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Because scaling symmetries of the Euler–Lagrange equations are generally not vari-
ational symmetries of the action, they do not lead to conservation laws. Instead, an
extension of Noether’s theorem reduces the equations of motion to evolutionary laws
that prove useful, even if the transformations are not symmetries of the equations
of motion. In the case of scaling, symmetry leads to a scaling evolutionary law,
a first-order equation in terms of scale invariants, linearly relating kinematic and
dynamic degrees of freedom. This scaling evolutionary law appears in dynamical
and in static systems. Applied to dynamical central-force systems, the scaling evolu-
tionary equation leads to generalized virial laws, which linearly connect the kinetic
and potential energies. Applied to barotropic hydrostatic spheres, the scaling evo-
lutionary equation linearly connects the gravitational and internal energy densities.
This implies well-known properties of polytropes, describing degenerate stars and
chemically homogeneous nondegenerate stellar cores. C© 2011 American Institute of
Physics. [doi:10.1063/1.3576199]

I. SCALING SYMMETRY NOT GENERALLY A SYMMETRY OF THE ACTION

Action principles dominate physical theories because they admit transformations among dy-
namical variables and exhibit common structural analogies across different systems. If these trans-
formations are symmetries of the action, then by Noether’s theorem, they give rise to conservations
laws that reduce the number of degrees of freedom. This relationship between variational sym-
metries of the action and conservation laws is central to Lagrangian dynamics. But, even if these
transformations are not symmetries of the action, they nonetheless lead to useful Noether’s iden-
tities. Although equations of motion do not require Lagrangian expression, we apply this identity
to transformations that are not variational symmetries; in particular, to scaling symmetry, which
is generally a nonvariational symmetry of the equations of motion only (Sec. II). Variational and
nonvariational symmetries both reduce the equations of motion to first order, but in different ways:

• Variational symmetries imply conservation laws, first integrals of the equations of motion.
• Scaling symmetry generally implies only an evolutionary equation, which reduces the equa-

tions of motion to first order in scaling invariants.
Applied to dynamical systems of bodies interacting via inverse power-law potentials, these

scaling evolutionary equations are generalized virial theorems (Sec. III). Applied to self-gravitating
barotropic spheres in hydrostatic equilibrium (Sec. IV), the scaling evolutionary equation is an
analogous first-order equation between scaling invariants. In this way, scaling evolutionary equations
illuminate the physical consequences of scaling symmetry.

So as to focus on scaling evolutionary equations, we relegate our Lagrangian formulation of
barotropic hydrostatics to Appendix A, and needed stellar thermohydrodynamics to Appendix B. A
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second paper1 derives the well-known properties of polytropes and of homogeneous stellar cores
from Sec. IV of the present paper.

We do not consider applications to quantum field theories,2 involving the symmetry of the
vacuum (ground state) as well as of the Lagrangian, which lead to important quantum anomalies
and to topological symmetries generated by topological charges.

II. NOETHER’s THEOREM EXTENDED TO NONINVARIANT TRANSFORMATIONS

A. Noether’s identity implies either conservation laws or evolutionary equations

We start with a system of particles described by the Lagrangian L(t, qi , q̇i ) and action
S = ∫

L(t, qi , q̇i )dt , where the dot designates the partial derivative ∂/∂t with respect to the in-
dependent variable and the Einstein summation convention is assumed. Under an infinitesimal point
transformation δ(t, qi ), δq j (t, qi ) generated by δt · ∂/∂t + δqi · ∂/∂qi , velocities and Lagrangian
transform locally as

δq̇i = dδqi

dt
− q̇i

dδt

dt
,

δL = [δt · ∂/∂t + δqi · ∂/∂qi + δq̇i · ∂/∂q̇i ]L = L̇δt + (∂L/∂qi )δqi + (∂L/∂q̇i )
[dδqi

dt
− q̇i

dδt

dt

]
,

(1)

where d/dt ≡ ∂/∂t + q̇i · ∂/∂qi + q̈i · ∂/∂q̇i is the total derivative. The canonical momentum and
energy

pi (t, qi , q̇i ) := ∂L/∂q̇i , E(t, qi , q̇i ) := q̇i (∂L/∂q̇i ) − L, (2)

have total derivatives

dpi

dt
= ∂L/∂qi − Di , −d E

dt
= L̇ + Di · q̇i , (3)

in terms of the Euler–Lagrange variational derivative Di := ∂L/∂qi − d(∂L/∂q̇i )/dt . Since

d

dt
(piδqi ) = (∂L/∂qi − Di )δqi + pi · d(δqi )

dt
, −d Eδt)

dt
= (L̇ + Di · q̇i )δt − E · d(δt)

dt
, (4)

the Noether charge,

G := L · δt + pi · (δqi − q̇iδt) = −Eδt + piδqi , (5)

has total derivative

dG

dt
= δL + L · d(δt)

dt
− Di · (δqi − q̇iδt) = δ̄L − Di · (δqi − q̇iδt), (6)

where δ̄L := δL + L · (dδt/dt) is the change in Lagrangian at a fixed point.
The variation in action between fixed end points is

