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The rheology of suspensions of cubic crystals in viscous liquids was investigated with a series of experiments,
consisting of the release of a fixed volume of fluid inside a horizontal channel. A Herschel–Bulkley rheology
was assumed and the consistency K and the shear rate exponent n of this constitutive equation were
calculated using the evolution of the flow front; the yield strength was calculated using the final shape of the
flow. A solid fraction by volume of ϕ=0–0.67 and a liquid viscosity range of 1–370 Pa s were used in the
experiments. Results show an increase in K when crystal content increases. The mixtures start to show a
shear thinning behaviour at ϕ~0.3 with n values going from approximately 1 (Newtonian behaviour) to 0.5
at ϕ=0.6. Yield strength was detected at the same ϕ as the beginning of shear thinning behaviour and
increases with a power-law relationship with crystal content. Suspensions with bimodal size distribution of
crystals show a dramatic decrease of the apparent viscosity compared to unimodal suspensions, especially at
the higher total crystal concentrations. The results were applied to theoretical 2-D flows on a slope, showing
large variations in velocity profiles for the same crystallinity depending on the rheology assumed. A case
study of a 2002 lava flow from Etna volcano demonstrates that measured lava flow speeds are similar to
speeds calculated from 2-D theory with rheologies of lava based on laboratory experiments and measured
lava crystal content. The results illustrate that the dynamics of lava flows depend on the crystal size
distribution in addition to the total crystal concentration.
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1. Introduction

An understanding of the rheology of magma is of importance in the
study of a number of geological issues, such as the ascent and
emplacement of magmas in the continental crust (Petford, 2003),
magma ascent dynamics inside a volcanic conduit (Melnik and Sparks,
1999; Papale, 2001) and the emplacement of lavas (e.g. Huppert,
1982a,b; Dragoni et al., 1986, 2005; Kerr and Lyman, 2007). Magma
rheology is also important for the forecasting of eruptions (Dingwell,
1996; Sparks, 2003). The main factors that affect the rheology of
magma are: the degree of polymerisation of themelt, which is directly
related to its chemical composition and temperature; the content,
shape and size distribution of crystals; and the content and size of
bubbles.

Lava flows are the most easily observed magma flows and provide
an opportunity to validate rheological models of magmas. Some early
models of lava flows used a Newtonian rheology (e.g. Huppert et al.,
1982; Takagi and Huppert, in press) to describe the evolution of lava
flows and domes, but the most widely used rheology has been the
Bingham model, which is characterized by a yield strength and a
plastic viscosity (e.g. Hulme, 1974; Dragoni et al., 1986; Ishihara et al.,
1990; Harris and Rowland, 2001). Despite numerous works mention-
ing the existence of a non-linear relationship between shear rate and
stress in crystal-bearing lavas (e.g. McBirney and Murase, 1984;
Pinkerton and Norton, 1995; Lavallée et al., 2007), there is little work
regarding the dynamics of flows with a non-linear rheology (e.g.
Balmforth and Craster, 2000) and their application to lava flows.

In this study, we have chosen a different approach in order to
investigate the rheology of crystal-bearing magmas. We carried out
analogue experiments that involved the sudden release of a fixed
volume of a suspension inside a horizontal channel. This kind of
system is sometimes described as a dam break, and has been used
before to study the dynamics of Newtonian fluids on a slope (Huppert,
1982b), to determine the rheology of foods (Bostwick consistometer,
Balmforth et al., 2007) and also to study the dynamics of analogue lava
flows with fluids of known rheology (Lyman et al., 2005; Lyman and
Kerr, 2006). Here we use the evolution of dam break flows, to infer the
rheology of suspensions in a viscous liquid.

We used sugar syrup (Tate & Lyle) as the liquid phase and sugar
crystals as the solid, noting that this system provides a good analogy
of phenocrysts suspended in a silicate melt. Numerous authors have
used syrup alone or with suspended crystals as analogue materials to
study the dynamics (Stasiuk et al., 1993) or the rheology (Hoover
et al., 2001; Soule and Cashman, 2005) of lava flows. Here, we
investigated the influence of the crystal content and grain size
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distribution on the rheology of suspensions and compare the results
with previous studies. In order to investigate the rheological
properties we measured the flow front evolution and the final shape
of the flow. We used the mathematical framework of Balmforth et al.
(2007) to interpret the data, adopting the Herschel–Bulkley rheolog-
ical model. We discuss the advantages of this method for the study of
the rheology of suspensions compared with others, such as rotational
rheometermeasurements. Finally, we consider the implications of our
results for the rheology of lava flows, using a simplified 2-D model to
investigate the effects of different rheological models of suspensions
on the flow of lava. We validated our results using data from lava
flows of the 2002 Etna volcano eruption.

2. Rheological models for suspensions

Einstein (1906) found that for a very dilute suspension of spheres,
the relative viscosity can be calculated as:

μr = 1 + Bsϕð Þ; ð1Þ

where μr is the relative viscosity (the ratio between the viscosity of the
suspension and the viscosity of the suspending liquid), ϕ is the
volume concentration of particles and Bs is a constant with a value of
2.5 for spheres. Roscoe (1952) extended the relationship to higher
concentrations of spheres in the form of

μr = 1− ϕ
ϕm

� �−2:5
; ð2Þ

where ϕm is the maximum packing fraction (i.e. the maximum
concentration that can be attained by the solids). A generalized form
of Eq. (2) was given by Krieger and Dougherty (1959):

μr = 1− ϕ
ϕm

� �−Beϕm

; ð3Þ

where Be is a constant sometimes called the “Einstein coefficient”
(Costa, 2005). The last two equations converge to the Einstein
relationship (Eq. (1)) for low concentrations and asymptote to infinite
viscosity when ϕ approaches ϕm.

