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Symmetry-induced pinning-depinning transition of a subharmonic wave pattern
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The stationary to drifting transition of a subharmonic wave pattern is studied in the presence of inhomogeneities
and drift forces as the pattern wavelength is comparable with the system size. We consider a pinning-depinning
transition of stationary subharmonic waves in a tilted quasi-one-dimensional fluidized shallow granular bed driven
by a periodic air flow in a small cell. The transition is mediated by the competition of the inherent periodicity of
the subharmonic pattern, the asymmetry of the system, and the finite size of the cell. Measurements of the mean
phase velocity of the subharmonic pattern are in good agreement with those inferred from an amplitude equation,
which takes into account asymmetry and finite-size effects of the system, emphasizing the main ingredients and
mechanism of the transition.
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Stationary to propagating transitions in pattern forming
systems [1,2] have been studied theoretically, numerically,
and experimentally in several examples, such as binary fluid
convection [3], Faraday waves [4], and nonlinear optical
patterns [5,6], to mention a few. However, this type of transition
is usually studied in the context of spontaneous symmetry
breaking [1], where the pattern will choose spontaneously
the direction of its propagation as a control parameter η
exceeds a critical value ηc. Another type of stationary to
propagating transition arises when stationary patterns are
exposed to induced parity-breaking effects, drift forces, or
inhomogeneities, being commonly deformed and advected
as η < ηc [1,2], which are usually related to convective
instabilities [1]. Although stationary to propagating transitions
have been extensively studied (see [1] and references therein),
to our knowledge there is no complete characterization of
the effect of discreteness, finite size, or boundary effects.
Furthermore, to our knowledge, no detailed study has been
performed on the nature of the instabilities in finite-size
domains for small η, such as in the case of secondary
instabilities of cellular patterns. It has been observed in a
nonlinear optical system [7], as in fluid convection experiments
[3,8], that stationary patterns will not drift for small but
nonzero η inside a definite range of values. Outside of this
range, the patterns begin to drift. This phenomenon has
been termed pinning-depinning transition [9]. This effect
has been explained theoretically as a secondary imperfect
bifurcation of stationary patterns to traveling waves due to
spatial inhomogeneities [10]. However, as we will show later,
the pinning-depinning transition is a generic phenomenon
due to the coupling of envelope variations, generated by the
boundary conditions and inhomogeneities, with the underlying
pattern.

In this Rapid Communication, we study the stationary
to drifting transition of subharmonic wave patterns in the
presence of inhomogeneities and drift forces when the pattern
wavelength is comparable with the system size. We understand
the appearance of this transition as a competition between
the inherent periodicity of the wave pattern, which acts as a
potential barrier for the propagation of the oscillating pattern,
and the asymmetry in the system, which induces a drift in
a preferred direction. We study experimentally this type of

transition of a subharmonic granular wave pattern in a small
tilted container and we show the appearance of a pinning-
depinning transition of the wave pattern as the inhomogeneity
control parameter, i.e., the inclination angle of the container ϕ,
is increased. We measure the mean phase velocity of the wave
pattern and characterize the pinning range. In order to describe
this type of transition, we propose a simple amplitude equation
that describes correctly the evolution of the wave pattern, from
which we derive a phase equation which trivially describes the
transition, and we contrast it with numerical simulations and
the experimental findings.

The prototype model used to describe phenomenologically
the large-scale spatiotemporal dynamics in parametrically
driven extended systems is the parametrically driven damped
nonlinear Schrödinger equation with nonlinear dissipation
[11,12],

∂τψ = −iνψ − (i + δ)|ψ |2ψ − i∂2
Xψ − µψ + γ ψ̄, (1)

where ψ(τ,X) is an order parameter field that accounts
phenomenologically for the envelope of the oscillatory surface
of the wave patterns, and τ and X account for time and
space coordinates, respectively. ν, µ, δ, and γ stand for
the detuning between natural and forcing frequencies, linear
and nonlinear damping, and parametric forcing amplitude,
respectively. Nonlinear dissipation, proportional to δ, must
be added in order to model the highly dissipative response
of the system. The quiescent state ψ = 0 exhibits a spatial
supercritical instability for positive detuning (ν > 0) as energy
injection equals energy dissipation (µ = γ ), generating pat-
terns with an amplitude proportional to

√
γ − µ and a critical

wave number kc ≡
√
ν. Model (1) shows similar scenarios

to those observed in parametrically amplified surface wave
patterns.

