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Abstract. In this paper we present an extendible, block gluing Z3 shift of

finite type W el in which the topological entropy equals the L-projectional

entropy for a two-dimensional sublattice L � Z3, even so W el is not a full Z
extension of W el

L . In particular this example shows that Theorem 4.1 of [4]

does not generalize to r-dimensional sublattices L for r > 1.
Nevertheless we are able to reprove and extend the result about one-

dimensional sublattices for general Zd shifts – instead of shifts of finite type –

under the same mixing assumption as in [4] and by posing a stronger mixing
condition we also obtain the corresponding statement for higher-dimensional

sublattices.

1. Preliminaries

As multidimensional shifts are much more complicated objects than their one
dimensional analogues one approach to investigate their dynamical properties is
to look at lower dimensional subactions contained in them. Any Zd shift (X, Zd)
contains a large number of such lower dimensional symbolic systems given as projec-
tions of points in X onto sublattices L � Zd of smaller dimension r < d (forgetting
all symbols outside L). The obtained spaces XL := {x|L | x ∈ X} together with
the restricted shift action then naturally form a Zr shift (XL, L) and are called
the L-projective subdynamics of X. Studying those projections and their dynam-
ical properties gives a lot of information about the original system and helps in
understanding it.

Topological entropy distinguishes many non-conjugate shifts by measuring the
complexity of a shift space “counting” globally admissible finite configurations. In
the Z setting its value can easily be computed for a large class of shifts, including
all Z shifts of finite type and all Z sofic shifts. However in Zd symbolic dynamics for
d ≥ 2 this important and robust invariant is much less accessible (we do not have
any formula that works for a large class and due to certain undecidable questions [1]
a general algorithm able to compute the entropy of every Zd shift can not exist). To
remedy this shortcoming we may look at the various projective Z (Zr) subdynamics
inside a Zd shift. Their entropies still yield a good piece of information useful to
the classification of Zd systems.

Given a Zd shift X and a sublattice L � Zd the projectional entropy of X
with respect to L is simply the topological entropy of XL. The study of projec-
tional entropies was started in [4]. As described above at least for one dimensional
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sublattices L those entropies can often be calculated explicitly and provide useful
information about X. For example the topological entropy of X is bounded from
above by any projectional entropy, i.e. htop(XL) ≥ htop(X) for all Zd shifts X and
all sublattices L � Zd [4, Lemma 4.3].

A natural question asks when this inequality is sharp in the sense that there exists
a sublattice L such that equality occurs. In the presence of some uniform mixing
property on X there is a quiet strong condition equivalent for this to happen, namely
X has to be “degenerate” being a full Zd−r extension of the lower dimensional
projective Zr shift XL. For X being an extendible and block strongly irreducible
Z2 shift of finite type and L a one-dimensional sublattice this result was proved in
[4, Theorem 4.1].

The purpose of this paper is to construct an example shift of finite type showing
that Theorem 4.1 of [4] is no longer valid – contrary to an assertion made by
the authors – in the case of higher-dimensional sublattices. Nonetheless we get
the claimed result even for general Zd shifts instead of extendible shifts of finite
type by imposing a slightly stronger mixing condition. The statement about one-
dimensional sublattices also holds for general Zd shifts even in the original setting,
i.e. assuming only the weaker mixing property of [4].

We assume a basic familiarity with (multidimensional) symbolic dynamics, thus
here we just fix some notation. [5] provides a detailed introduction and may very
well serve as background reading material.

Every finite alphabet A gives rise to a d-dimensional full shift AZd

(d ∈ N),
a space equipped with the product topology of the discrete topology on A which
supports a natural Zd (shift) action σ : Zd × AZd → AZd

given by translation
(σ(~ı, x))~ = (σ~ı(x))~ := x~ı+~ for all ~ı,~ ∈ Zd, x ∈ AZd

.
Any closed σ-invariant subset X ⊆ AZd

together with the restricted shift action
σ|Zd×X constitutes a Zd (sub)shift. If X can be defined using a finite set P ⊆ AF

of allowed patterns on some finite non-empty shape F ( Zd, so that X = {x ∈
AZd | ∀~ı ∈ Zd : x|~ı+F ∈ P}, it is called a Zd shift of finite type (SFT).

In the following we will use LF (X) to denote the set of globally admissible pat-
terns {x|F | x ∈ X} appearing in points of X on some fixed finite subset F ( Zd

of coordinates. The language L(X) of a Zd shift X consisting of all finite patterns
that occur as subwords of elements of X then is the union of LF (X) over all F ( Zd

finite.
The topological entropy of a Zd shift X measures the exponential growth rate

of globally admissible patterns and is defined in complete analogy to the one-
dimensional setting as

htop(X) := lim
n→∞

log |LCn
(X)|

|Cn|

where Cn := {~ı ∈ Zd | ‖~ı ‖∞ ≤ n}. As usual the above limit exists by subadditivity
of the number of globally admissible patterns. Often we will write h(X) instead of
htop(X).

Following [4] we now define sublattices, projectional entropy and degeneracy of
Zd shifts: For d ∈ N and 1 ≤ r < d let U = {~u(1), . . . , ~u(r)},V = {~v(1), . . . , ~v(d−r)} (
Zd be two disjoint sets of integer vectors such that U ∪̇ V is a linearly independent
set whose integer span spanZ(U ∪̇ V) =

〈
~u(1), . . . , ~u(r), ~v(1), . . . , ~v(d−r)

〉
Z equals Zd.