The Einstein–Roscoe formulation (Eq. (2)) has been widely used
for volcanological and petrological applications. For example, Shaw
(1969) used it to explain the changes in viscosity due to crystal
content of basalts. Marsh (1981) applied the formula for the
calculation of viscosities of magmas, using a value of 0.6 for ϕm.
Pinkerton and Stevenson (1992) used the equation for lavas with low
crystals contents. Lejeune and Richet (1995) noted that their
laboratorymeasurements of viscosity of silicate melts with suspended
crystals agree with the Eq. (2) for crystal concentrations up to about
40% by volume. Many others studies have used the equation for
mathematical modelling of magma chamber or conduit flow dynam-
ics. (e.g. Huppert and Sparks, 1988; Papale et al., 1998).

Although widely applied, a limitation of the rheological relation-
ships discussed above (Eq. (1)–(3)) is that they do not take into
account the onset of non-Newtonian effects such as yield strength and
strain rate-dependent viscosity, which may be significant at high
crystal (or bubble) concentrations (Pinkerton and Norton, 1995; Costa
et al., 2009). Furthermore, these constitutive equations do not
consider the effects of polymodal size distributions of particles of
porphyritic magmas.

2.1. Non-Newtonian rheology

Although silicate melts are Newtonian for a range of shear rates
(Costa et al., 2009), many studies suggest that with sufficient crystals,
magmas become non-Newtonian. Most studies of the rheology of
magmas have identified a shear thinning behaviour (decrease in the
viscosity with higher strain rates) with increasing crystal concentra-
tion. Pinkerton and Stevenson (1992) presented empirical formulae
for different strain rate ranges, showing that, for low strain rates,
Eq. (2) is still valid for laboratory experiments on lavas of a range of
compositions. Pinkerton and Norton (1995) found that Etna lavas
showed a shear thinning behaviour with a decrease in temperature
and increase in crystal concentration, with n decreasing from 1 to
0.46. Lavallée et al. (2007) found that the rheology of several samples
of high crystalline lavas (crystal volume fraction of 0.5–0.8)
determined in the laboratory fit a power law equation with
n=0.51. Costa et al. (2009) presented an empirical relationship that
incorporated the effects of strain rate on the viscosity of suspensions.

Yield strength, which is the stress below-which there is effectively
no flow, is another potential non-Newtonian property of crystal-rich
magmas. Robson (1967) proposed that crystal-rich lavas possess a
yield strength, based on the data of Walker (1967) on the thickness of
lavas on Etna volcano, suggesting a maximum yield strength of about
2.2×104 Pa. Hulme (1974) attributed the formation of levées on lava
flows to yield strength and developed a theoretical formulation to
estimate the yield strength using the final dimensions of the lava.
Sparks et al. (1976) reported values of yield strength in the range of
102–103 Pa for Etnean lavas using the Hulme theory. Petford and
Koenders (1998) summarized the values of yield strength obtained
for lavas in different studies with a range of 102–106 Pa for different
compositions and crystallinities.

The parameterization of the factors involved in controlling yield
strength has proved to be a difficult task and is still far from being
resolved. Hulme (1974) suggested a linear relationship between yield
strength and overall silica content, but, as pointed out by McBirney
and Murase (1984), without taking into consideration the effects of
temperature or crystal content. Diverse formulas of yield strength
versus ϕ have been given by different authors (e.g. Gay et al., 1969;
Ryerson et al., 1988; Dragoni and Tallarico, 1994; Zhou et al., 1995),
but the computed values can be very different (see Fig. 6 in
Section 4.3).

Kerr and Lister (1991) argued that yield strength can develop only
when a touching framework of crystals forms, so that only mixtures
with crystal concentration higher than about 50% for spherical
mixtures can show a yield strength. They also mentioned that if the
crystals are elongated they can connect at much lower values of ϕ.
They suggested that the yield strengths reported by others authors
could be due to artefacts due to the extrapolation of the rheological
curve (stress vs strain rate) to zero stress. Saar et al. (2001) showed
with computer simulations that crystal networks can be formed at ϕ
as low as ~0.2, depending on the crystal shape and shear rate. Barnes
(1999) reviewed the concept of yield strength in general and
postulated that it does not exist, in the sense that there is no stress
limit under which there is no deformation, instead there is a huge
increase in the viscosity close to zero stress. However, Barnes (1999)
also pointed out that the concept of yield strength has practical value
if the stress and strain rate ranges are clearly specified. Lavallée et al.
(2007) and Caricchi et al. (2007) reported no yield strength for highly
crystalline lavas (50–80% by volume). However, the very high
(~106 Pa) applied pressures would not enable yield strengths
b106 Pa to be detected, and most estimates from lava flow and
dome morphologies are considerably lower than this (Petford and
Koenders, 1998; Lyman et al., 2004).

