
Theoretical Computer Science 412 (2011) 2–21

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Communication complexity and intrinsic universality in
cellular automata✩

E. Goles a, P.-E. Meunier c, I. Rapaport b, G. Theyssier c,∗
a Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
b DIM, CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
c LAMA, Université de Savoie, CNRS, 73 376 Le Bourget-du-Lac Cedex, France

a r t i c l e i n f o

Keywords:
Cellular automata
Communication complexity
Intrinsic universality

a b s t r a c t

The notions of universality and completeness are central in the theories of computation
and computational complexity. However, proving lower bounds and necessary conditions
remains hard in most cases. In this article, we introduce necessary conditions for a cellular
automaton to be ‘‘universal’’, according to a precise notion of simulation, related both to the
dynamics of cellular automata and to their computational power. This notion of simulation
relies on simple operations of space–time rescaling and it is intrinsic to themodel of cellular
automata. Intrinsic universality, the derived notion, is stronger than Turing universality, but
more uniform, and easier to define and study.

Our approach builds upon the notion of communication complexity, whichwas primarily
designed to study parallel programs, and thus is, as we show in this article, particulary
well suited to the study of cellular automata: it allowed us to show, by studying natural
problems on the dynamics of cellular automata, that several classes of cellular automata,
as well as many natural (elementary) examples, were not intrinsically universal.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the pioneering work of von Neumman [15], universality in cellular automata (CA) has received a lot of attention
(see [12] for a survey). Historically, the notion of universality used for CA was more or less an adaptation of the classical
Turing-universality. Later, a stronger notion called intrinsic universality was proposed: A CA is intrinsically universal if it is
able to simulate any other CA [3,9,12] through a uniform and regular encoding based on rescaling.

This definition of intrinsic universality may seem very restrictive. However, it can be very common among natural
families of CA [1], and allows a complete and precise formalization of the notion of universality.1 As we are going to see, this
preciseness, and the robustness of this definition, allows for concrete proofs of negative results and lower bounds.

Indeed, in this paper we will explain how to rule out particular elementary cellular automata, as well as whole well-
known classes of cellular automata, from being intrinsically universal, using the elegant framework of communication
complexity.

In Section 2 we give the basic definitions. One of the key definitions is the following: Given a traditional computational
problem P with an arbitrary input w, we can split the input into two subwords w1 and w2; therefore, we can refer to the
‘‘communication complexity’’ of such a problem (w1 is given to Alice while w2 is given to Bob).

✩ Partially supported by programs Fondap and Basal-CMM, Fondecyt 1070022 (E.G) and Fondecyt 1090156 (I.R.).
∗ Corresponding author. Tel.: +33 479759421.

E-mail address: guillaume.theyssier@univ-savoie.fr (G. Theyssier).
1 There is actually no consensus on the formal definition of Turing-universality in CA (see [3] for a discussion about encoding/decoding problems).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.10.005

http://dx.doi.org/10.1016/j.tcs.2010.10.005
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:guillaume.theyssier@univ-savoie.fr
http://dx.doi.org/10.1016/j.tcs.2010.10.005

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 3

In Section 3 we introduce a family of ‘‘canonical problems’’ concerning various aspects of the dynamics of a given CA. In
other words, for any CA F and any prototype problem P , we consider the problem PF .

In Section 4 we explain how to infer properties of F from the study of the communication complexity of PF . More
precisely, we prove that if the communication complexity of one of our canonical problem PF is not maximal, then F is not
intrinsically universal. In otherwords, we are introducing a powerful tool for ruling out CA frombeing intrinsically universal.
We conclude that linear, expansive and reversible CA are not intrinsically universal. We also show the incomparability of
our three canonical problems: none of them is sufficient to discard all non-universal cellular automata, and none of them is
stronger than any other.

In Section 5 we explain clearly why the communication complexity approach appears to be a promising tool for ruling
out CA from being intrinsically universal. More precisely, we prove computational intractability results about problems that
our framework considers very simple.

Finally, in Section 6weuse our results to prove that a few concrete elementary CA are not intrinsically universal. Although
looking at several space–time diagrams of these automata might give a strong intuition about their non-universality, we
stress that producing complete formal proofs for such a negative result is a difficult task and, as far as we know, has never
been done before.

2. Basic definitions

2.1. Communication complexity

Communication complexity is a notion introduced by Yao in [16], and designed at first for lower-bounding the amount
of communication needed in distributed algorithms. In that model he considered two players, namely Alice and Bob, both
with arbitrary computational power and communicating to each other in order to collaboratively decide the value of a given
function. More precisely, for a function φ : X × Y → Z , the question is ‘‘how much information do they need to exchange,
in the worst case, in order to compute φ(x, y), with Alice knowing only x and Bob only y’’.

This communication problem is solved by a protocol, which specifies, at each step of the communication between Alice
and Bob, who speaks (Alice or Bob), and what she/he says (a bit, 0 or 1), as a function of her/his respective input. This simple
framework, and some of its variants we discuss in this article, appears to be promising for studying CA.

A protocol P over a domain X × Y with range Z is a binary tree where each internal node v is labeled either by a map
av : X → {0, 1} or by a map bv : Y → {0, 1}, and each leaf v is labeled either by a map Av : X → Z or by a map Bv : Y → Z .

The value of protocolP on input (x, y) ∈ X×Y is given by Av(x) (or Bv(y)) where Av (or Bv) is the label of the leaf reached
by walking on the tree from the root, turning left if av(x) = 0 (or bv(y) = 0), and right otherwise. We say that a protocol
computes a function φ : X × Y → Z if for any (x, y) ∈ X × Y , its value on input (x, y) is φ(x, y).

Intuitively, each internal node specifies a bit to be communicated, either by Alice or by Bob, whereas at the leaves either
Alice or Bob determines the value of φ when she/he has received enough information from the other party.

In our formalism, we do not ask both Alice and Bob to be able to give the final value. We do so in order to consider
protocols where communication is unidirectional.

We denote by cc(φ) the (deterministic) communication complexity of a function φ : X × Y → Z . It is the minimal cost
of a protocol, over all protocols computing φ, where the cost of a protocol is the depth of its corresponding tree.

One approach for proving lower bounds on the communication complexity of an arbitrary function φ is based on the
so-called fooling sets (for a deeper presentation of this theory we refer to [8]).

Definition 1. Given a function φ : X × Y → Z , a set S ⊆ X × Y is a fooling set for φ if there exists z ∈ Z with:
1. ∀(x, y) ∈ S, φ(x, y) = z,
2. ∀(x1, y1) ∈ S,∀(x2, y2) ∈ S, either φ(x1, y2) ≠ z or φ(x2, y1) ≠ z.

The usefulness of fooling sets is given by the following lemma (see [8]).

Lemma 1. If S is a fooling set of size m for φ then cc(φ) ≥ log2(m).

In addition to ad hoc fooling set constructions, we will use the following classical lower bounds on communication
complexity (the proofs appear in [8]).

Proposition 1. Let n ≥ 1 be fixed. Let φeq, φip and φdisj be the functions ‘‘equality’’, ‘‘inner product’’ and ‘‘disjointness’’ defined
from {0, 1}n × {0, 1}n to {0, 1} by:

φeq(x, y) =

1 if (∀i) (xi = yi),
0 otherwise.

φip(x, y) =

1 if

∑
i xiyi mod 2 = 1,

0 otherwise.

φdisj(x, y) =

1 if (∀i) (xiyi ≠ 1),
0 otherwise.

4 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

The following lower bounds hold:

• cc(φeq) ≥ n.
• cc(φip) ≥ n.
• cc(φdisj) ≥ n.

2.2. Splitting the input of computational problems

Let us consider now classical computational input–output problems. In this work we will only encounter problems of
the form P : Q ∗ → Z , whose inputs are words over some alphabet Q and outputs are elements of a finite set Z . Moreover,
we will always have Z = Q or Z = {0, 1} as output sets.

Given such a type of problem P , we define, for any n, its restriction to words of length n; i.e, we consider the restricted
problem P |n : Q n

→ Z .
The key idea of the communication approach is to split the input into two parts: For any 1 ≤ i ≤ (n− 1), we define

P |in : Q
i
× Q n−i

→ Z . More precisely, for every x ∈ Q i, y ∈ Q n−i, we have P |in(x, y) = P |n(xy). Then, we can consider
the communication complexity cc


P |in


of the ith split function P |in. Of course the choice of i matters and can alter the

corresponding communication complexity. Since we don’t want to rely on an arbitrary choice, we consider the worst case.
This yields the following definition:

Definition 2. Let P : Q ∗ → Z be a problem. The communication complexity of P , denoted CC (P), is the function:

n → max
1≤i≤n−1

cc

P |in


.

