
Navigating in a Graph by Aid of Its Spanning
Tree�

Feodor F. Dragan1 and Martin Matamala2

1 Algorithmic Research Laboratory, Department of Computer Science
Kent State University, Kent, OH 44242, USA��

dragan@cs.kent.edu
2 Departmento de Ingenieŕıa Matemática, Universidad de Chile

Centro de Modelamiento Matemático UMR 2071CNRS, Santiago, Chile
mmatamal@dim.uchile.cl

Abstract. Let G = (V, E) be a graph and T be a spanning tree of G.
We consider the following strategy in advancing in G from a vertex x
towards a target vertex y: from a current vertex z (initially, z = x),
unless z = y, go to a neighbor of z in G that is closest to y in T (break-
ing ties arbitrarily). In this strategy, each vertex has full knowledge of
its neighborhood in G and can use the distances in T to navigate in
G. Thus, additionally to standard local information (the neighborhood
NG(v)), the only global information that is available to each vertex v
is the topology of the spanning tree T (in fact, v can know only a very
small piece of information about T and still be able to infer from it the
necessary tree-distances). For each source vertex x and target vertex y,
this way, a path, called a greedy routing path, is produced. Denote by
gG,T (x, y) the length of a longest greedy routing path that can be pro-
duced for x and y using this strategy and T . We say that a spanning tree
T of a graph G is an additive r-carcass for G if gG,T (x, y) ≤ dG(x, y) + r
for each ordered pair x, y ∈ V . In this paper, we investigate the prob-
lem, given a graph family F , whether a small integer r exists such that
any graph G ∈ F admits an additive r-carcass. We show that rectilin-
ear p × q grids, hypercubes, distance-hereditary graphs, dually chordal
graphs (and, therefore, strongly chordal graphs and interval graphs), all
admit additive 0-carcasses. Furthermore, every chordal graph G admits
an additive (ω(G) + 1)-carcass (where ω(G) is the size of a maximum
clique of G), each 3-sun-free chordal graph admits an additive 2-carcass,
each chordal bipartite graph admits an additive 4-carcass. In particular,
any k-tree admits an additive (k+2)-carcass. All those carcasses are easy
to construct.

1 Introduction

As part of the recent surge of interest in different kind of networks, there has
been active research exploring strategies for navigating synthetic and real-world
� This work was partially supported by CONICYT through grants Anillo en Redes

ACT08 and Fondap.
�� These results were obtained while the first author was visiting the Universidad de

Chile, Santiago.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 788–799, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Navigating in a Graph by Aid of Its Spanning Tree 789

networks (modeled usually as graphs). These strategies specify some rules to be
used to advance in a graph (a network) from a given vertex towards a target
vertex along a path that is close to shortest. Current strategies include (but not
limited to): routing using full-tables, interval routing, routing labeling schemes,
greedy routing, geographic routing, compass routing, etc. in wired or wireless
communication networks and in transportation networks (see [19,20,27,33,25,40]
and papers cited therein); routing through common membership in groups, pop-
ularity, and geographic proximity in social networks and e-mail networks (see
[2,3,27,32] and literature cited therein).

In this paper we use terminology used mostly for communication networks.
Thus, navigation is performed using a routing scheme, i.e., a mechanism that
can deliver packets of information from any vertex of a network to any other
vertex. In most strategies, each vertex v of a graph has full knowledge of its
neighborhood and uses a piece of global information available to it about the
graph topology – some ”sense of direction” to each destination, stored locally at
v. Based only on this information and the address of a destination vertex, vertex
v needs to decide whether the packet has reached its destination, and if not, to
which neighbor of v to forward the packet.

1.1 Some Known Strategies

In routing using full-tables, each vertex v of G knows for each destination u the first
edge along some shortest path from v to u (so-called complete routing table). When
v needs to send a message to u, it just sends the message along the edge stored for
destination u. While this approach guarantees routing along a shortest path, it is
too expensive for large systems since it requires to store locally O(n log δ) bits of
global information for an n-vertex graph with maximum degree δ.