2.2. Polymodal suspensions

Many magmas have polymodal size-distributions of crystals,
which could affect rheology as a function of crystal content because
small crystals may be able to pass through gaps between larger
crystals. In equations such as Eqs. (2) and (3) it has long been
recognized that crystal size distribution and shape are likely to affect
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the value of ϕm (e.g. Mcbirney and Murase, 1984). Chong et al. (1971)
performed experiments with bimodal suspensions, showing a strong
dependence of viscosity on the fine particle content and the ratio
between the sizes of the particles. Chang and Powell (1993, 1994)
made numerical simulations and laboratory measurements with
bimodal suspensions, showing that the lowest values for viscosity
(and consequently the highest values of ϕm) are reached for a fine
content of near 0.25 and a size ratio between small and large particles
of 10:1.

2.3. Rheological model used

In this study we characterize the rheology of the suspensions with
Herschel and Bulkley (1926) model,

τ = τy + K γ̇n
; ð4Þ

where τ is the applied stress, γ̇ is the strain rate, n is a flow index, K is
the consistency and is a measure of effective viscosity and τy is the
yield strength. This equation takes into account changes in viscosity
(τ/γ)̇ with strain rate. It reduces to the Newtonian case when τy=0
and n=1, and to the Binghammodel when n=1 and τyN0. If nN1 the
fluid rheology is shear thickening, and if nb1 it is shear thinning.

3. Theoretical background of 2D gravity currents

Here, we present the method and mathematical background
elaborated by Balmforth et al. (2007) used to determine the fluids
rheology from dam break flows. The experimental setup consisted of a
horizontal channel where the studied fluid is held, with an initial
length L and heightH, behind a removablewall (Fig. 1a). Once thewall
is lifted, the position of the front of the flow against time is recorded.

We assumed a rheology in the form of Eq. (4). The evolution of the
length of the flow is of the form

x = C⁎tb; ð5Þ

where x is the front position at time t. The value of the constant C is
then used to determine the parameter K in Eq. (4), while the exponent
b depends on the exponent n in Eq. (4). Finally, the yield strength is
obtained using the final shape of the flow, that is, the final height as a
function of x.

For dam breaks, three regimes can be recognized through
theoretical analysis. At the beginning the flow is dominated by inertia
and the velocity is proportional to

ffiffiffiffiffiffi
gH

p
and consequently x∝ t. After a

transition time (when t~H2/μk for the Newtonian case, where μk is the
kinematic viscosity and it is viscosity/density) the viscous forces
Fig. 1. a) Experimental setup.H and L are the initial height and length of the fluid inside the ch
experiments.
become the dominant retarding force and the front position is in the
form x∝ tn/(n+1). For the long time regime, there is the additional
condition that the product length⁎height of the flow can be
approximated as a constant and the front evolution is in the form
x∝ tn/(2n+3). For the Newtonian case the relationships reduce to x∝ t½

for short times and x∝ t1/5 for long times (Balmforth et al., 2007).
The yield strength and surface tension effects are assumed to be

small enough to be neglected at the start of the experiments. Surface
tension begins to be important only when the flow is very thin (a
couple of mm), and yield strength affects the evolution of the flow
when it has slowed down enough, so that τy~Kγn.. It can be shown
that the equation for the front position for a fluid inside a channel in
the short time regime can be written as:

x tð Þ = AH
n + 2
n + 1 ρ

g
K

� � 1
n + 1t

n
n + 1; ð6Þ

where A is a constant, ρ is density and g is gravity. For the Newtonian
case this reduces to:

x tð Þ = AnH
3
2

ffiffiffiffiffiffi
ρg
μ

r
t1=2; ð7Þ

where μ is the viscosity and An=0.2845. In this way, n can be deduced
from the time exponent and K can be extracted if the constant A is
known.

For short times, A is a function of n in Eq. (6). Some values of A as
function of n were calculated from 2D numerical simulations carried
out by Balmforth et al. (2007) without considering side walls, and it
can be approximated by:

A = 0:0594 ln nð Þ + An: ð8Þ

To calculate the yield strength, Balmforth et al. (2007) applied a
scaled yield strength or Bingham number,

B =
τyL

ρgH2 : ð9Þ

Using mathematical analysis they arrived to the following
relationship for infinite times (final profile of the flow):

h∞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Bð Þ2=3−2Bx

q
if B b 1 = 3; ð10Þ
annel before the release of the gate. b) Microscopic picture of sugar particles used in the



Fig. 2. Dimensionless distance versus time for different experiments using Newtonian
fluids with viscosities of 1, 75 and 225 Pa s. The data collapse for a value of A=0.225 for
short time solutions.
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for full slumps or

h∞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6B + 1−6Bx

3

� �s
1− 3Bð Þ−1 ≤ x≤ 1 + 6Bð Þ−1

1 0 b x b 1− 3Bð Þ−1

if B N 1 = 3;

8>><
>>:

ð11Þ

for partial slumps, where h∞ is the final height of the flow at a given
position. Therefore, knowing the final length (where h=0) and
profile of the flow, the B number (and consequently, the yield
strength) can be calculated.