2.3. Cellular automata

In this paper we are always going to consider one-dimensional CA. A CA is defined by its local rule f : Q 2r+1
→ Q (where

Q corresponds to the set of states and r denotes the radius of the local rule). For any n ≥ 2r + 1, we extend f : Q 2r+1
→ Q

to the more general f : Q n
→ Q n−2r by

f (u1 · · · un) = f (u1 · · · u2r+1) · · · f (un−2r · · · un).

Moreover, for every 1 ≤ t ≤ ⌊(n− 1)/2r⌋, we define the t-steps local iteration as f t : Q n
→ Q n−2·r·t by

f 1 = f
f t(u1 · · · un) = f


f t−1(u1 · · · un−2r) · · · f t−1(u2r+1 · · · un)


.

We also define f ∗ : Q ∗ → Q ∗ by

f ∗(u) = f

|u|−1
2r


(u).

Intuitively, f ∗ applied on u consist in iterating f as long as possible (until ending up with a word too short for f). The
result is a word of length at most 2r (depending on |u| mod 2r).

We denote by F : Q Z
→ Q Z the global rule induced by f following the classical definition:

F(c)z = f (cz−r , . . . , cz+r).

Finally, we denote by F t
: Q Z
→ Q Z the t-step iteration of the global function F .

A global function F can be represented by different local functions. All properties considered in this paper depend only
on F and are not sensitive to the choice of a particular local function. However, to avoid useless formalism, we will use the
following notion of canonical local representation: (f , r) is the canonical local representation of F if f has radius r and it is
the local function of smallest radius having F as its associated global function.

Throughout this work we are going to refer to the CA F with (f , r) being its canonical local representation.

3. The three canonical communication problems

In this section we define the three ‘‘problem schemes’’ on which we are going to apply the communication complexity
approach. Before entering into detail, we stress that this set of problems tackles various dynamical aspects of CA: Transient,
periodic and asymptotic regime starting respectively from finite, cyclic, or ultimately periodic configurations. Moreover,
algorithmically speaking, they are also very different since they belong respectively to the classes p, pspace, and Π0

1 (and
can be complete for these classes as we will see in this section).

Thus, they form an interesting set of prototype problems.

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 5

Alice Bob

Result

(a) A space–time diagram of Rule 110. (b) The communication interpretation of PredF110 .

Fig. 1. Problem PredF110 .

Fig. 2. MatricesM13,6
F178

and M15,7
F178

, where ‘‘178’’ stands for the elementary CA Rule 178.

3.1. Prediction

The prediction problem consists in determining the far future of a cell given the state of sufficiently many cells around
it.

Definition 3. Let F be a CA. The problem PredF : Q ∗ → Q is defined as follows:

PredF (u) =

f ∗(u)


1,

where (f , r) is the canonical local representation of F while the ‘‘

f ∗(u)


1’’ notationmeans that we take the first letter of the

word f ∗(u), which has length at most 2r .

Clearly, this problem is in DTime(n2), and, as we have already said before, we can also view PredF as a communication
problem (see Fig. 1): Given an initial configuration as input, we split the initial configuration between Alice and Bob, and
ask for the final value computed by F on this input configuration, as represented in Fig. 1(b).

More precisely, for every 1 ≤ i ≤ (n− 1), PredF |
i
n : Q

i
×Q n−i

→ Q is such that PredF |
i
n(x, y) = (f ∗(xy))1. This function

PredF |
i
n can be represented as a |Q |i × |Q |n−i matrix. In other words, we give i states to Alice (rows) and n− i states to Bob

(columns); i.e. X = Q i and Y = Q n−i. We denote by Mn,i
F such a matrix. In the examples of Fig. 2, we have n = 2i+ 1 = 13

and n = 2i+ 1 = 15 (for the elementary CA Rule 178).

Remark. We can consider the more restricted one-round communication complexity. In this setting only one party (either
Alice or Bob) is allowed to send information. This restriction is justified by the fact that, according to a theorem of [8], by
simply counting the number of different rows or columns of a certainmatrix we obtain the exact one-round communication
complexity of the function. In our framework, the one round communication complexity of PredF |

i
n corresponds to the

minimum between the number of different rows and different columns of Mn,i
F . Therefore, performing computational

experiments in order to infer the one-round communication complexity of PredF |
i
n, becomes an easy task.

Recall that, given a CA F , the communication complexity of PredF is defined as:

CC (PredF) = n → max
1≤i≤n−1

cc

PredF |

i
n


.

Remark. In the above definition of PredF , we choose a canonical local representation (f , r) for the CA F . Replacing f by
another valid local representation can change the problem and its communication complexity. However this change would
only introduce a multiplicative factor and therefore would not alter the main point of this paper (Section 4.3).

Now we show that some well-known properties of CA induce small upper bounds for the communication complexity of
the prediction problem. The results below are adaptations of ideas of [4] to the formalism adopted in the present paper.

Proposition 2. Let F be any CA and (f , r) be its canonical local representation. If there is a function g : N→ N such that f n
depends on only g(n) cells, then CC (PredF) ≤ g(n)/2.

6 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

Fig. 3. The invasion problem.

In the work of Sablik [13], CA which are equicontinuous in some direction are considered. Following Theorem 4.3 of [13],
they have a bounded number of dependant cells (i.e, a bounded function g(n)). A well known example of such CA are the
nilpotent CA (a CA is nilpotent if it converges to a unique configuration from any initial configuration, or equivalently, if F t

is a constant function for any large enough t).

Corollary 1. If F is an equicontinuous CA in some direction then

CC (PredF) ∈ O(1).

Another set of CA with that property is the set of linear CA. A CA F with state set S is linear if there is an operator⊕ such
that (S,⊕) is a semi-group with neutral element e and for all configurations c and c ′ we have:

F(c⊕c ′) = F(c)⊕F(c ′),

where⊕ denotes the uniform (cell-by-cell) extension of⊕.

Proposition 3. If F is a linear CA then CC (PredF) ∈ O(1).

Proof. The proof appears in [4] in a different setting. The idea is that there is a simple one-round protocol to compute linear
functions: Alice and Bob can each compute on their own the image the function would produce assuming the other party
has only the neutral element as input; then Alice or Bob communicate this result to the otherwho can answer the final result
by linearity. �

3.2. Invasion

Let F be a CA and let u be a givenword. Roughly, the problem InvuF is defined as follows: Given an inputwordw, we define
the u-periodic configuration pu on the one hand, and the configuration pu(w) obtained by putting the word w at the origin
over pu on the other hand; the invasion problem consists in determining whether the differences between pu and pu(w)will
expand to an infinite width as time tends to infinity (hatched surface on Fig. 3).

As we show in Proposition 5.2, the general case is, from the point of view of classical algorithmic theory, undecidable.
Now we give formal definitions.

Definition 4. Let u = u1 . . . ul be a finite word. Let pu be such that for all i ∈ Z, pu[i] = u[i mod l].

• We consider the ultimately periodic orbit

F t(pu)


t as the reference orbit.

• For each x1, . . . , xn ∈ Q , we define the configuration pu(x1, . . . , xn) obtained by modifying pu as follows:

pu(x1, . . . , xn)z =

(pu)z for z ≤ 0 or z ≥ n+ 1,
xz otherwise.

• For each t , we denote δl(t) and δr(t) the leftmost and rightmost differences between the tth images of pu and
pu(x1, . . . , xn):

δl(t) = min

z : F t(pu)z ≠ F tpu(x1, . . . , xn)z,

δr(t) = max

z : F t(pu)z ≠ F tpu(x1, . . . , xn)z.

• Then InvuF (x1 . . . xn) equals 1 if δr(t)− δl(t)→t ∞ and 0 otherwise.

As explained before, we associate to any F and u, the communication complexity of InvuF defined as CC

InvuF


.

Some CA have by nature a trivial invasion complexity because their dynamics consists in propagating errors
systematically. This is the case of (positively) expansive CA. Recall that F is (positively) expansive if there is some ϵ > 0
such that:

∀x, y, x ≠ y⇒ ∃t, d(F t(x), F t(y)) ≥ ϵ

where d is the Cantor distance.

