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Abstract

An hybrid real coded Genetic Algorithm with damage penalization is implemented
to locate and quantify structural damage. Genetic Algorithms provide a powerful
tool to solved optimization problems. With an appropriate selection of their op-
erators and parameters they can potentially explore the entire solution space and
reach the global optimum. Here, the set-up of the Genetic Algorithm operators and
parameters is addressed, providing guidelines to their selection in similar damage
detection problems. The performance of five fundamental functions based on modal
data is studied. In addition, this paper proposes the use of a damage penaliza-
tion that satisfactorily avoids false damage detection due to experimental noise or
numerical errors. A tridimensional space frame structure with single and multiple
damages scenarios provides an experimental framework which verifies the approach.
The method is tested with different levels of incompleteness in the measured de-
grees of freedom. The results show that this approach reaches a much more precise
solution than conventional optimization methods. A scenario of three simultaneous
damage locations was correctly located and quantified by measuring only a 6.3% of
the total degrees of freedom.
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1 Introduction1

The early detection of structural damage generates a wide interest in the2

civil, mechanical and aerospace engineering fields. Many recent studies focus3

on the application of vibration-based damage detection methods. While visual4

inspection fails to assess damage at early stages, vibration measurements are5

sensitive enough to detect damage even if it is located in hidden or internal6

areas.7

Damage detection methods are classified according to the level of identification8

attempted [1]:9

Level 1: Detecting the presence of damage in the structure;10

Level 2: Determining the geometric location of the damage;11

Level 3: Quantifying the severity of the damage;12

Level 4: Predicting the remaining lifespan.13

Levels 3 and 4 are the most challenging areas of damage detection, to achieve14

these levels model-based methods are necessary. These methods correlate a15

numerical model with measured data from the structure. A set of variables is16

updated to obtain the minimum difference between the numerical and exper-17

imental data. Damage is modelled as a reduction of stiffness in an element,18

and it is detected by comparing the undamaged and damage state.19

A proper selection of the objective function is crucial since it not only modifies20

the interpretation of the best correlation, but also influences the convergence21

of the optimization procedure. Several objective functions have been reported22

Ward.Heylen@mech.kuleuven.be (W. Heylen).
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in the damage detection field. Salawu [2] presents a review of damage detection23

methods through changes in frequencies. Despite the fact that he emphasizes24

that damage detection using only natural frequencies is attractive, since it is25

fast and economical, he concludes that it is not possible to locate and quantify26

correctly any damage situation by using only frequencies. Hence mode shape27

data is also necessary.28

Many authors discuss the problem of detecting damage using mode shapes29

and frequencies. Shi et al. [3] present a sensitivity based method to locate and30

quantify damage. Damage is located using incomplete measured modes and31

it is quantified using the measured natural frequencies. The method is able32

to detect the real damage but a significant amount of false damage is also33

detected. Araujo dos Santos et al. [4] propose a damage detection algorithm34

based on the orthogonality condition sensitivities, their method produces more35

accurate results than the mode shape sensitivities method. The same method36

is implemented later by Ren and De Roeck [5, 6]. Wahab [7] studies the effect37

of including the modal curvatures in the convergence of a sensitivity based38

method. He concludes that the addition of modal curvatures does not improve39

the algorithm convergence. Görl and Link [8] implement a damage detection40

algorithm based on modes and frequencies sensitivities. Although damage is41

successfully located and quantified, a careful selection of the regularization42

parameters is necessary to achieve satisfactory results.43

Other objective functions that make use of modal data are strain energy,44

modal flexibility and residual forces. A disadvantage of these functions is that45

they need a sufficient fine spatial resolution. Jaishi and Ren [9] update the46

finite element models of a simulated beam and a real bridge using the strain47

energy residual. Jaishi and Ren [10] implement a sensitivity based algorithm48
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using modal flexibility residuals. The method is verified on simulated and49