To understand the presence of spatial inhomogeneities and
drift forces, we introduce both effects in model (1) to correctly
describe the wave pattern dynamics. More precisely, we con-
sider that (i) the parameters become weakly inhomogeneous,
i.e., ν̃ = ν + ενo(X),µ̃ = µ + εµo(X), and γ̃ = γ + εγo(X),
where the terms proportional to ε are small corrections, and
(ii) a drift term develops on the wave pattern evolution. To
account for these effects, the previous model is modified as
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FIG. 1. (Color online) Pinning-depinning transition: bifurcation
diagram of the mean pattern speed as a function of the intensity of drift
for model (2) with ν̃ = 0.058, δ̃ = 0.100, γ̃ = 0.264, and µ̃ = 0.115.
The inset images correspond to the space-time evolution observed in
the respective regions.

follows:

∂τψ = −iν̃ψ − (i + δ)|ψ |2ψ − i∂2
Xψ − µ̃ψ + γ̃ ψ̄ +β∂Xψ,

(2)

where β accounts for the intensity of the drift. We can
assume without loss of generality that νo(X), µo(X), and
γo(X) are proportional to X in the limit of a spatial linear
ramp perturbation of the control parameter. The numerical
simulations of model (2) with β = 0 and specular boundary
conditions show stationary patterns with amplitude (

√
γ̃ − µ̃)

and wave number (
√
ν̃), which varies linearly along the system

(cf. the inset of Fig. 1). It is noteworthy that for model (2)
with β = 0, propagative patterns are not observed. This is
understood by calculating the amplitude equation near the
spatial instability, where only the modulus of the pattern
amplitude is affected by inhomogeneities as it is deformed.
Instead, the phase is not affected. Thus, the system cannot
exhibit a pinning-depinning transition. On the other hand,
numerical simulations considering only the drift term show
a twofold effect: (i) the pattern is deformed as the amplitude
increases in the direction of propagation (Fig. 1, insets), and
(ii) for large enough β, we observe that the pattern propagates
with constant speed. Figure 1 shows the behavior of the average
speed as a function of β. When β is decreased, the pattern
speed shows an oscillatory behavior (Fig. 1, right inset). By
decreasing β even more, the pattern propagates through peri-
odic jumps. The mean waiting time between jumps increases
as β is decreased. Finally, for β ! βc the pattern becomes
stationary, i.e., it is nonpropagative, despite the fact that the
system is in the presence of a drift force. In this region, termed
pinning range, the pattern does not propagate. For negative
β, we have an analog scenario, as illustrated in Fig. 1 (left
inset). The origin of the pinning-depinning transition comes
from the coupling between variations of the envelope and the
underlying pattern, which in this case is caused by boundary
conditions. This is similar to the phenomenon observed in
front propagation [9,13]. To give a unified explanation of
the pinning-depinning transition, let us consider the pattern
near the spatial instability, with γ = µ + + (+ $ 1 is the

bifurcation parameter) and the drift term, characterize by β,
as a perturbation. Let us introduce in model (2) the following
ansatz:

ψ(τ,X) =
√

+

3δ
cos[

√
νX + φ(τ,X)] + w(φ,τ,X), (3)

where φ(τ,X) stands for the phase of the pattern, which
is a dynamic variable influenced by the drift force, and
w(φ,τ,X) accounts for the corrective terms, which are of the
order of +3/2. By linearizing in w(φ,τ,X) in Eq. (2) after
straightforward calculations, and using the stationary phase
method for nonresonant terms [14], one finds the following
phase equation at dominant order:

∂τφ = βkc + ∂Xφκo sin(2φ + 2kcX), (4)

where κo = [+/2δ1/3]3/2/kc. The first term describes the phase
velocity induced by the drift. This speed is the usual result
found using multiscale analysis. It is important to note that
kc is determined by the size of the system. The second term
accounts for the coupling between the envelope variations and
the underlying pattern: it is a spatial forcing proportional to the
phase gradient, where the spatial variations of the envelope are
comparable to the underlying pattern wavelength. This type of
term emerges from nonresonant terms [13], which cannot be
obtained using the standard multiscale method. Introducing
the following change of variable, φ(τ,X) = χ (τ ) + θ (X),
where χ is the global phase and θ is a correction function,
roughly proportional to X with small spatial oscillations [14].
By integrating over the spatial domain, the above equation
reads

