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Dynamic models of metabolism are instrumental for gaining insight and predicting possible outcomes of

perturbations. Current approaches start from the selection of lumped enzyme kinetics and determine the

parameters within a large parametric space. However, kinetic parameters are often unknown and

obtaining these parameters requires detailed characterization of enzyme kinetics. In many cases, only

steady-state fluxes are measured or estimated, but these data have not been utilized to construct dynamic

models. Here, we extend the previously developed Ensemble Modeling methodology by allowing various

kinetic rate expressions and employing a more efficient solution method for steady states. We show that

anchoring the dynamic models to the same flux reduces the allowable parameter space significantly such

that sampling of high dimensional kinetic parameters becomes meaningful. The methodology enables

examination of the properties of the model’s structure, including multiple steady states. Screening of

models based on limited steady-state fluxes or metabolite profiles reduces the parameter space further

and the remaining models become increasingly predictive. We use both succinate overproduction and

central carbon metabolism in Escherichia coli as examples to demonstrate these results.

Published by Elsevier Inc.
1. Introduction

The construction of dynamic models for describing metabolic
behavior is based on both network stoichiometry, which is reason-
ably well understood, and enzyme kinetics, which is often unavail-
able. Current approaches of constructing dynamic models start
from the selection of lumped enzyme kinetics (e.g. Michaelis–
Menten) and obtaining available parameters, then optimize the
remaining parameters within a large parametric space in order to
fit experimentally measured metabolite concentration profiles
(Chassagnole et al., 2002; Usuda et al., 2010; Visser and Heijnen,
2003).

However, detailed kinetic parameters are rare and difficult to
measure. On the other hand, steady-state flux distributions are
relatively easy to characterize or estimate. Most importantly, the
steady-state fluxes along with approximate metabolite pool sizes
determine the time scale for the system. Heretofore, these data
have not been used to construct dynamic models that capture a
system’s response upon perturbation. To take advantage of these
data, the recently developed Ensemble Modeling (EM) approach
(Tran et al., 2008) constructs a set of dynamic models that achieve a
Inc.

hors.
desired steady-state flux while allowing all possible dynamics
within the framework of the chosen kinetic mechanisms and
thermodynamic constraints. The steady state provides an anchor
and sets the time scale for the dynamic models once the rough
metabolite pool sizes are known. After a perturbation, such as
enzyme expression tuning (Alper et al., 2005; Chao and Liao, 1993;
Kojima et al., 1996; Lin et al., 2005a, 2005b) or alteration of enzyme
properties (Zhang et al., 2008), these models will reach different
fluxes as expected. The different fluxes provide a basis for screening
models against experimental data commonly generated in meta-
bolic engineering efforts (Atsumi et al., 2008b; Fischer et al., 2008;
Nielsen et al., 2009; Ro et al., 2006). We have shown that the models
would converge to a small set with only a few rounds of screening
and become increasingly predictive (Contador et al., 2009; Dean
et al., 2009; Rizk and Liao, 2009; Tran et al., 2008).

In this work, we demonstrate two benefits of anchoring these
models to the same steady-state flux in the EM approach. First, by
confining all the dynamic models to the same steady-state flux, the
allowable range of possible kinetic parameters is significantly
reduced, which allows meaningful sampling schemes to explore
the dynamic behavior of the model. Second, by reducing the kinetic
parameter space, further screening of models based on limited data
(steady-state fluxes or transient metabolite profiles) becomes
possible. Without such anchoring constraints, the parameter space
is too large to be sampled effectively. Thus, EM differs from the
traditional random sampling approaches in that it utilizes the
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Abbreviations and nomenclature

Enzyme name

pts phosphotransferase system
pgi phosphoglucose isomerase
pfk 6-phosphofructokinase
fba fructose bisphosphate aldolase
tpi friose phosphate isomerase
gap glyceraldehyde 3-phosphate dehydrogenase
pgk 3-phosphoglycerate kinase
gpm phosphoglycerate mutase
eno enolase
pyk pyruvate kinase
pdh pyruvate dehydrogenase
ppc phosphoenolpyruvate carboxylase
g3pdh glycerol 3-phosphate dehydrogenase
pgm phosphoglucomutase
g1pat glucose-1-phosphate adenylyltransferase
ser_synt serine synthesis
zwf glucose-6-phosphate-1-dehydrogenase
gnd 6-phosphogluconate dehydrogenase
rpe ribulose phosphate 3-epimerase
rpi ribose-5-phosphate isomerase
tkt1 transketolase 1
tkt2 transketolase 2
tal transaldolase
aroG 2-dehydro-3-deoxyphosphoheptonate aldolase
rppk ribose-phosphate pyrophosphokinase
synt1 chorismate synthesis
synt2 isoleucine, alanine, lysine, valine synthesis
trp_synt tryptophan synthesis
met_trp_synt methionine, tryptophan synthesis
pfl pyruvate formate-lyase
glt citrate synthase
acn aconitase
icd isocitrate dehydrogenase
sucAB 2-oxoglutarate dehydrogenase complex
sucCD succinyl-CoA synthetase
sdh succinate dehydrogenase
fum fumarase
mdh malate dehydrogenase
aceA isocitrate lyase
aceB malate synthase A
pyc pyruvate carboxylase
poxB pyruvate oxidase
pta phosphate acetyltransferase
ackA acetate kinase
pgl 6-phosphogluconolactonase
glk glucokinase

