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Abstract In this paper a robust system for en-
abling robots to detect and identify humans in do-
mestic environments is proposed. Robust human
detection is achieved through the use of thermal
and visual information sources that are integrated
to detect human-candidate objects, which are fur-
ther processed in order to verify the presence of
humans and their identity using face information
in the thermal and visual spectrums. Face detec-
tion is used to verify the presence of humans, and
face recognition to identify them. Active vision
mechanisms are employed in order to improve the
relative pose of a candidate object/person in case
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direct identification is not possible. The response
of the different modules is characterized, and the
proposed system is validated using image data-
bases of real domestic environments, and human
detection and identification benchmarks of the
RoboCup@Home research community.
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1 Introduction

There is increasing interest in domestic service
robots in the robotics community. A domestic
service robot is a subclass of mobile service ro-
bots designed to interact with humans in a home-
environment, and to provide different kinds of
services (cleaning, cooking, entertainment, com-
panionship, and surveillance, to name just a few).
The home environment is defined as ’any place
where people live their daily lives’, which can
include, for example, a kitchen, a bedroom, or a
garden. Although some special-purpose domestic
robots are already popular (e.g. vacuum robots
[35]), we are still far from having general-purpose
domestic robots.

Among the basic skills of domestic service ro-
bots are the ability to move autonomously in do-
mestic environments, the ability to recognize and
manipulate ‘home’ objects (cups, books, glasses,
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medications, chairs, door handles, etc.), and the
capability of identifying humans and interact-
ing with them using intuitive interfaces such as
speech, gestures, and facial information. The fol-
lowing analysis will focus on human’s detection
and identification using visual information, which,
from our point of view, is required in domestic
robots that need to be general purpose and used
by non-expert users.

The robust detection of humans in real-home
environments is a challenging task, mainly be-
cause of variable illumination conditions, clut-
tered backgrounds, and variable poses of a human
body with respect to the robot’s camera. In fact, a
human body is a complex and deformable object
with several degrees of freedom, whose appear-
ance can change greatly when mapped onto a 2D
image. Thus, the problem of the detection of a
human body or a human body-part using standard
CCD and CMOS cameras that work in the visi-
ble spectrum is far from being solved! Depend-
ing on the specific circumstances, humans can be
detected by using information about their faces,
silhouettes, skin, or movement, as well as by using
depth information. None of these methods is all-
purpose and any of them can fail depending on the
specific circumstances. For instance, face and sil-
houette detection depend on the specific relative
pose of humans (e.g. a face can not be detected
when the human is observed from the back); skin
detection depends largely on the illumination con-
ditions and on the background (e.g. human skin
can easily be confused with other materials such
as wood); human movement detection depends
largely on the illumination conditions and the
relative movement of humans (e.g. a human in
a static position can not be detected); and hu-
man detection using depth information requires
further analysis in order to distinguish between
human-body parts and other objects.

The robust recognition of humans using vi-
sual information [1] is also dependent on environ-
mental conditions such as illumination, cluttered
backgrounds, and relative pose of the person to be
identified. When restricted to visual interaction,
face recognition is the most natural and frequently
used clue for identifying people. In [4], four re-
quirements that should be fulfilled by face recog-
nition methods to be used in service robotics

applications are identified: (1) Full online opera-
tion: No training or offline enrollment stages of
the face recognition module. All face recognition
processes must be run online. The robot has to
be able to build the database of faces to be recog-
nized from scratch, and incrementally; (2) Real-
time operation: The recognition process should
be fast enough to allow real-time interaction; the
whole face analysis process, which includes detec-
tion, alignment and recognition, should take no
more than 300 ms (∼3 fps), with 200–250 ms being
a recommended value; (3) One single image per
person problem: A two-dimensional face image of
an individual should be enough for his/her later
identification. Databases containing just one face
image per person should be considered. The main
reasons are savings in storage and computational
costs, and the impossibility of obtaining more than
one face image from a given individual in certain
situations; and (4) Unconstrained environments:
It is required that there are no restrictions
on environmental conditions such as scale, pose,
lighting, focus, resolution, facial expression, acces-
sories, make-up, occlusions, background, and
photographic quality. High demanding HRI
(Human Robot Interaction) applications—for
example, robot interaction with known and
unknown people in unconstrained domestic envi-
ronments—have these requirements. Currently,
state-of-the-art methods designed to fulfill these
requirements are highly dependent on illu-
mination conditions; for instance, most of
them fail when used in mixed indoor-outdoor
conditions, and on the face pose [4].

Thermal sensors, however, allow the robust
detection of human bodies independently of the
illumination conditions (i.e. no light is required)
and of the pose (the thermal radiation of a human
body can be detected in any pose), and its detec-
tion range is up to several meters, which is enough
for domestic environments. In addition, humans
can also be identified by analyzing their faces in
the thermal spectrum [2, 3, 22]. Taking all of these
properties into consideration, it seems natural to
include thermal cameras in current and future
domestic service robots. The price of thermal
cameras is no longer a factor for not using them
in domestic robots, since the price has fallen sig-
nificantly in recent years, now being comparable
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to the price of middle-range laser sensors and
time-of-flight cameras, both commonly used in
domestic robots. In the current work, the robot is
powered with a FLIR TAU 320 thermal camera
[37]. This camera has a resolution of 324 × 256
pixels, and it is sensitive in the 7.5–13.5 μm long-
wave infrared range.

Given this context, the goal of this work is the
proposal of a robust system for robot detection
and identification of humans in domestic envi-
ronments. Robust human detection is achieved
through the use of thermal and visual informa-
tion sources that are integrated to detect human-
candidate objects, which are further processed in
order to verify the presence of humans and their
identity using face information in the thermal and
visual spectrums. Face detection is used to verify
the presence of humans, and face recognition to
identify them. Active vision mechanisms are em-
ployed in order to improve the relative pose of
a candidate object in case direct identification is
not possible, e.g. the object is too far away and
the robot must approach it, or the view angle is
not appropriate for identifying the human so the
robot must find a better view angle.

In conditions of bad or variable illumination,
the system relies mainly on the use of thermal
information. But, in conditions of good illumina-
tion, thermal and visual information complement
each other. For instance, visual information allows
a better analysis of the textures and a more robust
detection of eyes, which is used for face alignment
before identification. Thermal information allows
an easier differentiation of human bodies and
faces in complex backgrounds.

It is important to mention that in the imple-
mented system, state-of-the-art methods for de-
tecting and recognizing faces in the visible and
thermal spectrums are used. In the case of face de-
tection in the thermal spectrum, boosted cascade
classifiers are used for the first time to solve this
problem.

This paper is organized as follows: Related
work is described in Section 2. The proposed hu-
man detection and identification system for robots
is explained in Section 3. Descriptions of exper-
iments and results are presented in Section 4.
Finally, conclusions of this work are given in
Section 5.

