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Abstract This paper proposes a new mathematical framework for the open pit mine
planning problem, based on continuous functional analysis. The main challenge for
engineers is to determine a sequence of nested profiles maximizing the net present
value of the mining operation. The traditional models for this problem have been con-
structed by using binary decision variables, giving rise to large-scale combinatorial
and Mixed Integer Programming problems. Instead, we use a continuous approach
which allows for a refined imposition of slope constraints associated with geotechni-
cal stability. The framework introduced here is posed in a suitable functional space,
essentially the real-valued functions that are Lipschitz continuous on a given two
dimensional bounded region. We derive existence results and investigate qualitative
properties of the solutions.
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1 Introduction and motivation

Generally speaking, three different problems are usually considered by mining engi-
neers for the economic valuation, design and planning of open pit mines as pointed out
by Hustrulid and Kuchta (2006). The first one is the Final Open Pit (FOP) problem,
also called “Ultimate Pit Limit” problem, UPL for short, which aims to find the region
of maximal economic value for exploitation under certain geotechnical stability con-
straints and assuming infinite extraction capacity. Another more realistic problem is
what we call here the Capacitated Final Open Pit (CFOP) which considers an addi-
tional constraint on the total capacity for a one-period exploitation. The third problem
is a multi-period version of the latter, which we call the Capacitated Dynamic Open Pit
(CDOP) problem, with the goal of finding an optimal sequence of extracted volumes
in a certain finite time horizon for bounded capacities at each period, the optimality
criterion being the total discounted profit.

A common practice for the formulation of these problems consists in describing an
ore reserve (copper, for example) via the construction of a three-dimensional block
model of the mineralization. Each block corresponds to a unitary volume of extraction
characterized by several geologic and economic properties which are estimated from
sample data. Block models can be represented as directed graphs where nodes are
associated with blocks, while arcs correspond to the precedence of these blocks in the
ore reserve. The precedence order is induced by physical and operational constraints
as those derived from the geomechanics of slope stability. This discrete approach gives
rise naturally to huge combinatorial problems whose mathematical formulations are
special large-scale instances of Integer Programming (IP) optimization problems (see,
for instance, Cacetta 2007). This explains why the optimal planning of open pit mines
based on block models is usually addressed by approximation methods, heuristics
and mixed IP techniques as Linear Programming relaxations of integer variables and
branch-and-bound algorithms.

A great number of publications dealing with discrete block modeling for open pit
mines have been published since the sixties. A seminal paper by Lerchs and Grossman
(1965) proposes a practical procedure to obtain the ultimate pit limit, which have been
extensively applied in real mines for many years. The capacitated dynamic problem
is more difficult to solve and many methods using discrete optimization techniques
have been proposed by Boland et al. (2006), Cacetta and Hill (2003) and Hochbaum
and Chen (2000). Some dynamic programming formulations as in Johnson and Sharp
(1971) and in Wilke and Wright (1984) give interesting results, but the applicability of
these techniques is still not well established for large-scale problems. Metaheuristic
and evolutionary algorithms have also been extensively tested by Denby and Schofield
and Ferland et al. (2007).

In this paper we propose an alternative approach to the above mentioned problems
based on a continuous framework for the ore reserve as well as the mining activity. The
basic idea is to describe the pit contours through a Lipschitz continuous real-valued
function, a profile which maps each pair of horizontal coordinates to the corresponding
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vertical depth. The stability of steep slopes is ensured by a spatially distributed con-
straint on the local Lipschitz constant of the profile function. The maximal feasible
local slope may vary depending on the geotechnical properties of the possibly hetero-
geneous mineral deposit. The extraction capacity and operational costs are described
by a possibly discontinuous effort density, a scalar function defined on the three-dimen-
sional region occupied by the ore reserve. In order to quantify the economic value of
an extracted volume described by a given profile function, we consider a gain density
defined on the deposit, which again may be a discontinuous function.

Our goal here is to develop a complete existence theory and investigate qualitative
properties of the optimal solutions to the proposed continuous versions of the FOP,
CFOP and CDOP problems. The numerical resolution of these problems based on
strategies from continuous optimization in functional spaces will be the subject of
future research.

It is worth mentioning that the first documented approach applying continuous
functions for a parametrized variant of the CFOP problem seems to be the work by
Matheron (1975). He explicitly exploited the underlying lattice structure of the set
of feasible profiles for his framework in order to obtain existence results as well as
interesting characterizations for optimal solutions but neither a proof of existence nor
optimality conditions were given there. More recently, a simple related continuous
scheme was introduced by Morales (2002), for underground mines, but no study on
existence nor optimality conditions are given there. On the other hand, Guzman (2008)
has proposed a continuous framework for the FOP problem based on shape and topo-
logical optimization using level-set techniques, reporting computational results for
a very simplified instance of the problem, but again no rigorous existence theory is
provided.

This paper is organized as follows. In Sect. 2 we describe the stationary problem
in terms of continuous profile functions by introducing nonnegativity, boundary and
stability conditions, and we prove that such a set of admissible profiles is compact for
the uniform-convergence topology. Furthermore we establish structural properties of
this set related to the lattice structure induced by pointwise min and max operations.
In addition, we introduce an effort and a gain function which are related to the capac-
ity constraints and the profit objective function, respectively. In Sect. 3 we state the
optimization problems for the stationary case, derive nonconstructive existence results
for them and describe qualitative properties of the corresponding optimal solutions by
exploiting the lattice structure of the set of feasible profiles. In Sect. 4 we introduce a
dynamic planning problem with discount rates, investigate properties of the dynamic
feasible set and give an existence result. Finally, in Sect. 5 we briefly summarize the
main contributions of this paper and indicate some lines for future research.

2 The stationary problem
2.1 Continuous profile functions

Throughout this paper € represents either a bounded connected domain  c R? with
Lipschitz boundary 9€2, or a bounded open interval Q2 = (a, b) C R with 0Q = {a, b}.
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z

Fig. 1 Example of a continuous profile function on a one dimensional domain

In any case, the state of excavation at any particular time is defined by a function
p : Q — R called profile so that z = p(x) for x € Q, where the vertical coordinate
z indicates the depth of the pit at point x (see Fig. 1). In this paper p, as not stated
otherwise, is always an element of the Banach space of continuous real valued func-
tions C () endowed with the supremum norm given by || plco = sup,.g |lp(x)|. The
initial state (profile) is defined by a function py € C () so that all admissible profiles
p must satisfy the nonnegativity condition

p(x) — po(x) =0 forx e Q. (1)

Moreover, we assume that no excavation happens on the boundary of €2 and thus
impose the Dirichlet condition

p(x) — po(x) =0 forx € 9L2. 2)

In other words p — po must belong to the nonnegative orthant of the linear space
Co(Q) C C(RQ) of continuous functions on € that satisfy homogeneous boundary
conditions.