experimental multi-cracked beams. A sensitivity method based on residual50

forces is implemented by Kosmatka and Ricles [11]. The method is used to51

detect damage on an experimental space truss structure.52

The use of the Frequency Response Function (FRF) is also an alternative53

[12, 13]. The advantage is that no modal extraction is necessary, thus contam-54

ination of the data with modal extraction errors is avoided. However, complex55

FRF data with noise can make the convergence process very slow and often56

numerically unstable as was found by Imregun et al. [[13]. Furthermore, the57

success of the method is highly dependent on the selection of the frequency58

points. Lammens [14] addresses how a poor selection of the frequency points59

can lead to an unstable updating process and inaccurate results. FRFs have60

also the disadvantage that they can not be identified from output only modal61

analysis with ambient excitation, thus the excitation by an artificial force is62

always required.63

Conventional optimization techniques used in damage detection or model up-64

dating employ sensitivity based searching mechanisms. These searching mech-65

anisms do not assure to reach an unique optimum solution because they are66

highly sensitive to the initial searching conditions and they usually lead to lo-67

cal minima. Moreover, the ill-conditioned inverse problem leads to instabilities68

and the convergence is not always assured. According to Natke [15] the only69

solution to overcome ill-conditioning is the regularization of the equations.70

However, the regularization parameters must be carefully selected, since the71

speed of convergence and the quality of the results strongly depends on them72

[16]. It seems, therefore, that further investigations are needed to implement a73

robust optimization approach to deal with these problems. Since John Holland74
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first developed the genetic algorithm (GA) in 1975, it has been increasingly in-75

troduced in diverse areas such as music generation, genetic synthesis, strategy76

planning, machine learning and damage detection [17].77

The GA is a global searching process based on the Darwin’s principle of nat-78

ural selection and evolution. A simple GA consists in three main operations:79

selection, genetic operations and replacement. The GA starts with an initial80

population; the individuals of this population are subjected to the three op-81

erators and evolve. The result is a population with a higher fitness than the82

initial one as in natural selection. This process is iterated for a number of83

generations until a convergence criterion is achieved. There are three main84

selection processes: roulette wheel [18], normalized geometric [19] and tourna-85

ment selection [20]. To increase the speed of convergence an elitist strategy can86

be adopted. Crossover and mutation are applied randomly with a probability87

of pc and pm respectively. The crossover is considered the main search oper-88

ator in GAs, as a consequence many types of crossover have been developed.89

Some of them are: single point crossover, two point crossover [21], uniform90

crossover [22] , flat crossover [23], arithmetic crossover [24], heuristic crossover91

[25], blend crossover [26], BLX- crossover [26], and many more. The mutation92

operation replaces a gene in a chromosome with one chosen randomly from the93

solution space. In uniform mutation the gene is set equal to a uniform random94

number, and in boundary mutation it is set equal to either its lower or upper95

bound. A correct selection of the GA operators and parameters is crucial as96

they affect the solution and the algorithm runtime [27]. However, there is no97

general rule to select them; the right decision depends on the number of genes,98

the objective function and the nature of the problem. This paper studies the99

problem of selecting the GA operators and parameters during the implementa-100
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tion of a structural damage detection algorithm. This results in guidelines for101

GA operator and parameter selection in similar damage detection problems.102

Binary-coded genetic algorithms (BCGA) were the first GA-methods to be in-103

troduced in damage detection [28–33]. Recently, there has been growing inter-104

est on implementing real-coded genetic algorithms (RCGA) [34–37], since they105

work better with continuous variables and require less storage than BCGA.106

RCGA are inherently faster since decoding the binary variables before each107

evaluation is not necessary. In addition RCGA do not have a limited preci-108

sion as do BCGA; this allows a representation to the machine precision [38].109

Although RCGAs have already been implemented in damage detection al-110

gorithm, they are modern techniques that are still under development. As a111

consequence, there are still problems to be investigated regarding to their im-112