2 Related Work

Research activities in domestic service robotics
have increased greatly in recent years. Some of
the main drivers of this phenomenon are the
projected future use of domestic robots for im-
proving elderly people’s quality of life, childcare
applications, entertainment and education, and
providing specific services such as housekeeping.
In addition, interesting initiatives, such as the
RoboCup@Home [36], whose aim is to provide
benchmark tests and methodologies for evalu-
ating the abilities and performance of domestic
service robots in realistic, non-standardized home
environment settings, are expected to accelerate
and focus technological and scientific progress in
the domain of domestic service robots [34].

The robust detection and identification of hu-
mans by robots in domestic environments is a
challenging open problem. For instance, in the
RoboCup@Home, even the best teams are not
able to achieve robust human detection and iden-
tification in competitions designed to test these
kind of abilities (e.g. ‘Who is Who?’ [36]).

There has been a large number of papers in
the recent literature that address human detection
and identification. In terms of sensor technology,
several works are based on the use of stereo
vision [27, 30], monocular vision [29, 32], sonar
and vision [28], laser and vision [31], and thermal
vision [6, 8–10]. For instance, in [27] a stereovision
system uses a dense depth image for the detection
and tracking of people; [28] uses a sonar in com-
bination with a skin color detector to detect faces;
and [31] uses a laser to detect the legs of humans
and a vision system to find faces. One of the main
benefits of using thermal vision is simplifying the
segmentation of human bodies or human body-
parts from the background.

In the case of detecting human bodies, the
problem that has been studied the most is the
problem of pedestrian detection (see [43] for a
Survey). Some approaches are based on the use of
far-infrared images [6–10]. These approaches use
either probabilistic templates [9], warm symmetri-
cal objects of specific size and aspect ratios [10], or
temporal filtering (e.g. the Kalman filter) [7]. That
a head detector works better than a body detector
when using statistical classifiers is shown in [6].
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In the case of visual pedestrian detection, re-
cent works have focused on pedestrian detection
for in-car pedestrian emergency braking, includ-
ing: (1) a comparison of using different features
(global and local features (PCA coefficients) [41],
Haar wavelets, and local receptive fields), and
different Classifiers (support vector machines,
feed-forward neural networks, and k-nearest
neighbor classifiers); (2) the use of a system based
on stereo-based ROI generation, shape-based de-
tection, texture-based classification and stereo-
based verification [42]; (3) the use of a cascade
detection algorithm for a general class of models
defined by a grammar, in which the models can
represent each part recursively as a mixture of
other parts [44]. In terms of feature types, other
relevant work include the use of new features such
as Histograms of Oriented Gradient (HOG) [45],
HOG features of variable-size [49], the use of
region covariance matrices [47, 51], the joint use
of motion and appearance features [46, 52], and
the comparison of different features types [48, 50].
In terms of classifiers, relevant work includes the
use of a Viola & Jones [24] like cascade classifiers
[46, 48, 49, 51], the use of covariance matrices
together with a Riemannian manifold [47, 51],
and the comparison of existing methods [50]. In
addition, new databases have recently been pro-
posed (e.g. the Caltech pedestrian dataset [53] and
the DaimlerChrysler pedestrian dataset [43, 47])
for this particular problem. However, it should
be stressed that pedestrian detection is a com-
pletely different application than human detection
and identification in a domestic environment, and
that both applications have different challenges to
be met.

For detecting and identifying people, face infor-
mation is one of the most popularly used clues.
Existing work on face detection using machine
learning algorithms has been almost exclusively
applied to visual images, with little work devoted
to the use of thermal images [5]. The best face de-
tection methods are based on the use of machine
learning algorithms such as Support Vector Ma-
chines (SVM), Convolutional Neural Networks
(CNN), and Boosting Classifiers [15, 26]. The
most popular face detection paradigm is based on
the use of cascades of boosted classifiers, allow-
ing robust and efficient detection of faces [24].

The visible-spectrum and thermal face detectors
implemented in this work are based on this para-
digm. To the best of our knowledge this kind of
detector has not been used before with thermal
images, and so we use it for the first time in this
work.

Several different face recognition approaches
have been developed in the last few years [17–20],
ranging from classical Eigenspace-based methods
(e.g. Eigenfaces [21]), to sophisticated systems
based on high-resolution images and 3-D models.
Several methods have been developed for the
recognition of faces using thermal images, and
most of these methods are based on the same kind
of approaches used on visible images [2–5, 11–
14, 16]. In [3] a comparison of face-recognition
methods using thermal images (long wave in-
frared, 8–12 μm) is presented. The study considers
the previously mentioned HRI requirements of
online and real-time operation, one image per
person and unconstrained environments, and it
focuses on the three methods that obtained the
best results in the visible spectrum [4]: Local Bi-
nary Pattern (LBP) Histograms, Gabor Jet de-
scriptors, and Scale-Invariant Feature Transform
(SIFT) Descriptors. In general terms the results
presented in [3] indicate that LBP-based methods
are able to obtain very high recognition rates and
present computational and memory requirements
that are adequate for HRI use. For this reason
LBP Histograms are used to implement the visible
spectrum and thermal face recognition modules
used in the proposed system.

Thus, one of the main contributions of this
work is the proposal of a robust system for robot
detection and identification of humans in domes-
tic environments, based on state-of-the-art face
detection and recognition methods, which work in
the visible and thermal spectrums.

3 Human Detection and Identification System

3.1 System Overview

The design of the proposed system for robot de-
tection and identification of humans takes into
account the complementary advantages of using
thermal and visual information, and it considers
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Fig. 1 Block diagram of human detection and identification system. IV visual image, IQ thermal image. See text for details

that both cameras have a similar field of view
and depth of field. The proposed system fulfills
the four requirements mentioned in Section 1.
Figure 1 presents the diagram of the proposed
system. The main modules can be grouped into
the following categories: human skin detection,
human body detection, person detection (Inte-
grated Blob and Detection Analysis module), face
detection, face recognition, and decision-making.
Each of these modules works with visual images
(IV in Fig. 1), thermal images (IQ in Fig. 1), or
information extracted from both sources.