The admissible profiles are not only bounded from below by z = min{po(x)|x € Q)
but also from above by a value 7 > z due to physical and operational conditions. Thus
for any admissible profile we assume that

px)e Z=|z,7] forxe Q. 3)

Of course, with no loss of generality we may assume z > 0. The general situation is
sketched in Fig. 1 for the one dimensional case.
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2.2 Geotechnical stability condition and compactness

In order to measure the local slope associated with a given profile p € C(RQ), we
define

L) = limsup L ZPOL ¢ e, )
I—>x<Xx x — x|
Here and throughout || - || denotes the Euclidean norm. One can easily show that for

each p € C(£2) the corresponding function L : Q — [0, oo] is upper semi-contin-
uous. Where L ,(x) is finite it induces sharp local Lipschitz constant for p around x
in the sense that for all & > 0, there exists for all ¢ > 0 a § > 0 such that for any ¥, x
with ||[X — x| < & > ||x — x|| we have

Ip(®) = p(D)] = (Lpx) + &)1 — X,

and if L is any local Lipschitz constant for p in a neighborhood of x then L ,(x) < L.
The key assumption on the admissible profiles p is the pointwise stability condition

L,(x) <w(x, p(x)) forxeQ, 3)

where w : Q x Z — [0, 00) is an upper bound on the limiting local Lipschitz constant
of p. It prescribes the maximal stable local slope and may vary on Q x Z depending
on the local geotechnical properties of the material. Rather than assuming continuity
of the slope function w we allow for horizontal and vertical jumps, which might be
caused by layers of different material. In particular we may have soft and hard mate-
rial layers next to each other, so that @ may jump upwards as one crosses into the
harder material. Wherever w is discontinuous we may define it as its upper envelope
over a neighborhood and thus we can assume without loss of generality the upper
semi-continuity property:

limsupw(x;,z;) < w(x, z) ©)
J

for all convergent sequences (x;, z;) — (x,2) € Q x Z. This assumption immediately
implies that o attains a maximum

w= max o(x,2z). @)
(x,2)eQxZ

To restrict the feasible profiles to the volume Q x Z we assume without significant
loss of generality for notational simplicity that @ is less than 0.5|Z|/diam (). Apart
from the supremum norm in C () we will utilize the extended-real valued Lipschitz
semi-norm

Ipllzip = sup L,y (x) € [0, 00] for p € C(Q).

xeQ2
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Forall p € c(Q) satisfying (5) we have || p||Lip < @ as defined in (7). The linear space
ofall p € C(Q) for which || PllLip 18 indeed finite is denoted by Li p(ﬁ) which can
be endowed with the norm || p|l1,00 = | plloc + || pllLip to obtain the standard Banach
space of all Lipschitz functions on . On the subspace Lipo(Q) = Lip(Q) N Co(Q)
the quantity || pllz;p defines a proper norm which is equivalent to ||p|l1,c0. In fact,
it is not difficult to see that for any p € Lipo(Q) we have that Vx € Q, |p(x)| <
IpllLip disto(x, 0S2), where distq(x, d€2) stands for the distance, relative to €2, from
x to the boundary €2 of 2. As €2 is bounded, we conclude that for a constant C < 0o
depending only on Q we have that ||[pllec < CllpliLip- In particular, the embed-
ding Lipo(Q) — CO(Q) is completely continuous. It is well known that the resulting
Banach space Llpo(Q) is equivalent to the Sobolev space WO () (see Evans 1998).

Furthermore, by virtue of Rademacher’s theorem, every p € Li p(ﬁ) is a.e. differ-
entiable in Q. It follows that for every p satisfying (5) we have that

[Vp(x)| < w(x, p(x)) forae. x e Q.
Throughout, we assume that pg satisfies (5). The set
={p € C(Q) | p satisfies (1), (2) and (5)}

is called set of admissible profiles. In fact the bounded set & is contained in the affine
subspace po + Lipg (2). Notice that the u.s.c. assumption (6) on w is necessary for
the closedness of & in C (). Indeed let us consider the following simple example:
Take Q = (—1,1) and @ € [0, 1]. Set wy(x,z) = 0ifx < 0, if x = O and 1 if
x > 0. This function is discontinuous at x = 0 and is not u.s.c. if « < 1. For each
& > 0, the profile p.(x) = max (0, x — ¢) satisfies (5) with w = w, for any @ € [0, 1];
nevertheless, its uniform limit p(x) = max(x, 0) is admissible if and only if ¢ = 1.
Furthermore, under (6) we have that & is compact in C(£2) as we will show below.

Proposition 1 If w satisfies (6) then 2 is compact and has empty interior in C ().

Proof As our feasible functions are fixed on 922 we know that 22 — py C Co(RQ).
The uniform Lipschitz continuity property ensures the equicontinuity of &2, while all
functions in & have values in the compact interval Z = [z, z]. Hence the asserted
compactness of &2 in C(R) follows by the well known theorem of Arzela-Ascoli
provided we can show that it is closed w.r.t. || - || o-

Let p € po 4+ Co(R) be a function in the closure of &2 w.rt. || - ||oo. By virtue of
(6), we have that for given x € 2 and ¢ > 0 there exists § > 0 such that for any x € Q
and g € & with ||Xx — x| < § > ||g — plleo then

w(X,q(X)) < w(x, p(x)) + /4. ®)

From this it follows that for all X # x in the ball Bs(x) we have

M <o, p) + . )
lx — x|l 2
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which will be shown by contradiction. If equality (9) is violated by a couple of points
{X, x = X+ Ax} € Bs(x) with Ax # 0, then it would be also violated by at least one
of the pairs {X, X + Ax/2} or {X — Ax/2, X} because of

lg(x¥) —g®I _ 1/2(19(F) = g(F + Ax/2)| +19(X) = g(F = Ax/2)])

(B 1 1/2]1% — Xl
_ 12@max{lg(®) = ¢(& + Ax/2)|, lg() = g = Ax/2)[D)
B 1/2)1x — x|l
~ max{|g(X) — (¥ + Ax/2)|, |q(¥) — q(x — Ax/2)[}
- 1/2]% - %]
and 1/2||Xx — X|| = ||Xx — X + Ax/2| = ||X — X 4+ Ax/2]. Recursively, we can con-

tinue the bisection process to generate a family of nested segments {[X;, x;1} ;>0 of
length ||Ax||/2/, all of them contained in Bs(x), such that the corresponding pairs
Xj, )?.,- violates (9) for each j, and moreover one would have that there exists a limit
X« € [Xj, X;]1 C Bs(x) such that ¥; — x, and £; — x4 as j — o0. By construction,
using (8) and since g € &2, we get:

lg(xj) —q&))l

— < w (x4, q(x4)) + Rj(Ax)
llx; — x;ll

o(xe. q(x,)) + Z < ox, p) + % <

where the remainder R (Ax) is of the form o (|| Ax || /27) /(|| Ax || /27). Letting j — oo,
we obtain a contradiction in (8) as R;(Ax) vanishes. Thus (9) is indeed implied by
(8). Let us return to the function p. Given ¢ € (0, 1], let us consider the corresponding
8 > 0 as in (8). For any X # x with | — x|| < § and ||Xx — x|| < J there exists a
profile g € &7 such that ||p — ¢llco < ||X¥ — X||&/4 and therefore

lp(X) — p(X)| _ la@® = g +2[p = qlleo
X — %] - X — %]
w(x, p(x)) +e.