plementation, such as: environmental effect, experimental noise, selection of113

the objective function, selection of adequate GA parameters and operators,114

parallelization and hybridization . . . [39].115

The performance of BCGA and RCGA in the crack detection of a cantilever116

beam is studied by Vakil-Baghmisheh et al. [36]. A numerical model of a beam117

with a single crack is proposed. Numerical and experimental data is used to118

test the performance. The best average values of location and deep prediction119

are obtained with the RCGA. Gomes and Silva [37] compared the perfor-120

mance of a RCGA and a sensitivity method for damage detection. They use121

only natural frequencies in the objective function. The method is tested with122

noise free simulated data of a simple supported beam and a portal frame. No123

general conclusions are obtained from the results, since both methods have124

problems in locating and evaluating the extension of the damage. To improve125

their results also mode shapes should have been considered, it has already been126
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demonstrated that with only natural frequencies it is not possible to locate and127

quantified any damage situation [2]. A BCGA with residual forces is imple-128

mented by Mares and Surace [28] to detect structural damage. The method is129

tested with simulated data of a five-bay truss structure and a cantilever beam.130

Rao et al. [29] also work with force residuals and BCGA optimization to de-131

tect damage of simulated truss structures. Ruotolo and Surace [30] describe a132

damage detection of a multiple cracked beam with both simulated and exper-133

imental data. The problem is solved with a BCGA using three fundamentals134

objective functions based on natural frequencies, modal displacements and135

modal curvatures. Chou and Ghanboussi [31] use simulated measurements136

of static displacements and a BCGA to detect damage in two plane truss137

structures. Asce and Xia [34] implement a damage detection algorithm us-138

ing a RCGA to minimize an objective function based on natural frequencies139

and mode shapes. The algorithm is evaluated with an experimental cantilever140

beam and an experimental portal frame. An algorithm that combines RCGA141

and simulated annealing is proposed by He and Hwang [35] to detect dam-142

age in beam-types structures. A modified GA is developed by Borges et al.143

[40] to detect damage in framed structures. They proposed: discrete values to144

represent the damage, a heuristic generation of the initial population, two dy-145

namically varying fitness functions based on modal data and two specialized146

mutation operators. Kouchmeshky et al. [41, 42] proposed a two stages algo-147

rithm to detect structural damage. First the algorithm searches for possible148

damage scenarios and secondly the algorithm searches for tests that incre-149

ment the level of information, in both stages GA are used. The feasibility150

of the method is demonstrated in several examples with simulated data of a151

four-span bridge truss. This methodology is useful in cases where only a few152

measurements can be obtained on each test. Perera et at. [33] compared four153
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multiobjective algorithms based on a BCGA for the application of structural154

damage identification. Two objective functions are considered, the first based155

on the modal flexibility and the second based on modes and frequencies. The156

method is tested with numerical and experimental data of a simply supported157

beam. The best results are obtained with the strength pareto evolutionary158

algorithm, although considerable false damage is detected.159

Genetic Algorithms are inherently slow when they work with complicated or160

time consuming objective functions. This is partly solved by combining the161

power of GA with the speed of a local optimizer (hybrid-GA). Thus, the GA162

finds the regions of the optimum, and the local optimizer finds the minimum.163

Friswell et al. [31] solve the damage detection problem in two stages. First,164

the damage is located with a BCGA, and second the eigensensitivity method165

is used to quantify the damage extend. The method is verified with a simu-166

lated cantilever beam and an experimental steel plate. Koh et al. [32] identify167

damage on a large structure using a hybrid optimization approach. The opti-168

mization is handled with a BCGA followed with a least square optimization.169

Au et al. [43] work with a two step procedure; first the element quotient dif-170

ference is employed to locate the damage and second a micro-GA is used to171

quantify it. Simulated beams with multiple damage are use to verified the172

approach. Raich et al. [44] studied the performance of an hybrid GA in de-173

tecting damage of a cantilever beam, a two-spam beam and a steel frame, in174

the three cases simulated noisy data is used. The performance is evaluated175

for a fixed representation and an implicit redundant representation, the GA176

search is followed by local search algorithm to improve the solution accuracy.177