Unfortunately, if one insists on a routing via shortest paths, Ω(n log δ) bits
is the lower bound on the memory requirements per vertex [24] (this much each
vertex needs to know at least). To obtain routing schemes for general graphs
that use o(n) of memory at each vertex, one has to abandon the requirement
that packets are always delivered via shortest paths, and settle instead for the
requirement that packets are routed on paths that are relatively close to shortest.
The efficiency of a routing scheme is measured in terms of its additive stretch,
called deviation (or multiplicative stretch, called delay), namely, the maximum
surplus (or ratio) between the length of a route, produced by the scheme for a
pair of vertices, and the shortest route. There is a tradeoff between the memory
requirements of a routing scheme (how much of global information is available
locally at a vertex) and the worst case stretch factor it guarantees. Any multi-
plicative t-stretched routing scheme must use Ω(n) bits for some vertices in some
graphs for t < 3 [21] (see also [17]), and Ω(n log n) bits for t < 1.4 [24]. These
lower bounds show that it is not possible to lower memory requirements of a
routing scheme for an arbitrary network if it is desirable to route messages along
paths close to optimal. Therefore, it is interesting, both from a theoretical and
a practical view point, to look for specific routing strategies on graph families
with certain topological properties.

790 F.F. Dragan and M. Matamala

One specific way of routing, called interval routing, has been introduced in [36]
and later generalized in [31]. In this method, the complete routing tables are com-
pressedbygrouping thedestinationaddresseswhich correspond to the sameoutput
edge. Then each group is encoded as an interval, so that it is easy to check whether
a destination address belongs to the group. This approach requires O(δ log n) bits
of memory per vertex, where δ is the maximum degree of a vertex of the graph. A
graphmust satisfy some topological properties in order to support interval routing,
especially if one insists on paths close to optimal. Routing schemes for many graph
classes were obtained by using interval routing techniques. The classical and most
recent results in this field are presented in [19,20].

Recently, so-called routing labeling schemes [33] become very popular. A num-
ber of interesting results for general graphs and particular classes of graphs were
obtained. These are schemes that label the vertices of a graph with short labels
(describing some global topology information) in such a way that given the label
of a source vertex and the label of a destination, it is possible to compute effi-
ciently the edge from the source that heads in the direction of the destination.
In [18,40], a shortest path routing scheme for trees with O(log2 n/ log log n)-
bit labels is described. For general graphs, the most general result to date is
a multiplicative (4k − 5)-stretched routing labeling scheme that uses labels of
size Õ(kn1/k) bits1 is obtained in [40] for every k ≥ 2. For planar graphs, a
shortest path routing labeling scheme which uses 8n+ o(n) bits per vertex is de-
veloped in [22], and a multiplicative (1+ε)-stretched routing labeling scheme for
every ε > 0 which uses O(ε−1 log3 n) bits per vertex is developed in [39]. Rout-
ing in graphs with doubling dimension α has been considered in [1,10,37,38].
It was shown that any graph with doubling dimension α admits a multiplica-
tive (1 + ε)-stretched routing labeling scheme with labels of size ε−O(α) log2 n
bits. Recently, the routing result for trees of [18,40] was used in designing ad-
ditive O(1)-stretched routing labeling schemes with O(logO(1) n) bit labels for
several families of graphs, including chordal graphs, chordal bipartite graphs,
circular-arc graphs, AT-free graphs and their generalizations, the graphs with
bounded longest induced cycle, the graphs of bounded tree–length, the bounded
clique-width graphs, etc. (see [12,13,14,15] and papers cited therein).

In wireless networks, the most popular strategy is the geographic routing
(sometimes called also the greedy geographic routing), were each vertex forwards
the packet to the neighbor geographically closest to the destination (see survey
[25]). Each vertex of the network knows its position (e.g., Euclidean coordinates)
in the underlying physical space and forwards messages according to the coordi-
nates of the destination and the coordinates of neighbors. Although this greedy
method is effective in many cases, packets may get routed to where no neighbor
is closer to the destination than the current vertex. Many recovery schemes have
been proposed to route around such voids for guaranteed packet delivery as long
as a path exists [4,26,30]. These techniques typically exploit planar subgraphs
(e.g., Gabriel graph, Relative Neighborhood graph), and packets traverse faces
on such graphs using the well-known right-hand rule.