Metabolite name

G6P glucose-6-phosphate
F6P fructose-6-phosphate
FBP fructose-1,6-bisphosphate
DHAP dihydroxyacetone phosphate
GAP glyceraldehdye-3-phosphate
BPG 1,3-diphosphateglycerate
3PG 3-phosphoglycerate
2PG 2-phosphoglycerate
PEP phosphoenolpyruvate
PYR pyruvate
SER serine
G3P glyceral-3-phosphate
G1P glucose-1-phosphate
ADPGlU ADP-glucose
6PG 6-phosphogluconate
Ru5P ribulose-5-phosphate
X5P xylulose-5-phosphate
R5P ribose-5-phosphate
S7P sedoheptulose-7-phosphate
E4P erythrose-4-phosphate
DAHP 3-deoxy-D-arabino-hepulosonate-7-phosphate
Intermediate 1 Intermediate 1
ACCOA acetyl-CoA
OAA oxaloacetate
Intermediate 2 Intermediate 2
Intermediate 3 Intermediate 3
CIT citrate
ICIT D-isocitrate
AKG 2-ketoglutarate
SUCCOA succinyl-CoA
SUC succinate
FUM fumarate
MAL malate
GLYX glyoxylate
AC acetate
ACTP acetylphosphate
6PGL 6-phosphogluconolactone
6PGD 6-phosphogluconate
ATP adenosine-triphosphate
ADP adenosine-diphosphate
AMP adenosine-monophosphate
NADH diphosphopyridine nucleotide reduced
NAD diphosphopyridine nucleotide
NADPH nicotinamide adenine dinucleotide phosphate-reduced
NADP nicotinamide adenine dinucleotide phosphate
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available flux data and constrains the sampling space to a realistic
space. These benefits are demonstrated first by using a simplified
metabolic scheme and then two Escherichia coli models describing
1) succinate production and 2) central carbon metabolism.

In the previous EM work (Contador et al., 2009; Dean et al.,
2009; Rizk and Liao, 2009; Tran et al., 2008), the elementary
reaction rate law was used to model individual enzymatic reac-
tions, since it is the most fundamental description of enzymatic
mechanisms. The use of the elementary reaction kinetics enables
the application of this approach to any metabolic network even
when the enzymes are regulated at the protein level. In this work
we further expand the concept of EM to construct models using
lumped nonlinear kinetic rate laws, such as the Michaelis–Menten
kinetics, Hill equation, and allosteric enzyme kinetics. This expan-
sion makes the EM framework more flexible and applicable to a
variety of situations.

Additionally, to bypass the heavy computational cost during the
seeking of steady states using numerical integration method, we
recast the system of material balance equations through a unique
mathematical transformation (Savageau and Voit, 1987; Savageau,
1993) and solve it numerically by Newton’s method. Such recasting
technique is applicable when elementary enzyme kinetics are used
and only steady state solutions are needed. The significant reduc-
tion of computational time makes the exploration of the allowable
kinetic space more efficient, and can potentially open up a window
of applying the EM approach for genome-scale model construction.
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2. Methods

2.1. Dynamic models

The dynamic model is constructed by building a system of
ordinary differential equations (ODEs) that consist of mass balances
for intracellular metabolites that are involved in the metabolic system
of interest, and the chosen kinetic rate expressions for individual
enzymes are directly integrated in the mass balances as shown below:

dX

dt
¼ SV ð1Þ

where X is the vector of intracellular metabolites, S is the stoichio-
metric matrix of the metabolic system, and V is the vector consisting
of the collection of enzyme kinetic rate expressions as functions of X

and kinetic parameters. If elementary reaction kinetics is used, the
various enzyme complexes are included in X (Tran et al., 2008).

2.2. Enzyme kinetics

Similarly to previous EM work (Contador et al., 2009; Dean et al.,
2009; Rizk and Liao, 2009; Tran et al., 2008), elementary reaction
kinetics is used to describe individual enzyme reactions in the
succinate production model. In addition, lumped enzyme kinetics
such as Michaelis–Menten enzyme kinetics, Hill equation and
allosteric enzyme kinetics (Cornish-Bowden, 1979; Hofmeyr and
Cornish-Bowden, 1997) are used to model E. coli central metabo-
lism. The detail formularization can be found in the Supplemental
Material I and Table 1.

2.3. Thermodynamic constraints

For the lumped enzyme kinetics: reversible Michaelis–Menten
and allosteric enzyme kinetics, the equilibrium constant keq can be
calculated according the thermodynamic property of the specific
enzyme as shown in the following equation:

keq ¼ exp �
DGo

RT

� �
ð2Þ
Table 1
The lumped kinetic rate expressions and their kinetic parameter sampling strategies.

Reaction Enzyme kinetic type Kinetic rate expression

x1"x2 Reversible Michealis–Menten kinetic

rate expression v¼
ðvf =k1

mÞðx1�ðx2=keqÞÞ

1þðx1=k1
mÞþðx2=k2

mÞ

Hill equation
v¼

vmaxðx1Þ
h

kmþx1
h

Allosteric kinetic rate expression
v¼
ðvf =k1

mÞðx1�ðx2=keqÞÞððx1

Qj ¼ m

j ¼ 1

1þðMj=ka,jÞ
h

1þajðMj=ka,jÞ
h
þððx

x1þx2"x3þx4 Reversible Michealis–Menten kinetic

rate expression v¼
ðvf =ðk1

i k2
mÞÞðx1x2�ððx3

1þ
x1

k1
i

þ
x2

k2
i

þ
x3

k3
i

þ
x4

k4
i

þ
k

Hill equation
v¼

vmaxðx1Þ
h1 ðx2Þ

h2

ðk1
mþxh1

1 Þðk
2
mþxh2

2 Þ

Allosteric kinetic rate expression term 1¼
x1

k1
i

þ
x2

k2
i

þ
x3

k3
i

þ
x4

k4
i

þ

v¼
ðvf =ðk1

i k2
mÞÞðx1x2�ððx3

Qj ¼ m

j ¼ 1

1þðMj=ka,j

1þajðMj=ka
where standard Gibbs free energies DGo of enzymes involve in E.

