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Abstract—This paper introduces a method to detect a fault
associated with critical components/subsystems of an engineered
system. It is required, in this case, to detect the fault condition
as early as possible, with specified degree of confidence and a
prescribed false alarm rate. Innovative features of the enabling
technologies include a Bayesian estimation algorithm called par-
ticle filtering, which employs features or condition indicators
derived from sensor data in combination with simple models of
the system’s degrading state to detect a deviation or discrepancy
between a baseline (no-fault) distribution and its current counter-
part. The scheme requires a fault progression model describing
the degrading state of the system in the operation. A generic model
based on fatigue analysis is provided and its parameters adapta-
tion is discussed in detail. The scheme provides the probability of
abnormal condition and the presence of a fault is confirmed for
a given confidence level. The efficacy of the proposed approach is
illustrated with data acquired from bearings typically found on
aircraft and monitored via a properly instrumented test rig.

Index Terms—Fault detection, fault progression modeling, fea-
ture extraction, particle filtering, rolling element bearing, signal
enhancement.

I. INTRODUCTION

A CONDITION-BASED MAINTENANCE (CBM) pro-
gram calls for the transitioning from time-based part re-

placement decisions in operational systems to condition-based
maintenance. For the U.S. Army’s CBM+ plan, there is in-
terest, for example, in implementing diagnostic and prognostic
algorithms that eliminate the need to use “time before overhaul”
definitions, which currently drive maintenance and retirement
schedules of certain mechanical components in vehicles [1].
Motivation for the present work stems from an interest to
support such efforts, so that this paper addresses the task of
enabling early detection of faults through the use of a fault
(also known as anomaly) detector, which, in turn, allows for
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the prediction of the evolution of the faults and the estimation
of the remaining useful life (RUL) of a failing component.

A variety of techniques have been proposed based on es-
timation theory, failure sensitive filters, multiple hypothesis
filter detection, generalized likelihood ratio tests, model-based
approach, among others [2]–[11]. Past research in anomaly or
fault detection for engineered systems focused also on tech-
niques to detect changes in the data by employing statistical
analysis techniques, reasoning tools from the soft comput-
ing arena, spectral methods, and approaches borrowed from
information theory, among others [12]–[15]. The application
domain is primarily critical aircraft systems. In the absence
of complex dynamic plant models, though, that are required
to represent accurately all operating modes, we seek alternate
approaches that can take advantage of available measurements,
simple system fatigue models, and statistical analysis tools to
recognize the presence of a deviation from the no-fault or base-
line condition. Several authors have analyzed the advantages of
particle-filtering-based fault detection and identification (FDI)
algorithms, for this type of scenarios, with excellent results
when compared to classical FDI approaches [16], [17]. Particle-
filtering-based method, however, differs from other approaches
since it does not require Gaussian additive noise assumptions
to establish a closed-form expression for the evaluation of
the likelihood or for purposes of residual statistical analysis.
Furthermore, the proposed method provides both statistical
confidence levels and an estimate for the type II detection error,
two of the most important customer specifications desired in a
FDI routine.

Early detection will allow for prediction of the fault evolu-
tion and estimation of the remaining useful life of the failing
component before the fault progresses to a state that endangers
the system’s operational integrity. Early detection is usually
accompanied by an unacceptable number of false alarms. A
reliable and accurate fault detector, therefore, must be capable
of declaring a fault only when a specified degree of confidence
is reached with a prescribed false alarm rate.

In [18], we introduced a fault detector based on the estima-
tion of features or condition indicators from sensor data that
are characteristics of the abnormal behavior of the system. The
key attribute of the features is that they characterize a large
number of targeted faults. Their selection and extraction are
critical processes that affect unequivocally the success or failure
of the detector. Another critical component is the fault pro-
gression model describing the degrading state of the system. In
practice, this model is often unknown and severely hinders the
application of model-based detection method. With the absence
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of data, it is impossible to build a data-driven model. This paper
thus develops a model based on Paris’ fatigue law and modified
it to fit into fault mode of interest and integrate it into the fault
detection architecture. A parameter adaptation algorithm is then
introduced. Features and fault progression models are then set
in a particle filter (PF) framework where the current feature
distribution is compared with its baseline counterpart to detect
a deviation or discrepancy between the two.