First, human skin detection and human body
detection are used in order to detect sets of skin
blobs in the thermal and visible spectrum (Ther-

malSkinBlobSet and VisualSkinBlobSet), and a
set of body blobs in the thermal spectrum (Body-
BlobSet). Then, in the Integrated Blob and Detec-
tion Analysis module, the information contained
in these sets is integrated and analyzed using
the Face Detection module. The Integrated Blob
and Detection Analysis module generates person,
face and frontal face candidates that are further
analyzed in the Decision Making module. This
last module performs the key task of guiding the
search for humans, as well as finding appropri-
ate views of human faces in order to detect and
recognize humans with high accuracy, while at
the same time minimizing the movements of the
robot. Among other tasks, the Decision Making

Table 1 List of modules
and methods

Module name Sub module Output Method

Human skin detection Visual human VisualSkin BlobSet Dynamically updated
skin detection Skindiff algorithm [23]

Thermal human ThermalSkinBlobSet Mixture of Gaussians
skin detection (MoG)

Human body detection BodyBlobSet MoG + Heuristics
Integrated blob and – Person Candidates, Heuristics

detection analysis Face Candidates,
and Frontal Faces

Decision making Active Vision; Faces and People Heuristics
Navigation; position
Behaviors

Face detection – Detected Faces Nested Cascades
(Visible and of Boosted
Thermal) Classifiers [15]

Face recognition – Face ID Histograms of LBP
features [33]
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module generates the movement commands to the
robot’s body and head, and controls the speech in-
teraction with humans; it is in charge of interacting
with the face recognition module and navigating
through the environment. Table 1 lists the sub-
modules and the methods used in each module.
The modules are detailed in the sections below.

Figure 2 presents an example of a visible and
thermal image, as well as the output of some
modules. It is important to note that all modules
work on grey-scale images (thermal or visual),
with the exception of the visual skin detection
module which works on RGB images.

3.2 Human Skin Detection

The Visual Human Skin Detection module de-
termines image regions that contain human skin
(in the visible spectrum) using the Skindif f skin
segmentation algorithm [23]. Skindiff is a fast skin
detection algorithm that uses neighborhood infor-
mation (local spatial context) to achieve robust-
ness. It has two main processing stages, pixel-wise
classification and spatial diffusion. The pixel-wise

classification uses a non-parametric skin model
[25], Gt, implemented using histograms, and the
spatial diffusion takes neighborhood information
into account when classifying a pixel, and starts
from pixels that have a large likelihood of being
skin pixels [23]. The skin probability model can
be adapted continuously using information of the
face-area’s pixels (visual skin pixels) detected in
previous frames:

Gt = Gt−1α + Ĝ f ace(t) (1 − α) , (1)

where Ĝ f ace(t) is estimated using the currently
detected face, and Go is the initial model, which
can be initialized from a previously stored model,
and α a constant. If no face was detected in the
previous frame, α is set to one, otherwise 0 < α <

1. Although our experience shows that updating
the skin model with the detected faces greatly
improves the results [40], in the current work the
system works on individual frames and the model
is not updated. The obtained set of visual skin
blobs is called VisualSkinBlobSet.

The Thermal Human Skin Detection module is
based on a parametric probability model of the

Fig. 2 Output of selected
modules: a Visible image.
b Thermal image.
c Human Skin detection:
human body blob in red
and thermal skin blobs in
green. d Person detection:
Person Candidates in red,
Face Candidates in green,
and Frontal Faces in blue.
Some false detections are
observed

(a) (b)

(c) (d)
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distribution of temperature of skin. Mixture of
Gaussian (MoG) models the skin (P[xq|skin]) and
non-skin (P[xq|non–skin]) distributions. A Bayes
classifier determines skin pixels as the ones that
fulfill the following relationship:

r
(
xq

) = P
[
xq|skin

]
/P

[
xq|non − skin

]
> uq, (2)

with xq the observed temperature of pixel x, and
uq a previously fixed threshold. Then, a diffusion
operation is applied to group the thermal skin
pixels into thermal skin blobs. The obtained set of
thermal skin blobs is called ThermalSkinBlobSet.
All parameters of the skin probability model were
obtained using a training database.

3.3 Human Body Detection

The Human Blob Detection is in charge of de-
tecting human bodies and human-body parts using
thermal information. The detection also includes
body parts covered by clothes. The same proba-
bility ratio r(xq) used for the detection of thermal
human skin is used here, but the threshold is
adapted to account for changes in the temperature
of the environment, and changes in the response
of the camera. This is done by applying a linear
mapping to the values of r(xq)—taking the maxi-
mum and minimum observed values and mapping
them to 0 and 1—and by using a fixed decision
threshold in this range. This allows adapting for
situations where there is a large difference in the
temperature of the bodies (clothes) and faces; the
body and clothes temperature can vary greatly
from summer to winter. After each pixel has been
classified, an opening morphological operation is
applied to fill holes that appear in the body, but
seldom appear in face regions. The set of (ther-
mal) human body blobs is called BodyBlobSet.

It is important to clarify that thermal human
skin detection allows segmenting the human skin
regions that are not covered by clothes, such as
arms, faces, hands, and legs, while the (thermal)
human body detection allows detecting larger
body parts, which might be partly covered by hair
or clothes.

3.4 Face Detection

Human face detection is based on the use of a
state-of-the-art multi-scale object detection frame-
work (see the block diagram in Fig. 3) previously
developed by our group [15], which uses boosted
cascade classifiers. The same framework is used
to build face detectors able to detect faces in the
visible and in the thermal spectrums. However,
although both kinds of detectors share the same
structure, the process required for building each
detector is different, mainly because of the use
of different training images in each case. To the
best of our knowledge, statistical classifiers, and
in particular boosted cascade classifiers, have not
been used for detecting human faces in thermal
images to date.

The detection works as follows: First, to de-
tect the face at different scales, a multi-resolution
analysis of the images is performed by downscal-
ing the input image by a fixed scaling factor—
e.g. 1.2—(Multi-resolution Analysis module). Af-
terwards, windows of 24 × 24 pixels are extracted
in the Window Extraction module for each of the
scaled versions of the input image. Then, the win-
dows are analyzed by the nested cascade classifier
(Cascade Classif ication Module). Finally, in the
Final Detections module, the windows classified
as positive (i.e. containing a face) are fused (nor-
mally a face will be detected at different scales and
positions) to obtain the size and position of the
final detections.