Additional axisymmetric experiments were performed to measure
the yield strength, in a geometry unaffected by sidewalls. These
experiments consisted in the release of a fixed volume of the mixture
in a flat surface. The final radius R and maximum height H were
measured in order to calculate the yield strength using the following
formula (Nye, 1952):

τy = 0:5gρ
R2

H
: ð12Þ

4. Experiments

4.1. Materials used

The dam break experiments were carried out in a perspex channel,
5 cm wide, 10 cm in height and 80 cm long. A fixed volume of liquid
with suspended crystals is contained within the channel behind a
gate. The gate is then lifted and the material is allowed to flow
horizontally. The evolution of the front flow is recorded with a video
camera. The suspending fluid consisted of golden syrup (Tate & Lyle)
with a density of 1386 kg/m3, which in some experiments was diluted
by 5 or 10% by weight of water. The viscosity of the syrup was
measured using a Haake V5 rotational rheometer and is strongly
dependant on temperature, with an approximate viscosity of 78 Pa s
at 20 °C. Temperature was measured for each experiment to account
for its effect on viscosity.

The particles consisted of crystals of white sugar with a density of
1586 kg/m3. The particles were sieved in the range 0.5–1 mm for
most of the experiments (Fig. 1b), except the bimodal grain size
population experiments, where particles in the range of 0.1–0.2 mm
and 1–1.5 mm were used. The shape of the particles is approximately
cubic, with a length–width ratio range between 1 and 2, with a mean
value close to 1. The volume concentration of crystals ranged from 0
to 0.67.

Examination of the mixtures under a microscope established that
there were no observable changes in shapes or size or number of
crystals over periods of up to 2½days, much longer than the scale of
time of the experiments (~1 h).

4.2. Calibration

In this study we use the short time solution (Eq. (6)) because it is
the only regime that can be identified clearly over the time scale of the
experiments. A first series of experiments was carried out with
different Newtonian fluids inside a channel 5 cm wide, with a known
viscosity measured with a rotational rheometer, in order to find the
value of A. The data collapse onto a single curve when length and time
are plotted in non-dimensional forms (Balmforth et al., 2007) as X′
and T′ as:

X′ =
x
L
; ð13Þ

T ′ =
t
T*

;whereT* =
L
H

KL
ρgH2

� �
1
n: ð14Þ
The slope of the curve is the value of the constant A and a value of
A=0.225 was found (Fig. 2). This is slightly less than the value of An

for 2D Newtonian flow, due to the retarding effects of sidewalls in the
experiments. The time range (or an equivalent distance range) over
which the calculations were done, was chosen based in Balmforth
et al. (2007). Their data show that the short time solution is valid until
around a dimensionless time of 4. The theoretical transition time
between the inertia dominated regime and the short time regime is
H2/μk but was chosen specifically for each experiment based in the
initial conditions such as initial height, crystal concentration and
liquid viscosity, as in our experiments the inertia regime appears to
dominate for some time after the theoretical time value.

Another series of experiments were carried out to determine the
dependence of A on channel width, using golden syrup and xanthan
gum and widths from 2.5 to 19 cm. A simple way to model the
relationship is assuming that the constant A depends on the wall
effects and can be described as the wetted perimeter per unit area:

WC = W + 2Cð Þ; ð15Þ

whereW is the channel width and C is a constant to be determined by
fitting the experiments data with Newtonian flows. Normalizing by
0.2845, for large W, the experiments give a very good fit (within a 5%
of the expected values, for widths greater than 2.5 cm) to Eq. (15).
Thus, using Eq. (8), the value of A can be described by an empirical
function of channel width, W (cm), and exponent n of the fluid in the
form:

A =
W

W + 1:2
n

" #
0:0594 ln nð Þ + Anð Þ; ð16Þ

WithW and the constant 1.2 in cm. While Eq. (16) works for fluids
with n between 1 and 0.2 in channels with a width between 2.5 and
19 cm, it has yet to be verified beyond conditions of our experiments.

Analysis of fluid properties from rheometer data generally assume
that there is no slip near fluid–wall interfaces. According to Barnes
(1995) slip occurs due to the displacement of particles away from the
wall boundaries in two phase systems, mainly because of hydrody-
namic and viscoelastic forces in a very thin layer. A common
technique to minimize this effect is to use a rough wall, ideally
made with the same type of particles as the suspension. A rough base,
made of cardboard with crystals glued to it, was put in the channel to
test these effects in our experiments. For syrup up to ϕ=0.27, the
rough base has little effect and the calculated n and K are within error
margins (Fig. 3). In contrast, for syrup with ϕ=0.47 and 0.55 the

image of Fig.�2


Fig. 3. Values of n and K of Eq. (4) found in the experiments using rough and smooth
bases. Diamonds are values using a rough base. Open squares are values using a smooth
base. Triangles are experiments using diluted syrup (1.5 Pa s). Filled triangle is a rough
base experiment and open triangle is with a smooth base. Also plotted is the
measurement with a rotational rheometer. Numbers indicate the solid concentration of
the experiments.

Fig. 4. a) Calculated K versus crystal content for different liquid viscosities. b) K
normalized by the initial viscosity raised to n (note that K has varying dimensions). The
fit is given by a modified Einstein–Roscoe equation (Eq. 17).

Fig. 5. Calculated n versus crystal content for different liquid viscosities. The line is the
plot of Eq. (19).

475A. Castruccio et al. / Earth and Planetary Science Letters 297 (2010) 471–480
differences are noticeable (40% to 250% in the values of n and K). The
experimental results also show that the rotational rheometer
measurements done on suspensions with high crystal content are
closer to experiments with a smooth base, suggesting that these
measurements were also affected by wall slip. With the exception of
Fig. (3), all data presented in figures or tables were collected with a
rough base.