coli metabolism can be found in the literature (Henry et al., 2006).
For elementary reaction kinetics, the combined reversibilities

Ri,j of all the reaction steps catalyzed by the same enzyme are
constrained by the Gibbs free energy DGi of the overall reaction:

Xni

j ¼ 1

lnRi,j ¼ signðVi,netÞ
DGi

RT
ð3Þ

where sign(Vi,net) denotes the direction of the net reaction cata-
lyzed by enzyme i, positive for a forward proceeding reaction and
negative for a reaction in the reverse direction. The Gibbs free
energy is bounded by the standard Gibbs free energy by allowing
metabolite levels to fluctuate in the following inequality:

DGi

RT

� �
lower bound

rsignðVref
i,netÞ

X
j

In Rref
i,j r

DGi

RT

� �
upper bound

ð4Þ

where ðDGi=RTÞlower bound and ðDGi=RTÞupper bound reflect the Gibbs
free energies at the lower and upper extremes, respectively. The
derivation of this inequality and its relationship with elementary
reaction rate constant has been previously described by Tran et al.
(2008).

2.4. Constructing ensemble of models that all reach the same steady-

state flux

Previously, elementary reaction enzyme kinetics was used in
EM to construct an ensemble of models that can all reach the same
steady state (Contador et al., 2009; Dean et al., 2009; Rizk and Liao,
2009; Tran et al., 2008). Through the normalization by steady-state
metabolite concentrations, the knowledge of absolute steady-state
concentrations becomes optional (Tran et al., 2008). By sampling
the reversibilities of individual elementary reaction steps under
thermodynamic constraint and enzyme complex fractions, the rate
constants can be calculated. The detail derivation can be found in
Supplemental Material II.

The concept of EM has been extended to construct such steady-
state flux constrained dynamic models by using lumped enzyme
Sampled parameters Calculated parameters

k1
m , k2

m keq ,vf

km,h vmax

=k1
mÞþðx2=k2

mÞÞ
h�1

1=k1
mÞþðx2=k2

mÞÞ
h

k1
m ,k2

m ,h,ka,j ,aj keq ,vf

Mj is the alloesteric regulator

m is the number of regulators

if aj o1,

Mj is an inhibitor :

if aj 41,

Mj is an activator :

if aj ¼ 1,

Mj has no effect on the rate

x4Þ=keqÞÞ

x1x2
1
i k2

m

þ
x3x4

k3
mk4

i

k1
i ,k2

i ,k3
i ,k4

i , k2
m ,k3

m keq ,vf

k1
m ,k2

m ,h1 ,h2 vmax

x1x2

k1
i k2

m

þ
x3x4

k3
mk4

i

x4Þ=keqÞÞterm 1h�1

Þ
h

,jÞ
h
þterm 1h

k1
i ,k2

i ,k3
i ,k4

i , k2
m ,k3

m ,ka,j ,aj ,h keq ,vf



Box 1–Mathematical summary of the Ensemble Modeling approach.

Modeling objectives

Flux-oriented objective: Pros:

To match model-predicted flux with data upon enzyme tuning

min
P

i Vi;ss
Etot þDEtot

Etot

� �
�Jmeasured

i;ss
Etot þDEtot

Etot

� �� �2

� Objective function directly reflects metabolic
engineering needs
� Flux readily measureable
� Effects of kinetics on flux accountable

OR

Metabolite-oriented objective: Pro:

To match metabolite profiles with data min
P

i xiðtÞ�xmeasured
i ðtÞ

� �2 � Direct test of ODE

Con:

by changing K and Etot, such that � Not directly applicable to metabolic engineering

dX
dt ¼ FðX;K; EtotÞ; Vss ¼ GðXss; K; Etot; DEtotÞ
where ss represents steady state of the ODE, G represents the

function of steady-state flux.

Ensemble modeling features
(1) Use an additional constraint for the reference strain
ðDEtot ¼ 0ÞVi;ss ¼ GðXss;K; Etot;DEtot ¼ 0Þ ¼ Jmeasured

i;ss
(2) Normalize the ODE so that the metabolite concentrations are

dimensionless, but the fluxes are dimensional.
(3) Elementary reactions can be used when detailed enzyme kinetics

are unknown
(4) Parallel (ensemble) iteration

Pros:
� Anchor the ODE to the measured steady-state flux
� Reduce the parameter space significantly

Pros:
� Metabolite concentrations are not needed if not

available
� Fluxes carry the correct dimension

Pros:
� Most fundamental and flexible
� Can include regulation

Pro:
� High throughput screening of parameters
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kinetics. These lumped enzyme kinetics include Michaelis–Menten
kinetics, Hill equation and allosteric enzyme kinetics. The kinetic
parameters are randomly assigned to satisfy both thermodynamic
constraint and steady-state flux of individual enzymes. The detail
formularization and sampling strategy can be found in Supplemental
Material II.

A mathematical summary of the EM approach and comparison
with the traditional approach is shown in Box 1. The novel
contribution of the EM framework is to anchor the ODE to the
measured steady-state flux, therefore reducing the parameter
space significantly. By doing so, the sampling of kinetic parameters
and further screening of parameter sets become possible.