δS12 =
∫ 1

2
dt δL =

∫ 1

2
dt

[dG

dt
− L · d(δt)

dt
+ Di · (δqi − q̇iδt)

]

= G(1) − G(2) +
∫ 1

2
dt

[
δqi · Di + δt ·

(dh

dt
+ ∂L

∂t

)]
, (7)

after integrating the term in d(δt)/dt by parts. The action principle asserts that this variation vanishes
for independent variations δqi , δt that vanish at the end points. It implies the Euler–Lagrange
equations and dh/dt = −∂L/∂t . On shell, where the equations of motion Di = 0 hold,

δS12 =
∫ 1

2
δ̄L dt = G(1) − G(2), (8)
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dG

dt
= δ̄L . (9)

This is Noether’s Equation, an evolutionary equation for any generator in terms of the Lagrangian
transformation that it generates. It expresses the equations of motion as the time derivative of the
Noether charge.

B. Variational symmetries imply conservation laws

The most general and important applications of Noether’s equation are to variational and
nonvariational symmetries of the equations of motion, which both preserve the stationary action
principle δS12 = 0 but reduce the equations of motion to first order in different ways.

Variational symmetries preserve the action δS12 = 0 because δ̄L = 0 or d B/dt , the total deriva-
tive of some gauge term B(t, q). Noether’s equation (d/dt)(G − B) ≡ −Di · (δqi − q̇iδt) conserves
G − B on shell, where the equations of motion hold. This original Noether’s theorem, identifying
conservation laws with space-time variational symmetries, is familiar in the symmetry of central-
force systems (A1) under time translations and spatial rotations, leading to conservation of energy
E and angular momentum l,

E := (ṙ2 + r2θ̇2)/2 + V (r ), l := mr2θ̇ . (10)

An illustration of how gauge terms B(t, qi ) conserve G − B, rather than the Noether charge
G, is the many-body system of particles with interparticle forces that depend only on the relative
separations qi − q j and relative velocities q̇i − q̇ j . This system admits the infinitesimal boost
transformations,

δqi = δv · t, δt = 0, δV = 0, δK = δL = P · δv, (11)

where M, P, and K are the total mass, momentum, and kinetic energy. Because boosts change
all the momenta, the charge G = (P · v)t is not conserved. Instead, Noether’s equation gives the
conservation law (P − MṘ) · δv = 0, or MṘ = P, for arbitrary infinitesimal δv. While boosts change
the total momentum P, the center-of-mass moves with velocity Ṙ. This familiar center-of-mass
theorem follows directly from boost symmetry, irrespective of the internal forces. It is paradigmatic
for distinguishing between the effects of internal and external forces in many-body system.

Conversely, conservation laws imply variational symmetries and invariances of the Lagrangian,
modulo possible gauge terms.

C. Nonvariational symmetries reduce the equations of motion to first order

The remainder of this paper will deal with nonvariational symmetries of the equations of
motion, which are not variational symmetries of the action and do not lead to conservation laws, but
to transformation equations. These generalized transformations, nevertheless, reduce the equations
of motion to first order. For example, a nonrelativistic particle, with radial, transverse and angular
momenta,

pr = (r · p)r/r2, pt = p − pr = −r × l/r2, l := r × p, (12)

and energy

E(r, p) = K − V (r ) := p2/2m − V (r ), p2 = p2
r + l2/r2, (13)

in an inverse-power central potential V (r ) ∼ 1/rn . The Lagrangian for this system L(r, p) = K +
V (r ) := p2/2m + V (r ) admits the scaling symmetry,

δt = βt, δr = r, δp = (1 − β)p, δK = 2(1 − β)K , δV = −nV, (14)

generated by

Gn A := −βEt + r · p, (15)
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TABLE I. Period-amplitude relations and virial theorems for inverse power-law potentials V ∼ 1/rn .