They concluded that an implicit redundant representation provides a greater178

accuracy in detecting and locating damage.179
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Most of the papers cited here focuse on finding a robust optimization proce-180

dure that reaches the global optimum using an objective function that is sen-181

sitive enough to structural damage. However, little attention has been paid to182

minimizing the effect of experimental noise or numerical errors in the damage183

detection procedure. Experimental noise and numerical errors generate differ-184

ences between the numerical and experimental data that can be interpreted185

as damage. This false damage causes a minor improvement in the correlation;186

consequently, a significant amount of false damage can be detected. Ruotolo187

and Surace [30] introduce a weighting term in the objective function to pro-188

mote the location of damage at fewer sites. With the introduction of this term,189

false damage detection was significantly reduced. Friswell et al. [31] add a pe-190

nalization term in the objective function when there is more than one damage191

location detected. This penalization works fine when there is only one damage192

location, but is not intended for multiple damages. Xia et al. [45] study the193

effect of experimental and numerical noise on false damage detection. They194

implement a statistical method to define the probability of damage existence.195

The present study implements a hybrid-RCGA to detect structural damage. It196

addresses the set-up of the GA parameters and operators. It studies different197

objective functions, which are based on frequencies, mode shapes, strain energy198

and modal flexibility. The chosen objective function is the one that provides199

both the best convergence and solution. Additionally, the paper proposes a200

damage penalization term that successfully avoids the problem of false damage201

detection because of experimental noise or numerical errors. A tridimensional202

space frame structure with single and multiple damages scenarios provides an203

experimental framework which verifies the approach. The results are compared204

with those obtained through conventional methods such as the Inverse Eigen-205
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Sensitivity Method and the Response Function Method. The accuracy of the206

method is tested with different levels of incompleteness in the measured data.207

2 Damage Detection Procedure208

The damage is represented by an elemental stiffness reduction factor βi, de-209

fined as the ratio of the stiffness reduction to the initial stiffness. The stiffness210

matrix of the damage structure [Kd] is expressed as a sum of element matrices211

multiplied by reduction factors,212

[Kd] =
∑

i

(1− βi) [Ki] (1)

The value βi = 0 indicates that the element is undamaged whereas 0 < βi ≤ 1213

implies partial or complete damage. This is the simplest method to model214

damage. Although this model has problems in matching damage severity to215

crack depth and is affected by mesh density, Friswell and Penny [46] demon-216

strated that at low frequencies this method can correctly model a crack. It was217

shown that a more detailed model does not substantially improve the results218

from damage assessment219

The problem of detecting damage is a constrained nonlinear optimization220

problem, where the damage reduction factors of each beam βi are defined221

as updating parameters. An objective function represents the error between222

the measured and numerical modal data. To asses the more efficient objective223

function, five fundamental objective functions have been considered,224

10



(1) The error in frequency,

F1({β}) =
∑

i

(
λA,i({β})

λE,i

− 1

)2

=
∑

i

(
ω2

A,i({β})
ω2

E,i

− 1

)2

(2)

The subscripts A and E refer to analytical and experimental respectively.λi225

is the ith eigenvalue and ωi is the ith natural frequency.226

(2) The modal displacements difference,

F2({β}) =
∑

i

‖{φA,i} − {φE,i}‖2 (3)

Where φi is the ith mode shape. This difference is evaluated only at the227

measured degrees of freedom. Equation 3 can only be applied if both sets228

of mode shapes are consistently normalized. Experimental modes shapes229

are normalized using the modal scale factor MSF [47].230

(3) The MAC value,

F3({β}) =
∑

i

(1−MAC ({φA,i} , {φE,i}))2 (4)