< w(x, p() + zg

IA

Since £ may be chosen arbitrary small p must satisfy the stability condition (5) and is
therefore contained in &, which is thus closed as asserted. This completes the proof
of the compactness of &2.

To see that &2 has empty interior w.r.t.the || - ||oo norm we only have to consider a
triangle wave function p, around an admissible profile p € 4. For any ¢ > 0, scaling
the amplitude of p, we can ensure ||p; — plleo < €. But letting the wavelength of p;
go down, the limiting local slope L p, increases and thus the stability condition (5) will
be violated. Hence in every neighborhood of a feasible profile w.r.t. || - || there are
infeasible profiles. O

As an immediate consequence of Proposition 1 we get that any functional F :
C(Q) — R which is continuous w.r.t. || - ||« attains on &2 a minimum and a max-
imum. This applies in particular to the distances F(p) = ||p — plloo for any fixed
peL®QDC () D 2. Hence we have (non unique) least distance projections
from L to £.
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2.3 Additional conditions on the slope constraint

One might want to impose two additional conditions on w(x, z) concerning its depen-
dence on the vertical coordinate z. The first one is that the restrictions w, (z) = w(x, z)
be right continuous, i.e.

lim w,(Z) = wy(z) forx e Q (10)
Z\z

The physical motivation for this property is the exclusion of certain pathological situ-
ations where one may have two regions with soft material lying below the hard one. If
w is only u.s.c. with respect to all variables, a profile might be feasible but physically
unstable because the maximal slope permitted in the hard material cannot be supported
by the soft material below which only allows a milder slope. The assumption (10) of
right-continuity w.r.t. z means that the slope constraint can not simply jump up from
a soft layer below a hard one, but must build up gradually.

The second additional condition on w is definitely optional, namely we may require
concavity of w(x, z) w.r.t. z € Z. This rather strong condition, while clearly not very
realistic in the general case, does allow for the possibility of hard material in the mid-
dle sandwiched in between soft material on top and below. Of course, one may also
consider the case of a concave w which is monotonically increasing or decreasing
w.r.t. z according to the geomechanics of the material.

Lemma 1 If w(x, z) is concave w.r.t. 7 then & is convex.

Proof Take two profiles p,g € & and 0 < « < 1. For any x € S, we have by
definition of L in (4) and the triangle inequality

Li-g)ptag(x) = (1 —a)Lp(x) +aly(x)
<(I-a)owkx, px) +aw(x,gx)) <wx, (1 —a)px) +ag(x))

where the last inequality is a consequence of the concavity property on w. Thus
1I-a)p+age 2. O

We end this section with a sufficient condition for an admissible profile to be in the
interior of & in Lip(Q).

Proposition 2 If w is continuous on (2 X Z) then any profile p € &2 for which

e = inf {0(x, p(x) = Lp(x)} > 0 (11)

lies in the interior of & in Lip(Q).

Proof We have to show thatany p € &7 satisfying (11) has a neighborhood which only
contains feasible profiles. Due to the continuity of @ on 2 there exists for all ¢ > 0
ad > Osuch that at all x € Q, we have |w(x,z) —w(x,2)| < &/2 if |z —2] <.
Pick any g with |lg — pllLip < &/8 and ||g — plleo < 8. The set of such g is an open
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neighborhood of p in & w.r.t. the Lipschitz norm || - [|z;p. Any x € € is contained
in some ball Bs such that on that ball p — ¢ has a Lipschitz constant of size /4 and
p has a Lipschitz constant of size L,(x) + &/4. Now we see that for any two points
X, X% € Bs(x)

lg(X) —q®)|/II¥ = X|| = |lg(X) — p(X) — (g(X) — p(X)) + p(X) — pO|/[IX — X
< lg(X) — p(x) = (@(X) — pENI/IX — Xl + Lp(x) +&/4
<Lp(x)+e/2 <wx, p(x)) —e/2 < w(x, q(x))

where the last estimation follows from the condition on the difference of p and ¢
w.r.t. the supremum norm. Hence g satisfies the slope constraint in that certainly
Ly(x) <w(x,q(x)) andthus g € &. O

2.4 Structural properties of the admissible profiles set

The next result establishes closedness properties of & under pointwise minima and
maxima operations. These properties ensure the connectedness of &7 as a subset of
C () even when w(x, ) is not assumed to be concave w.r.t. z so that & can be non-
convex.

Moreover we will consider the so called intermediate level profiles

g = max{p, min{g, t}} fort € R (12)

concerning two arbitrary, essentially bounded, ordered functions p < g € L>(RQ).

Proposition 3 Under (6) we have that:

(i) P is closed with respect to pointwise minima and maxima in that for any subset
P C P the functions p(x) and p(x) defined by

p(x) =inf(p(x)|p € P} and P(x) =sup{p(x)lp € P}  (13)

also belong to &. Thus & contains a unique maximal element p,, = ma}é{p}.
pe

(ii) If p,q € & are such that p < q then q; € & for any “level” t. Moreover
the path T — q- is continuous w.r.t. || - || co-
(iii)  Any two profiles p, q € & are connected via min{p, q} and max{p, q}.

Proof (i) We will apply induction and a classical diagonalization argument to
generalize the claim from the binary case to subsets containing infinitely many
profiles. First consider mathscrP = {p,q} C 2. At points x € Q where
r(x) = max{p(x), g(x)} = p(x) > g(x) the same is true for all x ~ x by
continuity and we have thus L, (x) = L,(x) < w(x, p(x)) = w(x, r(x)). At
points x where there is a tie r(x) = p(x) = ¢g(x) we find that for any two

@ Springer
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sequences y; — x and z; — x

Ir(yj) —r(zpl = Imax{p(y;), q(y;)} — max{p(z;), q(z;)}|

max{|p(y;) — p@)l, lg(y;) —qz)}

IA

The last inequality follows from the inverse triangle inequality for the supre-
mum norm on R?. After division by ||y j — zj |l and taking the limit y; — x <«
z; we find that

Ly(x) < max{L,(x), Ly(x)} < max{w(x, p(x)), o(x, g(x))}
=w(x,rx)). (14)

Thus r = max{p, ¢} € Z.

The same argument applies to r = min{p, g} = — max{—p, —q} for the slope
stability condition. Obviously it follows by induction that maxima and minima
of finitely many elements in & also belong to &7.