2.5. Solving the system of algebraic equations

When elementary reaction kinetics is used, steady-state con-
centrations (normalized or absolute) can be obtained through the
solution of the system of equations described by

dxi

dt
¼ SV ¼ 0 ð5Þ

X
xk ¼ constant ð6Þ

Eq. (5) is required for each intracellular compound (metabolites
and enzyme complexes) and Eq. (6) is required for each conserved
species (e.g. enzymes and cofactors). Although the system of Eq. (5)
already contains as many equations as unknowns, the equations of
conserved metabolites are linearly dependent on each other. In order
to make the system fully determined, it is important to add sets of
Eq. (6) and remove one equation belonging to a member of each
conserved species if desired. Such system of nonlinear equations
(Eqs. (5) and (6)) is then re-written through reductive recasting in
which algebraic manipulations are used (Savageau and Voit, 1987;
Savageau, 1993). The goal of recasting is to reduce the original system
to a standard canonical form in which each equation has only one
positive term. The recast system can be readily solved using Newton’s
method and tends to have quadratic convergence rates. Such recast
system is less sensitive to initial guesses than the original system due
to the decomposition of nonlinear constraints into disjoint sets of
convex constraint relationships (Irvine, 1988; Savageau and Voit,
1987; Savageau, 1993). As is often the case with Newton’s Method,
convergence is dependent on initial guess and therefore should be
selected intelligently. To this effect, we simulate the system of ODEs
(Matlab ode15s) for a short period of time (2000 time units) and use
the state of the system at the final time point as the initial guess. In
order to compare the benefits of using this numerical method instead
of relying on ODE solution to obtain steady-state concentrations, we
analyze 5000 models through both methods and record the time
individual method takes.
2.6. Matlab module

A Matlab module has been developed to assist the construction
of ensembles of dynamic models with any of the enzyme reaction



Fig. 1. (A) Toy network 1. (B) Metabolite profiles for 100 models that are constructed by anchoring to the predetermined steady-state flux. Each color represents one model

with a different set of kinetic parameters. The initial condition is randomly selected and is altered from the predefined steady-state value. (C) Metabolite profiles for 100 control

models that are constructed without the steady-state flux constraint. (D) Flux profiles for 100 models that are constructed with the steady-state flux constraint. (E) Metabolite

profiles for 100 control models that are constructed without the steady-state flux constraint. The initial condition is randomly selected and is altered from the predefined

steady-state value. (F) Kinetic parameter space spanned by the EM (1000 models are used for analysis). First three principal components are plotted here. (F) Kinetic parameter

space spanned by the control models (1000 models are used for analysis) without the steady-state flux constraint. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Y. Tan et al. / Metabolic Engineering 13 (2011) 60–7564



Table 2
The EM algorithm is able to select meaningful models, where it is computationally

infeasible for random sampling.

Random sampling EM

Small network

Total models 10,000 10,000

# of models reach a steady state 1250 9940

# of models reach the desired steady state

(710% for random sampling)

4 9940

Large network

Total models 10,000 10,000

# of models reach a steady state 0 9702

# of models reach the desired steady state 0 9702
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(For interpretation of the references to colour in this figure legend, the reader is referre
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kinetics mentioned above (http://www.seas.ucla.edu/� liaoj). The
required inputs include the reaction network stoichiometry matrix,
reference steady-state data (steady-state flux distribution, meta-
bolite concentration if it is available), individual reaction’s kinetic
types (e.g. Elementary reaction kinetics, Michaelis–Menten
kinetics) and enzyme regulations. The kinetic rate expressions of
each enzyme can be chosen from different types of kinetics. The
module will generate an ensemble of kinetic parameter sets. These
parameter sets guarantee that the predefined steady-state flux can
be achieved.

A separate Matlab module has been developed to recast the
system of ODEs and solve it numerically by Newton’s method when
elementary reaction kinetics is used to describe individual enzy-
matic reactions (http://www.seas.ucla.edu/� liaoj).
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3. Results

3.1. Anchoring to steady-state flux reduces parameter space

The EM strategy allows models with different parameter sets
(referred to as different models hereafter) to reach the same
steady-state flux. To demonstrate this point, we construct toy
network 1 (Fig. 1A), which is composed of four metabolites and five
flux streams. Elementary reaction kinetics is used to construct an
ensemble of models using the Matlab module developed in this
work (see Section 2). By starting from an initial condition that
deviates from the assigned steady-state values, all models in the
OAA
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To demonstrate the importance of the steady-state flux con-
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The kinetic parameter spaces spanned by sampling with and
without the steady-state constraint are compared using principal
component analysis (PCA) in order to visualize high dimensional
data. To do so, PCA is first performed for the kinetic parameter sets
obtained using the EM approach. For illustration, the first three
principal components are plotted (Fig. 1F). Then, the kinetic
parameters that are sampled without the steady-state constraints
are plotted using the same coordinate system (Fig. 1G). As shown in
Fig. 1F, G, with the constraints of steady-state fluxes, the allowable
kinetic parameter space is dramatically reduced. This result
suggests that flux anchoring is highly beneficial for exploring the
kinetic space using random sampling. This result is reasonable,
since EM utilizes realistic data to constrain the system. However,
the degree to which the parameter space is reduced is unexpected.

Additionally, we have shown that without anchoring, random
sampling of parameters will yield models of which 87.5% do not even
reach a steady state, and only 0.04% of the models eventually converge
to a point in the vicinity (10%) of the desired steady state fluxes. These
numbers become even smaller as the network becomes larger
(Table 2). Thus by anchoring the model to the desired steady state,
the sampling efficiency increased by several (4–8) orders of magnitude.
3.2. Multiple steady states