MAC [47] is a factor that expresses the correlation between two modes.231

A value of 0 indicates no correlation, whereas a value of 1 indicates two232

completely correlated modes. Scaling of the modes is not required here233

and the MAC value can be computed using only the measured degrees of234

freedom.235

(4) The strain energy residual [9],

F4({β}) =
∑

i

({φA,i}T [K] {φA,i}
{φE,i}T [K] {φE,i}

− 1

)2

(5)

[K] is the analytical stiffness matrix. The normalization of both the an-236
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alytical and experimental mode shapes must be consistent. Expansion of237

the measured mode shapes and/or reduction of the numerical model is238

needed to match the experimental and analytical degrees of freedom.239

(5) The difference between experimental and analytical modal flexibility ma-

trices [10],

F5({β}) =
∥∥∥[ΦA] [ΛA] [ΦA]T − [ΦE] [ΛE] [ΦE]T

∥∥∥2
(6)

Where [Φ] is the eigenvector matrix and [Λ] is the eigenvalue matrix.240

Analytical and experimental modes shapes must be properly scaled. The241

modal flexibility can be estimated using only the measured degrees of242

freedom [10].243

The objective function J considers some of these five fundamental functions244

plus a damage penalization term,245

J({β}) =
5∑

j=1

δj
Fj({β})

Fj,0

+ γ
∑

i

βi (7)

Fj,0 refers to the initial values of Fj(β = 0), δj equals to 1 if the error func-246

tion Fj is considered and 0 if not. By adding the damage penalization term247

γ
∑

i βi, the objective function searches not only for the best correlation, but248

also the minimum possible damage. Thus, avoiding false damage detection249

because of experimental noise or numerical errors. The value of γ depends on250

the confidence in the numerical model and the experimental data. Although251

a similar damage penalization was proposed by Ruotolo and Surace [30] in252

1997 obtaining a significance reduction of the false damage detected, no later253

references to this penalization have been found.254
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The optimization problem is defined as,255

min J({β})

subject to Fj({β}) ≤ Fj,0

0 ≤ βi ≤ 1

(8)

The aim is to minimize the objective function J , but GA always maximizes256

a problem. The minimization problem is transformed into a maximization257

problem by defining the objective function as a suitable number subtracted258

by J .259

3 Application Case260

Figure 1 shows the experimental setup, the structure is a tridimensional stat-261

ically indeterminate space truss, consisting of 43 members and 20 joins. This262

configuration has been chosen for the following reasons: First, it provides a263

reasonable number of global and local modes. Second, it presents a balanced264

combination of well separated and close modes. Third, it has nodes connecting265

several elements, which makes the damage identification process [41, 42] more266

difficult. The dimensions of the structure are: length: 3m, width: 0.5m, height:267

0.5m. Each beam has a diameter of 20mm. The structure is suspended by soft268

springs to simulate a “free-free” boundary condition.269

The Finite Element Model was built on Matlab using 3D truss elements for270

the bars and concentrated inertia elements for the joins. Each bar is modeled271
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with four truss elements as shown in Figure 2. Rotational degrees of freedom272

were deleted from the FE model using the Guyan reduction technique [48]. As273

a result, the model has a total of 447 degrees of freedom and 192 elements.274

A total of 12 global modes are computed with frequencies between 12Hz and275

125Hz, subsequent modes are local bar modes. Damage is considered at the276

bar level, so all elements on each bar are grouped in a single macro-element.277

The optimum response configuration is determined by minimizing the MAC278

off-diagonal values [49]. Thus all the measured modes are independent between279

each other. For visual representation purposes, all nodes are instrumented with280

tri-axial accelerometers. As a consequence, a total of 20×3 degrees of freedom281

are measured; one tri-axial accelerometer per join.282

The selection of the excitation and suspension locations is based on the study283