The paper is organized into two major sections: The first
one details the fault detector architecture while the second uses
an illustrative example with seeded fault to demonstrate the
efficacy of the proposed approach.

II. FAULT DETECTION ARCHITECTURE

A. Fault Detection Architecture

A fault detector is a module of the Prognostics and Health
Management (PHM) system intended to recognize, as early as
possible, fault conditions or anomalies in the operation of a
monitored system. In most real applications, fault detector is
required to perform this task while minimizing both the proba-
bility of false alarms and the detection time (time between the
initiation of a fault and its detection), given a fixed threshold for
false positives. The approach introduced in this paper involves
a comparison between the current condition of the system and
its expected operational behavior. In that sense, the availability
of historical data is always assumed for purposes of defining an
appropriate baseline.

To properly monitor the process, a set of features character-
izing the most critical aspects of the system’s fault behavior
is used. The features could be any signature or characteristic
derived from sensor data to reveal the evolution and progression
of a fault in the system. Although some of these features may
be used for the detection of a very specific fault mode, it is
desirable that most of them undergo significant perturbations in
the presence of several different fault scenarios.

Fig. 1 depicts the major modules of the proposed architecture
for a fault detector [18]. In this architecture, real-time mea-
surements (from sensors conveniently located and designed to
respond to a large class of fault modes) and information about
the current operational mode are provided online. Data are pre-
processed and enhanced before computing the features that will
assist to efficiently monitor the behavior of the plant. Features,
as shown in Fig. 1, can be extracted from the time domain, the
frequency domain, and the envelope analysis. In the example
in Section III, the feature is extracted from the envelope signal
in the frequency domain. Then, statistical analysis applied to
this set of features, which compare their evolution in time with
respect to baseline data, is performed to simultaneously arrive at
the probability of abnormal conditions, the probability of false
alarms, and a simple on/off indicator. This indicator exhibits
the exact time instant when the presence of a fault can be
confirmed at a given confidence level (for example, 95%). If
time and computational resources allow for further analysis,
feature information can be used to complete the tasks of fault
isolation, identification, and failure prognosis. The modules of
the architecture have been tested in experiment with actual

Fig. 1. Proposed architecture for a fault detector.

vibration data and they have shown to perform efficiently with
low and affordable computational burden.

The architecture proposed in Fig. 1 is perfectly suitable for
a particle-filter-based framework for fault detection [18], [19].
Particle Filtering is an emerging and powerful methodology for
sequential signal processing based on the concepts of Bayesian
theory and sequential importance sampling. Particle Filtering
can be used for a wide range of applications in science and
engineering, and is very suitable for nonlinear systems or in
the presence of non-Gaussian process and observation noise. It
has been successfully applied to the diagnosis and prognosis of
gearbox and battery [19], [20] fault detection and prediction
of the RUL. This approach offers a convenient compromise
between data-driven and model-based techniques, but also the
means to discuss its performance in terms of statistical indices.[

xd,1(t + 1)
xd,2(t + 1)

]
= fb

([
xd,1(t)
xd,2(t)

]
+ n(t)

)
xc(t + 1) = xc(t) + β (xc(t)) · xd,2(t) + ω(t)
y(t) = xc(t) + v(t)

fb(x) =

{
[ 1 0 ]T , if

∥∥∥x − [ 1 0 ]T
∥∥∥ ≤

∥∥∥x − [ 0 1 ]T
∥∥∥

[ 0 1 ]T , else
[ xd,1(0) xd,2(0) xc(0) ] = [ 1 0 0 ] . (1)