Then L := spanZ(U) =
〈
~u(1), . . . , ~u(r)

〉
Z � Zd is called an r-dimensional sublattice
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of Zd. (Using ~u(1), . . . , ~u(r) as generators, L is isomorphic to Zr.) The set L′ :=
spanZ(V) =

〈
~v(1), . . . , ~v(d−r)

〉
Z constitutes a complementary (d − r)-dimensional

sublattice.
Let X be some Zd shift and L be any r-dimensional sublattice (1 ≤ r < d).

By projecting points of X onto L we obtain a Zr shift XL := {x|L | x ∈ X} on
which the Zr shift action is given as σ|L×XL

. Now the L-projectional entropy of
X is the topological entropy of the Zr shift XL and we denote this quantity by
hL(X) := htop(XL).

Given a Zd shift X and some r-dimensional sublattice L (1 ≤ r < d) we form
a new Zd shift by taking the Cartesian product of XL with itself along some com-
plementary sublattice L′: (XL)Zd−r

:=
∏

L′ XL = {(x(~w) ∈ XL)~w∈L′}. For every
~u ∈ L, ~v ∈ L′ the symbol at coordinate ~u + ~v ∈ Zd in the point (x(~w) ∈ XL)~w∈L′ is
given by (x(~v))~u. Note that by shift-invariance this construction is independent of
the complementary sublattice L′ we chose. Obviously X ⊆ (XL)Zd−r

. In the case
that X = (XL)Zd−r

, i.e. X is a full Zd−r extension of XL, we call X degenerate
(with respect to L).

Fixing ~u,~v ∈ Zd the finite set B := {~ı ∈ Zd | ∀ 1 ≤ k ≤ d : ~uk ≤ ~ık ≤ ~vk}
is called a (rectangular/cuboid) block and we will use the notation B = [~u,~v ] to
denote this set. Moreover we set ~1 ∈ Zd to be the vector with all its components
equal to 1, thus for n ∈ N0 we have [−n~1, n~1] = {~ı ∈ Zd | ‖~ı ‖∞ ≤ n}.

We say a Zd SFT X is extendible, if for any block B = [~v, ~w] ( Zd every allowed
(locally admissible) configuration P ∈ AB actually is in LB(X), i.e. every locally
valid pattern P on a block B can be extended to a point in X.

We finish this section by recalling three uniform mixing properties. The first one
considering only pairs of cubes [−n~1, n~1] comes from [4], whereas the second, more
homogeneous looking one that takes into account arbitrary blocks was introduced
in [2].

A Zd shift X is called block strongly irreducible [4] if there exists a constant
s ∈ N such that whenever ~ı,~ ∈ Zd and m,n ∈ N satisfy that the distance between
the blocks ~ı + [−m~1,m~1] and ~ + [−n~1, n~1] (with respect to the maximum-metric
on Zd) is larger than s any two patterns P1 ∈ L[−m~1,m~1](X), P2 ∈ L[−n~1,n~1](X)
can be put together, i.e. there exists a point x ∈ X with x|~ı+[−m~1,m~1] = P1 and
x|~+[−n~1,n~1] = P2.

A Zd shift X is called block gluing [2] if there exists a constant g ∈ N0 such that
whenever the two blocks B1 = [~u(1), ~v(1)], B2 = [~u(2), ~v(2)] ( Zd have a distance
larger than g any pair of patterns P1 ∈ LB1(X), P2 ∈ LB2(X) can be put together,
i.e. there exists a point x ∈ X with x|B1 = P1 and x|B2 = P2.

In fact it is not hard to show that even though defined seemingly different, both
notions actually coincide and we will use them interchangeably.

Lemma 1.1. A Zd shift is block strongly irreducible if and only if it is block gluing.

Proof. Use the fact that every Zd cuboid block can be seen as the corner of an
adequate Zd cube. In fact given a block strongly irreducibility constant s ∈ N, the
gluing constant g ∈ N0 can be chosen to equal s. The details of the argument are
left to the reader. �

The third mixing property – putting a strictly stronger condition on X – that
will be used in our results is the uniform filling property (UFP) introduced in [9].
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A Zd shift X has the UFP [9] if there exists a filling length l ∈ N0 such that when-
ever we take a point y ∈ X and a pattern P ∈ LB(X) on some block B = [~u,~v] ( Zd

there exists a point x ∈ X with x|B = P and x|Zd\[~u−l~1,~v+l~1] = y|Zd\[~u−l~1,~v+l~1].

2. Main results on projectional entropy

In [4] the following theorem about 2-dimensional SFTs was proved and it was
claimed [4, page 250] that the same result holds for general dimensions d > 2 and
any sublattice L � Zd.

Theorem 2.1 ([4, Theorem 4.1]). Let X be an extendible, block strongly irreducible
Z2 SFT and L � Z2 a 1-dimensional sublattice. Then htop(X) = hL(X) if and only
if X = (XL)Z.

However, to ensure a certain property of the projectional shift XL, the primordial
proof by Johnson, Kass and Madden uses Corollary 4.4.9 from [5], which is valid
for one-dimensional shifts only. Hence the generalization to higher-dimensional
sublattices is not obvious and in fact is not true in general: In Section 3 we construct
a Z3 SFT named the “electrical wire shift” that provides an example for which the
above theorem does not hold in the case of a two-dimensional sublattice.

Proposition 2.2. The electrical wire shift W el (see Section 3) is an extendible,
block strongly irreducible Z3 SFT such that htop(W el) = hL(W el) for the sublattice
L := 〈~e1, ~e2〉Z � Z3. Nevertheless W el ( (W el

L )Z.

We defer the proof of Proposition 2.2 to Section 3 where all necessary properties
of W el are shown during its construction.