Fig. 3 Block diagram of
the face detection
framework

H(x)
Classifier

Window
Extractor

...ƒMulti-
resolution 
Analysis

Input Image Processing 
Windows

Multi-resolution 
Images

Final
Detections

Non-Face

Face
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The key concepts used in the framework are
nested cascades, boosting, and domain parti-
tioning classifiers. Cascade classifiers consist of
several layers (stages) of classifiers of increasing
complexity for obtaining fast processing speed
together with high accuracy. The main idea of cas-
cade classifiers is to process most non-object win-
dows as fast as possible, and to process the object
windows and the object-like windows carefully.
Real Adaboost is employed to find and combine
several weak hypotheses, and for feature selec-
tion. Nested cascades allow higher classification
accuracy and processing speed by reusing in each
layer the confidence given by its predecessor, and
the cascade is composed of several integrated
(nested) layers, each one containing a boosted
classifier. A nested cascade, composed of M lay-
ers, is defined as the union of M boosted classifiers
Hk

C each one defined by:

Hk
C (x) = Hk−1

C (x) +
Tk∑

t=1

hk
t (x) − b k (3)

with H0
C (x) = 0, hk

t the weak classifiers, Tk the
number of weak classifiers in layer k, and b k a
threshold (bias) value that defines the operation
point of the strong classifier. The output of Hk

C
is a real value that corresponds to the confidence
of the classifier, and its computation makes use of
the already evaluated confidence value of the pre-
vious layer of the cascade, and the class assigned
corresponds to its sign. We use domain partition-
ing weak hypotheses, each one giving self-rated
confidence values that estimate the reliability of
each prediction. The weak classifiers prediction
depends only on which block a given sample in-
stance falls into for a given feature:

h ( f (x)) = c j � f (x) ∈ F j (4)

For each classifier, the value is associated with
each partition block (c j). The outputs, c j from
each of the weak classifiers, obtained during train-
ing, are stored in an LUT to speed up its evalua-
tion.

For the training and validation of the face de-
tectors the following datasets were used:

– Visible spectrum. Training set: 5,000 frontal
face images and 3,500 non-face images. Vali-

dation set: 5,000 frontal face images and 1,500
non-face images. The images were obtained
from many different sources, and all of them
were made under real world conditions, in-
cluding variations in illumination conditions,
backgrounds, races, etc.

– Thermal spectrum: Training set: 20,000 frontal
face images (generated from 800 frontal face
images) and 15,000 non-face images (gener-
ated from 200 images not containing faces).
Validation set: 20,000 face images and 15,000
non-face images. The thermal images were
obtained using a similar camera to the one
used in this work.

The training procedures are described in [15].

3.5 Face Recognition

3.5.1 Recognition of Human Faces
in Visible-Spectrum Images

A comparative study of state-of-the-art face re-
cognition methods that are suitable to work in
unconstrained environments using visible infor-
mation is presented in [4]. The analyzed methods
were selected by taking into account their per-
formance in former studies, in addition to being
real-time, having just one image per person, and
being fully online. The evaluation considered real-
world conditions that included variations in scale,
pose, lighting, focus, resolution, facial expression,
accessories, make-up, occlusions, background and
photographic quality. One of the main conclusions
of that study is that the use of the histograms of
LBP features methodology is an excellent choice
when real-time operation and high recognition
rates are required, and the faces are captured
in uncontrolled environments. For these reasons,
this methodology was selected to implement face
recognition in visible images in our system.

Face recognition using histograms of LBP fea-
tures was originally proposed in [33], and has
been used by many groups since then. In the
original approach, three different levels of local-
ity are defined: pixel level, regional level, and
holistic level. The first two levels of locality are
realized by dividing the face image into small re-
gions from which LBP features are extracted, and
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histograms are used for efficient texture informa-
tion representation. The holistic level of locality,
i.e. the global description of the face, is obtained
by concatenating the regional LBP extracted fea-
tures. The recognition is performed using a near-
est neighbor classifier in the computed feature
space using one of the three following similarity
measures: histogram intersection, log-likelihood
statistic, or Chi-square.

We implemented this recognition system with-
out considering preprocessing (cropping using an
elliptical mask and histogram equalization are
used in [33]), and by choosing the following para-
meters: (1) images divided in 80 (4 × 20) regions,
instead of using the original divisions which range
from 16 (4 × 4) to 256 (16 × 16), and (2) histogram
intersection as a similarity measure. Before recog-
nition, faces images are aligned using an eye de-
tector built using the previously mentioned object
detection paradigm. The eye detector is described
in [15].

3.5.2 Recognition of Human Faces in Thermal
Images

In [3], a comparative study of state-of-the-art
face recognition methods for HRI applications
using thermal images was presented. The results
obtained in that study also show that the His-
tograms of LBP features methodology is robust
and efficient in the recognition of faces in the
thermal spectrum. Therefore, the LBP-histogram
methodology was selected to implement face
recognition in thermal images in our system.

As in the case of the visible-spectrum im-
ages, the images are divided into 80 regions, and
histogram intersection is used as the similarity
measure. However, faces are not aligned before
recognition, mainly because eye detection in ther-
mal images is more inaccurate than in visual im-
ages [5]. Non-aligned images can be used because
LBP Histograms can handle inaccurate alignment
[4], which was an additional reason to select this
method. In the case of the visual face recogni-
tion module, the faces were aligned using an eye
detector because a more accurate alignment is
needed in order to remove the background that
could affect the recognition process considerably
in unconstrained environments.

3.6 Integrated Blob and Detection Analysis
(Person Detection)

Person candidates, face candidates, and frontal
faces are determined by integrating the informa-
tion contained in the sets of body and skin blobs,
and using the face detection module. The follow-
ing procedure is used: (1) First, all body blobs
are selected as Person Candidates. (2) Then, face
detection is applied inside each body blob. All de-
tected frontal faces that are inside a body blob are
marked as frontal faces (a frontal face detector is
used), and the corresponding body blob is marked
as containing a face. The body blobs that do not
contain a face are marked as person candidates
that are not facing the camera. (3) Finally, all skin
blobs that do not overlap with a detected frontal
face are marked as face candidates.

3.7 Decision Making

The decision-making module is in charge of ac-
tively searching for humans and human-faces, in
addition to HRI, which will not be described here.
Given a map M and a set of map positions Pi,
i = 1,..., N to be visited, the procedure followed
by the robot to search for human candidates inside
the map is as follows:

1. The robot moves to P1.
2. The robot actively searches for human can-

didates by looking in three directions (0◦,
45◦ and −45◦) by moving its head. The ob-
tained visual and thermal images are analyzed
by the Human Skin Detection, Human Body
Detection, and Integrated Blob and Detection
Analysis modules, and two disjoint sets are
obtained: B(bodies) and F(faces). B contains
the detected objects that were classified as
person candidates and do not contain any
detected frontal faces, and F contains the
detected frontal faces and frontal face candi-
dates (found in either visual or thermal im-
ages). The largest object is selected from set
B. This object will be called MB, and it corre-
sponds to the main body candidate.

3. For each element in F and for MB, the dis-
tance from the robot to the object is estimated
using the face information in the case of the
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elements belonging to set F, and the blob’s
width in the case of object MB. The width of
MB is considered to be a good estimation of
the width of the torso of a person. The posi-
tion of each object/person represented by the
elements in F or by MB is stored in the map
only if this position is within the map. If MB’s
width is small, such as for lamps, computers,
and other objects, its position is considered
to be outside the room, and thus discarded.
Thus no additional rules are needed to remove
small-size false positives.