of the driving point residues (DPR) [50]. The DPR with large values for as284

many modes as possible indicate good excitation points. In addition, the DPR285

with lower values indicate good suspension locations.286

The frequency range of analysis covers the range from 0 to 256 Hz with a287

resolution of 0.25Hz. This range contains all global modes and also a list of288

local modes. Figure 3 presents the correlation between the numerical and ex-289

perimental modes in the undamaged state. The maximum frequency difference290

is 2.3% and the minimum MAC value is 0.86.291

3.1 Damage Introduction292

Four damage cases are studied. In the first three cases, a few aluminum bars293

are replaced by plastic bars, thus the stiffness and mass of the replaced bar is294
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reduced. The replaced bars on each case are: case 1 : bar 6; case 2 : bars 6295

and 25; case 3 : bars 6, 25 and 43. In case 4 bar 34 was completely removed296

from the structure. Figure 4 shows the bar numbering.297

Figure 5 shows the correlation between the undamaged numerical modes and298

the damaged experimental modes. In the first case, a new mode is detected299

at 139Hz. It is also possible to see a considerable decrease in the correlation300

of modes 10 and 11. In the second case, a new mode is detected at 135Hz. In301

addition, the correlation of modes 10 and 11 is reduced, and the frequency of302

mode 12 is reduced by 35%. In case 3, two new modes are detected at 135Hz303

and 143Hz, the correlation of modes 10 and 11 is considerable reduced, and304

the frequency of mode 12 is reduced by 40%. In case 4 there is a swap of modes305

5 and 6, a new mode is detected at 46.7Hz and the correlation of mode 11 is306

reduced.307

4 Methodology308

4.1 Objective Function309

To correctly model the experimental damage, i.e., replacing or removing a310

bar, a mass reduction factor ρi must also be considered. For convenience the311

mass reduction factor is defined proportional to the stiffness reduction factor,312

this allows to update only the stiffness parameters as in a general damage313

detection algorithm,314

ρi = α · βi (9)
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The ratio of the stiffness reduction to the mass reduction (α) was experimen-315

tally determined. When an aluminum bar is replaced by a plastic bar α equals316

0.73, whereas when a bar is removed α equals 1.317

Five objective functions were evaluated, the one that provided the best per-318

formance was chosen. The objective functions are: (1) frequencies, (2) modes319

and frequencies, (3) MAC and frequencies, (4) strain energy and frequencies320

and (5) modal flexibility. The first damage case is used to test the different321

objective functions. The optimization process is performed with the Genetic322

Algorithm described in section 4.2. To assess the probability that the algo-323

rithm would converge to the same solution, each case was run five times during324

500 generations. Figure 6 presents the convergence curves and the damage de-325

tected for each objective function and run. The left graphs show the evolution326

of the objective function (J) evaluated for the fitter member of the population.327

Each objective function is normalized with its global optimum value Jopt. On328

the right a stacked bar plot shows the damage detected at each run with a329

different color, an arrow indicates the position of the actual damage. By using330

only frequencies it is difficult to reach the optimum solution, only two of the331

five runs could reach the optimum in the desired number of generations. This332

is because the objective function has several local minimums. These local so-333

lutions dominate the population and the algorithm relies mainly on mutation334

which is a slow process. As a consequence, a higher number of generations335

would be necessary to reach optimum. This problem is partly solved when the336

modal displacements are added. Here, four of the five runs reach the optimum.337

The same result is obtained with the modal flexibility. On the other hand, with338

strain energy and frequencies it was possible to reach the optimum solution in339

all five runs, but the optimum damage detected does not correspond with the340
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actual damage. Only the objective function MAC and frequencies was able to341

detect five times the actual damage in the desired number of generations.342

The value of the penalization weight was delimited after a sensitivity analysis.343

The results of this analysis are shown in Figure 7. For values of γ between344

0.08 and 2.5 real damage is successfully detected and false damage is avoided.345