Existence of the electrical wire shift shows that the argument of Johnson, Kass
and Madden used in the proof of their Theorem 4.1 does NOT extend to sublat-
tices of dimension 2 or higher without additional conditions. One possible such
assumption is a stronger mixing property like the UFP. Imposing this we obtain
the following general theorem. (Note that we do not assume our Zd shift to be
extendible or of finite type.)

Theorem 2.3. Let X be a Zd shift with the uniform filling property and let L � Zd

be any r-dimensional sublattice (1 ≤ r < d), then htop(X) = hL(X) if and only if
X = (XL)Zd−r

.

Proof. The implication “X = (XL)Zd−r

, thus htop(X) = hL(X)” is trivial.
For the converse we use that if X has the UFP, the same is true for the Cartesian

product (XL)Zd−r

. (Observe that we do not claim XL seen as a Zr shift has to have
the UFP though.)

To show this, suppose X has filling length l ∈ N and L′ � Zd is some (d − r)-
dimensional sublattice complementary to L. For any point y =

(
y(~w) ∈ XL

)
~w∈L′ ∈

(XL)Zd−r

we can take a family
(
ỹ(~w) ∈ X

)
~w∈L′ of preimages under the projection

onto L such that for all ~w ∈ L′ we have ỹ(~w)|~w+L = y(~w) = y|~w+L. Similarly for
any finite pattern P ∈ LB

(
(XL)Zd−r)

on some block B = [~u,~v] (~u,~v ∈ Zd) we
have a point z =

(
z(~w) ∈ XL

)
~w∈L′ ∈ (XL)Zd−r

realizing P , i.e. z|B = P . Again
we have a family of preimages

(
z̃(~w) ∈ X

)
~w∈L′ with z̃(~w)|(~w+L)∩B = z|(~w+L)∩B .

Applying the uniform filling property in X for every pair ỹ(~w), z̃(~w)|B with ~w ∈
L′ we get a family of points

(
x̃(~w) ∈ X

)
~w∈L′ such that x̃(~w)|B = z̃(~w)|B and
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x̃(~w)|Zd\[~u−l~1,~v+l~1] = ỹ(~w)|Zd\[~u−l~1,~v+l~1]. Now we can project each x̃(~w) onto the
coordinates in ~w + L to obtain a point x(~w) ∈ XL. (More precisely we first shift
x̃(~w) by ~w ∈ L′ � Zd, then project σ~w(x̃(~w)) ∈ X onto L and define x(~w) as the
image σ~w(x̃(~w))|L ∈ XL.) Putting all the x(~w) together we finally form a point
x =

(
x(~w) ∈ XL

)
~w∈L′ ∈ (XL)Zd−r

and we can easily check that x|B = P and

x|Zd\[~u−l~1,~v+l~1] = y|Zd\[~u−l~1,~v+l~1]. Thus l is also a filling length for (XL)Zd−r

.
It is known that the uniform filling property implies entropy-minimality. For a

detailed proof of this technical result see Lemma 2.7. Hence (XL)Zd−r

having the
UFP forces a strict entropy inequality htop(X) < htop

(
(XL)Zd−r)

= htop(XL) =
hL(X) whenever X ( (XL)Zd−r

is a proper subsystem. This finishes our proof. �

Remark 2.4. In [2, Appendix C] we defined the meandering streams shift and we
proved it to be a non-entropy-minimal Z2 SFT which is corner gluing in each of
the 4 corners (in NE-, NW -, SE-, SW -direction). Using a similar construction as
for the electrical wire shift, this example shows that we can not weaken the mixing
assumption in Theorem 2.3 to corner-gluing.

In the case of 1-dimensional sublattices we get the corresponding generalization
of Theorem 2.1 for (non-SFT) Zd shifts even assuming only the weaker (original)
mixing assumption used in [4]. The proof of the following theorem was found in
collaboration with R. Pavlov [7].

Theorem 2.5. Let X be a block gluing Zd shift and let L � Zd be any 1-dimensional
sublattice, then htop(X) = hL(X) if and only if X = (XL)Zd−1

.

Proof. Again one implication is trivial. For the converse let X be block gluing with
gluing constant g ∈ N0 and let L = 〈~w〉Z be generated by ~w ∈ Zd. We claim that
XL is block gluing as well.

For this let P1 ∈ LB1(XL) and P2 ∈ LB2(XL) be any two finite words on L-
intervals B1 = [u(1), v(1)] := {j ~w | u(1) ≤ j ≤ v(1)}, B2 = [u(2), v(2)] ( L. Thus we
have points y, z ∈ XL with y|B1 = P1, z|B2 = P2 and taking preimages of those gives
ỹ, z̃ ∈ X such that ỹ|L = y, z̃|L = z. Define Zd-blocks B̃i := [u(i) ~w, v(i) ~w] ( Zd

(i = 1, 2). If we assume v(1) + g < u(2) those blocks B̃1, B̃2 are at least a distance
g+1 apart from each other. Since X is block gluing there exists a point x̃ ∈ X with
x̃| eB1

= ỹ| eB1
and x̃| eB2

= z̃| eB2
. Projecting x̃ onto L we get a point x := x̃|L ∈ XL

which realizes the two patterns P1, P2 exactly at B1, B2 and hence g is also a gluing
constant for XL.