Proposition 4. Let F be a positively expansive CA. Then for all u we have CC

InvuF


= 1.

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 7

Period PeriodTransition

Fig. 4. The Cycle problem on elementary CA Rule 33. Since the configurations are cyclic, we can represent one configuration on a circle. Time goes from
the inner circle to outer circles, zeros are white, and ones are black. For instance, the initial configuration – on the innermost circle – is 011011. After one
step, it becomes 100100.

Proof. Fix any u and consider any (x1, . . . , xn) such that pu(x1, . . . , xn) ≠ pu. By classical results of Kůrka [7], there is a
positive constant α (average propagation speed) such that δl(t) ≤ −αt and δr(t) ≥ αt . Therefore, invasion occurs if and
only if:

pu(x1, . . . , xn) ≠ pu.
Testing this condition can be done with only 1 bit of communication: Either Alice or Bob communicates whether she (or

he) sees any difference between her (or his) input and the corresponding part of pu; then the other party can answer. The
proposition follows. �

3.3. Cycle length

For this last problem, we consider spatially periodic configurations. Since there are only a finite number of such
configurations of a given period size, and the size of the period does not growwith time, then clearly the evolution becomes
periodic (in time) after a certain number of steps (see Fig. 4 where successive steps are represented by successive concentric
circles). Roughly speaking, the cycle problem consists in determining whether the length of this ultimate (temporal) period
is small, starting from a given (spatially) periodic initial configuration. The formal definition follows.
Definition 5. Let F be a CA and let k ≥ 1. For any u ∈ Q ∗ we denote by λ(u) the length of the ultimate period of the orbit of
configuration pu under F :

λ(u) = min

p : ∃t0,∀t ≥ t0, F t(pu) = F t+p(pu)


.

The problem CyclekF is then defined by:

CyclekF (u) =

1 if λ(u) ≤ k,
0 otherwise.

One of the interests of the cycle length problem lies in the following complexity upper bound for reversible CA.
Proposition 5. Let F be any reversible CA. Then, for any fixed k, we have:

CC

CyclekF


∈ O(1).

Proof. For a reversible CA, orbits of periodic configurations are not only ultimately periodic but also periodic.More precisely,
for any periodic configuration c , the cycle length starting from c is less than k if and only if:

∃t ≤ k : F t(c) = c.
Thus, Alice and Bob can simply simulate the automaton for k steps, then check if a configuration repeats during these

steps: this can be donewith 4k·r ·⌊1+logQ ⌋ bits, to transmit the cells next to the border between Alice and Bob’s respective
parts, then one bit for Alice to tell Bob if a configuration appeared twice during the k steps. �

4. The three corresponding necessary conditions for intrinsic universality

In this section we show that intrinsic universality implies that the communication complexity of the three canonical
problems described above must be maximal. Before giving precise definitions, recall that a CA is intrinsically universal if it
is able to simulate any other CA. Our approach with communication complexity proceeds in two steps:

• we show that the simulation of F byG implies a reduction fromany canonical problem for F to the corresponding problem
forG in such away that the communication complexity is preserved (up to some distortions involving onlymultiplicative
factors);
• we show the existence of maximal communication complexity CA for each of the canonical problems.

Before developing these two steps, we give formal definitions for simulations and intrinsic universality.

8 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

4.1. Simulations and universality

The base ingredient is the relation of sub-automaton. A CA F is a sub-automaton of a CA G, denoted by F ⊑ G, if there is
an injective map ι from QF to QG such that ι ◦ F = G ◦ ι, where ι : Q Z

F → Q Z
G denotes the uniform extension of ι.

A CA F simulates a CA G if some rescaling of G is a sub-automaton of some rescaling of F . The ingredients of the rescalings
are simple: packing cells into blocks, iterating the rule and composing with a translation. Formally, given any state set Q
and anym ≥ 1, we define the bijective packing map bm : Q Z

→

Qm
Z by:

∀z ∈ Z :

bm(c)


(z) =


c(mz), . . . , c(mz +m− 1)


for all c ∈ Q Z. The rescaling F ⟨m,t,z⟩ of F by parameters m (packing), t ≥ 1 (iterating) and z ∈ Z (shifting) is the CA of state
set Qm and global rule:

bm ◦ σz ◦ F t
◦ b−1m .

The fact that the above function is the global rule of a cellular automaton follows from the Curtis–Lyndon–Hedlund
theorem [6] because it is continuous and commutes with translations. With these definitions, we say that G simulates F ,
denoted F 4 G, if there are rescaling parametersm1,m2, t1, t2, z1 and z2 such that F ⟨m1,t1,z1⟩ ⊑ G⟨m2,t2,z2⟩.

We can now naturally define the notion of universality associated to this simulation relation.

Definition 6. F is intrinsically universal if for all G it holds that G 4 F . F is reversible universal if for all reversible G it holds
that G 4 F .

We consider the following relation of comparison between functions from N to N:

φ1 ≺ φ2 ⇐⇒ ∃α, β, γ , δ ≥ 1,∀n ∈ N : φ1(αn) ≤ βφ2(γ n)+ δ.

Remark. All the functions we will compare by ≺ are in O(n) since they come from a communication complexity problem.
Moreover, the set of such functions that are in Ω(n) form an equivalence class for ≺. Although we sometimes give more
precise bounds, most of the paper focuses on whether or not some function belongs to this class.

Proposition 6. If F 4 G then CC (PredF) ≺ CC (PredG).

Proof. We successively consider each ‘‘ingredient’’ involved in the simulation relation.

Sub-automaton: if F ⊑ G then each valid protocol to compute PredG|
i
n is also a valid protocol to compute iterations of

PredF |
i
n (up to state renaming).

Iterating: We have CC (PredF t) ∈ Θ(CC (PredF)). In fact, if we have a protocol for the prediction problem of F t – which is
an automaton of radius t · r – then we can use it to predict F : on a configuration x of size n, we use the protocol
to predict the result of iterating ⌊ n

r·t ⌋ times F t , which gives a configuration of size at most t · r − 1. To do this, we
just use the protocol at most t · r − 1 times to predict each cell of this configuration, then Alice or Bob conclude by
simulating the automaton directly.
The other direction is even simpler: a protocol for PredF can be used directly for PredF t by just slightly reducing
the input of Bob.

Shifting: This operation only affects the splitting of inputs. Since we always take in each case the splitting of maximum
complexity, this has no influence on the final complexity function.

Packing: Let F be any CA and n be fixed. Consider the problem PredF ⟨m,1,0⟩ |
j
n for some j. Now consider any sequence of valid

protocols (Pi), one for each problem PredF |
i
nm. It follows from the the definition of packing maps that PredF ⟨m,1,0⟩ |

j
n

can be solved by applyingm suitably chosen protocols in the sequence (Pi). Therefore

CC

PredF ⟨m,1,0⟩


(n) ≤ m · CC (PredF)(n).

Reciprocally, one has for all n:

CC (PredF)(n) ≤ CC

Predf ⟨m,1,0⟩


(⌈n/m⌉)+m

where the additional constant m is used to deal with input splittings of PredF |n which have no equivalent in
Predf ⟨m,1,0⟩ |⌈n/m⌉ because they do not cut the input at a position which is multiple ofm.

Therefore we have: CC (PredF) ≺ PredF ⟨m,t,z⟩ , PredF ⟨m,t,z⟩ ≺ CC (PredF) and if F ⊑ G then CC (PredF) ≺ PredG. The
proposition follows. �

The following result shows that the invasion complexity is increasing with respect to simulations.

Proposition 7. If F 4 G then for all u there is v such that

CC

InvuF


≺ CC


Invv

G


.

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 9

Proof. The simulation relation 4 is such that ultimately periodic configurations of F are converted into ultimately periodic
configurations of G. Hence, the invasion problem of F reduces to the invasion problem of G. More precisely, it is sufficient to
check the following properties, each dealing with an aspect of the simulation relation 4:

• for any CA F , any u and any rescaling parametersm, t, z, we have

CC

InvuF


≺ CC


InvUF ⟨m,t,z⟩


where U is the period of the configuration bm(pu);
• if F ⊑ G then, for any u, CC


InvuF


≺ CC


InvuG


;

• for any CA F , any rescaling parameters m, t, z, any U (over the alphabet of F ⟨m,t,z⟩) CC

InvU

F ⟨m,t,z⟩


≺ CC


InvuF


where u

is the period of the configuration b−1m (pU).