Now suppose 2 contains infinitely many elements. First of all we note that
from p(x) = sup{p(x)|p € @} it follows that p € L*°($). Now we pick
a dense subset {x;};eN in €2. By induction on i we now choose sequences
p,E’) € 2 such that

lim p\”(x;) = p(xj) = sup {p(x;)} forj <i
k— 00 ~
pe?

Consider a subsequence (px) € P with Pr(x;) — Pp(x;) and set p,({”]) =

max{p,ﬁ”, Pk} so that p,EiH)(xj) — p(x;) for j <i. Now we take the diago-
nal sequence p; = p,({k) and get

lim p;(xj) = plx;) forj <i (15)
k—o00
We know for j <k
— * i+1)
p(xj) = pi(xj) = pp " (x))
———
—>p(xj)

and get a subsequence so that for all j € N, p(x;) = klim Py (x;) by the con-
—00

vergence in (15). Moreover we can pick a Cauchy subsequence so that without
loss of generality ||p — pjllcc — 0 for some p € &. Clearly we must have
p = p which proves (i).

(i) The assertion is again obvious where all three values p(x), g(x) and t are dis-
tinct. When there is a tie between two we may invoke the same argument as in
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v

Fig. 2 Illustration of level excavations for different levels between two given profiles

(i) and then extend it to a three way tie. Since at all x € Q

lgr — qz| = [ max{p, min{g, 7}} — max{p, min{g, 7}}|

< |min{g, 7} — min{gq, T}| < |t — 7|

we have in fact Lipschitz continuity of ¢, w.r.t. © € R. Consequently, & is
path connected in C () since any two p, ¢ € & can be transformed into each
other via min{p, g} or max{p, g} with the help of a path generated by a varying
level T in (12).

(iii)  Follows from (i) and (ii). O
The path in (ii) is not continuous w.r.t. || - ||z;p. Take for instance p = 0 and
q(x) = - %)2 on Q = (0, 1) and w sufficiently large, so that we have p, ¢ € &

and g (x) = max{0, min{g (x), }} belongs to 2, but gz — qollLip = llgclip = 1
forall T > 0.

The profile modifications applying intermediate level profiles used in Proposition
3(ii) will be referred to as “level excavations”. They are depicted in Fig. 2 and make
practical sense as material is taken away in horizontal layers. While that does not
mean optimality when gains are discounted as discussed in Sect. 4 we note that any
monotonic chain of feasible profiles pg < p; < -+ < pm € & can be extended
to a feasible path from pg to p,, by level excavation between successive profiles
pPj < pj+1. The next result on level excavations shows that we can regain feasibility
from any bounded ¢ > p € £, so there is no danger of getting trapped away from
the admissible set during an iterative optimization process.

Proposition 4 Under (6) we have that if # 5 p < q € L™(Q) then q; € L™(RQ),
and the set V; = {x € Q| Ly, (x) > w(x, q¢(x))} is monotonically growing w.r.t. T.

Proof The proof will be obtained from a case study for the bounds

g =limsupg(¥) > ¢ = liminf g(X) > p(x)
- X—>Xx

X—Xx

at any particular point x € Q.
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If ¢ > g we must have L;(x) = oo and also Ly, (x) = oo aslong as t > ¢
which in turn means x € V; for r > ¢. On the other hand it follows for T < ¢ that
min{z, g(x)} = t for all X near x so that clearly g, (x) = max{p(x), t} and thus
x ¢ V.. Thus we have monotonicity whether or not x € V; for t = q.

Now suppose g = g which means that g(x) is continuous at x. If T > g(x) then
for ¥ &~ x we have that ¢; (¥) = ¢ (%) and if T < ¢(x) then for ¥ ~ x we have that
g (x¥) = max{p(x), t}. Hence we have again x ¢ V; if 7 < ¢(x) andfort > g(x) we
have x € V; & L4(x) > w(x, g(x)). Now the only case left to consider is Ly (x) <
w(x, g(x)) where we have to exclude that x € V; for T = ¢g(x). However it follows
exactly as in (14) that for T = g(x) we obtain L, (x) < max{L ,(x), Ly(x)} = Lg(x)
so that we have monotonicity in all cases. O

2.5 Effort constraints and gain objective function

In addition to w the modeling of the open pit problem relies on two other given real
valued functions, namely

e(x,z) >ey>0 and g(x,z) eR for(x,z) e 2 x Z. (16)
which are only assumed to be uniformly bounded, i.e.
e,g € L¥(Qx2Z) (17)

Hence it is allowed that e and g have jumps due the existence of different types of
material in the ore body. For any two given profiles ¢ > p the integral

q(x)

E(p.ql) = / / e(x. 2)dzdx

Q px)

represents the “effort” to excavate all the material between profile p and g, which is
expected to be bounded by the capacity of the mine operation. On the other hand, the
function
q(x)
G(p.qD = / / g(x, z)dzdx

Q p(x)

represents the total value or “gain” of the material between p and ¢ (without consider-
ing a discount rate). Notice that the function g(x, z) may take negative values. When
p = po we abbreviate G(g) = G([po, q]) and E(q) = E([po, q]). For an ordered
triplet p < g <r with p, g, r € & we have additivity in the sense that

G(p.rD=6G({p.qD) +G(g.r) and E([p,r)=E(p.q]) + E(lg.r]) (18)
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Now we can give the basic properties of G and E as follows.

Proposition 5 As a consequence of (17) we have that

(i) E(p) and G(p) are Lipschitz continuous on C(Q) with constants llelloo 2| and
llglloo|S2| respectively, where |2| denotes the area of S2.
(ii) E(p) and G(p) are Gateaux differentiable at all p € C(Q) \ A where A is a
meager set in the sense of Preiss and Zajicek (2001).
(iii) If e (resp. g) is continuous on 2 x Z then E(p) (resp. G(p)) is everywhere
Fréchet differentiable. In particular, for any Ap € C(Q) we have that

VE(p)-Ap = /e(x,p(x))Ap(x)dx. 19)
Q

(iv) E is convex (resp. G is concave) if e is monotonically increasing (resp. g is
monotonically decreasing) w.r.t. z.

Proof We consider throughout only £ without making use of the positivity assump-
tion on e. Thus the results apply analogously to —g(x, z).

(i) Considering two profiles p, p € & we get

|E(p) — E(p)| < / |p(x) — p(x)] sup le(x, )ldzdx < [Q]llelloo 17 — Plloo
ze
Q

(i) By Preiss and Zaji¢ek (2001, Theorem 12), a generalization of Rademacher’s
theorem, every Lipschitz mapping on an open subset G of a separable Banach
space X to a Banach space Y with the Radon—Nikodym property is Gateaux
differentiable at all points of G except those belonging to a meager set A. In our
case X = C(Q) is separable and ¥ = R has the Radon-Nikodym property, i.e.
every Lipschitz map R — Y is differentiable almost everywhere.