The fault detection procedure fuses and utilizes the infor-
mation present in a feature vector (observations) with the
objective of determining the operational condition (state) of a
system and the causes for deviations from desired behavioral
patterns. From a nonlinear state estimation standpoint, this may
be accomplished by the use of a particle filter-based module
built upon the nonlinear dynamic state model (1), where fb

is a nonlinear mapping, xd,1 and xd,2 are Boolean states that
indicate normal and faulty conditions, respectively, xc is the
continuous-valued state that represents the fault dimension,
y(t) is the fault dimension, w(t) and v(t) are noise signals,
n(t) is i.i.d. uniform white noise, and β is a time-varying model
parameter that describes the progression of the fault dimension
under a fatigue stress. It depends on the loading profile that is
being applied to the component (bearing, for example) under
test and is given in the form of the advancement da of fault
dimension per cycle dR

β =
da

dR
= C(ΔK)m (2)
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where a is the fault dimension, C and m are material constants,
and ΔK is the stress intensity factor that is determined by fault
dimension, load, etc. Models (1) and (2), however, are often
unknown in practice and this severely limits the implementa-
tion of fault detection. To solve this problem, the models are
modified in a form suitable for fault detection and an adaptive
online training algorithm is applied to parameter tuning.

In the model (1), two separate Boolean variables xd,1 and
xd,2 are used because there are a number of particles and
each particle indicates its individual normal or faulty condition.
The condition of different particles could be different. For
particles that xd,2 = 1, a faulty condition is indicated and the
fault dimension progresses according to xc(t + 1) = xc(t) +
β(xc(t)); while when xd,2 = 0, a healthy bearing is indicated
and the fault dimension does not progress.

A particle-filter-based fault detection routine using model (1)
allows for a statistical characterization of both Boolean and
continuous-valued states, as new feature data (measurements)
are received. As a result, at any given instant of time, this
framework will provide an estimate of the probability masses
associated with each fault mode, as well as a probability density
function (PDF) estimate for meaningful physical variables in
the system. Once this information is available within the fault
detection module, it is conveniently processed to generate
proper fault alarms and to inform about the statistical confi-
dence of the detection routine.

The outputs of the detection module may be defined as the
expectations of the Boolean states in model (1). This approach
provides a recursively updated estimate of the probability for
each fault condition considered in the analysis. These expec-
tations may activate alarm indicators or prognostic modules
if they exceed appropriate thresholds for the probability of
detection (typically, 90% or 95%). This is a particularly useful
approach when the normal operation of the system is defined
through a dynamic state-space model. In addition, it is also
possible to define the output of the detection module as the
statistical confidence needed to declare the fault via hypothesis
testing. This test is performed employing the PDF estimate of
one of the continuous valued states in model (1) and another
PDF defining the desired condition (baseline). This approach
allows for the inclusion of variables with a physical meaning
into decision making. Additionally, it is particularly useful
when diagnosing deviations from a specified setpoint.

It is also important to mention that the proposed fault diag-
nosis framework allows for the use of the PDF estimates for
the system continuous-valued states (computed at the moment
of fault detection) as initial conditions in failure prognostic
routines, giving a suitable insight into the inherent uncertainty
in the prediction problem.

It must be emphasized that sensor data acquired through an
onboard health and usage monitoring system must be processed
appropriately before it becomes an input to the fault detection
module (see Fig. 1). Raw vibration data must be preprocessed
via filtering and enhancement routines and features or condition
indicators extracted to reduce the data dimensionality while
maintaining the targeted (fault) information content for further
utility by the fault detector. These essential steps are described
in detail in the sequel. The illustrative example of the next

section is used to highlight the development and application of
the sequence of processes shown in the architecture of Fig. 1
leading to our ultimate objective-fault detection.

B. Fatigue Fault Progression Modeling

As mentioned earlier, system model (1) is often not available,
a solution is to build a general model and estimate the model
parameters through on-line adaptation and learning.