The result follows by composition of the 3 properties above. �

Finally, we show a similar result for the cycle length problem. The problem is parameterized by an integer k and the
following proposition establishes that for suitable but arbitrary large values of this parameter the complexity of the problem
is conserved.

Proposition 8. If F 4 G then for all k0 there is k and k′ such that:

• k ≥ k0 and k′ ≥ k0;
• CC


CyclekF


≺ CC


Cyclek

′

G


.

Proof. The effect of rescaling transformations on cyclic orbits of periodic configurations is to change the (spatial) period
length as well as the (temporal) cycle length. More precisely, we have:

• if F ⊑ G then, for any k, CC

CyclekF


≺ CC


CyclekG


;

• for any k,
– CC


CyclekF


≺ CC


Cyclek

F ⟨m,1,0⟩


and

– CC

Cyclek

F ⟨m,1,0⟩


≺ CC


CyclekF


;

• for any t and any kwe have:

CC

CyclekF ⟨1,t,0⟩


≺ CC


CyclektF


;

• for any t and any k such that k mod t = 0 we have:

CC

CyclekF


≺ CC


Cyclek/t

F ⟨1,t,0⟩


.

The proposition follows. �

4.2. Existence of CA with maximal complexity

This section is devoted to the following existence result.

Proposition 9. 1. There exists a reversible CA F and a word u with CC

InvuF


∈ Ω(n).

2. There exists a reversible CA F with CC (PredF) ∈ Ω(n).
3. There exists a CA F s.t. for any k ≥ 1, CC


CyclekF


∈ Ω(n).

We now define the reversible CA of assertion 2 of Proposition 9, which we call G in the sequel. It is made of 3 layers:

• flag layer Qf = {0, 1},
• circulation layer Qc = {W } ∪ {0, 1} × {0, 1},
• test layer Qt = {0, 1} × {0, 1}.

The flag layer is simply the identity over Qf . The circulation layer does not depend on other layers and has the following
behaviour.

• Normal states in {0, 1} × {0, 1} represent two sub-layers (top and bottom) and, if no W state is in the neighbourhood,
the top sub-layer simply shifts to the right and the bottom sub-layer simply shifts to the left.
• W states are walls: They stay unchanged forever. Moreover, a normal cell on the right of a wall has the following

behaviour: The top value shifts to the right and the bottom value goes to the top. A normal cell on the left of a wall
has a symmetric behaviour: The bottom value shifts to the left and the top value goes to the bottom. See Fig. 5.

10 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

Fig. 5. Above: initial configuration. Below: the configuration k steps later.

Finally, the test layer ismade of two sub layers (top and bottom)which are independent. The top layer does the following:

• if the flag layer of the cell is 1 and if the circulation layer contains the state (1, 1) then invert bit and shift right;
• in any other case, simply shift right.

The bottom sub-layer does the same but replace right by left.

Proof of Proposition 9. 1. We first show that G defined above has the properties of Assertion 1 of the proposition. First, it
is reversible: the flag and circulation layers are themselves reversible, and the knowledge of these two layers makes the
flag layer reversible too.
Now let q0 be the state where flag layer is 0, the circulation layer is (0, 0) and the test layer is (0, 0). Consider input bits
x1, . . . , xn on the one hand and y1, . . . , yn on the other hand. Let Xi be the state with flag layer 0, test layer (0, 0) and
circulation layer (xi, 0). Similarly let Yi be the state with flag layer 0, test layer (0, 0) and circulation layer (0, yi). Let M
be the state of flag layer 0, circulation layer W and test layer (0, 0). Finally let T be the state of flag layer 1, circulation
layer (0, 0) and test layer (0, 0). Consider the configuration C(x1, . . . , xn, y1, . . . , yn):

ωq0 M Xn · · · X1 T Y1 · · · Yn M qω
0 .

We can consider this configuration as an instance of the invasion problem InvuF2n+3 where u = q0. The only possible
invasion in such an instance comes from the test layer. It follows from the definition of G that there is invasion in this
instance if and only if

∃i, xi = yi = 1.

Hence, the disjointness problem reduces to the invasion problem through such instances. Using Proposition 1, we
conclude that CC


Invq0G


∈ Ω(n).

2. Assertion 2 of the proposition can be proven with a CA F simpler than G, but using similar ideas. F has radius 1 and its
state set is the product of 3 components:
• left circulation with state set {0, 1},
• right circulation with state set {0, 1},
• test with state set {0, 1}.
The behaviour is the following:
• each of the left and right circulation components are independent of the other components and consists in simple

shift (left and right respectively),
• the test component simply flips its value if both left and right circulation components have value 1, it stays unchanged

else.
F is clearly reversible (circulation layers are independent shifts and test layer is reversible knowing other components).
Moreover, the inner product problem reduces to the prediction problem of F . Indeed, for any x, y ∈ {0, 1}n consider the
word

w = X1 · · · XnZYn · · · Y1

where Xi is the state equal to xi on the right circulation component and 0 elsewhere, Yi is the state equal to yi on the left
circulation component and 0 else, and Z is the state equal to 0 everywhere. It follows from the definition of F that

PredF |n(w) = 1 ⇐⇒
−

xiyi mod 2 = 1.

Proposition 1 implies that CC (PredF) ∈ Ω(n).
3. We use the problem disj to build a hard Cycle problem. The idea is that if Alice and Bob receive two disjoint sets as their

inputs, our CA will check disj forever. Otherwise it will erase all the tape, leaving a uniform, 1-periodic, configuration.
We use three layers in this construction, let us call the corresponding rules F1, F2 and F3. They are all of radius one, and
all use the same set of states {0, 1, K}. The K state is used to erase all three tapes: thus, if it appears on any component,
it spreads on all three.

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 11

Fig. 6. An automaton with a hard Cycle problem, and an easy Inv .

On (local) configurations not involving K , F1 is a simple left shift, and F2 a simple right shift. We use F3 as a control layer:
we need to check if the two other components represent two disjoint sets. The corresponding bitwise operation is:

n
i=1

¬(xi ∧ yi).

This corresponds to the following (partial) rule:

F3


∗,


∗

∗

0


, ∗


= 0

F3


∗,


∗

∗

1


, ∗


= 1

F3


∗,

1
1
1


, ∗


= K .

We consider a cyclic configuration containing an input for Alice on the first layer, and an input for Bob on the second
layer, (as in Fig. 6), and a third layer everywhere empty, except for a central ‘‘test’’ state, actually performing the tests.
While the test value is 1, the tests go on. There are three cases:
• If both Alice and Bob receive the empty set, the configuration is 1-periodic, but Alice and Bob can detect this case with

a single bit of communication.
• Else, since the tape is cyclic, if

n
i=1 ¬(xi ∧ yi) = 1, then the test goes on forever, producing a (temporal) cycle of

length Ω(n), because in this case, at least one xi or one yi is 1, and it is separated from the next 1 (possibly itself !) by
at least the 2n+ 1 zeros depicted in Fig. 6.
• Otherwise, the test becomes 0 at some step and a spreading state is generated, which erases all the layers in both

directions and produces a (temporal) cycle of length 1.
Thus, except in the case where both sets are empty, this is an ‘‘implementation’’ of the disj problem, shown in Ω(n) for
several variants of communication complexity in [8]. This proves that this automaton can embed anΩ(n) communication
problem in some of its configurations, which is enough to prove that its Cycle problem is hard. �

Remark. We prove in Section 4.4.4 that the last construction of Proposition 9 has an Inv problem in O(1).

4.3. Necessary conditions for universality

The following corollary is the main tool provided by this paper to prove negative results about (intrinsic) universality.

Corollary 2. Let F be an intrinsically universal CA. Then it holds that:

1. there exists u s.t. CC

InvuF


∈ Ω(n),

2. CC (PredF) ∈ Ω(n),
3. there exists k s.t. CC


CyclekF


∈ Ω(n).

Moreover, if F is only reversible-universal, then 2 and 1 still holds.

Proof. It follows from Propositions 6–8 on the one hand, and Proposition 9 on the other hand. �

A first application of this corollary to the complexity upper-bounds presented in Section 3 yields the following necessary
conditions for universality. The first proofs of these results appears in [14]. However, our approach allows us to formulate
much simpler and more elegant proofs.

12 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

Fig. 7. A CA easy for Pred and hard for Inv .