1 Here, Õ(f) means O(f polylog n).

Navigating in a Graph by Aid of Its Spanning Tree 791

All earlier papers assumed that vertices are aware of their physical location,
an assumption which is often violated in practice for various of reasons (see
[16,28,35]). In addition, implementations of recovery schemes are either based
on non-rigorous heuristics or on complicated planarization procedures. To over-
come these shortcomings, recent papers [16,28,35] propose routing algorithms
which assign virtual coordinates to vertices in a metric space X and forward
messages using geographic routing in X . In [35], the metric space is the Euclid-
ean plane, and virtual coordinates are assigned using a distributed version of
Tutte’s ”rubber band” algorithm for finding convex embeddings of graphs. In
[16], the graph is embedded in Rd for some value of d much smaller than the
network size, by identifying d beacon vertices and representing each vertex by
the vector of distances to those beacons. The distance function on Rd used in
[16] is a modification of the �1 norm. Both [16] and [35] provide substantial ex-
perimental support for the efficacy of their proposed embedding techniques –
both algorithms are successful in finding a route from the source to the destina-
tion more than 95% of the time – but neither of them has a provable guarantee.
Unlike embeddings of [16] and [35], the embedding of [28] guarantees that the
geographic routing will always be successful in finding a route to the destination,
if such a route exists. Algorithm of [28] assigns to each vertex of the network
a virtual coordinate in the hyperbolic plane, and performs greedy geographic
routing with respect to these virtual coordinates. More precisely, [28] gets vir-
tual coordinates for vertices of a graph G by embedding in the hyperbolic plane
a spanning tree of G. The proof that this method guaranties delivery is relied
only on the fact that the hyperbolic greedy route is no longer than the span-
ning tree route between two vertices; even more, it could be much shorter as
greedy routes take enough short cuts (edges which are not in the spanning tree)
to achieve significant saving in stretch. However, although the experimental re-
sults of [28] confirm that the greedy hyperbolic embedding yields routes with
low stretch when applied to typical unit-disk graphs, the worst-case stretch is
still linear in the network size.

1.2 Our Approach

Motivated by the work of Robert Kleinberg [28], in this paper, we initiate ex-
ploration of the following strategy in advancing in a graph from a source vertex
towards a target vertex. Let G = (V, E) be a graph and T be a spanning tree
of G. To route/move in G from a vertex x towards a target vertex y, use the
following rule:

from a current vertex z (initially, z = x), unless z = y,
go to a neighbor of z in G that is closest to y in T
(break ties arbitrarily).

In this strategy, each vertex has full knowledge of its neighborhood in G and
can use the distances in T to navigate in G. Thus, additionally to standard
local information (the neighborhood NG(v)), the only global information that
is available to each vertex v is the topology of the spanning tree T . In fact, v

792 F.F. Dragan and M. Matamala

can know only a very small piece of information about T and still be able to
infer from it the necessary tree-distances. It is known [23,34] that the vertices of
an n-vertex tree T can be labeled in O(n log n) total time with labels of up to
O(log2 n) bits such that given the labels of two vertices v, u of T , it is possible to
compute in constant time the distance dT (v, u), by merely inspecting the labels
of u and v. Hence, one may assume that each vertex v of G knows, additionally
to its neighborhood in G, only its O(log2 n) bit distance label. This distance
label can be viewed as a virtual coordinate of v.

For each source vertex x and target vertex y, by this routing strategy, a
path, called a greedy routing path, is produced (clearly, this routing strategy will
always be successful in finding a route to the destination). Denote by gG,T (x, y)
the length of a longest greedy routing path that can be produced for x and y
using this strategy and T . We say that a spanning tree T of a graph G is an
additive r-carcass for G if gG,T (x, y) ≤ dG(x, y)+r for each ordered pair x, y ∈ V
(in a similar way one can define also a multiplicative t-carcass of G).

In this paper, we start investigating the problem, given a graph family F ,
whether a small integer r exists such that any graph G ∈ F admits an additive
r-carcass, and give our preliminary results. We show that rectilinear p × q grids,
hypercubes, distance-hereditary graphs, dually chordal graphs (and, therefore,
strongly chordal graphs and interval graphs), all admit additive 0-carcasses.
Furthermore, every chordal graph G admits an additive (ω(G)+1)-carcass (where
ω(G) is the size of a maximum clique of G), each 3-sun-free chordal graph admits
an additive 2-carcass, each chordal bipartite graph admits an additive 4-carcass.
In particular, any k-tree admits an additive (k + 2)-carcass. All those carcasses
are easy to construct.