n System Period-amplitude relation t ∼ r1+n/2 Virial theorem

− 2 Isotropic harmonic oscillator Period independent of amplitude 〈K 〉 = 〈V 〉
− 1 Uniform gravitational field Falling from rest, e.g., z = gt2/2 〈K 〉 = 〈V 〉/2
0 Free particles Constant velocity r ∼ t 〈K 〉 = 0
1 Newtonian potential Kepler’s third law t2 ∼ r3 〈K 〉 = −〈V 〉/2
2 Inverse-cube force t ∼ r2 〈K 〉 = −〈V 〉

provided β ≡ 1 + n/2, so that the Lagrangian is homogeneous of degree −n, δL = 2(1 − β)L =
−nL. Since δ(rβ/t) = 0, all distances scale with time as ri ∼ t1/β , as shown in Table I.3

The scaling evolutionary equation,

dGn A/dt = δL̄ = (1 − n/2)L, (16)

linearly connects the kinetic and potential energies to the time derivative of the single particle virial
A := r · p = r pr . This scaling evolutionary equation is the virial equation,

d(r pr )/dt = (1 − n/2)(K + V ) + (1 − n/2)(K − V ) = 2K + nV . (17)

Only for zero-energy orbits E = K + V = 0, in an inverse-cube force n = 2, is the virial A con-
served and the scaling a variational symmetry.

The first-order orbit equation for the scaling invariant,

rdθ/dr = pt/pr = 1/
√

r2 p2/ l2 − 1 = 1/
√

2mr2[E − V (r )]/ l2 − 1, (18)

can be solved by quadratures,

θ (r ) = θ0 +
∫ r

r0

dr/
{
r
√

2mr2[E − V (r )]/ l2 − 1
}
. (19)

(In the Kepler Problem V (r ) = −k/r , the integrals reduce to elementary functions, and the bound
orbits are ellipses,

r (θ ) = a(1 − ε2)/[1 − ε sin(θ − θ0)], (20)

of eccentricity ε :=
√

1 − l2/mka and semimajor axis a := −k/2E .) From this first-order equation
and angular momentum conservation, the temporal evolution is

dt = (mr2/ l)dθ = mdr/
√

2m(E − V )(r )) − (l/r )2, (21)

so that

t(r ) = t0 +
∫ r

r0

dr/
√

2r2[E − V (r )] − (l/m)2, (22)

completes the integration of the central-force problem.

D. Even transformations that are not symmetries lead to useful evolutionary equations

For the same system, the radial translation,

δt = βt, δr = r/r, δp = −pt/r, (23)

generated by

GnB := p · δr = pr (24)

is not a symmetry of the action. Instead, the resulting radial translation evolutionary equation,

dpr/dt = l2/mr3 − dV/dr, (25)

is the radial equation of motion.
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Nonvariational symmetry or not, the first-order evolutionary equations (17) for r pr and (25) for
pr are useful expressions for the radial equation of motion. While the virial A and radial momentum
pr are not conserved, their time averages 〈d A/dt〉 = 〈dpr/dt〉 = 0 in any bounded ergodic system,
so that, for time averages
scaling transformations imply 2〈K 〉 = −n〈V 〉, the usual virial law generalized to arbitrary inverse-
power potentials;
radial displacement transformations imply (l2/m)〈1/r3〉 = −n〈V/r〉, l �= 0, useful for relativis-
tic corrections to noncircular Coulombic (n = 1) orbits.4

Section III considers energy-conserving many-body systems L=L(ri , ṙi ), for which the scaling
evolutionary equation is a generalized virial law. Section IV treats the hydrostatics of barotropic
spheres, for which the Lagrangian L(r, H, H ′) depends explicitly on the radial variable r . Instead
of a first integral, In both these examples, instead of a conservation law, scaling symmetry implies
an evolutionary equation, a first-order differential equation between scaling invariants,5, 6 linearly
relating the the “kinetic” term K to the “potential” term V in the Lagrangian L = K − V .

III. SCALING EVOLUTIONARY EQUATIONS

A. Mechanical evolutionary equation is a generalized virial law

The previous derivation generalizes to a nonrelativistic many-body system with particle coor-
dinates ri . The scale transformation,

δt = β · t, δri = ri , δ(∂/∂t) = −β · (∂/∂t), δṙi = (1 − β) · ṙi , δK = 2(1 − β)K ,

(26)

is generated by the Noether charge,

Gn := −β · Et + A, (27)

where A := ∑
pi · ri is the many-body virial.