Corollary 3. Let F be an intrinsically universal CA, then F cannot be:

• neither expansive
• nor linear
• nor reversible.

Moreover, a reversible universal CA can not be expansive or linear.

4.4. Incomparability of the three conditions

Here we show the ‘‘orthogonality’’ of our three problems: For any pair of problems (P0, P1), we exhibit two CAs, A and
B, such that:

• CC

P A

0


∈ o(CC


P A

1


), in which case we say that A is ‘‘hard’’ for P1 and ‘‘easy’’ for P0.

• CC

P B

1


∈ o(CC


P B

0


), in which case we say that B is ‘‘hard’’ for P0 and ‘‘easy’’ for P1.

This shows that our three necessary conditions for intrinsic universality are really necessary: no condition is stronger
than any other.

4.4.1. A CA easy for Pred and hard for Inv
The idea is to embed an equality test (more precisely, a palindrome test) launching signals invading the whole

configuration, while keeping the prediction problem easy; see [8] or Proposition 1 to see why this problem requires Ω(n)
communicated bits. The idea is to use two components that both stay easy for Pred: one with tests that do not alter the
component, and one with signals, moving quickly out of the way:

1. The first layer performs tests for equality, as described below, and initially contains a word over the alphabet Γ1 =

{
−→
0 ,
−→
1 ,
←−
0 ,
←−
1 ,⊤,∅1, K1}. On Fig. 7, this layer is drawn with full lines.

The dynamic of the first layer is simple: −→a states shift right, and←−a states shift left. ⊤ states do not move, and ∅1 are
spreading.

2. A layer with an automaton invading the configuration from a seed.We need five states on this layer:Γ2 = {s,∅2,→,←,
K2}. We describe the rule below. On Fig. 7, this layer is drawn dashed.
The rule here is even simpler: ∅2 states do not move,→ states shift right,← states shift left. State s represents a signal
‘‘seed’’, meaning that if it appears once, it disappears on the next step, and changes into a→ signal on its right, and a←
signal on its left.

We add a few rules that allow to verify the well-formedness of configurations. This allows us to ensure that there can
be only one ⊤ state on the first layer, and that signals on the second layer never cross. States K1 and K2 are used for this
purpose: if one of them appears somewhere, they both spread on both layers, thus erasing thewhole configuration: the Pred
problem becomes trivial.

• If a←−a state is found immediately next to an−→a state, then K1 and K2 are both raised.
• If a→ signal is found in the same cell as an−→a , or a← in the same cell as an←−a , then K1 and K2 are raised. This ensures

that signals on the second layer never cross.

Moreover, we introduce another rule to perform the equality test: when the test is negative (i.e. a⊤ state has an−→x on
its left, a←−y on its right, and x ≠ y), then we place an s state on the second layer:

F

∅
−→a ,
∅

⊤
,
∅
←−a


=

∅

⊤

F

∅
−→a ,
∅

⊤
,
∅
←−−
1− a


=

s
⊤

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 13

Fig. 8. A CA easy for Pred and hard for Inv .

Proposition 10. The CA F described above is such that:

1. CC (PredF) ∈ O(1),
2. there is u such that CC


InvuF


∈ Ω(n).

Proof. 1. A protocol for Pred needs to predict the content of both layers: if the configuration is not well-formed, then a Ki
state will appear somewhere and this is easy (and it can be checked locally by Alice and Bob). Else:
• On the first layer, the result will always be the result of a shift if the initial configuration contains only−→x or←−x states,

or if the ⊤ state is not the central cell of the configuration, and a ⊤ state else. This requires a constant number of
communicated bits.
• On the second layer, there are four – possibly overlapping – possibilities:

– If the leftmost state of Alice’s differs from the rightmost state of Bob’s, and the central cell is a ⊤ state, the result
is an s.

– If the ⊤ state is not the central cell, but somewhere else in the left part, and the corresponding word is not a
palindrome, then a→ is launched (see Fig. 8).

– If the initial configuration contained an s or a→ in its leftmost cell, a→ arrives at the top of the triangle.
– Else, the result is a ∅2.
All of these can be checked locally and communicated between Alice and Bob within a constant number of bits.

2. Now we need to find a set of hard instances for the Inv problem: with a background word u, with ∅i on both layers, and
an initial configuration of the form (

−→
0 ,
−→
1)n⊤(

←−
0 ,
←−
1)n on the first layer, and ∅∗ on the second, we reduce the equality

problem to Inv. �

4.4.2. A CA easy for Cycle and hard for Inv
We can reuse the construction of Section 4.4.1: we already know that it is hard for Inv. What we need to do is to modify

the rule so that on the second layer, when a→ signal crosses a← signal, they both disappear and the resulting state is a
∅2. This ensures that on cyclic configurations, even if signals are ‘‘raised’’ somewhere, they are ‘‘caught’’ by the cyclicity. The
rest of the discussion is essentially the same as in Section 4.4.1, and we can conclude easily that the orbits of configurations
containing at least one⊤, or of ill-formed configurations, are always 1-periodic; the Cycle problem can be decided with no
communication. In all other cases, the dynamic is nothing more than a shift: the protocol from 5 can be used.

4.4.3. A CA easy for Pred, and hard for Cycle
We can use once again (and for the last time) quite the same construction as in Section 4.4.1. Wemodify it to launch only

one signal (in only one direction) when an error appears. Thus, as proven in Section 4.4.1, the Pred problem remains easy.
Now we need to prove that the Cycle problem is hard, but for this we can choose the instances on purpose.

If no test fails, the configuration will be 1-periodic: When all the tests have been done, the configuration is uniformly
empty, except for the⊤ states, and then nothing more happens. Otherwise, a signal will be launched. We need to show that
the period of the configuration is then in Ω(n). But we can notice that a contiguous portion of Ω(n) cells can not have any
signal (see Fig. 9). Therefore, the period of the configuration is Ω(n) if and only if an error occurs.

4.4.4. A CA easy for Inv and hard for Cycle
As promised in Remark 4, we now prove a protocol for the Inv problem of the rule described there:

Proposition 11. The CA F described in the proof of Proposition 9 is such that:

∀u, CC

InvuF


∈ O(1).

Proof. Let u be any word over the alphabet for F . First, if the orbit of pu contains a spreading state, then pu(w) quickly
becomes uniform with the spreading state everywhere, independently from w. Else, the discussion is a little more subtle.
Let us note the periodic background pu = (pu1 , pu2 , pu3), and let w = (w1, w2, w3) the input, split between Alice and Bob.

14 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

Fig. 9. A CA easy for Pred and hard for Cycle .

1. If pu1(w1) ≠ pu1 , and pu2(w2) ≠ pu2 , and then either a spreading state is generated, or the differences on components
one and two are shifted in opposite directions, thus also invading pu.

2. If pu1(w1) = pu1 and pu2(w2) = pu2 , maybe the third component (the actual ‘‘tests’’) changes between pu and pu(w),
but then there is an easy way to transmit whole configurations: Alice can simply tell Bob that her part is the same as in
pu, on the first two components. If Bob does the same, then both know both ‘‘sets’’, and they can check without more
communication if their respective portions of pu3(w3) ever generate a spreading state: if so, pu(w) is invaded, else it is
not.

3. Else, without loss of generality, we can assume that pu1(w1) = pu1 and pu2(w2) ≠ pu2 . There are two cases:

• Either pu3(w3) = pu3 (the ‘‘tests’’ are the same in pu and pu(w)), and then using the trick from (2), Alice and Bob can
know pu1(w1) and pu3(w3) completely, within constant communication.
Then, since they each know a part of set pu2(w2), and they both know pu3(w3), they can check disjointness with
pu1(w1) separately and tell if a spreading state ever appears, which is the only way pu(w) can be invaded in this case.
• If pu3(w3) ≠ pu3 , then either a spreading state is generated, or pu3(w3) stays fixed, and pu2(w2) shifts to infinity: in

both cases, pu(w) is invaded. �

4.4.5. A CA easy for Inv and hard for Pred
Elementary rule 218 is a natural example exhibiting this property. Unfortunately, the proof is quite technical and requires

an in-depth study of rule 218, which we chose to delay until Section 6.1, for conciseness of this – already long – section, and
consistency of Section 6.

4.4.6. A CA easy for Cycle and hard for Pred
We describe the natural example of Rule 33 in Section 6.3, which has a protocol in constant time for Cycle, and for which

any deterministic protocol for Pred is in Ω(log n).