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, unweighted,
loopless and without multiple edges. In a graph G = (V, E) (n = |V |, m = |E|)
the length of a path from a vertex v to a vertex u is the number of edges in
the path. The distance dG(u, v) between the vertices u and v is the length of a
shortest path connecting u and v. The neighborhood of a vertex v of G is the
set NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is NG[v] =
NG(v)∪{v}. The disk of radius k centered at v is the set of all vertices at distance
at most k to v, i.e., Dk(v) = {u ∈ V : dG(u, v) ≤ k}. A set S ⊆ V is a clique
(an independent set) of G if all vertices of S are pairwise adjacent (respectively,
nonadjacent) in G. A clique of G is maximal if it is not contained in any other
clique of G.

Next we recall the definitions of special graph classes mentioned in this paper
(see survey [8]). A graph is chordal if it does not have any induced cycle of length
greater than 3. A p-sun (p ≥ 3) is a chordal graph on 2p vertices whose vertex set
can be partitioned into two sets, U = {u0, . . . , up−1} and W = {w0, . . . , wp−1},
such that W is an independent set, U is a clique, and every wi is adjacent only to
ui and ui+1 (mod p). A chordal graph having no induced subgraphs isomorphic

Navigating in a Graph by Aid of Its Spanning Tree 793

to p-suns (for any p ≥ 3) is called a strongly chordal graph. A chordal graph
having no induced subgraphs isomorphic to 3-sun is called a 3-sun-free chordal
graph. A graph is chordal bipartite if it is bipartite and has no induced cycles
of length greater than 4. A dually chordal graph is the intersection graph of the
maximal cliques of a chordal graph (see [8,7] for many equivalent definitions of
dually chordal graphs and strongly chordal graphs). A graph is interval if it is
the intersection graph of intervals of a line. It is known that interval graphs
are strongly chordal and strongly chordal graphs are dually chordal (see [8,7]).
A graph G is distance-hereditary if every induced path of G is shortest (see [8]
for many equivalent definitions of distance-hereditary graphs). The k-trees are
defined recursively: a clique of size k (denoted by Kk) is a k-tree; if G is a k-tree,
then a graph obtained from G by adding a new vertex v adjacent to all vertices
of some clique Kk of G is a k-tree. It is known (see [8]) that all k-trees are
chordal graphs and that maximal cliques of a k-tree have size at most k + 1.

Let now G = (V, E) be a graph and T be a spanning tree of G. In what follows,
we will use the following notations. For vertices v and u from V , denote by vTu
the (unique) path of T connecting vertices v and u. For a source vertex x and
a target vertex y in G, denote by RG,T (x, y) a greedy routing path obtained for
x and y by using tree T and the strategy described in Subsection 1.2. Clearly,
for the same pair of vertices x and y, breaking ties differently, different greedy
routing paths RG,T (x, y) can be produced. Denote, as before, by gG,T (x, y), the
length of a longest greedy routing path that can be produced for x and y. If no
confusion can arise, we will omit indexes G and T , i.e., use R(x, y) and g(x, y)
instead of RG,T (x, y) and gG,T (x, y).

For r ≥ 0 and t ≥ 1, a spanning tree T of a graph G is called an additive r-
carcass (a multiplicative t-carcass) for G if gG,T (x, y) ≤ dG(x, y)+r (respectively,
gG,T (x, y) ≤ t dG(x, y)) for each ordered pair x, y ∈ V .

Let x∗ be the neighbor of x in RG,T (x, y) and x′ be the neighbor of x in xTy.
Since both x∗ and x′ are in NG(x) and dT (x′, y) = dT (x, y) − 1, according to
our strategy dT (x∗, y) ≤ dT (x′, y) = dT (x, y) − 1 must hold. Furthermore, any
subpath of a greedy routing path RG,T (x, y) containing y is a greedy routing
path to y as well. Hence, one can conclude, by induction, that the length of any
greedy routing path RG,T (x, y) never exceeds dT (x, y). It is clear also, that a
greedy routing path RG,T (x, y) := (x := x0, x1, x2, . . . , y := x�) cannot have a
chord xixj ∈ E with j > i + 1 (since dT (xi+1, y) > dT (xj , y)), i.e., any greedy
routing path is an induced path. Thus, we have the following.