If γ is lower than 0.08 false damage is detected whereas if γ is greater than346

2.5 no damage is detected. It should be noticed that the correct values of347

gamma depend on the structure, level of experimental noise and the errors348

in the numerical model. Hence, the selected range of gamma is only valid for349

this particular study case. In other cases a similar sensitivity analysis must be350

performed.351

4.2 Genetic Algorithm352

Each chromosome consists of 43 genes. Each gene is the stiffness reduction353

factor of a beam element. Each chromosome represents one possible damage354

distribution; the initial population is generated randomly with real numbers355

between 0 and 1.356

Correct selection of the GA operators and parameters is crucial as they affect357

the solution and the algorithm runtime [27]. However, there is no general rule358

to select them; the right decision depends on the number of genes, the objective359

function and the nature of the problem. Here the parameters and operators360

were selected by optimizing the runtime, i.e., by minimizing the number of361

function evaluations.362

Three selection processes were tested: (1) roulette wheel, (2) normalized ge-363

17



ometric and (3) tournament selection. In normalized geometric selection the364

probability of selecting the best was set to 0.08 and in tournament selection365

the number of individuals on each tournament was set to two. Figure 8 shows366

the average convergence curve obtained after running 20 times the algorithm367

with each selection. The normalized geometric selection gives the best con-368

vergence. Once the selection was set, two mutation operators were evaluated:369

(1) uniform mutation and (2) boundary mutation. Figure 8 shows the aver-370

age convergence curves: boundary mutation gives the best performance. The371

last operator is crossover; here five kinds of crossover were studied: (1) single372

point crossover, (2) double point crossover, (3) uniform crossover, (4) arith-373

metic crossover (5) heuristic crossover. Arithmetic crossover yields the best374

performance, as is shown in Figure 8.375

Once the GA operators are selected, the method was evaluated with various376

combinations of mutation and crossover probabilities. For each combination377

the algorithm was run 20 times, the combination that reached the best average378

value of the objective function was selected. As is shown in Figure 9 the lowest379

value of the objective function was reached with a mutation probability of 0.01380

and a crossover probability of 0.72. The same procedure was followed to select381

the population size. The best performance was obtained with a population382

size of 25 as is shown in Figure 9 .383

Hence the best combination of operators and parameters is: normalized geo-384

metric selection, arithmetic crossover, boundary mutation, and the following385

three parameters: population size of 25, pm = 0.01 and pc = 0.72.386
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4.3 Hybrid GA387

The combination of GA’s and a local optimizer makes it possible to reach a388

high level of accuracy in a moderate computational time. In order to reach389

the same level of accuracy only with GA’s, much more generations would390

be required. Figure 10 illustrates the curve of convergence obtained with a391

hybrid-GA. The differences in the damage detected using only GA and with392

hybrid-GA are also given in Figure 10. The Matlab function fmincon was393

used as a local optimizer. Figure 10 shows that the GA finds the damage394

locations and a close approximation of their quantity. Then, fmincon starts395

with the solution given by GA and increases the precision.396

5 Results397

The damage pattern is obtained through the same procedure on each damage398

case. The first 12 global modes are used in the objective function. The objec-399

tive function is based on the frequencies difference and MAC values, including400

a damage penalization term with a γ value of 0.1. A hybrid-RCGA is used as401

optimization algorithm. The results are compared with those obtained with402

two sensitivity based methods, namely, Response Function Method (RFM)403

and Inverse Eigen-Sensitivity Method (IESM). A description of both methods404

is found in the paper of Modak et al. [51]. The IESM minimizes the differ-405

ence between analytical and experimental frequencies and modes, whereas, the406

RFM minimizes the difference between analytical and experimental frequency407

response functions.408

Figure 11 shows the damage detected in each case (the cases are defined in409
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section 3.1). In cases 1 and 2 the real damage is detected by the three methods.410