Now recall that for Z shifts to be block gluing is equivalent to having the spec-
ification property – for a definition see [3, Section 21]. Next we exploit that ex-
pansive dynamical systems with specification are intrinsically ergodic [3, Theorem
22.15]. Hence XL carries a unique measure of maximal entropy usually called the
Bowen measure µB ∈MMax(XL) which has full support [3, Theorem 22.10, Propo-
sition 22.17]. Then the product measure µ̃ := µZd−1

B ∈ MMax

(
(XL)Zd−1)

is the
unique maximal measure on the Cartesian product (XL)Zd−1

. Since we assume
htop(X) = hL(X) = htop

(
(XL)Zd−1)

, every measure ν ∈ MMax(X) of maximal
entropy for X is at the same time a measure of maximal entropy for (XL)Zd−1

.
Therefore ν = µ̃ and (XL)Zd−1

= supp(µ̃) = supp(ν) ⊆ X implies X = (XL)Zd−1

as claimed. �
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Remark 2.6. Observe that for sublattices L � Zd of dimension r ≥ 2 the Zr

shift XL in general does not inherit the block gluing property from X. For one
such example use the electrical wire shift W el and the 2-dimensional sublattice L
generated by ~e1 and ~e1+~e2. Choosing N ∈ N, a pattern of blanks along the diagonal
B1 := {n(~e1 + ~e2) | 0 ≤ n ≤ N} ( L (which is a rectangular block in the Z2 shift
W el

L ) forces blanks on all of {m~e1 + n~e2 | 0 ≤ m,n ≤ N} ( L. Therefore it never
can be put together with a non blank at B2 = {N~e1}, even though the distance
between the blocks B1 and B2 equals N and thus can be made larger than any
given gluing constant. So in the proof of Theorem 2.5 we implicitly had to use the
special geometry of a one-dimensional lattice and this is the reason why the result
is necessarily different from the one obtained for a higher dimensional sublattice.

The following technical fact about the topological entropy of subsystems of Zd

shifts having the UFP seems to be known at least for SFTs [8], though we are not
aware of an explicit demonstration in the literature. For completeness we include
a proof which also gives the result in the case of general Zd shifts.

Lemma 2.7. Every Zd shift X having the uniform filling property is entropy-
minimal, i.e. every non-empty proper subsystem of X has strictly smaller (topolog-
ical) entropy.

Proof. Let Y ( X be a proper subsystem of X. Hence there exists a pattern
P ∈ L(X) \ L(Y ), say of shape B = [~1, n~1] for some n ∈ N. Assume X has the
UFP with a filling length l ∈ N and put B̃ := [(1− l)~1, (n + l)~1].

We prove the following bound on the number of valid Y -patterns in comparison
to the number of valid X-patterns on a large hypercube C(N) := [~1, N(n + l)~1]
(N ∈ N).

(PB)
∣∣LC(N)(Y )

∣∣ ≤ (1− ∣∣L eB(X)
∣∣−1)Nd

·
∣∣LC(N)(X)

∣∣
For this let J = {~i | 1 ≤ i ≤ Nd} := {~ ∈ ~1 + (l + n)N0

d | ‖~ ‖∞ ≤ N(l + n)}
and for every subset I ⊆ J define

LI
C(N)(X) := {x|C(N) | x ∈ X ∧ ∀~ ∈ J \ I : x~+B 6= P} .

Note that L∅C(N)(X) = {x|C(N) | x ∈ X ∧ ∀~ ∈ J : x~+B 6= P} and LJ
C(N)(X) =

LC(N)(X). Now for every ~ı ∈ I ⊆ J we have

∣∣LI
C(N)(X)

∣∣ UFP
≤
∣∣L~ı+ eB(X)

∣∣ · ∣∣{x|C(N)

∣∣ x ∈ X ∧ x|C(N) ∈ LI
C(N)(X) ∧ x|~ı+B = P

}∣∣
and using L~ı+ eB(X) = L eB(X) we get a lower bound

(*)
∣∣{x|C(N)

∣∣ x ∈ X ∧ x|C(N) ∈ LI
C(N)(X) ∧ x|~ı+B = P

}∣∣
≥
∣∣L eB(X)

∣∣−1 ·
∣∣LI

C(N)(X)
∣∣
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Now we can estimate the number of valid Y -patterns on C(N).∣∣LC(N)(Y )
∣∣ ≤ ∣∣L∅C(N)(X)

∣∣ = ∣∣L{~1}C(N)(X) \
{
x|C(N)

∣∣ x ∈ X ∧ x|~1+B = P
}∣∣

=
∣∣L{~1}C(N)(X)

∣∣− ∣∣{x|C(N)

∣∣ x ∈ X ∧ x|C(N) ∈ L
{~1}
C(N)(X) ∧ x|~1+B = P

}∣∣
(*)

≤
(
1−

∣∣L eB(X)
∣∣−1) · ∣∣L{~1}C(N)(X)

∣∣ ≤ (1− ∣∣L eB(X)
∣∣−1)2 · ∣∣L{~1,~2}

C(N) (X)
∣∣

≤ . . . ≤
(
1−

∣∣L eB(X)
∣∣−1)|J| · ∣∣LJ

C(N)(X)
∣∣

=
(
1−

∣∣L eB(X)
∣∣−1)Nd

·
∣∣LC(N)(X)

∣∣
This proves (PB) and putting this bound into the definition of topological en-

tropy yields

htop(Y ) ≤ lim
N→∞

Nd log
(
1−

∣∣L eB(X)
∣∣−1)+ log

∣∣LC(N)(X)
∣∣

Nd(l + n)d

=
1

(l + n)d
log
(
1−

∣∣L eB(X)
∣∣−1)︸ ︷︷ ︸

<0

+htop(X) < htop(X).