Observation 1.. Let G be an arbitrary graph and T be its arbitrary spanning
tree. Then, for any vertices x, y of G,

(a) gG,T (x, y) ≤ dT (x, y),
(b) any greedy routing path RG,T (x, y) is an induced path of G,
(c) a tale of any greedy routing path is a greedy routing path.

Since in distance-hereditary graphs each induced path is a shortest path, by
Observation 1(b), we conclude.

794 F.F. Dragan and M. Matamala

Corollary 1. Any spanning tree of a distance-hereditary graph G is a 0-carcass
of G.

There are well-known notions of additive tree r-spanners and multiplicative tree
t-spanners. For r ≥ 0 and t ≥ 1, a spanning tree T of a graph G is called
an additive tree r-spanner (a multiplicative tree t-spanner) of G if dT (x, y) ≤
dG(x, y) + r (respectively, dT (x, y) ≤ t dG(x, y)) for each pair x, y ∈ V [9]. By
Observation 1(a), we obtain.

Corollary 2. Any additive tree r-spanner (multiplicative tree t-spanner) of a
graph G is an additive r-carcass (multiplicative t-carcass) of G.

Note that the converse of Corollary 2 is not generally true. As we will see in
next sections, there are many families of graphs which do not admit any tree
r-spanners (additive as well as multiplicative) for any constant r, yet they admit
very good carcasses. For example, there is no constant r such that any 2-tree
or any chordal bipartite graph has a tree r-spanner (additive or multiplicative),
but both these families of graphs admit additive 4-carcasses (see Section 5 for
details).

In what follows, in a rooted tree T , by f(v) we will denote the father of a
vertex v.

3 Rectilinear Grids and Hypercubes

In this section we show that the rectilinear grids and the hypercubes admit
additive 0-carcasses.

Consider a rectilinear p × q grid G and assume that it is naturally embedded
into the plane such that all inner faces of G are squares (see Fig. 1). First
we notice that G does not admit any good tree spanner. For this, consider an
arbitrary spanning tree T of G, and assume that p and q are odd integers and
p ≤ q. Since T is a planar graph with only the outer face, we can connect by a
Jordan curve C a point of the plane inside the central square of G with a point

Fig. 1. Rectilinear grids do not admit any (additive or multiplicative) tree r-spanners
with a constant r, but have additive 0-carcasses

Navigating in a Graph by Aid of Its Spanning Tree 795

in the outer face of G without intersecting the tree T . Let R be the first square
of G crossed by C and x and y be two opposite vertices of R (see Fig. 1(a) for
an illustration). Clearly, for x and y, dT (x, y) ≥ p + 1 holds, while dG(x, y) = 2.
Here, we considered nonadjacent vertices of G since adjacent vertices are of
no interest in our greedy routing. Thus, there are no good tree spanners for
rectilinear grids. On the other hand, G admits an additive 0-carcass. Consider
a Hamiltonian path of G depicted on Fig. 1(b), called column-wise Hamiltonian
path. This path is an additive 0-carcass of G. We leave verification of this fact
to the reader.

Now we turn to the hypercubes. Let Hq = (V, E) be the q-dimensional hy-
percube whose vertices are binary words of length q and two vertices are adja-
cent if they differ in exactly one letter. Let a ∈ {0, 1} and i ∈ {1, . . . , q}. Let
Ha,i

q be a subgraph of Hq induced by vertices having letter a in the position
i. Then, H ′ := Ha,i

q is isomorphic to the (q − 1)-dimensional hypercube and
dHq (x, y) = dH′ (x, y), whenever the letter in the position i of x and y is a.

Let T be the Gray-Hamiltonian path of Hq defined recursively as follows. If
x1, . . . , x2q−1 is the Gray-Hamiltonian path for Hq−1, then T is given by T0T1,
where T0 = x10, . . . , x2q−10 and T1 = x2q−11, . . . , x11. By applying two steps of
previous recursion, it is clear that T can be decomposed into four consecutive
subpaths T = T00T10T11T01, where the subpath Tw contains all the vertices of
Hq ending with w. Notice that T0 is the Gray-Hamiltonian path for H0,q

q , T1
is the reverse of the Gray-Hamiltonian path for H1,q

q and T10T11 is the Gray-
Hamiltonian path for the hypercube H1,q−1

q .
By using induction on q, we prove that g(x, y) := gG,T (x, y) = dG(x, y),

where G = Hq and T is the Gray-Hamiltonian path of Hq. When x and y belong
to T0 (resp. T1), conclusion is obtained by applying induction hypothesis to
vertices x and y in the hypercube H0,q

q (resp. H1,q
q) with the Gray-Hamiltonian

path T0 (resp. T1). Similarly, when x belongs to T10 and y belongs to T11, we
can apply induction in the hypercube H1,q−1

q with the Gray-Hamiltonian path
T10T11.