The fatigue crack progression model is built on the basis of
Paris’ law, as shown in (2). It expresses the fault growth rate in
terms of length per running cycle as an exponential function of
stress intensity factor range ΔK. In our case of a bearing, the
defect dimension is represented by spall area D and therefore,
model (2) is modified to

dD

dt
= C(D)m. (3)

Equation (3) states that the rate of defect growth is related to
the instantaneous defect area D under a steady operating condi-
tion. Again, C and m are material-related constants. Therefore,
a defect area growth model, in discrete time form with unit step
size can be written as:

D(t + 1) = D(t) + C (D(t))m . (4)

It is noticed that the progression of defect area under tight
controlled conditions could show significantly different behav-
ior. Therefore, the deterministic model (4) must be modified to
take into consideration this situation. Theoretically, the uncer-
tainty is due to the stochastic characteristics of Paris’ Law and,
therefore, it is reasonable to add a random variable. In practice,
adding a random variable into Paris’ Law is the same as adding
a random variable into defect area growth model (4). Therefore,
model (4) can be further developed by introducing a random
variable N(t) to represent the uncertainties. In practice, due to
the change of operating conditions and environment, as well
as the fact that the true values of parameters C and m are not
available. They are treated as time-varying unknown parameters
C(t) and m(t) that need to be adjusted online. Taking into
consideration of these factors, model (4) is modified as

D(t + 1) = D(t) + C(t) (D(t))m(t) + N(t). (5)

To determine the parameters, a recursive least square
algorithm with a forgetting factor is employed as follows.

Step 1) define a cost function as

J(θ) =
1
2

T∑
t=1

λT−t
[
D(t) − D

(
θ̂(t − 1)

)]2
(6)

where λ is forgetting factor, which is usually given
in the range of 0 < λ ≤ 1, and θ̂(t) = [C(t) m(t)]T

is parameters need to be determined.
Step 2) Calculate the derivatives with respect to param-

eters θ:

φ(t) =
dD(t, θ)

dθ

∣∣∣∣
θ=θ̂(t−1)

. (7)
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Step 3) Parameters update is given by:

θ̂(t) = θ̂(t − 1) + P (t)φ(t)
[
D(t) − D

(
θ̂(t − 1)

)]
(8)

and P (t) is updated as

P (t) =
P (t − 1)

λ

[
1 − φ(t)φT (t)P (t − 1)

λ + φT (t)P (t − 1)φ(t)

]
. (9)

The recursive least square with a forgetting factor applies an
exponential weighting to the past data. In the cost function (6),
the influence of past data reduces gradually as new data come
in. This algorithm can be easily applied online.

III. ILLUSTRATIVE EXAMPLE

A. Target System

We consider in this case study, faults occurring in a typical
mechanical component-a rolling element bearing, found in
many aerospace and industrial applications. The bearing, as
a critical component in rotating equipment, has been studied
extensively over the past years with respect to its fault or
degradation modes, models describing its behavior and the
development of diagnostic and prognostic algorithms to detect
faults and predict their remaining useful life. Bearing failure
may severely affect the health of the assembly. Of interest are
assemblies of a helicopter’s drive system, such as the oil cooler.
The components most prone to failure are bearings supporting
the cooling fan of the oil cooler assembly. Fault modes include
grease breakdown, corrosion, and spalling.

In the absence of actual on-platform baseline and fault data,
suitable for fault diagnosis and failure prognosis, Impact Tech-
nologies conducted a series of seeded fault tests using com-
mercially available bearings that have similar configurations
as those encountered on the helicopter’s oil cooler. Proof-of-
concept of fault detection in this case, is the primary objective
of the current study. As more appropriate test data become
available, these findings will be further improved, tuned, and
validated.

One intended task in this paper is to propose techniques to
improve existing U.S. Army detection capabilities for UH-60
oil cooler fan bearing faults, such as those described in [2].
In an initial effort to demonstrate the basic capabilities of the
fault detection methodology discussed in this paper, the team
proceeded to test enhanced fault detection techniques on an
industrial bearing with a small, naturally occurring fault. It
should be noted that this bearing is similar but not exactly
the same type found in the UH-60 oil cooling system. Future
work will build upon these initial developments leading to the
implementation of fault detection of fatigue-related faults in
UH-60 oil cooler fan bearings.

The bearing tested was a superprecision steel bearing sub-
jected to steady operating conditions (3000 r/min) in the bear-
ing test stand shown on Fig. 2, but with about 1.2 times that
of the rated maximum load. A naturally occurring spall was
observed in the bearing after about 8-h running time.

Vibration data (sampling frequency of 204 800 Hz) were
acquired at different times throughout the test after the system

Fig. 2. Bearing test stand.