If the pairwise potential energies are inverse powers Vi j ∼ r−n
i j of the interparticle distances

ri j := |ri − r j |, the interparticle potentials are homogeneous in their coordinates r (dVi j/dr ) =
−nVi j , δVi j = −nVi j . Scaling is still a nonvariational symmetry of this many-body system, provided
n ≡ 2(β − 1), β ≡ 1 + n/2. Then δV = −(1 − β)r · ∇V, δ Ȧ = (1 − β) Ȧ and the total energy and
Lagrangian are homogeneous functions of their arguments, scalar densities of weight −n,

δE = −nE, δL = −nL, δ̄L = δL + βL = (1 − n/2)L. (28)

Because energy is conserved, Noether’s equation (9) implies the scaling evolutionary equation,

dGn

dt
= −(1 + n/2)L + Ȧ = δ̄L, Ȧ = (1 + n/2)E + (1 − n/2)L = 2K + nV . (29)

This is a generalized virial law linearly relating the time derivative of the virial A to a linear
combination of the nonrelativistic kinetic energy K and the power-law potential V .

For periodic or long-time averages in bounded ergodic systems, 〈 Ȧ〉 = 0, so that the virial
theorem relates time averages 2〈K 〉 = −n〈V 〉. Table I tabulates these period-amplitude relations
and generalized virial theorems for orbits in the five important inverse-power-law potentials n =
−2,−1, 0, 1, 2. Only for inverse cube forces V (r ) ∼ 1/r2 would dynamical scaling reduce to a
symmetry of the action, and the Noether charge G2 = −2(K + V )t + A be conserved. For potentials
more singular than 1/r2, there are no bound states.

B. Scaling evolutionary equation in classical electrodynamics

Noether’s equation applies to continuous Lagrangian systems (fields) as well as discrete sys-
tems. In this case, rt are independent variables. If f, G = E × B/4πc, T , U are, respectively, the
electromagnetic force density, momentum density, momentum flux tensor, and energy density, then
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momentum balance reads

∂G/∂t + ∇ · T + f = 0. (30)

From this follows the evolutionary equation,

∂(r · G)/∂t + ∇ · (T · r) − U + r · f = 0, (31)

an electromagnetic analogue of the mechanical virial law.(31) When time averaged, this becomes
an electromagnetic virial theorem.4

C. Scaling evolutionary equation in classical conformal field theory

In any relativistic field theory, space-time scaling (dilatation) symmetry leads to the familiar
evolutionary equation,

∂Gμ

∂xμ
= �μ

μ, (32)

where ∂/∂xμ is the four-dimensional divergence, Gμ is the dilatation current, and �μ
μ is the trace of

the energy-momentum tensor.2, 7, 8 If this trace vanishes, the dilatation charge is conserved, implying
conformal symmetry.

The most familiar example of conformal symmetry is Laplace’s equation in n spatial dimensions.
In two dimensions, conformal symmetry implies the Cauchy–Riemann equations, so that any analytic
function is a solution of Laplace’s equation. In higher dimensions, conformal symmetry implies the
conservation laws associated with translations, rotations, dilatations, and spatial inversions. Ignoring
charges, the electromagnetic field is conformally invariant.

These familiar examples from conservative systems recall how Noether’s equation leads to
useful evolutionary equations, whether or not scaling symmetry is broken. The chief purpose of this
paper remains to consider the hydrostatic equilibrium of barotropic spheres, which differ by being
static, not Hamiltonian (since the radial coordinate r cannot be ignored), and derive from a least
energy variational principle, instead of a least action principle.

IV. SCALE-INVARIANT BAROTROPIC STARS

A. Mechanical structure of barotropic stars

The hydrostatic structure of barotropes depends only on mass continuity and pressure equilib-
rium,

dm/dr = 4πr2ρ, −d P/dr = Gρm/r2, (33)

or the second-order equation,

1

r2

d

dr

(r2

ρ

d P

dr

)
= −4πGρ, (r2 H ′)′ + 4πGr2ρ(H ) = 0, (34)

where ′:= d/dr . In terms of the specific enthalpy H (r ) = ∫
d P/ρ and specific gravitational force

dV/dr = g := Gm/r2, the equation of hydrostatic equilibrium reads

d(H + V )/dr = 0, (35)

so that (34) is Poisson’s equation. We consider only barotropic stars for which the local equation
of state is P = P(ρ). And the density ρ(r ), specific internal energy E(r ), specific enthalpy H (r ) =
E + P/ρ, and thermal gradient ∇(r ) := d log T/d log P are implicit functions of the gravitational
potential V (r ).