For the remaining cases, let x∗ denote the vertex next to x in a greedy routing
path RG,T (x, y). If x∗ and y belong to T1, and x belongs to T0, then dG(x∗, y) =
dG(x, y) − 1, since x∗ and y agree in their last letters. By applying induction
to x∗ and y using T1, we get that g(x∗, y) = dH1,q

q
(x∗, y) = dG(x∗, y). Hence,

g(x, y) = 1 + g(x∗, y) = 1 + dG(x∗, y) = dG(x, y). Let us now consider the case
when x and x∗ belong to T0, and y belongs to T1. As x has a neighbor in T1 and
we are assuming that x∗ belongs to T0, vertex y must belong to T11. We have
already considered the case when x belongs to T10. Hence, let us assume that x
belongs to T00. As x has a neighbor in T10, vertex x∗ must belong to T10. Since
in this case dG(x∗, y) = dG(x, y) − 1, we can conclude as before, by applying
induction to x∗ and y in H1,q−1

q with the Gray-Hamiltonian path T10T11.
So, we can state the following theorem.

Theorem 1. Every rectilinear grid and every hypercube admits an additive 0-
carcass (which is a Hamiltonian path) constructible in linear time.

796 F.F. Dragan and M. Matamala

4 Locally Connected Spanning Trees Are Additive
0-Carcasses: Dually Chordal Graphs

In this section, we show that every dually chordal graph G = (V, E) admits an
additive 0-carcass constructible in linear time. Recall that every dually chordal
graph has an additive tree 3-spanner and there are dually chordal graphs without
any additive tree 2-spanners (see [6]). Clearly, those additive tree 3-spanners
are additive 3-carcasses, but it is not hard to see that they are not necessarily
additive 0-carcasses (see, e.g., Fig. 2).

Fig. 2. A dually chordal graph with an additive tree 3-spanner (on the left) and an
additive 0-carcass (on the right). This dually chordal graph does not have any additive
tree 2-spanner. A greedy routing path from x to y with respect to the corresponding
tree is shown on both pictures.

Let G be a graph. We say that a spanning tree T of G is locally connected if
the closed neighborhood NG[v] of any vertex v of G induces a subtree in T (i.e.,
T ∩ NG[v] is a connected subgraph of T). See the right picture on Fig. 2 for an
example of a locally connected spanning tree.

Theorem 2. If T is a locally connected spanning tree of a graph G, then T is
an additive 0-carcass of G.

Proof. Assume that we want to route from a source vertex x to a target vertex
y in G. Let v be an arbitrary vertex of G and v∗ be a vertex from NG[v] closest
to y in T . Since T ∩ NG[v] is a connected subgraph of T , for each vertex v ∈ V
such a neighbor v∗ is unique (any subtree of a tree has only one vertex closest
in T to a given vertex y). Moreover, v∗ �= v, unless v = y. In what follows, we
will assume that the tree T is rooted at vertex y.

Claim 1.. For any vertex v ∈ V , the vertex v∗ belongs to a shortest path of G
connecting v and y.

Proof. We prove by induction on dG(v, y). If dG(v, y) ≤ 1, then v∗ = y and
therefore v∗ belongs to any shortest path between v and y. So, assume that
dG(v, y) ≥ 2. Consider a shortest path P (v, y) := (v, a, b, . . . , y) in G connecting
v and y, where a and b are the first two (after v) vertices of this path. They exist
since dG(v, y) ≥ 2.