TABLE I
VIBRATION DATA SEGMENTS ANALYZED TO DEMONSTRATE THE

FAULT DETECTION METHODOLOGY

Fig. 3. Inspections of a bearing with a naturally occurring spall.

was allowed to become thermally stable. To demonstrate the
fault detection methodology, several data segments listed in
Table I are utilized. The second row describe the duration
of time. The third row indicates the service time of bearing.
The fourth row gives the estimated bearing condition, which is
not measured fault dimension but only a rough classification
through eye check. Some measured fault dimensions are shown
in Fig. 3.

The components that are part of the proposed architecture
are now described. First, the data are collected from the system
of interest. It is preprocessed by adaptive line enhancement
technique. Then, envelope analysis is applied to the signal and
a feature is extracted from envelope signal’s frequency spectra.
Feature, together with a fault progression model, is fed into a
particle-filtering-based detection algorithm. The fault detection
generates some results in different forms and sends the results
to customer for decision making.

B. Signal Enhancement

In practice, the collected vibration signals are often corrupted
by a wideband noise, which will degrade the quality of features
and will eventually increase the false alarm rate while decreas-
ing the accuracy and precision of failure prognosis. Signal
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Fig. 4. Adaptive line enhancement scheme.

enhancement techniques are, therefore, essential for early and
accurate fault (anomaly) detection. Improvements in terms of
increased signal-to-noise ratio, reduced signal variability, and
optimum selection and extraction of features will contribute to
higher detection confidence and smaller false alarms rates. Such
signal enhancement tools may be applied to the time domain
signal directly or its frequency spectrum. Signal enhancement
has shown to be effective in improving signal quality [21].
Blind deconvolution, spectral subtraction, and adaptive line
enhancement techniques have been applied to signals with a
reasonable degree of success.

The vibration can be described as s(t) = vb(t) + d(t), where
s(t) is the measured signal, vb(t) is the true vibration signal
which can be considered as the sum of narrowband signals
spaced by a fault characteristic frequency, and d(t) is broadband
noise. It is known that when a fault, for example, a spall on
the raceway surface, is initiated in a bearing, an impulse of
vibration is generated when the rolling elements pass through
the spall [14]. This impulse is normally repetitive because the
rolling elements contact the defect on the bearing surface in a
periodic manner. The impulse generated by the defect is much
shorter than the bearing rotating period. Therefore, the energy
of the impulse will be distributed across a very wide frequency
range, which will excite various resonances of the bearing [23].
The frequency of the impulses is usually regarded as the bearing
characteristic defect frequency and is critical for fault detection
purposes.

Since adaptive line enhancement technique [22] is widely
used to separate narrow band signals from broadband noise, this
algorithm is applied to bearing vibration data in the experiment.
The adaptive line enhancement scheme is shown in Fig. 4. In
the scheme, the delayed measurement s(t − Δ) is used as the
reference signal and is fed into an adaptive filter. The output
of the filter is compared with the measurements(t) to derive
the error signal e(t) = s(t) − F (s(t − Δ)), where F (·) is the
adaptive filtering process. The error signal is then used to tune
the filter parameters via a least mean square method [24].

As shown in Fig. 4, in this adaptive line enhancement
scheme, the correlation of the broadband noise d(t) in the
delayed reference signal s(t − Δ) and the measurement s(t)
is removed by the delay Δ. However, the correlation of the
true vibration signal vb(t) in these two signals is still high.
By minimizing the error, the filter tends to keep the correlated
narrowband true vibration signal while it cancels the uncor-
related broadband noise. The adaptive filter will eventually
converge to a bandpass filter that has a pass band centered by
the frequencies of the narrowband true vibration signal.

C. Feature Extraction

Features or Condition Indicators are characteristic signatures
of the fault signal that reduce the data dimensionality without
sacrificing the signal’s information. They form the foundation
for “good” fault detection algorithms. Their selection from a
large candidate set and their efficient extraction from raw data
are important functions in the PHM design.