This static structural equation is the Euler–Lagrange equation of the Lagrangian,

L(r, H, H ′) = 4πr2[−(H ′)2/8π + P(H )], (36)
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derived from a minimal energy variational principle in Appendix A. It describes the radial evolution
of a static barotropic sphere. Because the radial coordinate r appears in L(r, H, H ′), the energy per
radial shell E(r, H, H ′) = −4πr2[(H ′)2/8πG + P(H )] increases while moving outward in radius.

B. In a simple ideal gas, scale invariance requires a constant entropy gradient

Polytropes are barotropic spheres in which the polytropic index n := d log ρ/d log H or poly-
tropic exponent 1 + 1/n := d log P/d log ρ are constant (Appendix B). The pressure, specific en-
ergy, specific enthalpy, and enthalpy gradient at any point are

P/Pc = (ρ/ρc)1+1/n, E = n(P/ρ), H = (n + 1)(P/ρ), d log H/d log P = 1/(n + 1).

(37)

The hydrostatic structure is polytropic in zero-temperature (degenerate) stars and nearly constant
in convective stars and in stars starting out on the hydrogen-burning, zero-age Main Sequence
(ZAMS), where the chemical composition and energy generation are homogeneous:
White dwarfs and neutron stars: nonrelativistic and extreme relativistic degenerate stars; poly-
tropes of index n = 3/2 and 3, respectively.
ZAMS stars in convective equilibrium: with vanishing gravithermal specific heat C∗ and uniform
entropy density. These are n = 3/2 polytropes.
ZAMS stars in radiative equilibrium: At zero age, our Sun was a chemically homogeneous star
of mean molecular weight μ = 0.61, well approximated by the Eddington standard model n = 3
polytrope throughout its radiative zone, containing 99.4% of its mass.

Because energy generation was extended but not uniform, our ZAMS Sun would be better
approximated globally by a slightly less standard n = 2.796 polytrope.9 Still better nonpolytropic
fits would obtain by including both nonuniform energy transport and corrections to Kramers opacity:
radiative transport in the pp-burning lower main sequence 0.11 < M/M
 < 1.2 gives the exponent
ξ = 0.57 in the M − R relation R ∼ Mξ ; convective transport in the carbon-nitrogen-oxygen-
burning (CNO) upper main sequence 2 < M/M
 < 20 gives the exponenet ξ = 0.8.10, 11

Because our present Sun is chemically inhomogeneous and has convective zones, it is far from
being polytropic; its best polytropic fit, with index n = 3.26, is poor.9

C. Scaling symmetry implies a first-order equation in scaling invariants

Following Chandrasekhar,12 we define homology variables,

u := d log m/d log r = 3ρ/ρ̄, vn := −d log (P/ρ)/d log r, wn := −d log ρ/d log r = n(r ) · vn,

(38)

where ρ̄ = 3m/4πr3 is the average mass density interior to radius r and n(r ) := d log ρ/d log (P/ρ).
The central boundary condition is

u(0) = 3, v(0) = 0, (dv/du)0 = −5/3n. (39)

The mass continuity and hydrostatic equilibrium equations (33) become

d log u/d log r = 3 − u − n(r )v, d log v/d log r = u − 1 + v − d log [1 + n(r )]/d log r,

(40)

and will be autonomous only when the index n(r ) is constant.
In polytropes, the constant index n and gradient ∇ = 1/(n + 1) makes both these equations,

du/d log r = u(3 − u − nvn), dvn/d log r = vn(u − 1 + vn), (41)

autonomous, so that they can be written as the characteristic differential equations,

d log vn

u − 1 + vn
= d log u

3 − u − nvn
= d log r, (42)
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for the homology invariants u, vn .13

The infinitesimal scale transformation

δr = r, δH = −ω̃n H, δH ′ = −(1 + ω̃n)H ′, (43)

is generated by the Noether charge,

Gn := −E · r + p · δH = −r3[
H ′2

2
+ 4π P(H )] − r2 H ′

G
· ω̃n H. (44)

The structure is scale-invariant if and only if P = Kρ1+1/n , so that H ∼ P/ρ, P ∼ H n+1 and

nω̃n = 2 + ω̃n, 2(1 + ω̃n) = (n + 1)ω̃n, ω̃n ≡ 2/(n − 1), δL̄ = σ̃nL,

σ̃n := 1 − 2ω̃n =
(n − 5

n − 1

)
, (45)

making the gravitational potential and specific internal energy both homogeneous of degree −2ω̃n

and

δL = −2ω̃nL, δE = −2ω̃n E . (46)

The radial derivative,

dGn/dr ≡ δL + L + Dr · ω̃n · d(Hr )/dr, (47)

obeys the scaling evolutionary equation,

dGn/dr = σ̃nL, (48)

connecting the gravitational and internal energy densities, just as the virial law connected the potential
and kinetic energies.