χ̇ = βkc + β0kc sin(2χ + χ0), (5)

where the dot stands for the time derivative, β0 ≡√
a2 + b2/kc, a = κo

∫
∂Xθ cos(2θ + 2kcX)dx/L, and b =

κo

∫
∂Xθ sin(2θ + 2kcX)dx/L, with L being the system size

and tan(χ0) = a/b. The dynamics of this global phase de-
scribes the motion of a pattern of a fixed amplitude which
moves with a speed χ̇ driven by a constant forcing plus
a periodic one. The bifurcation diagram of this equation is
similar to that illustrated in Fig. 1, that is, for |β/βo| ! 1
(pinning range), the phase is constant that accounts for the
stationary pattern, and for |β/βo| > 1, the phase spreads by
making a periodic movement that accounts for the traveling
wave. One can integrate the above model and find the analytical
expression for the average speed [15],

〈χ̇〉 =
{

− β
π

√
(1/βo)2 − (1/β)2, |(β/βo)| > 1,

0, |(β/βo)| ! 1.
(6)

Hence, for small β, the pattern is stationary, and for β = βo,
the system exhibits a saddle-node bifurcation [9]. In the case
of β greater than βo, the pattern drifts with a speed that is
proportional to the square root of β [〈χ̇〉 ≈

√
2(β − βo)],

and, finally, for large β, the pattern propagates with constant
velocity proportional to β, which is consistent with the
numerical observations illustrated in Fig. 1.

With the aim of studying a physical realization of this
transition, we consider a shallow granular layer in a small
cell subjected to a periodic air flow. The experimental cell
and measurement techniques, displayed in Fig. 2, and the
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FIG. 2. (Color online) (a) Typical image used for interface
tracking procedures. (b) Particle tracking scheme using fluorescent
dyed particles. (c) Experimental setup as explained in Ref. [16].

theoretical description of the appearance of the large-scale
pattern are similar to the one described in Ref. [16]. Here,
the complex field ψ accounts for the envelope of the granular
layer interface fluctuations [cf. Fig. 2(a)]. The periodic air
flow is generated by an air compressor and regulated by an
electromechanical proportional valve via a precision control
regulator and an air lung. The aperture of the valve is controlled
by a periodic voltage signal with a forcing frequency fo coming
from one of the outputs of a two-channel function generator
through a power amplifier, and the pressure fluctuations
generated by the air flow are monitored at 50 cm before
the inlet by a dynamic pressure sensor and an oscilloscope.
From the monitored pressure fluctuations, the peak pressure
amplitude Po is computed as the Fourier transform related to
the forcing frequency fo. The collective motion of the granular
bed is acquired by a high-speed digital video camera triggered
externally by the other output of the frequency generator. The
acquisition frequency of the images is set at fo/2 to ensure
phase locking with the subharmonic wave pattern. The image
sequence and its corresponding pressure signal are processed
and analyzed. The granular surface profile is deduced by using

an intensity threshold algorithm. Additionally, a biaxial tilt
sensor driven by a 12 V power supply is positioned solidary on
top of the cell in order to measure the inclination of the cell with
respect to the axis of gravity in the x-z plane; this inclination
is represented by the angle ϕ (cf. Fig. 2). In this experimental
configuration, the angle ϕ of inclination is monitored by
measuring the x-axis voltage difference. The variations of the
off-plane inclination angle on the x axis are also monitored to
ensure that only in-plane movements of the cell are allowed.
Hence, for this experimental setup, the control parameters are
the forcing frequency fo, the peak amplitude Po of the pressure
fluctuations at fo, and the in-plane inclination angleϕ. The gra-
nular layer is deposited over a horizontal porous sponge and
excited parametrically by a modulated air flow oscillating
at fo = 10 Hz at a peak amplitude Po. Above a critical
peak amplitude P c

o = 619 ± 15 Pa, a fluctuating stationary
subharmonic wave pattern oscillating at half the forcing
frequency, fo/2 = 5 Hz, with a wavelength λc = 2π/kc =
1.2 cm appears on the surface of the granular layer through
a supercritical bifurcation. The amplitude of the wave pattern
Ae is obtained from a set of images as Po is varied. For a given
value of Po, the cell is inclined in the x-z plane with an angle
ϕ. Both parameters can be related to Eq. (4) as (Po − P c