4.3. Results

The calculated values for the parameters K, n and τy of the
Herschel–Bulkley model (Eq. (4)) for experiments with unimodal size
distribution are plotted in Figs. 4–6. The parameters used in the
experiments are specified in Table 2S (Supplementary material).
Table 3S (Supplementary material) shows additional experiments
done to calculate the yield strength using different setups (axysim-
metric) and conditions (different liquid viscosities).

The consistency K increases as the particle concentration ϕ
increases (Fig. 4). The trends are different depending on the water
concentration of the syrup (Fig. 4a). In Fig. 4b, the consistency has
been normalized by the suspending liquid viscosity (K0). It should be
noted that the dimensions of K depend on n, which in turn depends on
ϕ. The data are well fitted by using a modified version of the Einstein–
Roscoe Eq. (17), using consistency instead of viscosity.

The value of n remains close to 1 until about ϕ=0.27, above which
it starts to decrease to 0.5 at ϕ=0.56 (Fig. 5).

In Fig. 6 the relationship between yield strength and particle
concentration is plotted. The calculated values are similar for different
liquid viscosities used; except for liquid viscosities of 1.5 Pa s which
are at least 1 order of magnitude lower as discussed in the next
section. The best fitting of the data is given by a power law fit in the
form of Eq. (18). Different relationships between yield strength and
crystal concentration proposed by several authors are also plotted in
Fig. 6. Of these, the formulation of Zhou et al. (1995) fits our data best,
but it does not fit well values above ϕ=0.53.

In summary, we have obtained the following parameterization of
the values of K, n and τy of the Herschel–Bulkley equation as a function
of particle concentration ϕ:

K ϕð Þ = K0 1− ϕ
ϕm

� �−2:3
; ð17Þ

τy ϕð Þ = 0 ϕ≤ϕc

D ϕ−ϕcð Þ8 ϕ N ϕc
;

�
ð18Þ
n ϕð Þ =
1 ϕ≤ϕc

1 + 1:3
ϕc−ϕ
ϕm

� �
ϕ N ϕc

;

8><
>: ð19Þ

where ϕc is the particle concentration when shear thinning appears
(ϕc=0.27), and was obtained from Fig. 5. ϕm=0.6 was obtained by
fitting the apparent viscosity of the mixtures with different particle

image of Fig.�3
image of Fig.�4
image of Fig.�5


Fig. 6. Calculated yield strength versus crystal concentrations. The relationships given by
different authors and a power law relationship (Eq. (18)) are also plotted. Diamond =
syrup (75 Pa s); square = diluted syrup (5% water 15 Pa s); triangle = diluted syrup
(10% water, 1.5 Pa s); five-point star = syrup (10 °C, 370 Pa s); six-point star = syrup
(axisymmetric, 75 Pa s); × = syrup (axisimmetric, 10 °C, 370 Pa s); circle = diluted
syrup (axisimmetric, 10% water, 1.5 Pa s).

Fig. 8. Relative viscosity versus crystal content. The unimodal experiments can be fitted
with the Einstein–Roscoe equation, using a value of ϕm=0.6. The bimodal experiments
(50% fine by volume) also can be fitted with the Einstein–Roscoe equation, but with a
value of ϕm=0.66. The inset box shows the maximum packing fraction versus fine
content, calculated by fitting the apparent viscosity with the Einstein–Roscoe equation
(filled squares). For comparison, data from Sudduth (1993) for spherical particles are
also presented (filled diamonds).
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concentrations with the Einstein–Roscoe equation. D is a constant
with a value of 5×106 Pa.

The results of the experiments with a bimodal crystal size
distribution are plotted in Fig. 7. The parameters used in the
experiments are in Table 4S (Supplementary material). Two end
members were used: fine crystals (sieved to 0.2–0.5 or 0.1–0.2 mm)
and coarse crystals (1.5 mm). The experiments were carried out at
three different total concentrations: 0.27, 0.47 and 0.56. For low
concentrations (ϕ=0.27) the effect of the size distribution on the
apparent relative viscosity (defined as the viscosity at the strain rate
of the experiment with respect to the liquid viscosity) is small and the
values obtained for different size distributions are similar. For higher
concentrations (ϕ=0.47) the effects are noticeable and more marked
when the size ratio between particles is higher. The apparent relative
viscosity reaches a minimum when the size distribution is 50% of fine
Fig. 7. Relative viscosity for different particle size distributions between two
populations (fine and coarse). Numbers indicate total crystal content. Diamonds are
experiments with a size ratio of particles of 5:1. Squares are experiments with a size
ratio of 10:1. The curves show the calculated variation of viscosity using the Einstein–
Roscoe equation, assuming the effective fluid phase is the syrup+fine crystals and the
particles are the coarse crystals.
particles. For concentrations of ϕ=0.56 the difference in the apparent
relative viscosity is more than an order of magnitude between
unimodal (100% of fine or coarse particles) and bimodal (50% of fines)
distributions. As discussed in Section 5, the results can be approxi-
mately described with effective medium theory assuming that the
“fluid phase” is made of syrup plus the fine crystals and the solid
phase by the coarse crystals (plotted lines in Fig. 7) or, alternatively,
using different values for ϕm in the Einstein–Roscoe equation (Fig. 8).