For such polytropes, we introduce dimensionless units,

ξ := r/α, θn := H/Hc = (ρ/ρc)1/n, (49)

and the dimensional constant,

α2 := (n + 1)

4πG
Kρ1/n−1

c = (n + 1)/4πG · (Pc/ρ
2
c ), (50)

where ρc is the central density and

Pc/ρc := Kρ1/n
c , Hc := (n + 1)Pc/ρc. (51)

The included mass, mass density, average mass density, and gravitational acceleration are

m = 4πρcα
3 · (−ξ 2θ ′

n), ρ = ρc · θn
n , ρ̄ = ρc · (−3θ ′

n/ξ ), g = 4πρcα
2(−θ ′

n). (52)

Poisson’s equation (34), combining mass continuity and hydrostatic equilibrium, takes the dimen-
sionless Lane-Emden form,

d

dξ

(
ξ 2 dθn

dξ

)
+ ξ 2θn

n = 0. (53)

Suppressing the subscript n on θn and θ ′
n := dθn/dξ , the homology variables are12

u := d log m/d log r = 3ρ(r )/ρ̄ = −ξθn/θ ′, vn := −d log (P/ρ)/d log r = −ξθ ′/θ,

ρ̄/ρc = −3θ ′/ξ 2, u/vn =θn+1/θ ′2, uvn =ξ 2θn−1 = (ξ ω̃n θ )n−1, (uvn)1/(n−1) =ξ ω̃n+1(−θ ′).

(54)

Extracting the dimensional constant C := −H 2
c /G, the Lagrangian, Hamiltonian, and Noether
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charge are

L/C = ξ 2[
θ ′2

2
− θn+1

n + 1
] = ξ−2ω̃n [

(uvn
n )ω̃n

2
− (uv)1+ω̃n

n + 1
],

E/C = ξ 2[
θ ′2

2
+ θn+1

n + 1
] = ξ−2ω̃n [

(uvn
n )ω̃n

2
+ (uv)1+ω̃n

n + 1
],

Gn/C = ξ 2
[
ξ (

θ ′2

2
+ θn+1

n + 1
) + ω̃nθθ ′

]
= ξ−2ω̃n

[
ξ (

(uvn
n )ω̃n

2
− (uv)1+ω̃n

n + 1
) + ω̃nuω̃n v1+ω̃n

n

]
. (55)

For n = 5, scaling symmetry is a variational symmetry and the Noether charge,

G5 = C
2

·
[
(uv5

5)3/2 − (uv5)3/2

3
+ (uv3

5)1/2
]
, (56)

is conserved. Otherwise, the Noether charge evolves according to (48)

d

dξ

{
ξ 2 ·

[
ξ
(θ ′2

2
+ θn+1

n + 1

)
+ (

2

n − 1
)θθ ′

]}
=

(n − 5

n − 1

)
· ξ 2

(θ ′2

2
− θn+1

n + 1

)
, (57)

which reduces to the Lane–Emden equation (53). This evolutionary equation describes the growing
ratio between local internal and (negative) gravitational energy densities,

θn+1/(n + 1)

θ ′2/2
= 2

n + 1

u

vn
, (58)

as the local energy density changes from entirely internal at the center, to entirely gravitational at
the stellar surface.

V. CONCLUSIONS

We have extended Noether’s equation connecting variational symmetries to conservation laws to
generalized transformations of the Euler–Lagrange equations. The resultant evolutionary equations
are useful, even when the transformations are not symmetries. But, when they are nonvariational
symmetries, they reduce the Euler–Lagrange equations to first-order equations between invariants.