Performance metrics are defined and fusion techniques are
pursued in order to arrive at an “optimum” feature vector [21].
One of the most prominent vibration signal processing tech-
niques for detection and diagnosis of rolling element bearing
fault is envelope analysis [23]. The success of this technique
is due to its ability to separate the vibration generated by a
defective bearing from the one generated by other machine
elements. For bearings with a localized defect caused by cor-
rosion in service, the contact between rolling elements and
raceway surface(s) at the defect zone under load generates an
impulse train of vibration signals. In this impulse train, each
impulse force has a very short time duration compared to the
interval between impulses. In the frequency domain, this short
time impulse will cause an energy distribution across a wide-
frequency range and, therefore, excite various resonances of
the bearing and the surrounding structure. Due to the periodic
characteristics of the impulse train, the excitation of resonance
is repetitive. Envelope analysis, by demodulating the vibration
signals at the resonances that the impulse train is excited,
provides a mechanism for extracting the periodic excitation
of the resonance from vibration signals. The frequency of the
extracted signal is the frequency of the impulse train, i.e., the
characteristic bearing defect frequency.

Envelope analysis is realized through the application of a
bandpass filter followed by a Hilbert transform and the con-
struction of the analytic signal. The envelope signal is simply
the absolute value of the analytic signal. Finally, via Fourier
transform, the frequency spectrum of the envelope signal is
derived for feature extraction.

The feature extraction scheme is illustrated in Fig. 5. In this
example, the weighted energy in a frequency band centered on a
frequency of interest is calculated. First, a weighting window is
defined centered around the frequency of interest as in subfigure
(a). The windows have the shape of a Gaussian or Hamming
kernel. The length of the window defines the frequency band
required to calculate the feature. The spectrum of the envelope
signal is shown in subfigure (b). This envelope spectrum is
multiplied by the weighting factor window to produce the
weighted frequency spectrum shown in subfigure (c). In this
feature extraction, the frequency band for envelop analysis is
[0.2 0.4] of the Nyquist frequency and Gaussian shape weight-
ing window are used.

The feature of interest is the sum of all frequency com-
ponents in this weighted frequency band. The feature values
extracted from different data sets are shown in Fig. 6. It can
be seen that the feature values from the original data are very
noisy. On the other hand, the feature values from the enhanced
data show that signal variability is reduced substantially while
the features themselves are almost monotonic, as the fault
dimension increases with the operation of the bearing. Some
performance metrics to evaluate the quality of feature are
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Fig. 5. Feature extraction.

Fig. 6. Features from vibration data before and after signal enhancement.

discussed and given below. Therefore, the classification of
baseline and faulty conditions through enhanced data is much
easier and can reduce the false alarm rate significantly.

D. Feature Performance

The performance of the extracted feature must be evaluated
to determine if it is a good candidate. Typical metrics include
a precision measurement, termed the Percent Mean Deviation
(PMD), measuring the noise content of a feature. It evaluates
the mean deviation between the raw feature vector x and its
smoothed counterpart xs (usually a butterworth low-pass filter
is used to get xs from x), and is given by:

PMD(x) =

(
n∑

i=1

(xi − xs,i)/xs,i

)
/n × 100. (10)

Feature with a small PMD value is preferred. Note that this
feature is the weighted energy and, therefore, feature values are
always larger than zero.

For fault detection, we consider two classes, Normal (N) and
Abnormal (A). Suppose that the features from these two classes
are from two Gaussian distribution and therefore can be used to
construct two Gaussian PDFs. Then, the distance between these
two PDFs can be used as performance metrics. The distance is

Distance(x) = |X̄n − X̄a|/
√

s2
Xn

/nn + s2
Xa

/na (11)

where Xn, s2
Xn

are the mean and variance of feature values
that belong to N and Xaand s2

Xa
are the mean and variance

of feature values that belong to A. Obviously, a large value for
distance is desirable for fault detection.

Performance metrics for the features extracted from the
vibration data before and after enhancement on PMD are 4.02%
and 2.18%, and on distance are 1.73 and 3.05, respectively.
These features from enhanced signals are ready to be used in
diagnosis.