When the network topology becomes more complicated, as in
toy network 2 (Fig. 2A), we observe that some sets of parameters in
the ensemble exhibit multiple steady-state behavior (Fig. 2B).
When the initial condition is altered from the desired steady state,
a fraction of the models do not return to the desired steady state,
but reach different steady states. To further illustrate this behavior,
a specific model that reaches a different steady state is identified.
As shown in Fig. 2C, the model with this specific parameter set
converges to two different steady states depending on the initial
condition, with one of the steady states being the predetermined
steady state. This indicates that some of the models constructed
with EM approach may possess an alternative steady state.
Although multiple steady states in metabolic systems have been
reported (Europa et al., 2000; Lu et al., 2007), the models that
possess multiple steady states or unstable steady states are
eliminated from the ensemble. On the other hand, multiple steady
state behavior can be further studied using EM, if the problem at
hand is to investigate this phenomenon specifically.
3.3. Screening of EM with enzyme tuning data: succinate

production example

The size of the ensemble can be reduced by screening with
experimental data, such as flux changes upon enzyme level tuning.
Succinate production in E. coli is used as an example. The scope of
the succinate production model includes the phosphotransferase
system (PTS), glycolysis, pentose–phosphate pathway and the
tricarboxylic acid cycle (TCA cycle). The detail structure is shown
in Fig. 3A. The elementary reaction rate laws are used here. The
steady-state flux distribution is calculated based on the measured
external fluxes (Lin et al., 2005a) and the pseudo-steady state
assumption (Table 3). The EM approach described above was used



Table 3
Reference steady-state flux and enzymes standard Gibbs free energies for

succinate model.

Enzyme Overall reaction Net flux at

reference state

(mmol/gDCW/h)

Standard

Gibbs free

energy

(kcal/mol)

pgi G6P2F6P 1.09 �2.5

pfk F6P+ATP2FBP+ADP 1.16 �4.5

fba FBP2DHAP+GAP 1.16 1.1

tpi DHAP2GAP 1.16 0.2

gap GAP+NAD2BPG+NADH 2.35 4.2

pgk BPG+ADP23PG+ATP 2.35 4.7

gpm 3PG22PG 2.35 �2.2

eno 2PG2PEP 2.35 �0.2

pyk PEP+ADP2PYR+ATP 1.4 �8.4

pps PYR+ATP2PEP+ADP 0.15 �3.6

pdh PYR+NAD2ACCOA+NADH 1.81 �5.1

pfl PYR2ACCOA 0.001 �2.5

glt ACCOA+OAA2CIT 0.17 �7.4

acn CIT2ICIT 0.17 0

icd ICIT+NADP2AKG+NADPH 0.13 �3.52

sucAB AKG+NAD2SUCCOA+NADH 0.13 �5.12

sucCD SUCCOA+ADP2SUC+ATP 0.13 0.8

sdh SUC2FUM 0.16 0.7

fum FUM2MAL 0.12 �1.3

mdh MAL+NAD2OAA+NADH 0.16 4.8

aceA ICIT2GLYX+SUC 0.04 �2.2

aceB GLYX2MAL 0.04 �10.3

ppc PEP2OAA 0.01 �11.74

pyc PYR2OAA 0.001 �12

poxB PYR2AC 0.5 �46.2

pta ACCOA2ACTP 1.65 �3.9

ackA ACTP +ADP2AC+ATP 1.65 �4.7

zwf G6P+NADP26PGL+NADPH 0.1 �0.9

pgl 6PGL26PGC 0.1 �13.3

gnd 6PGC+NADP2Ru5P+NADPH 0.1 �0.8

rpe Ru5P2X5P 0.07 0

rpi Ru5P2R5P 0.03 �0.7

tkt(1) X5P+R5P2S7P+G3P 0.03 0.9

tal S7P+G3P2E4P+F6P 0.03 �0.6

tkt(2) X5P+E4P2F6P+G3P 0.03 0.9

ATP_rec ATP2ADP 4.12 �0.1

NADH_rec NADH2NAD 4.45 �0.1

NADPH_rec NADPH’NADP 0.33 �0.1

EI PEP2PYR+P1 1.09 �3

HPr P12P2 1.09 �0.1

EIIA P22P3 1.09 �0.1

EIICB Glu+P32G6P 1.09 �9

glk Glu+ATP2G6P+ADP 0.1 �4.5
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to construct 5000 models in the initial ensemble. As shown in
Fig. 3B, the models in the initial ensemble reach the same steady
states, after a small fraction of models that possess multiple steady
states are filtered out. As expected, enzyme perturbations shift the
steady flux to different extents (Fig. 3C), which differentiates each
model in the ensemble.

A series of genetic manipulations have been reported in the
literature to construct a succinate over-producing strain (Lin et al.,
2005a, 2005b; Sanchez et al., 2005). These manipulations include 1)
knockout of succinate dehydrogenase (sdh), 2) knockout of pyruvate
oxidase (poxB), 3) knockout of acetate kinase (ackA) and phospho-
transacetylase (pta), and 4) overexpression of the glyoxylate shunt
enzymes isocitrate lyase (aceA) and malate synthase (aceB) by
knocking out the aceBAK operon repressor (iclR). After the first
manipulation, the fluxes of glucose uptake, acetate production and
pyruvate accumulation remain unchanged while succinate flux
becomes detectable. Both the second and the third steps result in
dramatic drops in acetate production and glucose uptake. Meanwhile,
pyruvate begins to accumulate and the succinate production rate
further increases. After the fourth manipulation, succinate production
flux increases significantly along with an increase in the glucose
uptake rate when compared to the preceding strain. Pyruvate
accumulation decreased and acetate production exhibits no change.

In order to screen the ensemble with these experimental data,
we perturb each model in the ensemble according to the enzyme
knockouts and overexpressions carried out experimentally (Lin
et al., 2005a, 2005b; Sanchez et al., 2005). We then retain models
whose predictions are consistent with the experimental observa-
tion (Fig. 3D). The models whose responses are in qualitative
agreement with that of the experimental data are retained for the
next step. We here consider any flux changes in silico that are less
than 5% as non-change, otherwise increase or decrease, respec-
tively. We expect that the first application of EM is qualitative
prediction of enzyme targets to guide the experimentalist in
metabolic engineering. Thus, the level of accuracy should be
adjusted according to the need of the experimentalist. In our
experience, only qualitative predictions of increase, decrease, or no
change in the desired flux would be useful to the experimentalist.
As such, the results are not sensitive to the overexpression level
(whether 5-, 10- or 15-fold). As more data are used in the
construction of EM, the accuracy of prediction will increase and
more quantitative agreement will be desired. To avoid numerical
singularity, a 99% decrease in enzyme level represents a genetic
knockout . A 10-fold increase in enzyme level is used to reflect the
experimental overexpression. Other levels of increase can be used if
experimental evidence is available. As shown in Fig. 4A, 24 out of
5000 models exhibit correct changes in glucose uptake rate, acetate
production rate, pyruvate accumulation rate and succinate pro-
duction rate after four sequential genetic perturbations.