For scaling symmetries, the evolutionary equation takes a special form connecting linearly the
kinematic and dynamic parts of the Lagrangian. For nonrelativistic systems with inverse-power-law
potentials, the scaling evolutionary equation is a generalized virial law, linearly relating the kinetic
and potential energies. For hydrostatic systems obeying barotropic equations of state, the scaling
analogous evolutionary equation is a linear relation between the local gravitational and internal
energies. From this scaling evolutionary equation, in a second paper,1 we derive all the properties of
polytropes.
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APPENDIX A: LAGRANGIAN FORMULATION OF BAROTROPIC HYDROSTATICS

Stellar structure generally depends on coupled equations for pressure equilibrium and heat
transport. Only if the heat transport leads to a local barotropic relation P = P(ρ) can the hydrostatic
equations be considered independently, without reference to the thermal structure.
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1. Mass continuity and hydrostatic equilibrium

In a self-gravitating isolated system in local thermodynamic equilibrium, a barotrope held at
zero external pressure has thermodynamic potential energy, the work needed to adiabatically extract
unit mass, or specific enthalpy H (ρ) = E + P/ρ. Barotropic energy conservation, d H := d P/ρ,
makes the specific enthalpy a more natural state variable than the specific internal energy E , pressure
P , or density ρ. The equation of hydrostatic equilibrium −d P/dr = Gmρ/r2 := ρg is then

− d H/dr = dV/dr = g = Gm(r )/r2, (A1)

describing how this local specific enthalpy or extraction energy H (r ) depends on the local gravita-
tional potential V (r ). Integrating, we have the energy conservation equation,

H (r ) + V (r ) = −G M/R, r < R, (A2)

where the zeros of the gravitational potential and specific enthalpy have been chosen at infinity and
at the spherical surface, respectively.

Because the gravitational potential obeys Poisson’s equation,

∇2V = 1

r2

d

dr

(
r2 dV

dr

)
= 4πGρ, (A3)

the specific enthalpy obeys the second-order equation,

∇2 H + 4πGρ(H ) = 0 . (A4)

To implement the equation of hydrostatic equilibrium, we need a local barotropic relation P(ρ),
or P(H ), ρ(H ), which is determined by the thermal stratification of the static matter distribution
in local thermodynamic equilibrium, and by a central boundary (regularity) condition (d P/dr )0 =
0 = (dρ/dr )0. Near the origin,

ρ ≈ ρc(1 − Br2), m(r ) ≈ 4πρcr3

3

(
1 − 3

5
Br2

)
,

ρ̄(r ) := 3m(r )/4πr3 ≈ ρc

(
1 − 3

5
Br2

)
≈ ρ2/5

c ρ3/5. (A5)

In terms of the homology variables w := −d log ρ/d log r, u := d log m/d log r for the mass density
and included mass, dw/du ≈ −5/3.

2. A constrained minimum energy principle for hydrostatic equilibrium

In a static, self-gravitating sphere of mass M and radius R, the Gibbs free-energy,

W := E − T S + PV = � + U, (A6)

in terms of the gravitational and internal energies,

� = −
∫ M

0
(Gm/r )dm, U = −

∫ R

0
PdV, (A7)

where ρ, E , and −Gm(r )/r are the mass density, specific internal energy, and gravitational potential,
respectively. In the Eulerian description, the radial coordinate is r , the enclosed volume is V =
4πr3/3, and the enclosed mass m(r ) is constrained by mass continuity dm(r ) = ρdV . The Gibbs
free-energy,

W =
∫ R

0
L(r, m, m ′)dr = −

∫ R

0
4πr2[Gmρ/r + P(ρ)]dr, ′ := d/dr, (A8)

is the available work when expanding the sphere adiabatically at fixed external pressure. The
Lagrangian L is the Gibbs free-energy per radial shell dr .

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042902-11 Invariant relationships from classical scaling J. Math. Phys. 52, 042902 (2011)

The constrained minimum energy variational principle11, 14 for hydrostatic equilibrium is that
the Gibbs free-energy be stationary (δW = 0) under adiabatic deformations in specific volume
δVρ = d(4πr2δr )/dm that vanish on the boundaries and satisfy the mass continuity constraint
m ′ = 4πr2ρ. This minimum energy principle has the equation of hydrostatic equilibrium,

Dr := Gm/r2 + H ′ = Gm/r2 + d P/ρdr = 0, (A9)

as its Euler–Lagrange equation, with mass continuity as a constraint. This equation is scale invariant
if the specific enthalpy H scales as m ′.