4. The robot tries to reach each unrecognized
person in the map by starting with the nearest
person. To do this, the robot approaches the
person and speaks, asking the person to look
at the robot’s face. If the robot cannot detect
a face, it makes a local search by moving the
head towards four different directions (top-
right, top-left, bottom-right, bottom-left), and
tries to detect faces in each of these positions.
If the robot cannot detect a face, the object
is removed from the map and the robot con-
tinues visiting the remaining candidates. If a
person is detected and its face is recognized
or set as unknown, the person’s position in
the map is set as visited. After all objects in
the map have been visited, the robot moves to
Pi+1, and steps (2) to (4) are repeated.

4 Social Robotics Platform

The proposed system for human detection and
identification has been incorporated into Bender,
a domestic service robot. One of the most interest-
ing features of Bender is its ability to interact with
humans using human-like modalities (face, hand
gestures, speech, facial expressions, etc.)

4.1 Hardware Components

The main hardware components of the robot are:
(see Fig. 4)

– Chest The robot’s chest incorporates a tablet
PC as the main processing platform, an HP
2710p, powered with a 1.2 GHz Intel Core 2
Duo with 2 GB DDR II 667 MHz, and running

Fig. 4 Picture of the Bender robot

Windows XP Tablet PC edition. The tablet
includes 802.11 bg connectivity. The screen
of the tablet PC allows: (1) the visualization
of relevant information for the user (a web
browser, images, videos, etc.), and (2) entering
data thanks to the touch-screen capability.

– Head The robot’s head incorporates two CCD
cameras (Philips ToUCam III-SPC900NC),
pan-tilt movement of the whole head, and
the capability of expressing emotions. This is
achieved by several servomotors that move
the mouth, eyebrows, and the antenna-like
ears, and RGB LEDs placed around each eye.
In addition, it has RGB LEDs in the forehead
to simulate the robot’s breathing. The head
movements and expressions are controlled us-
ing dedicated hardware (PIC18F4550-based),
which communicates with the Tablet PC via
USB. The cameras are connected to the Table
PC using USB ports. The head’s weight is
about 1.6 Kg.
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– Thermal Vision The thermal camera is a FLIR
320 TAU Thermal Camera [37], with sensi-
tivity in the range 7.5–13.5 μm (long wave
thermal range) and a resolution of 324 × 256
pixels. It has a full frame rate of 30 Hz (NTSC)
and 25 Hz (PAL), the sensitivity is lower than
75 mK, and the scene range is from −40◦C
to +600◦C. We use a 9 mm lens with 48◦ ×
37◦FOV. The camera is placed in the robot
head and is calibrated manually (contrast and
brightness) at each session in order to improve
the contrast between human-body parts and
other objects and facilitate the detection of
people.

– 3D Vision The robot is powered with a PMD
CamCub2.0 TOF (Time-Of-Flight) camera
[38]. The camera, with a resolution of 204 ×
204 pixels, is placed in the robot chest, and
used for object detection while grasping.

– Arms The two arms of the robot are designed
to allow the robot to manipulate objects. They
are strong enough for raising a large glass of
water or a cup of coffee. Each arm has six
degrees of freedom, two in the shoulder, two
in the elbow, one for the wrist, and one for the
gripper. The actuators are eight servomotors
(six RX-64 and two RX-28). The arms are con-

trolled directly from the Tablet PC via USB.
The arm’s weight is about 1.8 Kg.

– Mobile Platform All described structures are
mounted on a mobile platform. The platform
is a Pioneer 3-AT, which has four wheels,
provides skid-steer mobility, and is connected
to a Hokuyo URG-04LX laser for sensing.
This platform is endowed with a Hitachi H8S
microprocessor. A Tablet PC (HP tc4200) is
placed on the top of the mobile platform
with the task of running the navigation soft-
ware. This Tablet PC is connected to the chest
Tablet PC by means of an Ethernet cable.

4.2 Software Architecture

The main components of the software architecture
are shown in Fig. 5. Speech synthesis and analysis,
as well as vision tasks (general object recognition,
face, hand and gesture recognition), take place
in the Tablet PC HP 2710p (running Windows
XP Tablet PC edition), while the Navigation and
Mapping Modules reside in the Tablet PC HP
tc4200 (running Linux), and the low-level control
modules run in dedicated hardware (head and arm
control). Both Tablet PCs are connected using
URBI (see Fig. 5). All the modules running in

Fig. 5 Modular
organization of Bender’s
software. The HP tc4200
runs the Navigation and
Mapping and the rest of
the high level processes
run in the HP 2710p
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the HP 2710p are controlled through URBI using
UObjects. The Navigation and Mapping Modules
are implemented using the CARMEN Navigation
Toolkit [39], which provides localization, simula-
tion, collision avoidance and logging, among other
functionalities. CARMEN has the added advan-
tage of being open source and providing specific
support for the hardware at our disposal: while the
“pioneer” module sends movement commands to
the Pioneer base and reads odometry information,
the “laser” module reads data from the Hokuyo
laser. CARMEN allows interfaces with other pro-
grams, thus enabling high-level processes (behav-
iors) to send commands.

The different software modules are explained
in [40].

5 Experiment Results

The ability of the system to detect and identify
humans in real domestic environments using a
standard benchmark of RoboCup@Home is pre-
sented. In addition, the ability of single modules
for detecting human-bodies and human-faces is
carried out using image databases created in do-
mestic environments under variable illumination
and view conditions. The detection results are
presented in terms of Detection Rate (DR), True
Positives (TP), and Number of False Positives
(FP). A detection is considered correct if the
detection window and the ground-truth window
overlap each other in at least 50% of their areas,
otherwise the detection is considered to be a false
positive detection.

5.1 Evaluation Databases

Four different image databases were generated in
order to evaluate the different modules, and to
compare the use of visual and thermal informa-
tion for human-body and human-face detection
in domestic environments. The databases were
captured using a Philips ToUCam III-SPC900NC
visual camera and a FLIR TAU 320 thermal cam-
era. These two cameras are the same ones used
in our domestic robot Bender (see description in
Section 4). The visual and thermal images were
captured simultaneously, with the cameras 2 cm

apart, and at a height of 120/160 cm depend-
ing on the experiment. Figure 6 presents some
examples of images captured with this camera
configuration.

The following databases were created:1

– Illumination Database Goal: To verify how
much the kind of illumination affects the
different modules when using visible and ther-
mal images, and to test the skin detection
modules and how they are affected by light-
ing conditions. Setup: 16 people, five images
per illumination and per person. The distance
between the camera and the observed person
was varied from 1 to 3 m with a step of 50 cm.
Three subsets were created, each one corre-
sponding to different illumination conditions:

◦ Indoor light, which corresponds to the
standard illumination conditions of indoor
rooms, incandescent and natural light

◦ Lamp light, which case a floodlight lamp
was placed 1 m behind the camera.

◦ Night light, case where the images were
taken without any artificial indoor illumi-
nation, only natural light was used.