Meanwhile, the control ensemble of 5000 models is constructed
with their kinetic parameters randomly sampled without any
constraints. These unconstrained models are then screened against
the same experimental data. As shown in Fig. 4B, none of the
models can even describe the system’s response caused by the first
step of manipulation: knockout of succinate dehydrogenase (sdh).
Fig. 4C, D show the contrast of kinetic space spanned by the
ensemble with and without the steady-state constraint. Because of
the reduction in the allowable kinetic space, EM enables model
screening using available data. Such a process is impossible when
the steady-state anchor is not in place.

3.4. Reduction in computation time through the solution

of algebraic equations

Instead of using the numerical integration to compute new
steady states after perturbations, we solve the system of algebraic
equations directly to reduce computation time. To be noticed that
such recasting technique is only applicable when elementary
enzyme kinetics are used, and it is limited to steady-state solutions
only. The solution approach is described in Section 2 and a Matlab
module is developed to automate this process (http://www.seas.
ucla.edu/� liaoj). For a direct comparison, we analyze 5000 models
for a series of perturbations using both methods. In this example,
solving the system of algebraic equations offers a 63% reduction in
the computation time required. In addition, we are expecting more
time saving when the network becomes larger and more compli-
cated as shown in Fig. 4E.

3.5. The retained models can predict the outcome

of additional perturbations

In addition to describing and understanding the systematic
behavior of the succinate producing pathway, it is desirable to
predict the results of further experiments with the assistance of
the retained models after screening. Lin et al. (2005b) further
engineered the strain by knocking out PTS and overexpressing

http://www.seas.ucla.edu/&sim;liaoj
http://www.seas.ucla.edu/&sim;liaoj
http://www.seas.ucla.edu/&sim;liaoj
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phosphoenolpyruvate carboxylase (ppc). These manipulations
were intended to increase phosphoenolpyruvate (PEP) pool for
succinate production (Chao and Liao, 1993; Chao et al., 1993; Lin
et al., 2005b; Millard et al., 1996; Patnaik et al., 1992; Rizk and Liao,
2009). The 24 models all predict that these additional modifications
could increase the succinate flux while decreasing pyruvate and
acetate fluxes. Indeed, the reported experimental data (Lin et al.,
2005b) demonstrated a significantly increased succinate produc-
tion rate, as shown in Fig. 4F.
3.6. The importance of model screening with enzyme tuning data

As a part of the initial ensemble of 5000 models, the retained 24
models are based on the same stoichiometry. After screening with the
enzyme tuning data, the kinetics of the retained 24 models are refined
and distinguish them from other 4976 models of the initial ensemble.
To demonstrate the significance of enzyme tuning data utilization and
importance of kinetics refining, we survey and compare all possible
overexpression targets after four existing perturbations using both
the initial 5000 models and the retained 24 models. Individual
enzymes are overexpressed 10-fold respectively in silico, and the
effects of individual enzyme overexpression on succinate production
predicted by initial ensemble and the retained subset are shown in
Fig. 5. According to the survey based on overall 5000 models as shown
in Fig. 5A, the average effect of ppc overexpression is to benefit
production. However the large error bar that lies across x-axis
diminishes the reliability of candidacy. Instead, zwf stands out as a
possible target, but it has never been shown to benefit succinate
production. On the contrary, as shown in Fig. 5B, the retained 24
models altogether predict that ppc is the only overexpression target.
This overexpression target has been confirmed by the experiment,
therefore the false positive prediction rate is near zero. Such
comparison shows that the screening of the ensemble with experi-
mental data is necessary to get the correct prediction. This simply
illustrates the mutualism between mathematical models and experi-
ment data: only when provided and trimmed with enough experi-
mental data, the model predictions can be reliable.
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3.7. Expanding the EM strategy to use lumped enzyme kinetics

The concept of EM is to anchor the ODE models to the same
steady-state flux with kinetic parameters sampled under thermo-
dynamic constraints. Instead of solely using elementary reaction
kinetics, we further expand the concept of EM to construct models
using lumped kinetic rate laws, such as the Michaelis–Menten
kinetics, Hill equation and allosteric enzyme kinetics. They can be
implemented in the same fashion of elementary reaction kinetics
such that the knowledge of absolute steady-state metabolite
concentrations is optional, detailed derivations can be found in
Supplemental Material II. Although these lumped kinetic expres-
sions are empirical in nature, they contain less kinetic parameters.
This expansion makes the EM approach more flexible and applic-
able to situations when lumped kinetic expressions are available.
3.8. Screening by dynamic data: central metabolism model

Metabolite dynamic profiles, although difficult to obtain
(Buchholz et al., 2002), can also be used as the data for screening
models in the EM approach. The dynamic model of E. coli central
carbon metabolism is used as an example. Fig. 6A illustrates the
modeling structure that is similar to the previous work
(Chassagnole et al., 2002) including the PTS, glycolysis, pentose–
phosphate pathway and storage metabolites. The dynamic model
was constructed using different types of enzyme kinetics (Table 4).
In general, enzymes with known mechanisms are assigned lumped
kinetic expressions. Others are modeled using elementary reac-
tions. The steady-state fluxes and metabolite concentrations of this
system were determined previously (Chassagnole et al., 2002), and
are shown in Table 5. The cofactors (NAD, NADH, NADPH, NADP,
AMP, ADP, ATP) in this case are modeled as analytical functions of
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time as shown in Table 6. These are derived from the previous study
(Chassagnole et al., 2002), and are not necessarily balanced
throughout the time course after the perturbation is introduced.
An ensemble of 10,000 models is constructed by anchoring to the
predetermined steady-state data, as shown in Fig. 6B. Meanwhile,
the control ensemble of 10,000 models is constructed with their
kinetic parameters randomly sampled without any constraints. We
then perturb individual models and compare the screening results
of these two ensembles.