(iii)) We claim that under continuity of e and g there is an explicit representation for
the Fréchet derivative, which in the case of E is given by (19). To establish this
we rewrite the difference between E and its proposed linearization as follows:

E(p+ Ap) — E(p) — / e(x, p(x))Ap(x)dx

I Apllso
Q
1 p(x)+Ap(x)
- / / e(x,2)dz | —e(x, p(x))Ap(x) t dx
IAP oo
Q2 px)
1
~ lapl / e(x, p(x) + nAp(x)Ap(x) — e(x, p(x)) Ap(x)dx
Q
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where n = n(x, p(x), Ap(x)) € [0, 1] is obtained by the first mean value the-
orem for integration. Since e(x, z) is uniformly continuous on the compact set
Q x Z there exist for any ¢ > 0 abound § > O such that |Ap|lcc < § implies
le(x, p + nAp) — e(x, p)| < ¢ and thus the last expression on the right hand
side is bounded above by ¢|€2|, which completes the proof.

(iv) The monotonicity assumption implies that the antiderivative e(x, z) = f;o wf (x,
7)dz is convex w.r.t. 7. Hence we find for two profiles p, p € &
(1—a) p(x)+ap(x)
E((1—-—a)p+ap) :/ / e(x, z)dzdx
Q po(x)
= /é(x, (1 —a)p(x) +ap(x))dx
Q
< [ (= @i, po) +aétr. o
Q
px) px)
= / (1—a) / e(x,z)dz 4+« / e(x,z)dz | dx
Q Po(x) Po(x)

=l -a)E(p) +aE(p)

For g decreasing we obtain G((1 — a)p + ap) > (1 — a)G(p) + aG(p)
analogously. O

Note that any of the results of the last proposition apply analogously to E([p, g])
and G([p, g]) when p # po. The assumption that the effort rate e is monotonically
increasing w.r.t. the depth z is natural and realistic; but that the gain rate g be mono-
tonically decreasing w.r.t. z would only apply to very particular deposits. Therefore,
in general we cannot expect the gain function G to be concave. Without continuity
w.r.t z no global Fréchet differentiability is attainable even in terms of || - || Lip.

3 Optimal stationary profiles
Using the properties of &2, G and E we have derived in the previous section we can
establish existence results for profiles that are optimal in various senses. The con-
tinuous formulation we propose for the Final Open Pit problem mentioned in the
introduction is the following:

(FOP) max{G(p) | p € 2}

Similarly, the continuous Capacitated FOP problem is:

(CFOP) max{G(p) | p € 2, E(p) < E}
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The sets of optimal solutions (global maximizers) for these problems are denoted by
S(FOP) and S(CF O P), respectively. The following result establishes a property of
the gain and effort functions which in particular is useful to investigate the structure
of S(FOP).

Lemma 2 For all admissible profiles p,q € &2, whether ordered, optimal or not,
we have that G(max{p, q}) = G(p) + G(g) — G(min{p, q}) and E(max{p, q}) =
E(p) + E(q) — E(min{p, g}).

Proof We have that
G([po. p]) + G([po, q]) = G([po, min{p, g}]) + G([po, min{p, g}])
+ G([min{p, g}, p]) + G([min{p, g}, q])

=G ([min{p,q},max{p,q}])

Here everything is done by the decomposition formula for ordered triplet (18) and the
fact, that from the minimum of two profiles both excavation and gain are obtained on
disjoint areas when we go on excavating to one or the other except the sets where they
are the same and thus equivalent to the minimum. O

Proposition 6 Under the conditions (6) and (17) we have

(i) S(F O P) is nonempty and contains unique minimal and maximal elements p, <
Dg sothatp € S(FOP) = py < p < Dy. o
(ii) For any bound E > 0 there exists at least one global optimizer of (CFOP).

Proof (i) The maximum G, on & of G is attained due to the continuity of G and
the compactness of &2 by Proposition 1. On the other hand, Lemma 2 implies
that the maximum p, and minimum p over all globally optimal profiles are also
optimal. The final assertion follows directly from Proposition 3(i).

(ii) The existence follows again from the compactness of & and the continuity of E
and G. O

Proposition 3(i) yields that &7 is a complete lattice as there is a maximal element p
and a minimal element pg, which indeed proofs that it is a bounded lattice. By the
existence of (13) for each subset as shown in Proposition 3(i) we have that all subsets
have a joint and a meet. In particular the solution set of FOP is a sublattice of <. On
the other hand, S(F O P) need not to be connected nor convex unless g is decreasing
w.r.t. z.

We can use the previous result to obtain a path of optimal profiles subject to exca-
vation constraints. For each A > 0 the combined function

Gi(p) = G(p) — E(p)/r
satisfies all the assumptions we made on G(p) so far. It is in fact concave if this is

true for G(p) and E(p) is convex, which follows from e(x, z) and —g(x, z) being
monotonically growing. Hence G, (p) has global minimizers on & just like G and
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we obtain a whole path. The next result, for which we provide a proof for the sake
of completeness, follows from the general theory of parametric lattice programming;
see Topkis (1978).

Proposition 7 Under (6) and (17) there exists a path of profiles
py. =argmin{E(p) | p € argmax{G,(p) | p € Z}} (20)

sothat0 <X < u = py < pyand p) € argmax{G(p) | p € Z ANE(p) < E(py)}.

Proof The existence of the p; follows from Proposition 5(i), namely G and E are Lips-
chitz. Let p, be defined as the unique minimal element among the global optimizers
of G, existing by the fact that & is a complete lattice. To prove the monotonicity
consider ¢ = min{py, p,} for A < . By (18) we get for pg < g < p»

Gi(pi) = G(pr) — E(pa) /A
=G(g) — E(@)/2 + G(lg. pD) — E(lg. prD/2A
= Gu(g) + Galg, prD. 21

Hence, by optimality of p;, we have

0 < G,(g, p.) = Ggq. p,]) — E(lg, pr])/*
< G(gq, pa]) — E(lg, pD/n = Gu(lgq, prD)

and using again the disjointness of [¢, p;] and [g, p,] we find that

G(max{p;, pu}) — E(max{p;, pu})/n = G.(q) + G.(q, p.]) + G.(q, pul)
= Gu(pw +Gulg, prD)
> Gu([’u)~

By optimality of p, for G, we obtain G, ([g, px]) = 0 = Gi(lg, p»]) = 0. Hence
Eq. (21) becomes G (p;) = G, (¢) and by minimality of p, we derive p, = ¢.Hence
D < pu. The last assertion can be checked easily by contradiction. O

It should be noted that the path p, established in Proposition 7 is in general not
continuous. That can only be expected in nice cases where G is strictly concave and
E is strictly convex.