Since Y ( X was arbitrary, X indeed is entropy-minimal. �

3. The construction of the electrical wire shift W el

We build W el in three steps: First we construct an extendible, block gluing Z2

SFT W which models a system of straight wires running in a Z2 plane. A wire may
branch into multiple subwires and those can unify again. However there are neither
electrical sources nor consumers (sinks), thus once present, a wire has to go on for-
ever without starting or ending at a certain coordinate in Z2. In a second step we
slightly modify W keeping the extendability and the block gluing property by inde-
pendently replacing the occurrences of a particular symbol with elements of a set of
k ≥ 2 distinct but completely interchangeable copies of this symbol. Doing this we
get a family of new Z2 SFTs W̃k which have larger entropy and in particular are no
longer entropy-minimal. Finally we put together Z2 configurations of W̃2 building
our electrical wire shift W el ( W̃ Z

2 . Again W el will be extendible and block gluing.
Points of W el projected onto the two-dimensional sublattice L := 〈~e1, ~e2〉Z � Z3

will look like arbitrary Z2 configurations of W̃2, but by imposing an “electrical”
condition along the ~e3-direction we exclude the possibility of having certain Z2

configurations of W̃2 sitting immediately next to each other. These restrictions
force W el to be a proper subsystem of the full Z extension W̃ Z

2 . Nevertheless we
can show that htop(W el) = htop(W̃2) = hL(W el).

Step 1 (The Z2 wire shift). The formal construction of the wire shift W involves
an alphabet AW of 7 symbols which we think of as square tiles of unit length as
displayed in Figure 1. We will refer to symbol 1 as the blank symbol and to symbols
2 up to 7 containing finite segments of wires (thicklines) as the wire symbols.

These symbols can be placed next to each other only in a way that conserves
wires: Precisely the symbols 2, 3, 4, 7 with a wire present at their left edge are
allowed to sit to the right of a symbol 2, 3, 4, 6 having a wire at its right edge and
exactly the symbols 4, 5, 6, 7 with a wire present on their lower edge can appear
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s s s s
1 2 3 4 5 6 7

Figure 1. The alphabet AW of the wire shift W

above a symbol 3, 5, 6, 7 having a wire on its upper edge. Analogously only symbols
1, 5, 6 are allowed to the right of 1, 5, 7 and one of 1, 2, 3 is possible above 1, 2, 4. Note
that by posing these nearest-neighbor restrictions as adjacency rules we define a
non-trivial, even strongly essential (i.e. all symbols occur and all allowed transitions
are realized in some point) Z2 SFT.

Lemma 3.1. The wire shift W is extendible and block gluing.

Proof. Since W is a nearest-neighbor SFT and the horizontal resp. vertical tran-
sitions only depend on the wires that are (are not) present at the vertical resp.
horizontal borders of each symbol we may consider only the configurations along
the boundaries of arbitrary blocks.

Let B = [~u,~v ] ( Z2 be a rectangular block in Z2 and P ∈ AB any locally
admissible configuration on B. We define a point w ∈ W as follows: w|B := P , and
w|~ı := 1 for all~ı ∈ Z2 \

(
[~u−~1, ~v+~1 ]∪(~u−~1+Z~e1)∪(~v+~1+Z~e1)

)
. The remaining

coordinates are filled with wire symbols according to Figure 2, where wire segments
drawn in gray may or may not be necessary, depending on the symbols along the
border of the configuration P . It is easily checked that this configuration w truly
is a point in W . Therefore we have extended an arbitrary valid pattern P on some
finite rectangle B to the whole of Z2, which proves W to be extendible.

r

r

r

r

r r r r r r r

r r r r r r r

r
r
r

r
r
r

P on B

Figure 2. Extending finite configurations P on rectangular blocks B

Similarly we may take two patterns P1 ∈ LB1(W ), P2 ∈ LB2(W ) on rectangular
blocks B1, B2 ( Z2 where we suppose B1, B2 are separated by a distance larger
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than 2. There are two cases: Either B1, B2 are separated by a distance > 2 along
direction ~e2 (suppose this is the vertical direction in Figure 2) or along direction
~e1. In the first case we surround each pattern Pi (i = 1, 2) with a wire as in Figure
2. Note that the ~e2-separation of at least two coordinates is large enough to do
this without causing any conflict in placing symbols. Hence – filling all remaining
coordinates with blanks – there is a valid point w ∈ W realizing both patterns,
i.e. w|B1 = P1 and w|B2 = P2. For the second case, B1, B2 being separated along
direction ~e1 by a distance > 2, we just have to rotate the picture in Figure 2 by 90
degrees, which can be done as the alphabet and the transition rules are invariant
under symbol rotation, and proceed as before. This proves W being block gluing
(at gap g = 2) as claimed. �

Remark 3.2. Since the wire shift W is block gluing and has an alphabet with
more than one symbol its topological entropy is strictly positive. Calculations
exploiting the geometry and the combinatorial structure of the transition matrices
(see Appendix A) give the rough estimate log 1.75087 < htop(W ) < log 1.96343.
(Although it would be nice to get better bounds on the entropy value for our
purposes this estimate will do.) Moreover every non-trivial continuous factor of
W is block gluing again and thus has to have strictly positive entropy, i.e. W has
topologically completely positive entropy.

Step 2 (Splitting the blank symbol). Next we modify W by splitting the blank
symbol into k ≥ 2 distinct, but completely interchangeable copies, thus the new
alphabet Ak := {1i | 1 ≤ i ≤ k} ∪̇ {2, 3, 4, 5, 6, 7} has (k + 6) symbols. The
adjacency rules concerning wire-conservation stay unchanged and it can be checked
that the above argument showing extendability and the block gluing property for
W (Lemma 3.1) does not at all depend on the number of distinct types of blank
symbols and thus just carries over. Hence we immediately get

Corollary 3.3. For k ≥ 2 the new Z2 SFTs W̃k again are extendible and block
gluing (at gap g = 2).

In addition we are able to calculate the topological entropy and show that W̃k

is no longer entropy-minimal.