E. The Fault Detector

Two main operating conditions are distinguished for the oil
cooler bearing, the normal or baseline conditon, reflecting the
fact that the bearing is new and does not exhibit any signs of
spalling, and the faulty conditon, indicating an abrupt change
in our indicators due to the presence of the fault (anomaly).

In this case, a particle-filtering-based detection module is
implemented using model (1) to describe the expected rate
of growth in the fault. Parameters associated to β are given
as θ(0) = [C(0),m(0)] = [0.3, 0.5], ω ∼ N(0.5, 0.052), and
v ∼ N(0.5, 4), respectively. For parameter adaptation, P (0) =
[1000; 0 100] and forgetting factor λ = 0.99.

Due to the online adaptation method developed previously,
values of C and mare online-tuned every time when a new
measurement comes in. Theoretically, the initial values can
be arbitrarily given. However, in practice, a good initial point
not only leads to fast convergence, but also provides good
performance. In our case, only very limited data points are
available, it is difficult for adaptation algorithm to reach optimal
value with little training. Therefore, good initial values are
important for our problem. The initial values are set according
to our understandings to the problem.

Besides detecting the faulty condition, it is desired to obtain
some measures of the statistical confidence of the alarm signal.
For this reason, two outputs are extracted from the detector
module: The first one is the expectation of the Boolean state
xd,2, which constitutes an estimate of the probability of a fault,
while the second is the statistical confidence needed to declare
the fault via hypothesis testing (H0: “The fault is not present”
versus H1: “The fault is present”). An online indicator of sta-
tistical confidence for the detection procedure is the probability
of detection.

Fig. 7 shows the result of fault detection at different time in-
stant (data sets are collected in time sequence). In this figure, the
false alarm rate (type I error) is given as 5% and the confidence
to claim the fault is 90%. That is, no fault is claimed until the
probability of detection is higher than a confidence threshold of
90%. The false alarm rate and confidence of detection are the
performance indices associated with the problem and therefore,
are often from customer. This figure contains three subfigures
that are simultaneously computed online. The first subfigure,
depicted as a function of time, shows the feature or a mapping
of fault/anomaly progression. In this subfigure, blue line is the
feature value extracted from raw vibration data while green
line is the filtered feature from particle filtering. The second
subfigure depicts the probability of the fault at each time instant
(green line) as it approaches a specified confidence threshold
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Fig. 7. Results of fault detection at different measurements.

(red line) and is based on the estimate of the Boolean state
in model (1). The probability of detection is estimated as the
expectation of the Boolean state xd,2. A fault alarm may be
triggered whenever this indicator reaches the confidence thresh-
old level. The third subfigure is a depiction of the two PDFs-
the baseline one (cyan) and its real-time counterpart (magenta)
computed online from particle filtering as new data and features
become available. The vertical line that discriminates between
the two PDFs in this last figure is fixed by the desired type
I detection error (probability of false positives) and baseline
PDF. The type II detection error (with 1-type II error being
the detection confidence) is also shown on the figure. Note that
estimates for “probability of detection” and “type II error” are
calculated as a new measurement comes in.

The results shown in this experiment is for system under
constant operating condition. To address varying conditions, the
leading factors (such as load) of fault can be divided into groups
(such as light, medium, and heavy) and get baseline data for
each group. Then, online fault detection can be run in parallel
for each group. Another solution is to set a nominal operating
condition and map the features and fault progression model
under other operating conditions to this nominal condition.

The fault detection under other operating conditions can be
conducted under the mapped nominal condition.

IV. CONCLUSION

Fault detection is an essential module of the PHM sys-
tem, particularly when health and usage monitoring hardware/
software are operating online in real-time platform. Conflicting
performance requirements-accuracy of detection, false alarm
rates, and time to detection after the initiation of a fault
(anomaly) must be resolved and balanced if the output of the
detector will assist the system operator and lead to meaningful
prognosis of the failing component’s RUL. At the same time,
the inherent system, measurement, and model uncertainties
must be addressed and managed for optimum detection results.
Bayesian estimation methods, combined with measurements
and efficient data processing tools, promise to provide effective
solutions to these challenging problems. Extensive research
and development work and test results from actual system
applications are needed to improve and validate these emerging
technologies.
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