Navigating in a Graph by Aid of Its Spanning Tree 797

To obtain the conclusion, we prove that v∗ and b are adjacent. For sake of
contradiction, let us assume that they are not adjacent. Since a, b∗ ∈ NG(b) and
T ∩ NG[b] is a connected subgraph of T , we get that v∗ is not on path aT b∗. We
also know that a ∈ NG[v] ∩ NG[b] and therefore both v∗ and b∗ are ancestors in
T of a (recall that we have rooted T at y). Hence, b∗ is on the path aTv∗. As
a, v∗ ∈ NG(v) and T ∩NG[v] is a connected subgraph of T , we get that v and b∗

are adjacent. By induction, b∗ belongs to a shortest path of G between b and y,
which leads to the following contradiction: dG(v, y) ≤ 1 + dG(b∗, y) = dG(b, y) <
dG(v, y). �(of Claim)

Now we prove by induction on dT (x, y) that g(x, y) = dG(x, y). Indeed, g(x, y) =
1 + g(x∗, y) and, by induction, g(x∗, y) = dG(x∗, y) as dT (x, y) > dT (x∗, y). By
Claim 1, we conclude g(x, y) = 1 + dG(x∗, y) = dG(x, y). 	

It has been shown in [7] that the graphs admitting locally connected spanning
trees are precisely the dually chordal graphs. Furthermore, [7] showed that the
class of dually chordal graphs contains such known families of graphs as strongly
chordal graphs, interval graphs and others. Thus, we have the following corollary.

Corollary 3. Every dually chordal graph admits an additive 0-carcass construct-
ible in linear time. In particular, any strongly chordal graph (any interval graph)
admits an additive 0-carcass constructible in linear time.

Note that, in [5,7], it was shown that dually chordal graphs can be recognized in
linear time, and if a graph G is dually chordal, then a locally connected spanning
tree of G can be efficiently constructed.

5 Additive Carcasses for Chordal Graphs and Chordal
Bipartite Graphs

In this section, we just list our results for chordal graphs and chordal bipartite
graph. The proofs can be found in the journal version of this paper.

Theorem 3. Every chordal bipartite graph admits an additive 4-carcass con-
structible in linear time.

Recall that chordal bipartite graphs do not have any tree r-spanners (additive
or multiplicative) with a constant r (see, e.g., [11]).

Theorem 4. Any shortest path tree of a chordal graph G is an additive (ω(G)+
1)-carcass of G. Here ω(G) is the size of a maximum clique of G.

Since k-trees are chordal graphs with the size of a maximum clique at most k+1,
we conclude.
Corollary 4. Every k-tree admits an additive (k + 2)-carcass constructible in
linear time. In particular, any 2-tree admits an additive 4-carcass constructible
in linear time.
Recall that 2-trees do not have any tree r-spanners (additive or multiplicative)
with a constant r (see, e.g., [29]). We also have the following result.
Corollary 5. Every 3-sun-free chordal graph admits an additive 2-carcass.

798 F.F. Dragan and M. Matamala

References

1. Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in Networks with
Low Doubling Dimension. In: ICDCS 2006, p. 75 (2006)

2. Adamic, L.A., Lukose, R.M., Huberman, B.A.: Local Search in Unstructured Net-
works. Willey, New-York (2002)

3. Adamic, L.A., Lucose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law
networks. Physical Review E 64, 046135, 1–8 (2001)

4. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. In: Proceedings of the 3rd International Workshop on
Discrete algorithms and Methods for Mobile Computing and Communications, pp.
48–55. ACM Press, New York (1999)

5. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree
structure and maximum neighbourhood orderings. Discrete Appl. Math. 82, 43–77
(1998)

6. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: Distance approximating trees for
chordal and dually chordal graphs. Journal of Algorithms 30, 166–184 (1999)

7. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs.
SIAM J. Discrete Math. 11, 437–455 (1998)

8. Brandstädt, A., Le, V., Bang, S.J.P.: Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Applications, Philadelphia (1999)

9. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math. 8, 359–387 (1995)
10. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in dou-

bling metrics. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2005), pp. 762–771. SIAM, Philadelphia (2005)

11. Chepoi, V.D., Dragan, F.F., Yan, C.: Additive Sparse Spanners for Graphs with
Bounded Length of Largest Induced Cycle. Theoretical Computer Science 347,
54–75 (2005)

12. Dourisboure, Y.: Compact Routing Schemes for Bounded Tree-Length Graphs and
for k-Chordal Graphs. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp.
365–378. Springer, Heidelberg (2004)