5. Intrinsic universality: ruling out complex CA

Here we show that for two of our canonical problems – namely, Pred and Inv – we were able to find a CA of maximal
algorithmic complexity (complete), and yet very simple with respect to our framework.

More precisely, we are going to show that, for problems Pred and Inv, there exists a CA F for which the communication
complexity of the problem is low while its classical computational complexity is the highest one can expect.

Therefore, we are ruling out such a non-trivial CA from being intrinsically universal.

5.1. Prediction

T. Neary and D. Woods proved ‘‘the P-completeness of Rule 110’’ [11]. In our language, they proved that the problem
PredF110 is P-complete. A very natural question arises: What do classical algorithmic properties of CA, such as P-
completeness, imply on their communication complexity counterpart?

As we show in this section, such a strong computational property is not enough to guarantee maximal communication
complexity. However, we do not know of an automaton that would have, for instance, polylogarithmic communication
complexity, and still a P-complete prediction problem, nor do we have a nonexistence proof. We leave this as an open
problem.

Proposition 12. For any k ≥ 1, there exists a CA F such that

CC (PredF) ∈ O(n1/k)

and PredF is P-complete.

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 15

Fig. 10. A CA for which Pred is P-complete.

Proof. Let M be a Turing machine. We construct a CA F simulating M slowly but still in polynomial time: it takes nk steps
of F to simulate n steps of M. Hence, by a suitable choice of M, the problem of predicting F is P-complete.

First it is easy to construct a CA simulating M in real time. We encode each symbol of the tape alphabet of the Turing
machine by a CA state, and add a ‘‘layer’’ for the head,with ‘→’ symbols on its left and ‘←’ symbols on its right.We guarantee
this way that there can be only one head: if a ‘→’ state is adjacent to a ‘←’ statewithout a head between them,we propagate
a spreading ‘‘error’’ state destroying everything.

We then add a new layer to slow down the simulation: it consists in a single particle (we use the same trick to ensure
that there is only one particle) moving left and right inside amarked region of the configuration. More precisely, it goes right
until it reaches the end of the marked region, then it adds a marked cell at the end and starts to move left to reach the other
end, doing the same thing forever. Clearly, for any cell in a finite marked region, seeing n traversals of the particle takes
Ω(n2) steps. Then, the idea is to authorize head moves, in the previous construction, only at particle traversals. This way,
n steps of M require n2 time steps of the automaton. By adding another particle layer, one can also slow down the above
particle with the same principle and it is not difficult to finally construct a CA F such that n steps of M require nk time steps
of F . We have represented in Fig. 10 the behavior of the particle, with the dashed arrow representing a Turing transition.

Now if the initial configuration does not respect the rules described above, then a spreading error state is generated and
Alice and Bob can notice it within constant communication. In all other cases, it is enough for Alice or Bob to know the value
of all the 2 · n1/k states around the initial position of the head, because the computation of the Turing machine simply does
not depend on the rest of the initial configuration. So for these cases, at most n1/k bits need to be communicated for Alice
or Bob to compute the answer. Note that if the bounds for the particle are absent from the initial configuration, then no
transition can happen, thus Alice and Bob know the result in constant time. �

Remark. A result by Hromkovic (see [2]) states that a Turing machine with a single head working in time t(n) can only
recognize a language of communication complexity less than O(

√
t(n)). Said differently, a CA simulating a Turing machine

cannot produce instances of communication complexity more than O(
√
n) for the prediction problem on configurations

with a single head (whatever the machine does).

5.2. Invasion

This problem is even more complex than Pred: It is in fact undecidable. However, since there is no limitation on the
‘‘classical’’ computational power of Alice and Bob, it can still be decided within very little communication.

Proposition 13. 1. For any CA F and any word u, we have: InvuF ∈ Π0
1 .

2. Their exist F and u such that InvuF is Π0
1 -complete, and yet CC


InvuF


∈ O(log n)

Proof. 1. Let F and u be fixed and consider the problem InvuF . Given an input x1, . . . , xn, we use the notations δl(t) and
δr(t) for the leftmost and rightmost differences at time t between the orbit of pu and the orbit of pu(x1 · · · xn) as in
Definition 4.

Claim. There exists a recursive function β such that for any n, any input x1, . . . , xn and any ∆ ≥ 0 we have:

∃t, δr(t)− δl(t) ≥ ∆ ⇐⇒ ∃t ≤ β(∆), δr(t)− δl(t) ≥ ∆.

The proof follows from the above claim because the invasion problem can be expressed as the following Π0
1 predicate:

∀∆ ≥ 0, ∃t ≤ β(∆), δr(t)− δl(t) ≥ ∆  
recursive predicate

.

Proof of the Claim. First, the orbit of pu is ultimately periodic: There are t0 and p such that for any t ≥ t0 we have
F t(pu) = F t+p(pu). Given an input x1, . . . , xn of the problem, denote by w(t) the word of length δr(t)− δl(t) starting at
position δl(t) in configuration F t


pu(x1, . . . , xn)


. The key point is that for any t ≥ t0, the triple

χ(t + 1) =

w(t + 1), δl(t + 1) mod |u|, t + 1 mod p



16 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

Fig. 11. A well-formed piece of configuration. The counter A contains value 3 and the counter B contains value 1 in this example.

is uniquely determined by the triple

χ(t) =

w(t), δl(t) mod |u|, t mod p


(because the word w(t) ‘‘evolves’’ in a periodic context and knowing the offset of the position of w(t) in that context is
enough to know w(t+1)). Therefore, if the words w(t) are bounded by ∆ for a sufficiently long time (exponential in ∆),
then the triple χ(t) will take a value already taken before and the sequence


χ(t)


t will be ultimately periodic, showing

that |w(t)| is bounded and that there is no invasion. Adding t0 to this exponential function is a convenient choice for
β . �

2. We build a CA F that simulates a 2-counter machine [10]. More precisely, standard states have two layers: a data layer
over states A,M, B, 0, used to store the value of the 2 unary counters, and a control layer made of a Turing head storing
a state from Q , with the extra→ and← symbols ensuring the uniqueness of the head. Finally, F possesses a blank state
∅ and a spreading state K to deal with encoding problems. The state set is therefore

Q ∪ {K ,∅,→,←}

× {A, B, 0,M}.

A valid configuration is a configuration everywhere equal to ∅ except on finite coding segments which have the
following form (see Fig. 11):
• the data layer must be of the form: 0∗A+MB+0∗;
• the control layer must be of the form:→+ q←+ with q ∈ Q .

The number of As and Bs represent the current value of the 2 counters. The behaviour of F is the following:
• If the configuration is not valid (which can be detected locally), then the state K is generated and spreads;
• If the configuration is valid, then on each coding segment, the (necessarily unique) head goes repeatedly from one

end of the segment to the other end, and extends the segment at each pass by adding a→ on the left (resp.← on the
right) and a 0 on the data layer. If the extension step is blocked by another segment, then the state K is generated and
spreads;
• Moreover, at each pass on the segment, the head executes one of the basic 2-counter machine’s instructions:

– testing if a counter is empty can be done by checking if there is a 0 on the right (resp. the left) of the uniqueM;
– decrementing can be done be replacing the leftmost A (resp. rightmost B) by a 0;
– incrementing can be done by replacing a 0 by A on the left of the leftmost A (resp. by B on the right of the rightmost

B); there must be a 0, because the segment is extended at each passage by both sides;
– finally, the head can simply stop.
If any order given to the head leads to an incoherence (decrement an empty counter, write a Bwhen on the ‘A’ part of

the segment, etc), the state K is generated and spreads.
With this definition, and if u = ∅, the halting problem for the 2-counter machine encoded in F (input: value of

counters; output: does it halt started from these values ?) clearly reduces to InvuF (halt⇐⇒ no invasion). Therefore, by
a suitable choice of the 2-counter machine used to construct F , we have that InvuF is Π0

1 -complete.
To conclude the proof, we show that CC


InvuF


∈ O(log(n)). Given an input w split between Alice and Bob, the

following protocol determines whether InvuF (w) = 1:
• first Alice and Bob check whether the input configuration is valid; if not, the answer is ‘invasion’; this can be done

with O(1) bits of communication since validity is a local property;
• the configuration being valid, Alice and Bob communicate so that for any pair of consecutive valid segments s1 and s2,

either Alice or Bob knows the state of both s1 and s2 and the distance between them; to achieve this, even if a segment
is split between Alice’s part and Bob’s part, it is sufficient that they communicate O(log(n)) bits; indeed, a segment is
completely defined by:
– the value and position of the head,
– number of 0 states on the right and the same on the left,
– number of As and number of Bs.