As & is bounded the same is true for its image I = (E(p), G(p)) per C R? in the
configuration space. E (p) ranges between E (pg) = 0 and the maximal capacity E (py)
that can be sensibly utilized. Here p,, is the ultimate profile defined in Proposition 3(i).
The corresponding gain G (p,) will typically be positive but might be zero like G (po)
in exceptional cases. Every point (E(p), G(p)) can be reached from the origin by
the level excavation path according to Proposition 3(ii) and similar (£ (pso), G(Po)),
where po, denotes an element of the solution set of (FOP), can be reached from it
by another level excavation. The slopes of all the paths in the configuration space are
bounded by the following result:
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Proposition 8 For any pair p < q € &2 with p # q

llglloo
€0

IG(P)—G(q)|<O_Esup[Ig( 2|

QxZ
E(q) — E(p) e o) | €@ }5

where e is the lower bound on the effort density function as introduced in (16).

Proof We have that

q(x) q(x) ( )
X, Z
G -6 =|[ [ ewaaar = [ [ EED e azar
e(x, z)
Q p(x) Q p(x)
q(x)
< sup [Ml(x,z) € Qx Z]/ / e(x, z)dzdx
e(x, z)
Q px)
=o(E(q) — E(p)),
which proves the estimate. O

Geometrically o represents a Lipschitz constant on G(p(t)) along any monotone
path parametrized such that for T > 7 exactly E(p(t)) — E(p(T)) = t — 7. In
particular o bounds the slope of the boundary 9/, wherever that can be defined
at all. Figure 3 illustrates how the pairs (E, G) may be distributed in configu-
ration space according to Propositions 6, 7 and 8. For each capacity bound E
there exists a global solution G, of the equality constraint problem max G(p) s.t
E(p) = E which represents the upper boundary of the range of feasible config-
urations (E(p), G(p)) for all p € & with E(p) = E. The existence of these
global optima is ascertained analogous to Proposition 6(ii). The vertical dashed
lines depict five such pairs at the bounds labeled Ey, E», E3, Eoo, and E4. The

{PA}Ael)u,h] ,\_l:.Goo
JCENRE 1 Pa: | Gy
1 e ZWG3 i i o
A | 1 1 B
. 1 | p
) G2 | 1 I
! 1 I
. | ! 1 I .
! ! 1 I -
P 1 ! 1 I S
" ' ! ! ) (E(pu), G(pw))
| 1 3
& | ! ! : : £
i | 1 1 I
1 ] 1 1
1 | 1 1 ]
| L I I
B E, Es B E,

Fig. 3 Illustration of the behavior of the pairs (E(p), G(p)) for all the admissible profiles p
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one at E o, represents the global solution of (FOP), whose existence is ascertained
by Proposition 6(i). That particular pair (E~, Goo) and also (E7, G1) but not the
other three belong also to the curve of solutions (E(p;), G(py)) with p, defined as
the global minimizer of G,. Its existence and monotonicity is guaranteed by Prop-
osition 7. The images (E(p,), G(p,)) form the Northwestern border of the con-
vex hull of the set of configurations I. Let 1/A; > 1/A4 denote the slopes of the
two convexifying dashed lines. Note that this numbering is independent of that of
the previous five pairs. Consequently, for A < A1 the points p; are the unique global
minimizers of G, (p) and vary continuously as A € (0; A1]. Here G, has at least two
global maximizers py, and p;, which are quite some distance apart and connected
with the first convexifying dashed line. For A € (A, A3] the optimal solutions p) move
continuously along the boundary from p;, to p,, and afterwards for A in [A3, 4] the
profile p; stays constant until there is another jump to p,,. Then there is another con-
tinuous variation as X tends to infinity and hence the slope to zero, which is reached at
Poo- Note that the original solutions (Ea, G2), (E3, G4) and (E4, G4) of the equality
constraint problem are not reached by the path p,. More specifically the pair.

(E1,G)) represents a global maximum of G subject to the constraint E(p) < E;
which occurs also on the path p;. The pair (Fg, G») represents also a sensible global
maximum of (CFOP) but it can not be reached along the path p;. The pair (E3, G3)
represents at best a local maximum of G (p) s.t. E(p) < E3 but not the global max-
imum. The pair (E4, G4) may look like a global maximum but one can do better by
simply going to the ultimate gain pit p, which renders the effort constraint E(p) < E4
inactive for this specific illustration.

4 Dynamic trajectory planning

In the previous section we have established the existence of optimal gain profiles with-
out and with excavation constraints. Rather than solving just this stationary problems
one is really interested in an trajectory of profiles that gets to the valuable material
as fast as possible. In other words we are interested in maximizing the present value
based with a certain discount function for future earnings.

We consider paths P : [0, T] + £ that are monotonic, i.e. s,¢ € [0, T], with
s < timply for p = P(t) and g = P(s) that g(x) < p(x) for x € . Naturally,
the function E(P(¢)) must be also monotonically increasing. We assume that there
exists an absolutely continuous function C : [0, T] — R™ with

t

Cit) = /c(r)dr

0

representing the mining capacity in the time interval [0, 7], with density ¢ € L*°(0, T')
and ¢ > 0. Finally, we impose the capacity condition on P
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E([P(s), P(D]) = E(P(1)) — E(P(s)) = C(1) = C(s)
t

:/C(‘C)d‘l,’ fors <t. (22)

N

Now we introduce the set of feasible excavation paths:

U ={PeC(0,T]; ) |
po = P(s) = P(1), E(IP(s),P()]) =C(1) —C(s) forO<s=<t=<T}

Proposition 9 Under assumption (22), for any P € % we have that

ll¢lloo

e

[ P(t) — P(5)lloo < [ +2a} (t — '3 (23)

Hence the elements of U are Holder equicontinuous and Y is compactin C([0,T]; C
(2)) which is identified with C ([0, T] x 2) endowed with the uniform norm | - || co.

Proof For the proof of compactness we will apply again the Arzela-Ascoli theorem.
The closedness of 7% is direct from its definition together with the continuity of E on
C([0, T]; &2) endowed with the norm || - ||~. In fact, as for all ¢ € [0, T] we have
{P(t)}pcr C & with & being compact by Proposition 2, it only remains to prove
that % is equicontinuous. To this end, fix xo € 2 and take s, ¢ € [0, T] with s < ¢.
Let P € % be arbitrary. For any x € Q, as P(s), P(t) € £, by global Lipschitz
continuity of each profile we have that

P(@)(x) — P(s)(x) = —2o|lx — xoll + P(t)(x0) — P(s)(x0).