Lemma 3.4. For every k ≥ 2 the topological entropy of W̃k equals log k. In
particular each W̃k contains a proper Z2 SFT subsystem of full entropy.

Proof. As there are no restrictions on the types of blank symbols that can be placed
next to each other horizontally or vertically, W̃k contains the full shift on its k blanks
as a subsystem and thus htop(W̃k) ≥ log k.

r r r r11 12
, , , ,

Figure 3. W̃2 has corner condition 2

To show the reversed inequality we look at the case k = 2 and check that W̃2

actually has corner condition 2, i.e. for any given locally admissible configuration
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on the coordinates ~ı + {(−1,−1), (−1, 0), (0,−1)} there are exactly two symbols
possible at coordinate~ı ∈ Z2 (see Figure 3). For k > 2, given a corner configuration
of the first type (left-most) in Figure 3 filling in one of the blanks yields precisely k
possibilities, whereas for corner configurations of the other three types the number
of possible symbols stays 2. Hence none of the cases give more than k choices for the
next symbol. Following from this any locally admissible configuration on the lower
left border R := {~ı ∈ Cn |~ı1 = −n ∨ ~ı2 = −n} of a big square Cn := [−n~1, n~1] for
n ∈ N allows for at most k4n2

ways to fill in the remaining 4n2 coordinates of Cn.
Summing over all configurations on R we get a coarse estimate∣∣LCn

(W̃k)
∣∣ ≤ ∑

LR(fWk)

k4n2
≤
∣∣Ak

∣∣|R| · k4n2
= (k + 6)4n+1 · k4n2

.

Putting this bound into the definition of topological entropy gives

htop(W̃k) = lim
n→∞

log
∣∣LCn

(W̃k)
∣∣∣∣Cn

∣∣ ≤ lim
n→∞

log
(
(k + 6)4n+1 · k4n2)
4n2 + 4n + 1

= log k .

So htop(W̃k) = log k as claimed and the full shift on the k blank symbols constitutes
a proper SFT subsystem of full entropy. �

Remark 3.5. We do not know whether the wire shift W from Step 1 itself is entropy-
minimal or not. However the above shows that there is a conceptual change in
entropy between the case of only one blank in W with htop(W ) > log 1 and the case
of k ≥ 2 blanks in W̃k with htop(W̃k) = log k. (The entropy jumps htop(W̃k+1) −
htop(W̃k) are exactly of size log

(
1 + 1

k

)
for all k ≥ 2, but we do not know these

differences for less than 2 blanks, nevertheless they are distinct.) So having (at least)
the two blanks is enough to compensate the entropy of the underlying shift W , thus
generating a proper subsystem of equal entropy. It seems that this phenomenon
does occur in many Zd shifts (see e.g. the meandering streams shift in [2]) where
we can eventually get non-entropy-minimal systems by independently splitting an
appropriate symbol (giving rise to a fixed point) or a couple of symbols (in the
presence of some periodic point seeing those symbols). However a priori it is not
obvious how many split-copies are actually needed for this transition to happen.

To see that none of the SFTs W̃k is actually topologically conjugate to a full
shift it suffices to count the fixed points of W̃k – there are k + 2.

Lemma 3.6. None of the modified wire shifts W̃k (k ≥ 2) is degenerate with respect
to any sublattice. The same is true for W .

Proof. Let L = 〈~u〉Z � Z2 be any 1-dimensional sublattice; then at least one of the
two standard base vectors ~e1, ~e2 ∈ Z2 does not belong to L. Fixing a complementary
sublattice L′ = 〈~v〉Z � Z2 we may assume that ~e1 = m~u + n~v (resp. ~e2 = m~u + n~v)
with m,n ∈ Z and n 6= 0. As

(
W̃k

)
L

contains points seeing an arbitrary symbol
of Ak at a particular coordinate in L we may pick w(1), w(2) ∈

(
W̃k

)
L

such that

w
(1)
~0

= 5 and w
(2)
m~u = 2. Now if W̃k were degenerate with respect to L, i.e. W̃k ={(

w(~ı) ∈
(
W̃k

)
L

)
~ı∈L′

}
, a family

(
w(~ı)

)
~ı∈L′ with w(~0) := w(1) and w(n~v) := w(2)

would give a valid point w :=
(
w(~ı)

)
~ı∈L′ ∈ W̃k. However this point w would see

a symbol 5 at the origin and a symbol 2 at coordinate ~e1 (resp. ~e2), which is not
possible due to the transition rules forcing wire conservation. �
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Looking at the projectional entropies of W = W̃1 and W̃k (k ≥ 2) we get that
the infimum of hL(W̃k) taken over all sublattices L � Z2 is attained exactly in the
two principal directions. Moreover this infimum is strictly bounded away from the
topological entropy htop(W̃k).

Lemma 3.7. The projectional entropy of W̃k (k ≥ 1) with respect to the hori-
zontal respectively vertical sublattice L1 = 〈~e1〉Z � Z2 resp. L2 = 〈~e2〉Z � Z2 is
hL1(W̃k) = hL2(W̃k) = log

(
2 + k

2 +
√

k2−4k+8
2

)
. For every other sublattice L � Z2

the projectional entropy is hL(W̃k) = log(k + 6).

Proof. For L1 the projection
(
W̃k

)
L1

is the 1-dimensional subshift given by the
nearest neighbor transition conditions that ensure wire conservation in the hor-
izontal direction, i.e. a sequence (wi)i∈Z ∈ Ak

Z of symbols is globally admis-
sible for W̃k (extendible), if and only if the wire is conserved in each subword
wi wi+1 (i ∈ Z). Thus the projectional entropy is given as the logarithm of the
Perron-eigenvalue of the corresponding transition matrix. A simple calculation
gives λP(k) = 2 + k

2 +
√

k2−4k+8
2 .