In case 3 only the GA and IESM methods detect the real damage. In case 4 only411

the GA method detects the damage. As the differences between the damage412

and undamaged models become higher, the optimization problem becomes413

unstable and it becomes impossible to reach the optimum solution. On the414

other hand, the genetic algorithm method is unaffected by these differences,415

and the optimum solution is always reached as is shown in Figure 11. False416

damage is detected always with both the IESM and RFM methods; the latter417

detects a higher quantity.418

Figure 12 illustrates the correlation in frequency and modes before and after419

damage detection. The correlation in frequency is expressed as the relative fre-420

quency difference between the numerical and experimental frequencies. The421

correlation between the numerical and experimental modes is determined with422

the MAC values. When the numerical model is updated with the damage de-423

tected a significant improvement in the correlation is reached. The differences424

in frequencies after updating are lower than 10% in all cases. And the MAC425

values after updating are always higher than 75%.426

5.1 Incomplete Degrees of Freedom427

To define the number of degrees of freedom (DOF) necessary to detect the428

damage, the method was evaluated with several levels of incompleteness in the429

measured data. A total of 4 to 32 DOF are considered, these corresponds to 0.9430

to 7.2 percent of the total DOF in the numerical model. The locations with a431

higher sensitivity to damage were chosen as measuring points. To do these, the432

mode shapes sensitivities were evaluated for each mode shape in all possible433
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damage locations. Then, the first n points with the higher average sensitivity434

were chosen. The average sensitivity obtained for each DOF is shown in Figure435

13. To visualize the most sensitive points in the structure, Figure 14 presents436

the optimum set of measuring points with 8, 16 and 32 DOF.437

Table 1 summarize the damage detected in each case. In the single damage438

cases, it was possible to locate and quantify correctly the damage measuring439

only 8 DOF (1.8% of the total DOF). When the number of damage locations440

increases, the method requires a higher number of measured DOF. For two441

simultaneous damages the method needs at least 12 DOF (2.7% of the total442

DOF), and three simultaneous damages locations require at least 28 DOF443

(6.3% of the total DOF). This indicates that the number of DOF required,444

depends on the structure and the complexity of the damage situation that445

needs to be detected.446

6 Conclusions447

A hybrid real-coded genetic algorithm has been implemented to detect struc-448

tural damage. A damage penalization term is added to the objective function449

to avoid false damage detection caused by experimental noise or numerical er-450

rors. The algorithm is verified on a tridimensional space frame structure with451

single and multiple damage scenarios. In addition, the method is tested with452

different levels of incompleteness in the measured degrees of freedom.453

The results show that this Genetic Algorithm approach reaches a more precise454

solution than conventional optimization methods. Real damage is successfully455

detected and false damage detection is avoided, even in cases of large or com-456
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plex damage scenarios on which conventional optimization approaches fail to457

reach the global optimum. A scenario of three simultaneous damage locations458

was correctly located and quantified by measuring only 6.3% of the total de-459

grees of freedom.460
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Fig. 1. Experimental Setup
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Fig. 7. Effect of on the damage detected
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Fig. 12. Improvement in the correlation in frequency and modes after damage de-
tection
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Case
N of measured Real Detected

DOF Location Damage % Location Damage %

4 6 92 3,22 95,21

6 6 92 3,6 51,93

1 8 6 92 6 92

12 6 92 6 92

16 6 92 6 92

4 34 100 26,34,43 13,100,7

6 34 100 6,26,34,43 2,19,100,1

4 8 34 100 34 100

12 34 100 34 100

16 34 100 34 100

8 6,25 92,92 6,26 92,92

12 6,25 92,92 6,25 91,91

2 16 6,25 92,92 6,25 92,91

20 6,25 92,92 6,25 92,91

24 6,25 92,92 6,25 92,92

12 6,25,43 92,92,92 6,42 89,94

16 6,25,43 92,92,92 6,25,43 89,89,90

3 20 6,25,43 92,92,92 6,25,26 89,90,90

24 6,25,43 92,92,92 6,25,42 89,86,92

28 6,25,43 92,92,92 6,25,43 89,90,90

32 6,25,43 92,92,92 6,25,43 89,90,89

Table 1
Damage detected with different number of measured DOF
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