Multiplying by the lower bound ¢y > 0 on e(x, z) and integrating with respect to x
on the ball |x — xo| < § for some § > 0 sufficiently small which we will choose later
on, we get

eom8* [—2@8 + P(1)(x0) — P(s)(x0)]
P(1)(x)
< / / e(x, z)dzdx

Q P(s)(x)
= E(P(1)) — E(P(s)),

where we have supposed that €2 is an open subset of R” with n = 2 (the case n = 1
is similar) and that the ball Bs(xg) is contained in 2. Therefore

t

eom 8% [—2@8 + P (1)(x0) — P(s)(x0)] < /C(f)df =< llelloo(r = 5),

s
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Hence we deduce that for all § > 0 small enough, we have

llclloo 2 —s
32

0 < P(1)(x0) — P(s)(x0) = +2L3.

If t — s > 0 is small then we can take for instance 8% = ¢ — s to obtain
0 < P(0)(x0) — P()(x0) < [W + 25} (t -,
eoTr

and since xo € 2 is arbitrary, we get (23). This proves the equicontinuity of 7. O

Concerning the internal structure of %/, we firstly note that for arbitrary P, Q € %,
neither max{P, Q} nor min{P, Q} need to be elements of % for all ¢, as both may
violate the dynamic capacity constraint (22). In fact, it is easy to construct simple
examples where such a situation occurs. As a consequence, the lattice structure is
lost in the dynamic case. Nevertheless, % is path connected as a consequence of the
following Lemma.

Lemma 3 Let P € % and p € & be given. Then min{p, P(t)} € % > max{p, P(t)}
forallt € [0, T]. Hence any P(t) is connected to the trivial path po via the path
P.(t) = min{pg +r, P(t)} forr € [0,Z — z].

Proof We have pg < min{p, P(s)} and p9 < max{p, P(¢)}. As the path P is mono-
tonic, both estimations are true for all s, ¢ € [0, T'] as well. Now consider the path
min{p, P(t)}. We choose s < ¢ € [0, T'] arbitrary and define the following subsets of
Q:

Q= {x € QIpx) < P(s)(x) = P(H)}, 22 = {x € QP(s)(x) < plx) <
Pt)(x)}, 23 ={x € Q|P(s)(x) < P(t)(x) < p(x)}. Of course 2 = Q21 Uy U Q3.
For (22) we have

min{p, P (1)}(x) p(x) P(r)(x)

p(x)
/e(x, z)dzdx = / /e(x, z)dzdx +/ /e(x, z)dzdx +/ /e(x, z)dzdx

Q min{p, P(s)}(x) Q1 p(x) 22 P(s)(x) Q3 P(s)(x)
=0 P(1)(x)
< [ e(x,z)dzdx
P(s)(x)
P(1)(x) t
5/ /e(x,z)dzdx < /c(r)dr
Q P(s)(x) N

The last estimation holds because P is a feasible path. For the max operation the
argument is analogous, so the proof is complete. O

Let ¢ € C1(0, T) be a monotonically decreasing discount function starting from
©(0) = 1 and ending at ¢(T') < 1 for some fixed time period [0, T']. The standard
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choice is (1) = =% for some discount rate § > 0. For paths P(z, x) = P(r)(x) that
are smooth in time we define the present value of the gain as

T

T
G(P) = /(p(t)/g(x,P(t,x)) dxdP(t) =//(p(t)g(x,P(t,x))P’(t)dtdx
Q Q 0

0

where the notation d P suggest that P (¢, x) must be differentiable w.r.t. ¢. Integrating
by parts we can avoid this requirement and obtain

P(1,x) T T P(1,x)
G(P) = go(l)/ / g(x, z)dzdx +//[—g0’(t)] / g(x, z)dzdrdx
Q P(0,x) g Q0 P(0,x)
=¢(T) /é’(x, P(T,x)) — g(x, P(0, x))dx
Q
T
+ [ [1=0o1 [ P = a0r. PO.2)]dran 4)
Q0
where g(x,z) = f;() @) g(x, T)dr is the antiderivative based on the initial profile

which is already familiar from the proof of Proposition 5(iv). This form is feasible even
if the Path P does not satisfy P (0, -) = po(-). We note that for feasible excavation paths
the first term in (24) is the value of the total excavated material of the path discounted
by @(T). The last term is a correction due to the variation of ¢ (with —¢'(r) > 0).
This representation of é( P) is well defined for every path in C ([0, T] x €2).

The optimization problem in the dynamic trajectory planning case, the so called
Capacitated Dynamic Open Pit Problem, is the following one

(CDOP) max{G(P) | P € %, P(0) = po}

For the objective function G we obtain the following results.

Proposition 10 For arbitrary paths P, Q € % we have

(i) |G(P) - G(Q)| < 212 gl IP — Qlico

(i) If g(x, z) is decreasing w.rt. z thenAG is concave on tAhe feasible set of (CDOP).
(iii) Forany p € & we have G(P) = G(min{P, p}) + G(max{P, p}) for any path
of the feasible set of (CDOP).

Proof (i) Since ||gllco is a Lipschitz constant for g, with respect its second
argument we can bound the difference in the first term of G in (24) by
20(T) |2 l1glloollP — Qlleo as g(x, P(0, x)) is not necessarily zero. Since
—¢'(t) > 0 by assumptions we can similarly bound
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T P(t,x) P(0,x)
//[—fﬂl(l)] / g(x,2)dz — / g(x,z)dz | dr dx
Q0 (t,x) 0(0,x)
T

5//[_(P/(t)](|P(t’x)_Q(tsx)|||g||oo+|P(0»x)_Q(Oax)|||g||oo)dt dx

0

Q
T
< / / [~/ (O1211P — Qllsollglloodr dx
Q0

= /2 gllocll P — Qlloo(@(0) — @(T))dx

Q

This is equal to (1 — ¢(7))2|2| |gllco | P — Qllco- Summing the terms cancels
out ¢(T) and the Lipschitz constant becomes completely independent of the
discount function.
(i) This is analogous to the proof of Proposition 5(ii) by taking into account that
for any feasible path of (CDOP) g(x, P (0, x)) = 0 holds. We omit the details.
(iii) LetQ,() ={x € Q| p < P(#)} be the subset of the domain where the path
is pointwise greater than the given profile. We have

P(T,x)
G(P) = o(T) / 30, p()) + / g(x, 0)de | d

Q,(T) P(x)

+ / g(x, P(T, x))dx

Q, (T

P(t,x)

T
+ / o' (1)] / 8x, p(x)dx + / / ¢(x. O)dedx
0

Qp () Qp() px)

+ / 8(x, P(T,x))dx | dr
Q,0

This yields to

G(P) = ¢(T) / §(x, p(x))dx + / §(x, P(T, x))dx

§2p(T) Q,(T)
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T
+/[<p/(t)] /é(x,P(x))dX+ / g(x, P(T, x))dx | dt

Qp (1) Q1)
P(T,x) P(t,x)
+(T) / / ¢(x, D)dgdx+ / [0 ()] / / ¢(x, )dcdxdr
p(T) px) Qp(l) px)

= G(min{P, p}) + G(max{P, p})

The first two lines of the sum indeed represent the discounted gain of the path
P “stopped” at the profile p. O

By combining Propositions 9 and 10 we conclude immediately that G attains global
maximizer on % . Without any additional assumption and for a limited time horizon
T < oo one can quite easily construct examples where the set of global minimizers
is disconnected and may jump around violently when the gain density is slightly per-
turbed. One only has to think of two areas with high gain in separate places that have
nearly identical values and excavation costs.