Fig. 8 is a plot of the apparent Newtonian viscosity versus the
crystal content. For the experiments with a non-Newtonian rheology,
the apparent viscosity was calculated with the best fit of the
experimental data (front position vs time) with a “Newtonian”
curve (x~ t1/2). Despite evidence for non-Newtonian behaviour, the
data are very well fitted by the Einstein–Roscoe Eq. (2) with the
widely used value of 0.6 for ϕm. The apparent viscosities for bimodal
distribution (50% of fines) are also plotted in Fig. 8. The data are fitted
by the Einstein–Roscoe equation, but with a value of ϕm=0.66.

5. Discussion

In this section we compare our results with those obtained by
other methods, and then discuss some implications focusing on
volcanic processes.

5.1. Comparison of the results

Our results are consistent with others studies that used theoretical
analysis, numerical simulations and laboratory measurements and
show that non Newtonian behaviour initiates with the appearance of
shear thinning (nb1 in Eq. (8)) and yield strength near a crystal
volume fraction of 0.27–0.35. These results are similar compared with
others studies onmagma rheology. For example a limit of 0.25 is given
by Pinkerton and Norton (1995) and values of 0.22–0.285 are given by
Saar et al. (2001) for cubes and spheres particles. Our results show a
decrease of the n exponent from nearly 1 for mixtures with less than
ϕ=0.27 of crystals, to n=0.5 for ϕ=0.56. These results confirm that
the threshold for solid concentration on the onset of shear thinning
and the magnitude of it are general conditions of the deformation of
suspensions.

The onset of yield strength occurs in our experiments for values
of ϕ greater than 0.36. Saar et al. (2001) inferred in numerical

image of Fig.�6
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simulations a lower bound for the onset of yield strength at ϕ=0.22–
0.28 for spherical and cubical particles. These differences can be
attributed to the fact that very small yield strengths are difficult to
detect in our experiments. A power law fit and the formula given by
Zhou et al. (1995) fit our yield strength data better than the others
(Fig. 6), but it was difficult to measure the yield strength at both high
and low concentrations in our experiments. At low crystal concentra-
tions, the final length of the flow exceeds the channel length as the
fluid is still in motion. Also, the surface tension of the flow can affect
the results. At the higher crystal concentrations (ϕN0.6) movement
was undetectable by our methods.

For liquid viscosities in the range 10–370 Pa s, the yield strength of
the suspensions are not significantly affected by the suspending liquid
viscosity. However, the measured yield strength for experiments with
the lowest liquid viscosities (~1 Pa s) was lower than the rest of the
experiments. We have not found any earlier work that address the
variation of yield strength with liquid viscosity. It is not clear whether
yield strength really is affected by the liquid viscosity or whether the
apparent low yield strength for the ~1 Pa s liquid suspensions is an
artefact of another process. We have considered the effect of low liquid
viscosity on segregation of particles, greater inertia of the flow, and
dissolution of particles, but none of these seem to account for the
discrepancy. Segregation of particles becomes a factor after a couple of
minutes in theworst scenario (big particles and low fluid viscosity), but
most of thefinal length of theflowswith lowfluid viscosity is reached in
a couple of seconds. A greater inertia would be reflected in the regimes
observed in a distance versus time graph, which is not the case.
Dissolution of particles was not observed over periods of time greater
than the experiments. Further experiments are needed with a wider
range of liquid viscosities in order to investigate this issue in detail.

Fig. 8 shows a very good fit of the apparent viscosity of the mixtures
versus the particle concentration with the Einstein–Roscoe equation,
using a value of 0.6 for ϕm. This value has been determined by
experiments and used in magma physics and dynamics (e.g. Marsh,
1981; Pinkerton and Stevenson, 1992; Lejeune and Richet, 1995). This is
a striking result, because the data are verywellfitted even for values ofϕ
greater than 0.3 when non-Newtonian properties appear. A possible
explanation is that the values of the strain rates in the experiments are
small enough that it is possible to approximate this portion of the
rheological curves by a Newtonian line, as discussed by Lenk (1967),
Chester et al. (1985) and Pinkerton and Stevenson (1992).

The results of the bimodal experiments are also in good agreement
with previous studies with spheres. Chong et al. (1971) found that the
minimum values for the relative viscosity are reached in the range of
volume fractions of 0.25–0.35 of fine spherical particles, with little
variation in relative viscosity for fine fractions of 0.3–0.5 of fines and
rapid variations at higher or lower fine volume fractions. The
observation of a higher variation of viscosity with larger particle size
difference (Chong et al., 1971; Chang and Powell, 1994; Stickel and
Powell, 2005) is also observed in our experiments. Our experimental
system is closely analogous in terms of particle shape to magmatic
suspensions, but qualitatively the rheology is similar to spheres.