After two initial ensembles of models are constructed, we then
perturb these models according to the experimental designs and
compare the model predictions with the experimental data
reported in the literature (Chassagnole et al., 2002). For the
ensemble with the steady-state constraint, a glucose pulse is
introduced to each model. Fig. 6C illustrates the metabolite
responses. The root mean square of deviation between model
response and experimental measurement is calculated as the
fitting error for each model. The model that has the smallest fitting
error of 2.13 is retained to describe the system response as shown
in Fig. 6D. Fig. 7A shows the number of retained models as a
function of the fitting errors. In particular, 84 out of 10,000 models
behave very similarly to the experimental observation with fitting
errors smaller than 3. In the case of the control ensemble without
the steady-state constraint, none of the models has a fitting error
smaller than 10 which is the range that could produce a reasonable
match with the measured dynamic response (Fig. 7B). This
indicates that the screening of kinetic parameters without anchor-
ing to the steady state is impossible due to the large parameter
space. The kinetic parameter spaces spanned by the two ensembles
with and without flux anchoring are shown in Fig. 7C and D,
respectively.
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measurements show a sharp increase in the glucose-6-phosphate
(G6P) level (Chassagnole et al., 2002). Simultaneously, a sharp decline
in the PEP concentration can be observed. This rapid response is
expected, as the sudden abundance of glucose after stimulation
causes a rapid decline in PEP, which is used in the conversion of
glucose to G6P through PTS. The drop in G6P after 10 s suggests that
PEP becomes limited for assisting glucose uptake through PTS, as PEP
concentration is in a continuous decline after 10 s.

There are slight deviations between model responses and
experimental observations, in particular, the model predicted
profiles of fructose-1,6-bisphosphate (FBP) and glyceraldehdye-
3-phosphate (GAP) do not follow the experimental data perfectly.
These two metabolites are directly downstream of the heavily
regulated enzyme 6-phosphofructokinase (Pfk) (Johannes and
Hess, 1973), the complexity of its regulatory mechanisms may
not be fully captured by the model structure used here.
4. Discussion

In this work, we have demonstrated that by anchoring the
models to the same steady-state flux significantly reduces
the kinetic parameter space. With this reduction in kinetic space,
the screening of dynamic models with available experiment data
becomes possible. Conversely, the screening procedure is fruitless
without anchoring to the steady-state flux.

Here we use the steady-state flux instead of the steady-state
metabolite concentrations as the anchor for various reasons: (1)
Given a collection of steady-state metabolite concentrations with-
out the fluxes, the unique steady-state fluxes are not guaranteed
when kinetic parameters are randomly sampled. (2) The employ-
ment of steady-state fluxes sets the time scale for the dynamic
models once the approximated metabolite pool sizes are known,
whereas steady-state metabolite concentrations do not carry time



Table 4
Overall reactions, kinetic types, regulations and standard Gibbs free energies of enzymatic reactions involved in E. coli central carbon metabolic model.

Enzyme Overall reaction Kinetic types Activation Inhibition Standard Gibbs free

energy (kcal/mol)

pts GLU+PEP2G6P+PYR c G6P �13.1

pgi G6P2F6P c 6PG �2.5

pfk F6P+ATP2FBP+ADP c AMP, ADP PEP �4.5

fba FBP2DHAP+GAP e 1.1

tpi DHAP2GAP a 0.2

gap GAP+NAD2BPG+NADH a 4.2

pgk BPG+ADP23PG+ATP a 4.7

gpm 3PG22PG a �2.2

eno 2PG2PEP a �0.2

pyk PEP+ADP-PYR+ATP c FBP,AMP ATP �8.4

pdh PYR+NAD2ACCOA+NADH b �5.1

ppc PEP2OAA c FBP �11.74

g3pdh DHAP+NADH2G3P+NAD a �2

pgm G6P2G1P a 2.2

g1pat G1P+ATP2ADPGLU c FBP 2.8

ser_synt 3PG2SER a �2

zwf G6P+NADP26PG+NADPH c NADPH �0.9

gnd 6PG+NADP2Ru5P+NADPH c NADPH, ATP �0.8

rpe Ru5P2X5P a 0

rpi Ru5P2R5P a �0.7

tkt1 X5P+R5P2S7P+G3P a 0.9

tkt2 X5P+E4P2F6P+G3P a 0.9

tal S7P+G3P2E4P+F6P a �0.6

aroG PEP+E4P2DAHP e �17.9

rppk R5P2Intermediate 1 a �3.5

synt1 PEP2Intermediate 2 a �3.5

synt2 PYR2Intermediate 3 a �3.5

trp_synt in-GAP d �3.5

met_trp_synt in-PYR d �3.5

a: reversible Michaelis–Menten, b: Hill equation, c: allosteric enzyme kinetics, d: constant flux, e: elementary reaction kinetics.

Table 5
The steady-state flux distribution and metabolite concentrations of central carbon

metabolism.