Due to the Lipschitz continuity of G on the Banach space C([0, T] x Q), it has
similar differentiability properties as those stated in Proposition 5 for G. However as
it is not possible to guarantee that the optimizers are not elements of the meager set
of exceptional points where one may not even have Gateaux differentiability, opti-
mality conditions cannot be formulated in terms of classical derivatives. For example
the minimization of the maximum of finitely many distinct affine functions in one
variable will almost certainly lead to a point where two of them tie. There zero is in
the subdifferential, i.e. the convex hull of the two adjacent slopes but is not a proper
derivative. Only where the maximum of the affine functions happens to be attained by
a constant function can there be differentiability at a minimizer.

We conclude with a relation to the stationary problem (FOP). Recall that p, is a
solution of FOP accordingly with (20).

Proposition 11 Let ¢ € C'([0, T]) be monotonically decreasing. Then

@) If@(P) > 0 for some P € U with P(0) = Po then GooAE G(pso) > 0.
(1) If G4 is the optimal value of (CDOP) then G, = max{G(P) | P € U}, where
Uso =% NC(0,T]; Po) for P ={p e P | p < pool-

Proof (i) Suppose Goo = G(Po) < 0 and choose P € 7% arbitrary. Then we
have for any ¢ also G(P(t)) = fQ g(x, P(t, x))dx < 0. Otherwise we would
have G(P(t)) > Goo which contradicts the definition of G . Substituting
this relation into the integrated form (24) immediately yields G(P) < 0 which
completes the proof of (i).

(ii)) Considera P € % with Q,_(t) # { from a certain time ¢ < T. By Proposi-
tion 10
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(iii) we know we can decompose the objective in the following way.

P(T,x)
G(P) = G(min(P. poc)) + ¢(T) / /g(x,c)dzdx

Qp(T) poo(x)
P(t,x)

T
+/[<0’(t)]/ fg(x,{)d{dxdt
0

Qp (1) poo(x)

The last two terms, representing the gain the path yields between po, and
P(T), are an integral over the part where the path is pointwise larger than pc.
Hence, because p is the solution of (FOP), they can not be positive and for
the stopped path we have é(min{P, Poo}) = G(P). Thus any maximizer of G
is bounded by the solutions of (FOP). O

By virtue of Prop. 11(ii) for maximizing the discounted gain it suffices to consider
feasible profiles such that p < p.. This is a continuous analogue of a well known
property of standard binary formulations for these type of problems, namely that the
optimal Final Open Pit is an upper bound on the region to be considered of interest
for the nested sequence of profiles, a property which is used to reduce the size of the
original block model.

5 Concluding remarks

As we mentioned in the introduction, to the best of our knowledge, the first attempts to
give rigorous mathematical formulations of open pit mine planning problems based on
continuous functions date back to the works by Matheron in the 1970s. For instance, in
Matheron (1975) is developed a general measure-theoretic approach to a parametrized
version of the CFOP problem, obtaining the analogous to Propositions 3(i), 6(i) and
7 of this paper. No significant theoretical contribution seems to haven been made. A
complete comparison with Matheron’s approach is out of the scope of this paper but
will be addressed in a forthcoming work currently under preparation.

In our approach, the optimization problems are posed in functional spaces and a
complete existence theory holds. In fact, under realistic assumptions, the feasible set
of profiles in the stationary case as well as the set of paths of them in the dynamical
case are compact sets in suitable Banach spaces of real valued functions, which implies
the existence of solutions as the objective functions and constraints are proven to be
(Lipschitz) continuous. In addition, we have provided structural properties of feasible
sets and optimal solutions in the stationary case, and we have developed a parametric
qualitative analysis of the behavior in the effort-gain configuration space. We have
also obtained sufficient regularity conditions for differentiability of effort and gain
functions, under the assumption that the effort and gain densities are continuous.

The optimization problems formulated in this paper are examples of variational
problems in Banach spaces with a special structure. We have focused on the existence
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theory, and there remain plenty of interesting open questions. The first one is how to
obtain useful necessary optimality conditions under weak regularity assumptions. As
the reference Banach space is non-reflexive, optimality conditions as those presented
in Bazaraa et al. (1976) are not valid. Also we lack Slater-type conditions, which
require the feasible set to have interior points. To avoid these requirements one has
to generalize the concepts of convexity and interior points; see, for instance, Borwein
and Goebel (2003), Borwein and Lewis (1992) while a short introduction can be found
in Daniele et al. (1994).

The approximate numerical solution of the continuous problems is beyond the
scope of this paper. Instead of trying to resolve optimality conditions on function
space once they are formulated, a natural idea is to consider a so-called direct method,
i.e. to discretize first. For example one may approximate the admissible profiles by
piecewise linear-affine functions or more general polynomials, thus obtaining finite
dimensional NLP problems. One complication is that due to the presumed discontinu-
ity of the data one cannot restrict the approximations to the solution to be continuous
either. On the other hand, if the original infinite dimensional problem is convex, a
suitable discretization scheme may preserve this property so that the resulting finite
dimensional optimization problem may be solved by algorithms for convex NLP (see
Boyd and Vandenberghe 2004). Moreover, one might exploit some of the established
structural properties for algorithmic purposes. Indeed, the parametric characterization
of the stationary optimal profiles given in (20) leads naturally to a finite dimensional
Bilevel Programming problem. Finally, if one were able to design a discretization
method which preserves the lattice structure of the stationary admissible set, one might
adapt to this setting some efficient algorithms coming from discrete optimization (see
McCormick 2006). We plan to investigate these possibilities in future research.

Finally, we would like to make clear that the continuous approach proposed here is
not intended to substitute the more traditional discrete techniques, but to supplement
them with additional tools coming from continuous optimization in functional spaces.
On one hand, as the underlying discrete block models become larger in terms of the
number of unitary extraction blocks, the continuous formulations may be viewed as
a sort of limiting averaged model, which should provide qualitative and quantitative
information about the behavior of optimal solutions from a macroscopic point of view.
In particular, continuous optimization is potentially well suited for investigating the
sensibility w.r.t. discount rates or extraction effort capacities, which are very inter-
esting issues for future research. On the other hand, the approximate resolution of
a macroscopic continuous framework might be useful to obtain insight on how to
construct good starting points for discrete formulations based on namely microscopic
block models.

The connections between the continuous and discrete approaches, in terms of the-
oretical and algorithmic aspects, and the question on how we might use them from
a practical point of view, are clearly key points that will be addressed in our future
research.
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