Our results can be explained by changes in ϕm when particle size
distribution is changed (Fig. 8) as discussed in previous works (e.g.
Sudduth, 1993). Themaximum value of ϕm is 0.66 and is reached with
fine crystals making up half the volume of crystals. Sudduth (1993)
discussed that values up to 0.86 for ϕm can be reached by bimodal
suspensions of spherical particles with a size ratio up to 16:1. The
lower ϕm for our experiments could be due to the different shape of
the crystals used in our experiments (cubic), with a less efficient
packing than spheres when randomly oriented. An alternative
framework to explain our results is effective medium theory,
assuming that the syrup and small crystals form the fluid phase
with a viscosity calculated with the Einstein–Roscoe equation and the
big crystals are the solid fraction. Fig. 7 shows a good agreement with
this theory.
5.2. Comparison with other methods

Our method is inexpensive; the only materials used are a channel
with a gate and a video camera to record the flow. Other advantages
are: the wall slip problem for standard rotational rheometry on
multiphase mixtures can be solved simply by using a roughened
surface; and there is less restriction on the size of particles. In most
rotational rheometers (e.g. parallel plate, cone and plate), the
particle size is limited by the requirement that the particles be
considerably smaller than the separation of the plates, usually
measured in hundred of microns. In our setup, we can use particles
sized up to a few millimetres, with the upper limit due to the
sedimentation velocity, which depends on the densities of the
particles and the liquid viscosity. The experimental approach opens
up investigations of coarse suspensions and wide size distributions,
provided that particles do not sink or float on the time scale of the
experiments. Finally, the geometry of the experiments is closer to
natural flow scenarios than a rotational rheometer and the method
can be used to infer rheological properties from the evolution of a
flow if the geometry and scaling of the experiment is setup properly
(e.g., the Reynolds and Bingham number). Here we have focussed on
dam break experiments in an horizontal channel, but it is straight-
forward to modify the analysis to consider an inclined plane or an
effusion rate instead of a fixed volume. In this way themethod can be
applied to infer rheological properties of lava flows inside a channel,
as studied by Takagi and Huppert (in press) for lavas with a
Newtonian rheology.

A disadvantage of inverting dam break flows for rheology is the
lack of control over the range of strain or stress applied over the
mixture, which is controlled among others factors by the volume,
initial height and density of the material. The volume has to be chosen
carefully, a large volume can cause inertia to be dominant, and with a
too small volume, the surface tension effects can be important. A
partial solution to this issue is to setup the experiments in an inclined
plane in order to raise the range of stresses (see Hogg and Matson,
2009). Another problem is the precision of the manual measurements
compared with standard rotational rheometers; our method
cannot measure very small strains. Finally, the fluid viscosity needs
to be calibrated with temperature to correct for changes in room
temperature.

5.3. Applications

In this section, we developed a simple 2D-model for a free-surface
flow over a slope, in order to compare the velocities profiles andmean
velocities using different rheologies and crystal contents.

We assume a rheology in the form of Eq. (4) and the applied stress
inside the lava flow is in the form of:

τ = Hρg sin β; ð20Þ

with H the height of the lava flow, ρ is the lava density and β is the
terrain slope. The shear rate is in the form of:

γ̇ =
du
dz

; ð21Þ

where u is the flow velocity and z is the coordinate perpendicular to
the surface, with the origin at the top of the flow. Combining Eqs. (4),
(20) and (21) and integrating, the velocity inside the flow is given by:

u zð Þ =
Kn

ρg sin β n+1ð Þ
Hρg sin β−τy
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where hc =
τy

ρgsinβ is the thickness of the plug region (Dragoni et al.,
1986). It can be shown that the average velocity of the flow is:

�u =
H2ρg sin β

3K
3n

H3 n + 1ð Þ
ρg sinβ

K

� �1−n
n

 !

� H H−hcð Þn + 1
n − n

2n + 1
H−hcð Þ

2n+1
n

� �
:

ð23Þ

Note that if n=1 and τy=0 the equation becomes the well known
Jeffreys relationship and if n=1 and τyN0 the equation is equivalent
to the equation of velocity for 2D flows of Bingham materials (e.g.
Dragoni et al., 1986).

We applied the model to three different cases: a) the Newtonian
case, where viscosity varies with ϕ, but not with γ, following the
Einstein–Roscoe equation (using ϕm=0.6), b) unimodal distribution
of crystals, using the Herschel–Bulkey rheology (using Eqs. (17)–
Fig. 9. Velocity profiles for lava flows with different crystal contents. Parameters used: liq
c) ϕ=0.55. d) Velocity ratios between the different rheological models used as a function
(19)) and c) a bimodal distribution case, also using the Herschel–
Bulkey rheology, using a ϕm=0.66. We use the following values:
ρ=2500 kg/m3, H=3m, β=7° and K0=4500 Pa s.

Fig. 9 shows the velocity profiles for the three cases, using different
crystal contents (ϕ=0.3, 0.5 and 0.55). For ϕ=0.3 (Fig. 9a) the three
cases display similar velocity profiles. For ϕ=0.5 (Fig. 9b) the
unimodal case is much slower than the bimodal and Newtonian
case. For ϕ=0.55 (Fig. 9c) the unimodal case is still slower, while the
Newtonian case has higher velocities than the bimodal case due to
yield strength and shear thinning effects in the latter. Fig. 9d shows
that for crystal contents up to ϕ=0.4 the mean velocities are very
close for the three cases. For higher ϕ values, the Newtonian and
bimodal cases velocities can be up to 106 higher than the unimodal
case. All these results show that there are large differences on
the velocities of the flow, depending on the rheology chosen,
with bimodal mixtures moving much faster with higher crystal
concentrations.
uid viscosity=4500 Pa s, ρ=2500 kg/m3, H=3m, slope=7°. a) ϕ=0.3. b) ϕ=0.5.
of crystal content.

image of Fig.�9


Table 1
Lava samples and flow parameters from 2002 Etna eruption.