– Rotation Database Goal: To evaluate how
much the illumination affects human and face
detection, to test whether it is possible to de-
tect blobs of the person even if the camera is
facing the back of the person, and to evaluate
the maximum rotation where the visible skin
detection works. Setup: 18 people, five images
with two kinds of illumination per person (150
images). 15 different yaw rotation angles were
considered: 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 45◦,
60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 180◦ (clockwise).
The images were captured with the camera
placed at a fixed distance of 2 m from the sub-
ject. The kinds of illumination are indoor light,
and a direct lamp located with an orientation
of 90◦ with respect to the subject.

– Distance Database Goal: To evaluate how the
visual and thermal face detectors are affected
by the size of the face in the image, i.e. to
characterize the response of the detectors to

1These databases are available at http://vision.die.uchile.cl

http://vision.die.uchile.cl
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Fig. 6 Examples of test
images: a indoor light,
illumination set, b lamp
light, illumination set, c
indoor light, rotation set,
d arena set

(a) (b)

(c) (d)

different distances. Setup: 18 people, 11 im-
ages per person taken with steps of 50 cm,
going from 1 to 6 m.

– Arena Database Goal: To evaluate the human-
body and human-face detection abilities of
different modules in real domestic environ-
ments. Description: 101 images containing 171
people and 104 faces, of which 37 are frontal
faces. This database was built in a home envi-
ronment with humans involved in real life sit-
uations. This database contains humans walk-
ing, sitting, and talking to each other, as well
as humans lying on the floor. Unlike the other

two databases, the number of humans per im-
age is variable (from 0 to 4). This database also
contains hot devices such as heaters, which
are included for evaluating the capability of
thermal-based detection modules for discrimi-
nating between this kind of device and human
bodies.

5.2 Evaluation of Single Modules

Three kinds of evaluations are performed: hu-
man skin detection (Tables 2 and 3), human body
detection (Tables 4 and 5), and face detection

Table 2 Thermal and
visual human skin
detection using the
illumination DB

DR detection rate (out of
16 Subjects); FP false
positives (for the
complete DB)

Distance Indoor light Lamp light Night light

Thermal Visual Thermal Visual Thermal Visual

[mt] DR % FP DR % FP DR % FP DR % FP DR % FP DR % FP

1 96.77 50 6.45 212 96.77 49 51.61 133 90.32 43 0 135
1.5 85.71 25 7.14 232 81.82 30 15.91 151 75 33 0 103
2 80.44 14 6.52 257 78.26 18 0 166 78.26 13 0 289
2.5 68.75 11 4.17 255 72.92 9 2.08 170 68.75 8 0 108
3 63.83 5 14.89 289 66.67 6 2.08 162 64.58 4 0 107
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Table 3 Thermal and
visual human skin
detection using the
rotation DB

DR detection rate (out of
18 Subjects); FP false
positives (for the
complete DB)

Rotation Indoor light Lamp light

Thermal Visual Thermal Visual

[degrees] DR % FP DR % FP DR % FP DR % FP

0 96.55 22 65.52 68 98.25 24 12.28 61
5 96.61 22 71.19 66 98.28 22 10.34 63
10 96.61 29 62.71 65 98.28 27 12.07 49
15 96.61 28 59.32 66 98.28 32 8.62 52
20 96.61 27 62.71 66 96.61 29 8.47 49
25 98.28 27 58.62 66 96.67 26 6.67 48
30 98.31 29 55.93 70 98.31 29 1.69 42
45 96.61 29 52.54 75 96.55 25 5.17 47
60 98.21 22 41.07 72 98.25 25 5.26 53
75 89.47 28 36.84 71 87.72 28 7.02 53
90 89.80 36 26.53 71 88.00 30 10.00 42
105 89.13 34 17.39 70 90.91 32 4.55 30
120 94.87 37 12.82 68 94.74 34 2.63 31
135 97.22 35 11.11 63 94.44 41 0.00 26
180 74.19 22 16.13 57 68.75 31 0.00 27

(Table 6). For these evaluations, the databases
described in Section 5.1 are used.

5.2.1 Human Skin Detection

The detection of human skin carried out by the
thermal and visible human skin detectors is eval-
uated using the two data sets (Illumination and
Rotation) described in Section 5.1. The obtained
results, displayed in Tables 2 and 3, clearly show
that the thermal skin detector is not dependent
on the illumination conditions, while the visible
skin detector is highly dependent on the illumi-
nation conditions, giving good results only when
there is enough (and non-saturated) light, and
backgrounds that do not contain skin-like colors.
The thermal skin detector works better at 2 m

Table 4 Thermal human body detection using the illumi-
nation DB

Distance Indoor light Lamp light Night light

[mt] DR % FP DR % FP DR % FP

1 100 44 100 47 100 46
1.5 100 57 100 56 100 54
2 100 56 100 56 100 56
2.5 100 56 100 57 100 56
3 100 53 100 54 100 53

DR detection rate (out of 16 Subjects); FP false positives
(for the complete DB)

from the subjects, having a smaller number of
detections (both true positives and false positives)
when the subject is far away from the camera,
and a smaller number of detections (both true
and false positives) when the subject is closer
to the camera, as can be observed in Table 2.
The visible skin detector does not show different
performances for different distances (Illumination

Table 5 Thermal human body detection using the rotation
DB

Rotation Indoor light Lamp light

[degrees] DR % FP DR % FP

0 100 30 100 29
5 100 31 100 28
10 100 31 100 27
15 100 32 100 32
20 94.44 32 94.44 33
25 94.44 32 100 32
30 94.44 32 100 32
45 94.44 31 100 29
60 100 30 100 30
75 100 28 100 27
90 100 26 100 27
105 100 27 100 25
120 100 24 100 24
135 100 25 100 24
180 100 27 100 24

DR detection rate (out of 18 Subjects); FP false positives
(for the complete DB)



J Intell Robot Syst (2012) 66:223–243 237

database), and has very bad performance in all
subsets of the database. The main reason is the
large number of skin-like colors in the background
of the database images, which is a common issue
in most domestic environments containing wood
and other material with skin-like colors (see Fig. 6
for an example). It is important to mention that
the thermal human skin detector is able to work
with night light (almost no illumination), which is
a very important capability for a domestic robot.

It can be observed in Table 3 that the thermal
skin detector is very robust, and responds rather
well for different rotations, being able to locate
skin areas even if the person is not facing the
camera. The visible skin detector has about three
times more false positives than the thermal skin
detector, and the detection of skin parts decreases
with the rotation angle. As in the illumination
dataset, in the rotation dataset the thermal skin
detector is invariant to the illumination conditions
and the visible skin detector has a lower detection
rate when a (strong) lamp is used.