o ) ∝ +
and ϕ ∝ β. In this configuration, the stationary subharmonic
wave pattern suffers a secondary instability: it begins to drift
to the left (right) for positive (negative) ϕ with a well-defined
mean velocity 〈v〉 [cf. Fig. 3(a)]. The measured velocity of
the pattern is computed as follows. For a given ϕ and peak
pressure P c

o , a set of images is acquired at fo/2 for 200 s in a
600 × 400 px. From each image, the wave pattern is computed
and filtered at the critical wavelength λc to compute its local
unwrapped phase, φ(x,t) ≈ kcx + χ (t) (as described above).
As the pattern moves, we can compute the phase velocity of the
pattern from the time derivative of χ , χ̇ [depicted in Figs. 3(b)
and 3(c)], and then compute the mean velocity of the pattern
by transforming phase changes to spatial changes through the
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FIG. 3. (Color online) (a) Stroboscopic space-time diagrams acquired at fo/2 of the subharmonic wave pattern for different inclination
angles, ϕ = −1.16◦ (top), ϕ = 0.15◦ (middle), and ϕ = 1.25◦ (bottom). (b) Mean phase velocity 〈χ̇〉 vs inclination angle ϕ. The error bars
correspond to the standard deviation of the measured velocity. The pinning range is depicted in blue (center column). Left (right) inset
corresponds to the spatiotemporal diagram of the wave pattern amplitude for negative (positive) ϕ. (c) Temporal trace of the unwrapped global
phase χ vs time t , for increasing ϕ (from top to bottom). (d) Temporal trace of the unwrapped global phase χ for ϕ = 0.32◦ (light gray) and
ϕ = −0.32◦ (dark gray).
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proportionality coefficient r = 4 s◦/mm. The phase velocity
〈χ̇〉 (and hence the mean velocity of the pattern) is roughly
proportional to ϕ for |ϕ| > 1◦, as shown in Fig. 3; however,
as the inclination angle is decreased to small but measurable
values, |ϕ| ! 0.8◦, the mean velocity becomes rapidly zero
and the pattern does not drift. This inclination interval, namely,
the pinning range [9,13], is represented by the shaded region
in Fig. 3(b). To emphasize the existence of a particle flow
responsible for the pattern drift, we have performed a simple
particle tracking scheme [cf. Fig. 2(b)]. Here, 20% of the
grains are dyed with green fluorescent paint and placed at
the left side of the cell. The layer is illuminated with UV lights
and the fluorescent particles are tracked as they propagate
through the layer. Using this technique, the mean velocity
of the dyed particle center of mass 〈vd〉 can be qualitatively
described: 〈vd〉 is larger as ϕ goes from positive to negative.
Both the numerical and experimental results displaying a
pinning-depinning transition of the subharmonic wave pattern
present a good agreement with our theoretical prediction. In
Fig. 3, the dashed curve is the fit obtained using Eq. (6) as a
fitting curve: for small inclination ϕ, a pinning range develops
[cf. Fig. 3(b)], and for ϕ larger than 1◦, a linear tendency
appears, with a slope ∼1 (data not shown here). The inclusion
of inhomogeneous coefficients does not change qualitatively
the above description, but only slightly modifies the ansatz (3).
The effect of noise and fluctuations can also be considered,

rendering the transition smooth [13,14]. This effect is already
observable in the mean velocity [cf. Fig. 3(b)], as experimental
data show a clear smoothing of the pinning curve. To wit,
a typical temporal trace of the unwrapped global phase is
depicted in Fig. 3(d), where noise-induced phase jumps are
shown forϕ = ± 0.32◦. These jumps are driven by fluctuations
of the granular pattern, and can be understood from Eq. (5).
In this sense, it must be stressed that this pinning-depinning
phenomenon is independent of the system under study, and
it can be found in other systems, where scale separation is
broken by the coupling of large and small scales.

In conclusion, we have studied the pinning-depinning
transition of stationary subharmonic waves in a quasi-one-
dimensional fluidized shallow granular bed driven by a
periodic air flow in a small cell. The transition is mediated by
the competition of the inherent periodicity of the subharmonic
pattern, the asymmetry of the system, and the finite size of
the cell. The mechanism described above naturally emerges
from the dynamic phase of the pattern when one considers the
nonresonant terms.
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