Sample AET-6 AET-2 AET-4

Crystal content ϕa 0.45 0.61 0.54
Liquid viscosityb (Pa s) 4073 8317 4786
K (Pa sn) 5.67×104 3.14×106 2.41×105

n 0.76 0.45 0.58
τy (Pa) 2.15×10−1 1.89×102 1.89×10
Flow parametersc

Flow height (m) 5 15 6
Slope (°) 7 7 12
Velocity (m/s) 1.6×10−1 8.6×10−4 1.1×10−1

Velocity (Eq. 23) 2.6×10−1 2.7×10−4 4.6×10−2

Apparent viscosity (Jeffreys equation)d 1.49×105 2.6×108 5.55×105

Apparent viscosity (HB eq.)e 1.28×105 6.8×108 1.29×106

a Crystal content was estimated by point counting (~500 points) using thin sections
of the samples. Crystals were classified into phenocrysts (N1 mm) and micropheno-
crysts (1–0.1 mm). Microlites (b0.1 mm) were assumed that crystallized after
emplacement.

b Liquid viscosity was calculated using the formula given by Giordano et al., 2008.
Glass composition was obtained using the microprobe xx. Temperature was estimated
using the glass and glass-plagioclase thermometers given by Putirka et al. (2008).

c Flow parameters were obtained and calculated using the reports of the eruption
given by the INGV, Italy (www.ingv.it) and fieldwork done by AC.

d Apparent viscosity was obtained using the Jeffreys equation (μapp=ρgsinβH2/3V),
using the flow parameters listed in the table.

e Apparent viscosity was obtained with the formula μapp = τ
P
γ̇ =

τy
P
γ̇ + K γ̇n−1where γ̇

was assumed as ~velocity/height.
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5.4. Application to Etna volcano

In order to test if the parameterization we obtained in Eqs. (17)–
(19) are valid for crystal-bearing lavas, we applied these equations to
three samples collected from Aa basaltic lava flows from the 2002
eruption at Etna volcano (Andronico et al., 2005). The Herschel
Bulkley rheological parameters were calculated from crystal contents
determined from point counting on thin sections and the liquid
viscosity estimated from the glass composition (Giordano et al.,
2008). Then, we calculated the velocity of the flow using the 2Dmodel
described previously, and finally compared them with the actual
velocities (Table 1) observed by the INGV team (www.ingv.it). Table 1
shows the calculated parameters K, n and τy for the three samples
from Etna volcano and the calculated velocities using Eqs. (17)–(19).
The computed velocities are comparable to the actual velocities, and
small adjustments of the rheological and physical properties of the
lava, well within the uncertainties of the measurements and
estimates, could give an exact match. The calculated apparent
viscosities, using the Jeffreys equation (using the height, slope and
velocity of the flow) and the Herschel–Bulkley equation (using K, n
and τy) and are alsowithin the same order of magnitude. These results
confirm the idea that the first order control on rheology of lavas is the
liquid viscosity and crystal content and suggest that the combination
of syrup plus sugar crystals is a good analogue of crystal-bearing lavas
and the parameterization of Herschel–Bulkley equation (Eqs. (17)–
(19)) can adequately describe the resulting rheology of crystal-
bearing lavas.

6. Conclusions

In this work, we have demonstrated an inexpensive and easy
method to carry out measurements on the rheology of suspensions.
We assumed a Herschel–Bulkley rheology, and the determination of
the parameters K, n and τy in Eq. (4) are in a good agreement with
other investigations using other methods. Our experiments show a
non-Newtonian behaviour for concentrations greater than ~30% of
crystals, with a decrease of the n exponent from 1 to ~0.5 for ϕ~0.6
and the appearance of a yield strength. The experiments with bimodal
suspensions show a dramatic drop in the apparent viscosity compared
with the unimodal suspensions with the same total concentration,
with differences greater than 1 order of magnitude for ϕN0.6. These
changes can be modelled assuming that the liquid and small particles
constitute the fluid phase and the larger particles are the solid phase.
Alternatively, it can be explained with changes in the maximum
packing fraction. Changes of size distribution also affect the
rheological threshold when the Einstein–Roscoe equation can no
longer predict the apparent viscosity of the mixture. The results of the
yield strength values are not totally clear, and further studies are
required to determine if liquid viscosity affects the results and to
explain the differences between yield strengths measured with
analogue materials and the ones found on lavas flows on the field.

The differences in the rheology showed by suspensions with
different size distributions have important implications for the
dynamics of magma flows. In particular, the simplified 2-D model
for an inclined flow using a Herschel–Bulkley rheology shows strong
differences in flow profile and velocity, with higher velocities in lavas
with polymodal crystal size distribution. We applied the equations for
the parameters K, τy and n to lavas from Etna volcano and the
calculated velocities are in very good agreement with the actual
velocities, suggesting that our results can be applied to calculate the
rheology of real crystal-bearing lavas. Our results may also have
implications regarding the eruptibility of highly crystalline magmas.
Polymodal suspensions have a higher limit of crystal content for
viscous behaviour (given by the maximum packing fraction) and this
can explain why some very crystal-rich magmas (e.g. Soufriere-Hills
volcano, Sparks et al., 2000) are able to erupt.
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