5.2.2 Human Body Detection

It can be seen in Tables 3 and 4 that the im-
plemented human body detector is very robust
and able to detect human bodies and human-body
parts under different illumination conditions, and
view angles in the two databases (Illumination and
Rotation) described in Section 5.1. Detection in
night light conditions works well also.

Nevertheless, it should be stressed that the
system has few false positives (approximately 1.6
per each image), and that human body candidates
need to be further analyzed (e.g. using a face
detector) in case decisions about the presence of
humans need to be made.

5.2.3 Frontal Face Detection

As previously mentioned (Section 3.4), we imple-
mented two frontal face detectors, one for thermal
images and one for visual images. Table 6 presents
the obtained face detection results in the Distance
database described in Section 5.1. As can be ob-
served, the detectors work robustly for faces that
are close to the camera (<3 m). It is important

Table 6 Thermal and visual frontal face detection in the
distance DB

Distance Thermal Visual

[mt] DR % FP DR % FP

1 100 0 100 1
1.5 100 0 100 2
2 100 1 88.89 0
2.5 100 1 77.78 1
3 83.33 1 66.67 0
3.5 55.56 1 77.78 1
4 38.89 1 83.33 1
4.5 27.78 0 77.78 0
5 16.67 0 83.33 0
5.5 16.67 0 55.56 0
6 0 0 16.67 0

DR detection rate (out of 16 Subjects); FP false positives
(for the complete DB)

to stress that at these distances the thermal face
detector has a higher detection rate than the visual
face detector, and that it is able to detect more
than one face at the same time. Thus, our hypothe-
sis is confirmed that a thermal face detector based
on the use of cascades of boosted classifiers, as
implemented in this work for the first time, is able
to detect human faces robustly.

For both detectors, the detection rate decreases
when the faces move away from the camera, but
the decrease is much greater for the thermal face
detector. This is caused by the resolution of the
used thermal camera (324 × 256) being half that
of the visual camera (640 × 480). Thus, the im-
plemented thermal frontal face detector is not
capable of robustly detecting frontal faces that are
more than 3 m away from the camera. (This result
is also observed in Section 5.3).

5.3 Person Detection in Domestic Environments

Table 7 presents detection results for humans,
faces and frontal-faces in the Arena database
(described in Section 5.1) using five different
methods:

– Visual Frontal Face Detector:
The frontal faces detected in the visible spec-
trum are the only information used to detect
humans. This is one of the standard methods
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used for detecting humans in an unknown
scene.

– Thermal Frontal Face Detector:
The frontal faces detected in the thermal spec-
trum are the only information used to detect
humans.

– Human Body Detector: The human blobs de-
tected, using the thermal human detector (see
Section 3.3), are used for detecting humans.

– Thermal Skin Blob Detector: Skin blobs de-
tected, using the thermal human skin detector
(see Section 3.2), are used for detecting faces.

– Person Detector using the visual face detector:
People and faces are detected using the In-
tegrated Blob and Detection Analysis module
described in Section 3.6. In this case a visual
face detector is used.

– Person Detector using the thermal face detec-
tor: People and faces are detected using the In-
tegrated Blob and Detection Analysis module
described in Section 3.6. In this case a thermal
face detector is used.

Note that in the Arena database most faces
are far from the camera, which makes results for
the thermal face detector have a very low detec-
tion rate, because of their low resolution. (Recall
that the thermal camera has a resolution of only
320 × 256 pixels). This does not happen with
larger faces, and in the ‘Who is Who?’ benchmark
(Section 5.4) the thermal frontal face detector
works well.

It can be observed in Table 7 that using the
Frontal Face Detector (either thermal or visible)
alone is not enough for detecting humans. The
Frontal Face Detector for visible images can detect
frontal faces robustly (83.78%) with a very low
false positive rate (only 25 false positives in 101
images), but it can detect only 51.91% of the total
number of faces (frontal and non-frontal) in a
home environment.

The Human Body Detector can detect most of
the humans, but it has a large number of false
positives. It cannot detect faces. On the other
hand, the Thermal Skin Blob Detector, which is
not able to detect humans, can find all faces, but
has a very large number of false positives.

The Person Detector can reduce the number
of false positives considerably (to less than one-

third) when detecting faces, and it can reduce the
number of false positives considerably (to one-
fifth) when detecting frontal faces, without dimin-
ishing the detection rate.

These results show the robustness of the pro-
posed system for detecting people, faces and
frontal faces. The proposed Person Detector can
detect all humans, ∼50% of face candidates, and
∼83% of the frontal faces with a relatively low
number of false positives, particularly in the case
of frontal faces. The large number of false posi-
tives when detecting humans can be reduced by
discarding false positives based on the blob size
(see, for example, the small red blobs in Fig. 2d).
These results demonstrate that the proposed sys-
tem appropriately solves the robot detection of
humans problem in domestic environments.

5.4 ‘Who is Who?’ Benchmark

‘Who is Who?’ is one of the standard benchmarks
used in the RoboCup@Home competitions. The
main goal of the benchmark is to test the ability
of domestic robots “to autonomously detect and
recognize people in an unknown environment”
[36]. In order to accomplish this task it is ex-
pected that “without manual calibration, a robot
will have to introduce itself to a group of people,
ask for their names, memorize them and recognize
the people when meeting them again”. The test
focuses “on human detection/recognition, face
detection/recognition, safe navigation and human-
robot interaction with unknown people” [36]. Ba-
sically the test is as follows: The robot enters
the arena through the door and stops next to it.
Two people enter through the door and introduce
themselves to the robot, one by one. The robot
asks for their names and memorizes them. When
told to do so by an operator, the robot goes to the
room and starts looking for guests. In the room,
there are two other people who are unknown to
the robot. One of them is sitting and the other one
is standing. There is also one person standing in
the room who is known to the robot. When the
robot finds a person, it has to approach it and say
that it has found a person. Then it has to recognize
the person by saying its name or state that the
person is unknown. The distance from the robot
to the person must not exceed 1 m.
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Table 7 Results of human detection, face detection and frontal face detection in the arena database

Method Human detection Face detection Frontal face detection

DR % FP DR % FP DR % FP

Visual frontal face detector 35.67 25 51.92 25 83.78 25
Thermal frontal face detector 3.51 5 5.77 5 16.22 5
Human body detector 99.42 241 – – – –
Thermal skin blob detector – – 100.00 499 – –
Person detector using the visual face detector 99.42 241 51.92 7 83.78 5
Person detector using the thermal face detector 99.42 241 7.69 1 16.22 1

There are 101 images in total containing 171 Humans, 104 faces and 37 frontal faces
DR detection rate; FP false positives (for the complete DB)

The following human detection and iden-
tification systems were tested in this benchmark:

– Full Visible: Only the visible face detector
is used to find people in the arena. A face
recognition system working on visible images
is used to identify them. This is the standard
approach used by most teams participating in
the RoboCup@Home world competitions.