3. An unconstrained variational principle

Using Poisson’s equation to incorporate the mass continuity constraint, the gravitational energy
is

� = −
∫ R

0
(V ′2/2)4πr2dr, (A10)

so that the second-order Lagrangian (used in Sec. IV),

L(r, H, H ′) = 4πr2[−H ′2/8πG + P(H )], (A11)

is unconstrained and has Euler–Lagrange equation (A4). The canonical momentum and Hamiltonian
are

p := ∂L/∂ H ′ = −r2 H ′/G = −m, H(r, H, p) = −Gp2/2r2 − 4πr2 P(H ), (A12)

and the canonical equations are

∂H/∂p = H ′ = −Gp/r2, ∂H/∂ H = −p′ = m ′ = 4πr2ρ. (A13)

Spherical geometry makes the system nonautonomous, so that d H/dr = −∂L/∂r = −2L/r and
m ′(r ) vanish only at large r , when the geometry approaches being planar.

APPENDIX B: STELLAR THERMOHYDRODYNAMICS

The structure of luminous stars depends upon the coupling between hydrostatic and thermal
structures through an equation of state P = P(ρ, T, μ), which generally depends on the local
temperature and chemical composition. But, ignoring evolution, the matter entropy is locally con-
served, so that steady-state stars are in local thermodynamic equilibrium. In a fluid held in pressure
equilibrium at constant external temperature, the specific Gibbs free-energy H − T S = −V (r ) is
a minimum. In hydrostatic equilibrium, the density ρ(r ), specific internal energy E(r ), specific
enthalpy H (r ) = E + P/ρ, specific entropy, and thermal gradient ∇(r ) := d log T/d log P depend
implicitly on the gravitational potential V (r ).

In the second law of thermodynamics

T d S = d Q = d E + Pd(1/ρ) , (B1)

E andρ can be written as functions of temperature and pressure. Clever use of thermodynamic
identities then leads to10, 11

T d S = C∗dT, d S = cP (∇ − ∇ad)d log P, (B2)

where the gravithermal specific heat C∗ := d S/d log T = P(1 − ∇ad/∇) depends on the specific
heat cP and the adiabatic gradient ∇ad := (∂ log T/∂ log P)S . This expression relates the local
thermal gradient ∇(r ) to the local entropy gradient d S(r )/d log P = cP (∇ − ∇ad), which generally
contains both gas and radiation entropies and varies in stars in radiative equilibrium.

In a simple ideal gas, the equation of state, specific internal energy, specific enthalpy, and
adiabatic exponent are

P/ρ = R
μ

T, E = cV T, H = cP T, (d log P/d log ρ)S = cP/cV := γ, (B3)
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where R is the universal gas constant, μ is the molecular weight, and cV , cP = cV + R/μ are the
specific heats at constant volume and at constant pressure. From the second law of thermodynamics
(B2), the specific entropy and thermal gradient of a simple ideal gas are

d S = cV d log P − cP d log ρ, S = cV log
(

P/ργ
)
, ∇ = d log H/d log P = (γ − 1)/γ.

(B4)

In an ideal gas supported by both gas pressure Pgas = RρT/μ and radiation pressure
Prad = aT 4/3, the total pressure is

P = Pgas + Prad = β P + (1 − β)P = (RρT/μ)[1 + (1 − β)/β], (B5)

where the pressure ratio,

Prad/Pgas := (1 − β)/β = (4μ/R) · Srad, (B6)

is proportional to the specific radiation entropy Srad = 4aT 3/3ρ. The total specific entropy,

S = Sg + Srad = (R/μ) · [log (T 3/2/ρ) + 4(1 − β)/β], . (B7)

is therefore constant for a cool monatomic ideal gas (β = 1) or for a radiation-dominated (super-
massive) star (β ≈ 0).

Bound in a polytrope of index n, an ideal gas has constant thermal gradient, gravithermal
specific heat, and entropy-pressure gradient,

∇ = 1/(n + 1), c∗ = cP (1 − ∇ad/∇), d S/d log P = cP (∇ − ∇ad ) ≤ 0. (B8)

This is the only constraint on its thermal structure, which otherwise still depends on the heat transport
mechanism.

According to Schwarzschild’s minimal entropy production criterion, convective stability re-
quires that a star’s specific entropy stay constant in convective equilibrium and increase radially
outward in radiative equilibrium. This makes barotropic stars of mass M extremal in two respects:
the central pressure is minimal in for a given radius R; the central pressure and temperature are
maximal for a given central density. Because stellar evolution is driven by developments in the core,
these bounds drive stars toward uniform entropy in late stages of evolution.15
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