• since for each pair of valid segment, Alice or Bob has enough information to detect a possible future collision, they can
determine together with O(1) bits of communication whether there is invasion or not; indeed, invasion is equivalent
to: either there is a collision somewhere, or there is a single segment holding a non-halting computation. �

5.3. Cycle-length

For this problem,we could find a CA ofmaximal algorithmic complexity, as shownby the following proposition. However,
we have to leave as an open problem the existence of a CA F for which both CyclekF is pspace-complete for some k ∈ N, and
CC

CyclekF


∈ o(n).

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 17

Fig. 12. The output of the transducer used in Proposition 14.

(a) F218.

(b) Example of a space–time diagram for CA Rule 218.

Fig. 13. CA rule 218.

Proposition 14. 1. For any CA F and any k ≥ 1, CyclekF ∈ pspace.
2. Their exist F and k such that CyclekF is pspace-complete.

Proof. 1. Let F and k ≥ 1 be fixed. The length of the cycle reached by iterating F on a periodic initial configuration c can be
determined in polynomial space with the algorithm described below. Let n be the period of c. Starting from c , the cycle
is reached in less than αn steps where α is the cardinal of the state set.
(a) compute c0 = Fαn

(c) (memory usage: O(n));
(b) memorize c0 and compute the first t such that F t(c0) = c0 (memory usage: O(n) because such a t is less than αn).

2. To show this, we embed a TuringmachineM, deciding a pspace-complete language, in a cyclic configuration for a cellular
automaton. M works in polynomial space, meaning that there is a polynomial P ∈ N[X] such that for any x ∈ Γ ∗, it will
never use more than P(|x|) tape cells.

We can encode a Turingmachine easily into a simple cellular automaton F: the states code for the Turing tape cells, and
there is a special ‘‘head’’ state carrying the state of themachine. It can be easily shown that we can encode the transitions
of a Turing machine into a local cellular automaton rule, ensuring that if there is only one head at the beginning, then it
will be so during all the computation.

Moreover, the accepting state is spreading, meaning that if it appears somewhere, it spreads over all the configuration
in both directions. The rejecting state launches a particle erasing the configuration (i.e., writing blank states everywhere),
but shifting clockwise. In this way, an accepting computationwill result in period 1, whereas rejecting computations will
yield periods of the size of the configuration.

A polynomial-time transducer can easily encode an input x for M into a (cyclic) configuration of F, like shown in
Fig. 12. It first directly translates x into states of F, then computes P(|x|) and outputs P(x) blank states. �

6. Intrinsic universality: ruling out concrete elementary CA

6.1. CA Rule 218

The local function f218 : {0, 1}3 → {0, 1} of CA rule 218 is defined in Fig. 13(a).
From the result of [5] we already knew that CC


PredF218


∈ O(log(n)). It follows from Corollary 2 that Rule 218 is not

intrinsically universal. Nevertheless, the proof of [5]was very long and complicated. Aswe are going to see now, the invasion
approach gives a short and elegant proof of the same result.

18 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

Fig. 14. A configuration of the fooling set Sn for rule 218.

Definition 7. A word is additive if 1s are isolated and separated by an odd number of 0s. By extension, an infinite
configuration is additive if it contains only additive words.

Lemma 2. Additivity is preserved by iterations. Moreover, if abc is additive then:

f218(a, b, c) ≠ f218(1− a, b, c) and f218(a, b, c) ≠ f218(a, b, 1− c).

Proof. First additivity is preserved by iterations because 010n10 becomes 010n−210 for n ≥ 3 and 01010 becomes 000.
To conclude the lemma, it is sufficient to check that, for any a,b,c such that 11 is not a factor of abc then:

f218(a, b, c) ≠ f218(1− a, b, c) and f218(a, b, c) ≠ f218(a, b, 1− c). �

Lemma 3. Let c be any non-additive configuration. Then, after a finite time, the word 11 appears in the evolution and this word
is a wall.

Proof. First 11 is a wall because:

f218(∗, 1, 1) = f218(1, 1, ∗) = 1.

To conclude it is sufficient to check that the image of 10n1 with n ≥ 2 is 10n−21. �

Proposition 15. For all u, we have CC

InvuF218


≤ 1.

Proof. First, if the configuration pu is non-additive then, by Lemma 3, at some time t a wall appears periodically in F t
218(pu).

Hence, for any x1, . . . , xn, the differences between pu(x1, . . . , xn) and pu are bounded to a fixed finite region. Said differently,
there is never propagation for such an u.

Now consider the case where pu is additive. By Lemma 2, we have for any x1, . . . , xn:

• either pu = pu(x1, . . . , xn),
• or for any t ≥ 0:

δl(t) = δl(0)− t
δr(t) = δr(0)+ t.

Therefore, the problem consists in deciding whether pu and pu(x1, . . . , xn) are equal, which can be done with 1 bit of
communication. �

Corollary 4. CA Rule 218 is not intrinsically universal.

As promised in Section 4.4.5, it remains to show that the deterministic (possibly with several rounds) communication
complexity of the Pred problem for rule 218 is ‘‘hard’’, according to our conventions:

Proposition 16.
PredF218 ∈ Ω(log n).

Proof. To show this, we construct a fooling set Sn (see Definition 1 or [8]):

Sn = {(1n−k0k, 0k+11n−k, 0 ≤ k ≤ n}.

We show that Sn is a fooling set for Rule 218: In fact, on all configurations of the form 1n−k02k+11n−k, the result of PredF218
is always 0. On configurations of the form 1n−i0i+j+11n−j where i ≠ j, it is always 1. This can be easily shown from the
collection of lemmas of [5], and we illustrate it on Fig. 14. Thus, since |Sn| = n+ 1, we deduce that a deterministic protocol
solving PredFn218

can not take less than log(n+ 1) steps:

CC

PredFn218


∈ Ω(log(n)). �

6.2. CA Rule 94

The local function f94 : {0, 1}3 → {0, 1} of CA Rule 94 is defined in Fig. 15(a).
It appears clearly here how powerful the invasion approach is (as a tool for proving non-universality). Finding an upper

bound (a protocol) for CC

PredF94


seems to be hard. Nevertheless, here we prove in a rather simple way that its invasion

complexity is logarithmic.

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 19

(a) f94.

(b) Example of a space–time diagram for CA Rule 94.

Fig. 15. CA Rule 94.

Definition 8. A configuration is additive if its language is included in

(00)+(11)+

∗ (blocks of 0s or 1s are always of even
length).
Lemma 4. f94 is bi-permutative when restricted to additive configurations (it behaves like f90) and additive configurations are
stable under iterations.
Proof. For stability of additive configurations, it is sufficient to check that 00(11)n00 becomes 11(00)n−111 and 11(00)n11
becomes 11(00)n−111 for n ≥ 1.

f94 differs from f90 only for transition 010, hence bi-permutativity. �

Lemma 5. If c is a non-additive configuration which does not contain 010, then 101 appears after a finite time and it is a wall.
More precisely, a wall appears after t + 1 steps of CA Rule 94 at the middle of any occurrence of 102t+11 or 012t+30 (with t ≥ 0).
Proof. First 101 is stable under iterations of f94. Second, 10n1 with n ≥ 2 is sent to 10n−21 and 01n0 is sent to 10n−21 for
n ≥ 2. �

Lemma 6. The orbit of a configuration c contains a wall if and only if F94(c) is not additive.
Proof. From Lemma 5, it is enough to show that if c is a configuration not containing 101 then F94(c) does not contain 010.
For that, it is sufficient to check that any word u such that f94(u) = 010 must contain 101. �

From the 2 lemmas above, we get the following proposition.

Proposition 17. For any u we have CC

InvuF94


∈ O(log(n)).