– Full Thermal: The Person Detector using ther-
mal face detection, as tested and presented in
the previous sections, is used to find people in
the arena. A face recognition system working
on thermal images is used to identify them.

– Hybrid Thermal and Visible: The Person De-
tector using thermal face detection, as tested
and presented in the previous sections, is used
to find people in the arena. A face recognition

system working on visible images is used to
identify them.

Table 8 presents the results of the evalua-
tion of the ‘Who is Who?’ benchmark. In each
scene there were five people, of whom three were
known to the robot. Two people were standing
with their faces looking towards the outside of the
arena. Thus the frontal face detector was not able
to detect those two faces. The experiment was run
three times using each method mentioned above,
and in each run the people known to the robot
were the same, and their position in the room
was not changed. The detectors and recognition
modules used correspond to the ones described in
Section 3 and characterized in Section 4.

The obtained results show that the Full Visible
system works well when detecting faces (it de-
tected 88.9% of the frontal faces), and the visible

Table 8 ‘Who is Who?’ evaluation

Method Face detection Person detection Face recognition

DR % | TP FP DR % | TP FP Correct Incorrect Missed

Full visible Run 1 66.7 | 2 0 40 | 2 0 2 0 3
Run 2 100 | 3 0 60 | 3 0 2 1 2
Run 3 100 | 3 0 60 | 3 0 3 0 2
Avg. 88.9 | 2.7 0 53.3 | 2.7 0 2.7 0.3 2.7

Full thermal Run 1 100 | 3 0 80 | 4 0 4 0 1
Run 2 100 | 3 0 100 | 5 0 3 2 0
Run 3 66.67 | 2 0 80 | 4 0 3 1 1
Avg. 88.9 | 2.7 0 86.6 | 4.3 0 3.3 1 0.7

Hybrid thermal and visible Run 1 66.7 | 2 0 80 | 4 0 3 1 1
Run 2 100 | 3 0 80 | 4 0 4 0 1
Run 3 100 | 3 0 100 | 5 0 4 1 0
Avg. 88.9 | 2.7 0 86.6 | 4.3 0 3.7 0.7 0.7

Of the five humans presented in the image, two of them were standing in positions where a frontal face detector would not
work (see Fig. 7). All methods were run three times each. Best average results shown in bold letters. See text for details
DR detection rate; FP false positives (for each run)
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Fig. 7 Examples of the
‘Who is Who?’
experiment run. a View
from the top of the home
environment. b Robot’s
view

(a) (b)

face recognition method has a high recognition
rate (on average it correctly recognized 2.7 of the
3 detected people), while mistaking them in only
one of nine cases. Nevertheless it cannot detect
people whose faces are not looking in a direction
where the robot can detect them.

The obtained results for the Full Thermal sys-
tem show that it is very good for detecting people
(it detected 86.6% of the people with 0 false posi-
tives per run), it gave good results when detecting
and verifying the frontal faces in thermal images
(it detected 88.9% of the frontal faces presented),
and has a good recognition rate (on average it
recognizes correctly 3.3 of 4 detected people), but
it recognizes wrongly in three of 12 cases.

The Hybrid Thermal and Visible has a similar
performance than the Full Thermal system for
people and face detection, but it improves the
recognition rate (on average it recognizes cor-
rectly 3.7 of 4 detected people), and it recognizes
wrongly in two of 12 cases.

The obtained results show that the joint use of
thermal and visible information allows achieving
high human detection and high human recognition
rates at the same time.

One of the main problems observed with the
thermal camera is that its response is dependent
on the length of time the camera has been on,
considerably affecting the recognition rate, be-
cause images become saturated and the thresholds

need to be changed accordingly. Another prob-
lem is that people’s body temperatures could vary
widely (e.g. perspiration). These problems will be
addressed by us in future work.

6 Conclusions

The development of robots for domestic environ-
ments is a challenging task. One of the most basic
problems is how to enable them to detect and
identify humans robustly. In the present manu-
script, a system to solve this problem is proposed.
Thermal and visual information sources are used
for detecting humans, locating their faces, and
recognizing them robustly. An integrated analy-
sis is performed to detect human-candidate ob-
jects, and to process them further in order to
verify the presence of humans and their iden-
tity. A face detector is used to verify the pres-
ence of humans, and a face recognition system is
used to identify them. In case direct identification
is not possible, an active vision search mecha-
nism is employed to improve the relative pose
of a candidate object/person. The response of
the different proposed modules is characterized,
and the proposed system is validated using image
databases of real domestic environments, and a
human detection and identification benchmark of
the RoboCup@Home research community.
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The reported results demonstrate that the pro-
posed system solves the robot human detection
and identification problem in domestic environ-
ments appropriately. Thermal skin detection and
thermal human detection are robust under vari-
able illumination and view angles, and allow de-
tecting human bodies and human body parts at
appropriate distances for domestic applications
(∼6 m). The experiments also confirmed our hy-
pothesis that a Thermal Face Detector based on
the use of a cascade of boosted classifiers, and
implemented in this work for the first time, is able
to detect human faces robustly.

The use of a thermal camera allows robots
to work under difficult illumination conditions
(low illumination, uneven illumination, illumina-
tion from different sources), and to detect humans
that are far from the camera with higher accuracy,
while the use of a visual camera allows work with
un-calibrated images, in environments with many
warm objects, with objects that have textures or
textured appearance, and a wide range of objects
because of the availability of a larger number of
databases for training detectors or classifiers.

The background of the images can be quite
bothersome when trying to detect faces or objects
using normal cameras; this problem can be solved
easily by using a thermal camera. Besides, since
the information given by the thermal system is
complementary to the information provided by
the visible system, the false detections generated
by the thermal system can be removed by the
visible system and vice versa. The problem of skin
detection can be solved much more easily in the
thermal spectrum than in the visible spectrum.

It is important to mention that the proposed
human detection and identification system is able
to work with night light (almost no illumination),
thanks to the use of thermal images. This is a very
important capability for general-purpose domestic
robots, which should be able to take care of home
tasks (e.g. surveillance, elderly care) during both
the day and the night.

As previously mentioned, one of the main
problems observed in the use of thermal cameras
is that their response is dependent on the length
of time the camera is on, affecting the recognition
rate, because images become saturated and the
thresholds need to be adjusted accordingly. This

issue will be addressed as part of our future work.
In addition, we will investigate the use of thermal
images for hand gesture detection and recogni-
tion, and we will continue our work on blood-
vein based face recognition using thermal images.
We will also further develop our multisensory ap-
proach (time of flight cameras, thermal cameras,
visible spectrum cameras, and lasers) for human
and object detection and recognition by robots in
domestic environments.
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