see (2.24)), and where Ê := (Ê1, . . . , Êk) satisfies

Lemma 5.8. — Assume that σ, µ and τ are fixed as above. Then, there exists a
constant C1 > 0 (independent of ε and δ1) such that the following estimates hold

‖Ê(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C1 ε
2+α1+µ ,

and
‖Ê(ε,v, h̃; ·)− Ê(ε,v,h; ·)‖C0,µετ (R;Rk) ≤ C1 ε

2+α1+µ ‖h̃− h‖C2,µετ (R;Rk)

for all ε small enough, provided v, h and h̃ satisfy (5.54).

In view of the result of Lemma 2.3 and the previous Lemma, it is natural to solve
(5.77) in the space C2,µ

τ (R; Rk) ⊕ E . At this point, it is worth mentioning that for a
function g : R→ Rk we have the obvious estimate

‖g(ε ·)‖C`,µετ (R;Rk) ≤ C ‖g‖C`,µτ (R;Rk) ,
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while on the other hand we have

‖g‖C`,µτ (R;Rk) ≤ C ε
−`−µ ‖g(ε ·)‖C`,µετ (R;Rk) .

Collecting the previous analysis, it is easy to check that :

Lemma 5.9. — There exists δ1 > 0 such that, for all v ∈ E satisfying ‖v‖E ≤ δ1 εα1

and for all ε > 0 small enough, there exists a unique h ∈ C2,µ
ετ (R; Rk) and v̄ ∈ E

satisfying

(5.77) ε2 (c0(v̄ + h)′′ + N(v̄ + h)) = Ê(ε,v,h; ·) ,

and
‖v̄ + h‖C2,µτ (R;Rk)⊕E ≤

δ1
2 ε

α1 .

Moreover v̄ depends continuously on v.

Proof. — The proof of this lemma follows immediately from the theory developed in
section 2 and more specifically Lemma 2.3, the result of Lemma 5.8 and the use of a
fixed point theorem for contraction mapping.

Using the result of Lemma 2.3, we can rewrite the equation we want to solve as

v̄ + h = ε−2 T−1
(
Ê(ε,v,h; ·)

)
,

Thanks to the result of Lemma 5.8 and the above remark, we can estimate for all
ε > 0 small enough

‖ε−2 T−1
(
Ê(ε,v,0; ·)

)
‖C2,µτ (R;Rk) ≤ C̄1 ε

α1 ,

for some constant C1 > 0 which does not depend on the choice of δ1. In particular, we
can choose, we can choose δ1 = 4 C̄1 and the previous estimate will be valid provided
we take ε > 0 small enough. Let us denote by Π the projection

Π : C2,µ
τ (R; Rk)⊕ E 7−→ C2,µ

τ (R; Rk) .

Using Lemma 5.8 together with a fixed point theorem for contraction mapping, we
get the existence of a (unique) fixed point h, for the mapping

h̃ 7−→ ε−2 ΠT−1
(
Ê(ε,v, h̃; ·)

)
,

in the ball of radius δ1
2 ε

α1 in C2,µ
τ (R; Rk). This fixed point h then induces a (unique)

v̄ ∈ E by the identify

v̄ := ε−2 T−1
(
Ê(ε,v,h; ·)

)
− h .

We clearly v̄ + h is a solution of (5.78) and we have the estimate

‖v̄ + h‖C2,µτ (R;Rk)⊕E ≤
δ1
2 ε

α1 .

This completes the proof of the result. Continuity with respect to v follows from
Lemma 5.5.
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We will write v̄ = v̄(ε,v) for the element of E which is given by the previous
Lemma. Therefore, in order to complete the proof of the result it remains to find v
such that

v = v̄(ε,v).

This can be easily achieved by using Browder’s fixed point theorem in the ball of
radius δ1 εα1 in E . Observe that we do not apply a fixed point theorem for contraction
mapping to determine v since this would require to prove Lipshitz dependence of all
solutions with respect to v. Even though this Lipshitz dependence holds, it would
require some extra work and will complicate the notations. Therefore, we have chosen
to solve this last equation using some topological fixed point result instead of a fixed
point theorem for contraction mapping.
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