As the definition of the wire shifts W̃k is completely symmetric with respect to
the ~e1- and ~e2-direction the same holds for the sublattice L2.

For other sublattices L � Z2 different coordinates in L are never horizontally or
vertically adjacent. Thus we can freely place symbols on all coordinates in L. It is
then easy to check that any configuration on L can be extended obeying the rules
on wire conservation to get an admissible configuration on all of Z2 (recall Figure
3 to see that every corner can be filled). This gives a valid point of W̃k. Hence(
W̃k

)
L

= Ak
L and hL(W̃k) = log

∣∣Ak

∣∣. �

In the following we are going to build a Z3 SFT. For this we will take the ~e3-
direction as vertical, whereas the ~e1- and ~e2-axes are situated in a horizontal plane.
Therefore from now on “above” resp. “below” refers to an increase resp. decrease
of the ~e3-component of Z3 coordinates.

Step 3 (The Z3 electrical wire shift). Let L := 〈~e1, ~e2〉Z � Z3. To get our Z3 SFT
W el we stockpile infinitely many Z2 configurations of W̃2 as horizontal layers in a
point in W el, i.e. W el ⊆

{
w ∈ A2

Z3 ∣∣ ∀n ∈ Z : w|L+n~e3 ∈ W̃2

}
= W̃ Z

2 . In order to
get W el being a proper subset of W̃ Z

2 we pose the following “electrical” restriction
on the allowed vertical transitions: Whenever a wire symbol 2 resp. 5 appears at a
coordinate ~ı ∈ Z3 then at coordinates ~ı±~e3 we are only allowed to see an arbitrary
blank or a symbol 5 resp. 2. Moreover, if we have a symbol a ∈ {3, 4, 6, 7} at some
coordinate then there cannot be any wire symbol directly above or below; instead
we have to see one of the two blanks there. We can think of this condition as
forbidding parallel wires next to each other in the ~e3-direction, as they may cause
“interference” of signals sent along them. However note that wires may and will
cross on vertically adjacent horizontal layers (placing a symbol 2 above a symbol 5
or vice versa). As this extra condition is still given by nearest-neighbor restrictions,
W el ( W̃ Z

2 is a SFT.
The projection map πL : W el → W̃2, w 7→ w|L restricting points in W el to the

horizontal sublattice L is surjective (taking any W̃2-point as a configuration on L
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and filling Z3 \ L with blanks gives rise to a valid preimage in W el), so W el
L = W̃2

and then W el ( (W el
L )Z.

Lemma 3.8. W el is extendible and block gluing.

Proof. The demonstration is a slight elaboration of the proof we presented for
Lemma 3.1. Given a locally admissible pattern P ∈ A2

B on some finite 3-dimensional
cuboid B := [~u,~v ] ( Z3, to build a valid point w ∈ W el with w|B = P , we sur-
round every other (finite) horizontal layer B ∩ (L + n~e3) (with n ∈ 2Z ∩ [~u3, ~v3]
even) of P with a wire exactly as in Figure 2. For each remaining odd horizon-
tal layer H ′ := B ∩ (L + n~e3) with n ∈ (2Z + 1) ∩ [~u3, ~v3] fixed, we first enlarge
the rectangular pattern P |H′ to a locally admissible pattern on the larger rectan-
gle B′ := H ′ + [−~1, ~1 ] ( Z2 (adding a border of width 1 to H ′) by extending
all wires hitting the boundary of P |H′ by another straight segment, i.e. a symbol
2 or 5. If at a certain coordinate no wire segment hits the boundary of H ′, we
fill the adjacent coordinate in B′ \ H ′ with a blank. The four corners of B′ are
also filled with (arbitrary) blanks. After this step we still have a valid pattern
P ′ ∈ A2

B′
with P ′|H′ = P |H′ . As the complete pattern P is locally admissible

for W el we know that in the by now filled even layers above and below any of the
newly placed wire symbols in B′ \H ′ there can be no symbols 3, 4, 6, 7, as otherwise
the “electrical” restrictions on vertical adjacencies would be violated already inside
P . By construction of the surrounding wires on the horizontal layers with even
~e3-coordinates in the previous step, above and below a symbol 2 in the border of
B′ we always see a symbol 5 and above and below a symbol 5 there always is a
symbol 2. As those transitions are allowed vertically (crossing wires do not cause
electrical interference), we still have a valid configuration for W el. Now we can
surround the enlarged rectangular pattern P ′ by a wire and fill all remaining coor-
dinates in the horizontal layer L + n~e3 with blanks. Again there is no conflict at
the four coordinates where the wire surrounding P ′ crosses the wires already put
to surround our pattern P in the horizontal layers L + (n ± 1)~e3. As this can be
done independently for all choices of n ∈ (2Z + 1) ∩ [~u3, ~v3] we have constructed a
locally admissible configuration for W el on all of B + L ( Z3. Finally we may fill
the coordinates in Z3 \ (B + L) with blanks to obtain a valid point in W el.

A similar reasoning shows that W el is block gluing. Suppose we are given two
finite cuboids B1, B2 ( Z3 which are separated along the ~e3-direction by at least
distance 2. Extending arbitrary locally admissible patterns on B1, B2 can be done
as in the last paragraph and filling in the horizontal layer(s) between them as well
as all the remaining coordinates with blanks will produce a valid point in W el

which realizes both patterns. For B1, B2 having a distance larger than 4 along
the ~e2-direction we can do the same. Note that wiring all horizontal layers of our
patterns on B1, B2 does not need a space of more than 2 coordinates in direction
~e2, thus a separation of 4 symbols is sufficient for not causing any conflict. The
case of ~e1-separation by a distance larger than 4 is then immediate – just recall the
possibility of rotating Figure 2 by 90 degrees. Therefore our Z3 SFT W el is block
gluing (with gap g = 4). �

Since W el contains 14 coordinatewise periodic points of period (1, 1, 2) ∈ Z3,
i.e.