Proof. If u is such that the orbit of pu contains a wall, then invasion never occurs.
If u is such that the orbit of pu does not contain any wall, then it means that F94(pu) is additive (by Lemma 6). In this

situation, two cases are to be considered depending on the input x1, . . . , xn. Knowing in which case we are can be done
within a constant number of bits:

• either F94(pu(x1, . . . , xn)) is also additive and then, by Lemma 4, there is invasion if and only if F94(pu) = F94(pu(x1, . . . ,
xn)). This can be decided with a finite number of bits of communication.
• or F94(pu(x1, . . . , xn)) is not additive. Then it contains some 102t+11 or some 012t+30 (with t ≥ 0) because, as shown in

the proof of the lemma, if the image of a configuration contains 010, then it must also contain 101. Consider the leftmost
and the rightmost occurrences of this kind of word. Since walls appear above the middle of these two occurrences after a
time equal to half their lengths (Lemma 5), the fact there is invasion or not does not depend on what is between that two
occurrences. It takes O(log(n)) bits of communication for Alice to know the positions of these two occurrences and the
exact words present at their positions (of type 102t+11 or 012t+30). Moreover, as soon as Alice knows this she also knows
that on the left of the leftmost occurrence and on the right of the rightmost occurrence, the configuration is additive. If
there is one differencewith pu in those additive parts, then there is invasion. If not, then Alice has got enough information
to decide invasion. Deciding in which of the two cases we are can be done within constant communication. �

Corollary 5. CA Rule 94 is not intrinsically universal.

6.3. CA Rule 33

We are going to show that this rule, although non-trivial for the Pred problem, needs zero communication for the Cycle
problem. To show this, we prove that the cycle length of Rule 33 is always 2. The local function f33 : {0, 1}3 → {0, 1} of CA
Rule 33 is defined in Fig. 16(a).

20 E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21

(a) f33.

(b) Example of a space–time diagram for CA Rule 33.

Fig. 16. CA Rule 33.

Lemma 7. All configurations that contain neither 101 (isolated 0s) nor 1001 (isolated 00s) are stable under (F33)2.

Proof. We call A0 the set of configurations without isolated 0s, and A00 the set configuration without isolated 00s. First
notice that the only antecedent of 101 is 10101, which contains an isolated 0, thus A0 is stable under F33. With an exhaustive
exploration of all configurations of the form u = abxyzcdwhere xyz ∈ {000 . . . 111}, and u ∈ A0 ∩ A00, we observe that:

∀u ∈ A0 ∩ A00, |u| = 7, (F33)2(u1 . . . u7) = u3u4u5. �

Lemma 8. All (cyclic) configurations of length n, different from (01)⌊n/2⌋, do not contain isolated 0s after
 n

2


steps of CA Rule 33.

Proof. We already noticed in Lemma 7 that the only possible antecedent of 101 is 10101. Thus, there can be an isolated
0 after

 n
2


steps only if there are at least

 n
2


isolated 0s in the initial configuration, i.e. if the initial configuration is

(01)⌊n/2⌋. �

Corollary 6. After
 n

2


+ 1 steps of CA Rule 33, there are no isolated couples of 0s.

Proof. The only antecedents of 1001 contain an isolated 0. �

Corollary 7. After
 n

2


+ 1 steps, CA Rule 33 becomes periodic, with period 2.

Proposition 18.

CC

PredF33


∈ Ω(log n).

Proof. As usual, we just find a fooling set (see Definition 1). Consider the following set Sn:

Sn = {(1n−2k(01)k0, (10)k1n−2k), 0 ≤ k ≤ ⌊n/2⌋}.

It can be easily verified that:
F n
33(1

2n−k(01)k0(10)k12n−k) = nmod 2
F n
33(1

2n−i(01)i0(10)j12n−j) = 1+ (nmod 2) whenever i ≠ j.

Since |Sn| =
 n

2


, we conclude that a deterministic protocol for predicting rule 33 needsΩ(log n) bits of communication. �

7. Conclusion

We have suggested a method to prove negative results concerning intrinsic universality in CA. We have shown that
this approach can be used both to show that global dynamical properties can imply non-universality, and to rule out some
concrete cellular automata from being universal. We believe that this work should go on in the following directions:

• It seems that more can be said about the communication complexity problems for the class of surjective CA and some of
its sub-classes (k-to-1, d-separated, left/right-closing, etc. [6]).
• The case of elementary rules 218 and 94 shows that low-cost communication protocols can be found in CA that are not

linear, but contain a linear component ‘in competition’ with another component. Finding a general formalisation for such
kinds of behaviours could be useful to treat many other concrete examples.
• Concerning concrete CA, ruling out asmany elementary rules as possible frombeing intrinsically universal seems to be an

interesting (but ambitious) goal. We could also consider other natural classes of small CA (one-way automata, totalistic
rules, etc.).

E. Goles et al. / Theoretical Computer Science 412 (2011) 2–21 21

• The splitting of inputs that induce maximal communication complexity is a key parameter, especially for the prediction
problem. There is no reason for such maximal splittings to be unique, and if it is unique, there is no reason to be located
in the middle of the input. We suspect that there are some links between directional entropy and the evolution of such
maximal splitting (when increasing the input size).
• Although completely formalized in dimension 1, there is no doubt that this approach can be adapted to higher

dimensions; it could be the occasion to adopt other communication complexity models (like the multiparty model) and
discuss other ways of splitting the input.

References

[1] Laurent Boyer, Guillaume Theyssier, On local symmetries and universality in cellular automata, in: STACS 2009, 2009, pp. 195–206.
[2] Juraj Hromkovič, Georg Schnitger, Communication complexity and sequential computation, in: MFCS’97, Springer-Verlag, London, UK, 1997,

pp. 71–84.
[3] B. Durand, Z. Róka, The game of life: universality revisited, in: Cellular Automata: A Parallel Model, in: Mathematics and its Applications, vol. 460,

Kluwer Academic Publishers, 1999, pp. 51–74.
[4] Christoph Dürr, Ivan Rapaport, Guillaume Theyssier, Cellular automata and communication complexity, Theoretical Computer Science 322 (2) (2004)

355–368.
[5] Eric Goles, Cedric Little, Ivan Rapaport, Understanding a non-trivial cellular automaton by finding its simplest underlying communication protocol,

in: ISAAC 2008, 2008, pp. 71–94.
[6] G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems, Mathematical Systems Theory 3 (4) (1969) 320–375.
[7] P. Kurka, Languages, equicontinuity and attractors in cellular automata, Ergodic Theory and Dynamical Systems 17 (1997) 417–433.
[8] Eyal Kushilevitz, Noam Nisan, Communication Complexity, Cambridge university press, 1997.
[9] Jacques Mazoyer, Ivan Rapaport, Inducing an order on cellular automata by a grouping operation, Discrete Applied Mathematics 91 (1999) 177–196.

[10] Marvin L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
[11] Turlough Neary, Damien Woods, P-completeness of cellular automaton Rule 110, in: In ICALP 2006, in: LNCS, vol. 4051, Springer, 2006, pp. 132–143.
[12] Nicolas Ollinger, Universalities in cellular automata: a (short) survey, in: B. Durand (Ed.), JAC’08, MCCME Publishing House, Moscow, 2008,

pp. 102–118.
[13] Mathieu Sablik, Directional dynamics for cellular automata: a sensitivity to initial condition approach, Theoretical Computer Science 400 (1–3) (2008)

1–18.
[14] Guillaume Theyssier, Cellular automata: a model of complexities, Ph.D. Thesis, ENS Lyon, 2005.
[15] John von Neumann, The Theory of Self-reproducing Cellular Automata, University of Illinois Press, Urbana, Illinois, 1967.
[16] Andrew Chi-Chih Yao, Some complexity questions related to distributive computing (preliminary report), in: STOC, ACM, 1979, pp. 209–213.

	Communication complexity and intrinsic universality in cellular automata
	Introduction
	Basic definitions
	Communication complexity
	Splitting the input of computational problems
	Cellular automata

	The three canonical communication problems
	Prediction
	Invasion
	Cycle length

	The three corresponding necessary conditions for intrinsic universality
	Simulations and universality
	Existence of CA with maximal complexity
	Necessary conditions for universality
	Incomparability of the three conditions
	A CA easy for Pred and hard for Inv
	A CA easy for Cycle and hard for Inv
	A CA easy for Pred, and hard for Cycle
	A CA easy for Inv and hard for Cycle
	A CA easy for Inv and hard for Pred
	A CA easy for Cycle and hard for Pred

	Intrinsic universality: ruling out complex CA
	Prediction
	Invasion
	Cycle-length

	Intrinsic universality: ruling out concrete elementary CA
	CA Rule 218
	CA Rule 94
	CA Rule 33

	Conclusion
	References