13. Dragan, F.F., Yan, C.: Collective Tree Spanners in Graphs with Bounded Genus,
Chordality, Tree-width, or Clique-width. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 583–592. Springer, Heidelberg (2005)

14. Dragan, F.F., Yan, C., Corneil, D.G.: Collective Tree Spanners and Routing in
AT-free Related Graphs. Journal of Graph Algorithms and Applications 10, 97–
122 (2006)

15. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J.
Discrete Math. 20, 241–260 (2006)

16. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica,
I.: Beacon vector routing: Scalable point-to-point routing in wireless sensornets.
In: Proceedings of the Second USENIX/ACM Syposium on Networked Systems
Design and Implementation (NSDI 2005) (2005)

17. Fraigniaud, P., Gavoille, C.: Memory requirements for univesal routing schemes.
In: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed
Computing, Ontario, Canada, pp. 223–230 (1995)

18. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001)

Navigating in a Graph by Aid of Its Spanning Tree 799

19. Gavoille, C.: A survey on interval routing schemes. Theoretical Computer Sci-
ence 245, 217–253 (1999)

20. Gavoille, C.: Routing in distributed networks: Overview and open problems. ACM
SIGACT News - Distributed Computing Column 32 (2001)

21. Gavoille, C., Gengler, M.: Space-efficiency of routing schemes of stretch factor
three. Journal of Parallel and Distributed Computing 61, 679–687 (2001)

22. Gavoille, C., Hanusse, N.: Compact Routing Tables for Graphs of Bounded Genus.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 351–360. Springer, Heidelberg (1999)

23. Gavoille, C., Peleg, D., Pérennès, S., Raz, R.: Distance labeling in graphs. J. Al-
gorithms 53, 85–112 (2004)

24. Gavoille, C., Pérennès, S.: Memory requirements for routing in distributed net-
works. In: Proceedings of the 15th Annual ACM Symposium on Principles of Dis-
tributed Computing, Philadelphia, Pennsylvania, pp. 125–133 (1996)

25. Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc net-
works: A taxonomy. In: Cheng, X., Huang, X., Du, D. (eds.) Ad Hoc Wireless
Networking, pp. 103–136. Kluwer, Dordrecht (2004)

26. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: Proceedings of the 6th ACM/IEEE MobiCom, pp. 243–254. ACM, New
York (2000)

27. Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing
(STOC 2000), Portland, OR, USA, pp. 163–170. ACM, New York (2000)

28. Kleinberg, R.: Geographic routing using hyperbolic space. In: INFOCOM 2007,
pp. 1902–1909 (2007)

29. Kratsch, D., Le, H.-O., Müller, H., Prisner, E., Wagner, D.: Additive tree spanners.
SIAM J. Discrete Math. 17, 332–340 (2003)

30. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of
theory and practice. In: Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, pp. 63–72. ACM Press, New York (2003)

31. van Leeuwen, J., Tan, R.B.: Interval routing. The Computer Journal 30, 298–307
(1987)

32. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. PNAS 102, 11623–11628 (2005)

33. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. In: SIAM Mono-
graphs on Discrete Math. Appl. SIAM, Philadelphia (2000)

34. Peleg, D.: Proximity-Preserving Labeling Schemes and Their Applications. J. of
Graph Theory 33, 167–176 (2000)

35. Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographical routing without
location information. In: Proceedings of MobiCom 2003, pp. 96–108 (2003)

36. Santoro, N., Khatib, R.: Labeling and implicit routing in networks. The Computer
Journal 28, 5–8 (1985)

37. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:
PODC 2005, pp. 41–50 (2005)

38. Talwar, K.: Bypassing the embedding: Algorithms for low dimensional metrics. In:
STOC 2004, pp. 281–290 (2004)

39. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM 51, 993–1024 (2004)

40. Thorup, M., Zwick, U.: Compact routing schemes. In: 13th Ann. ACM Symp. on
Par. Alg. and Arch., pp. 1–10 (2001)

	Navigating in a Graph by Aid of Its Spanning Tree
	Introduction
	Some Known Strategies
	Our Approach

	Preliminaries
	Rectilinear Grids and Hypercubes
	Locally Connected Spanning Trees Are Additive 0-Carcasses: Dually Chordal Graphs
	Additive Carcasses for Chordal Graphs and Chordal Bipartite Graphs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