∣∣{w ∈ W el | σ((1, 1, 2), w) = w}
∣∣ = 14, it is not conjugate to a full shift (which

would contain |A|2 of those points).
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As before we can determine the precise value of the topological entropy: W el

being a subset of W̃ Z
2 forces htop(W el) ≤ htop(W̃ Z

2 ) = log 2 whereas W el still
containing the full shift on 2 (blank) symbols implies htop(W el) ≥ log 2, thus
htop(W el) = log 2 = hL(W el) and we have verified all the properties claimed in
Proposition 2.2.

Lemma 3.9. The electrical wire shift W el is not degenerate with respect to any
sublattice.

Proof. The argument is a simple generalization of the proof used for Lemma 3.6.
Details are left to the reader. �

Appendix A. Recursive structure of the transition matrices for
Z-strips of the wire shift W

In this final section we exhibit the interesting recursive structure that comes
with the transition matrices of the Z strip-shifts of the wire shift W = W̃1 and
its generalizations W̃k (k ≥ 2) which allows us to calculate the exact number of
globally admissible patterns on rectangular blocks for those systems.

Let k ∈ N be the number of blanks and fix a strip height l ∈ N. We define
the (horizontal) l-strip shift W̃

[l]
k :=

{
w|Z×[1,l]

∣∣ w ∈ W̃k

}
⊆ (Al

k)Z as the Z SFT
obtained by projecting points in W̃k to horizontal strips of height l. The same can
be done with vertical strips of width l, but as our situation is completely symmetric
it suffices to focus on the horizontal case.

As the transition rules for W and W̃k only consider wire conservation across the
borders of neighboring symbols, W̃

[l]
k can be presented as a matrix shift where as

states/indices we just take all possible wire signatures on a vertical border of height
l (it is clear that all configurations appear, thus the transition matrix for W̃

[l]
k has

size 2l × 2l). The entries in the transition matrix M
[l]
k ∈ Mat2l×2l(N0) then are

given by the number of symbols in (Ak)l – seen as column vectors – having the
corresponding wire signatures along their left and right borders respectively. Hence
we may think of M

[l]
k as an edge shift presentation of W̃

[l]
k .

For l = 1 the corresponding transition matrix M
[1]
k is given below. Distinguishing

between symbols in Ak which see resp. do not see a wire on their lower edge, M
[1]
k

can be decomposed into the sum of two matrices B
[1]
k and C

[1]
k where B

[1]
k describes

the possible transitions (symbols) which do not see a wire on their lower edge
whereas C

[1]
k takes care of the transitions having a wire hitting the bottom edge.

M
[1]
k =

(
|{1i | 1 ≤ i ≤ k} ∪̇ {5}| |{6}|

|{7}| |{2, 3} ∪̇ {4}|

)
=

=
(

k + 1 1
1 2 + 1

)
=
(

k 0
0 2

)
+
(

1 1
1 1

)
= B

[1]
k + C

[1]
k .

Given the matrices B
[l]
k and C

[l]
k we can inductively build matrices B

[l+1]
k and C

[l+1]
k

by investigating the geometry of vertical strips of height l + 1 broken up into the
bottom symbol plus the remaining strip of height l. Carefully analyzing this we
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find the following nice recursion that produces B
[l+1]
k , C

[l+1]
k from B

[l]
k and C

[l]
k :

(MR) B
[l+1]
k :=

(
k ·B[l]

k 0
0 B

[l]
k + C

[l]
k

)
, C

[l+1]
k :=

(
C

[l]
k C

[l]
k

C
[l]
k B

[l]
k

)
∀ l ∈ N0 .

Starting this recursion with B
[0]
k = C

[0]
k =

(
1
)

produces two sequences of symmetric
matrices

(
B

[l]
k

)
l∈N and

(
C

[l]
k

)
l∈N of size 2l × 2l whose sum gives the transition

matrices
(
M

[l]
k := B

[l]
k + C

[l]
k

)
l∈N of all l-strip shifts W̃

[l]
k .

Since W = W̃1 and W̃k (k ≥ 2) are extendible, every valid block of length
n ∈ N in W̃

[l]
k is a globally admissible block of size n × l for W̃k. (The converse

already holds because of the definition of the strip shifts W̃
[l]
k .) Hence we have∣∣∣L[(1,1),(n,l)](W̃k)

∣∣∣ =∑i,j

(
(M [l]

k )n
)
i,j

and this equality can be used to estimate the

topological entropy in the standard way [6]. For our block gluing Z2 wire shift W
with gluing constant g = 2 we have

∀ l, n ∈ N :
htop(W [l])

l + 2
≤ htop(W ) ≤ htop(W [l])

l
≤

log
∣∣L[(1,1),(n,l)](W )

∣∣
n · l

.

Remark A.1. Note that all wire shifts W̃k are in fact Markley-Paul SFTs (see [6]):
First each W̃k is extendible (recall Lemma 3.1 and Corollary 3.3) and moreover
Figure 3 together with the rotation invariance of the alphabet Ak and the defining
rules shows that all legal corners can be filled.

Questions A.2. Can we use the recursion (MR) to get a closed expression for
the topological entropy htop(W )? Can we use (MR) to calculate the number of
(coordinatewise) periodic points in W and W̃k (k ≥ 2)?
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