Enzyme reaction Flux (mmol/gDCW/s) Metabolite Metabolite

concentration (mM)

pts 0.1 G6P 3.48

pgi 0.37 F6P 0.60

pfk 0.73 FBP 0.272

fba 0.73 DHAP 0.167

tpi 0.71 GAP 0.218

gap 1.62 BPG 0.008

pgk 1.62 3PG 2.13

gpm 1.53 2PG 0.399

eno 1.53 PEP 2.67

pyk 0.18 PYR 2.67

pdh 0.93 Ser 1

ppc 0.25 G3P 1

g3pdh 0.02 G1P 0.653

pgm 0.01 ADPGlU 1

g1pat 0.01 6PG 0.808

ser_synt 0.09 Ru5P 0.111

zwf 0.62 X5P 0.138

gnd 0.62 R5P 0.398

rpe 0.37 S7P 0.276

rpi 0.25 E4P 0.098

tkt1 0.20 DAHP 1

tkt2 0.17 RPPK 1

tal 0.20 ACCOA 1

aroG 0.03 OAA 1

rppk 0.05 Synt1 1

synt1 0.07 Synt2 1

synt2 0.27 ATP 4.27

trp_synt 0.01 ADP 0.595

met_trp_synt 0.02 AMP 0.955

NADH 0.1

NAD 1.47

NADPH 0.062

NADP 0.195
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information. (3) Flux data are easily measureable or estimated, but
metabolite concentrations are not.

Furthermore, we extend the EM approach to lumped enzyme
kinetic rate expressions. In some cases, enzyme rate expressions are
available but some of the kinetic parameters (such as vmax) are not.
This extension allows EM to take advantage of well characterized
lumped kinetic rate expressions while using elementary reaction
kinetics for others. Known parameters can be fixed while others are
sampled in EM (Dean et al., 2009). We also demonstrate the use of
metabolite profiles in screening, in addition to the flux data used
before. These results make the EM approach more versatile.

Existing dynamic modeling methods (Chassagnole et al., 2002;
Usuda et al., 2010; Visser and Heijnen, 2003) heavily rely on the
knowledge of enzyme kinetic form and parameters. Detailed
kinetic parameters are typically obtained through in vitro enzyme
assay experiments, as a result they are rare and difficult to measure.
Additionally, the in vitro measurements do not necessarily reflect
in vivo performance hence post-adjustment of these parameters
and estimating other unknown parameters according to experi-
mentally measured metabolite concentration profiles are required.
Such process needs extra experiment data (metabolite profiles)
which are difficult to measure and not commonly done, while the
EM approach takes advantageous of flux measurements (produc-
tion formation rates, not necessarily C13 labeled measurements)
that are routinely generated through metabolic engineering efforts.
Even with the metabolite profile data, the parameter estimation is
very inefficient because of the large dimension and wide range of
parameters. Most importantly, the fitting of metabolite profiles
does not guarantee prediction of fluxes, which is the main goal of
metabolic engineering.

In contrast to related works (Fell, 1992; Kahn and Westerhoff,
1991; Liao and Delgado, 1993; Link and Weuster-Botz, 2007;
Schellenberger and Palsson, 2009; Wang et al., 2004), the EM
approach generates nonlinear models that use parameters closely



n = 10000 n = 9024 n = 8736 n = 7837 n = 84

Fitting error

>30 <5 <3

N
um

be
r o

f m
od

el
s

Fitting error

>30 <5 <3

N
um

be
r o

f m
od

el
s

n = 10000 n = 3689 n = 1148 n = 0 n = 0

-500
-250

0
250

500

-500
-250

0
250

500
-500

-250

0

250

500

<30 <20 <10 <30 <20 <10

n = 0n = 3835

500

250

0

-250

500
-500

250
500250

-250
0-250

-500-500

0

Fig. 7. (A) The distribution of models within certain fitting errors. When all the models are anchored to the same steady state, 84 out of 10,000 models behave very similarly to

the experimental observation with fitting errors smaller than 3. (B) When the kinetic parameters are generated randomly without anchoring the models to the same steady

state, none of the models has a fitting error smaller than 10, which is the range that could produce a reasonable match with the measured dynamic response. (C) Kinetic

parameter space spanned by the steady-state flux constrained models (1000 models are used for analysis). The first three principal components are plotted here. (D) Kinetic

parameter space spanned by the control models (1000 models are used for analysis) without the steady-state flux constraint.

Table 6
Analytical functions for cofactors.

Catp ¼ 4:27�4:163
t

0:35þ1:25tþ0:05t2

Cadp ¼ 0:582þ1:73ð2:731�0:15t
Þð0:12tþ0:000214t3Þ

Camp ¼ 0:123þ7:25
t

7:25þ1:47tþ0:17t2
þ1:073

t

1:29þ8:05t

Cnadph ¼ 0:062þ0:332ð2:718�0:464t
Þð0:0166t1:58þ0:000166t4:73þ1:13� 10�10t7:89þ1:36� 10�13t11þ1:23� 10�16t14:2Þ

Cnadp ¼ 0:18þ2� 10�6t3þ
t2

5000
�

t

100

Cnadh ¼ 0:0934þ0:0011ð2:371�0:123t
Þð0:844tþ0:104t3Þ

Cnad ¼ 1:314þ1:314ð2:73ð�0:0435t�0:342Þ
�
ðtþ7:871Þ � 2:73ð�0:0218t�0:171Þ

8:481þt
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related to enzyme molecular properties. As such, effects of genetic
manipulations at the molecular level can be assessed using EM. This
modeling approach is expected to aid metabolic engineering (Atsumi
et al., 2008a, 2008b; Barkovich and Liao, 2001; Fischer et al., 2008; Ro
et al., 2006) by interpreting data and guiding molecular manipulations
in the future.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at doi:10.1016/j.ymben.2010.11.001.
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