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Abstract Given a sequence of random variables {Xn,n ≥ 1} and δ ∈ R, an obser-
vation Xn is a δ-record if Xn > max{X1, . . . ,Xn−1} + δ. We obtain, for δ ≤ 0, weak
and strong laws of large numbers for the counting process of δ-records among the first
n observations from a sequence of independent identically distributed random vari-
ables, with common distribution F , possibly discontinuous. We provide examples of
our results in the context of common probability distributions. Finally, we show how
δ-records can be used for maximum likelihood estimation.
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1 Introduction

Given a sequence of random variables {Xn,n ≥ 1}, an observation Xn is a record
if it is greater than all previous observations; that is, if Xn > Mn−1, where Mn =
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max{X1, . . . ,Xn}. On the other hand, Xn is said to be a δ-record if Xn > Mn−1 + δ,
where δ is a fixed real parameter.

The mathematical theory of records is a well-established branch of extreme value
theory, with interesting applications; see Arnold et al. (1998), Nevzorov (2001) for
general theory and applications of records and Gulati and Padgett (2003) for infer-
ential procedures based on record-breaking data. In recent years generalizations of
records, usually known as near-records, have attracted interest because of their rele-
vance in, among other fields, stochastic models of large insurance claims; see Balakr-
ishnan et al. (2005), Hashorva (2003) or Hashorva and Hüsler (2005). There is how-
ever no generally agreed definition of near-record but, among those proposed in the
literature, δ-records seem to be a natural and tractable alternative which includes, as
particular cases, usual records (δ = 0) and weak records (δ = −1), for integer-valued
observations. Besides being a natural generalization of records, δ-records are related
to other existing concepts such as δ-exceedance records (Balakrishnan et al. 1996),
ε-repeated records (Khmaladze et al. 1997) and near-records (Balakrishnan et al.
2005; Pakes 2007).

In the present paper we obtain laws of large numbers for Nn, the number of δ-
records among the first n observations from a sequence of nonnegative, independent
and identically distributed (iid) random variables, with common distribution F , in
the case of δ ≤ 0. Our results are a natural complement of the central limit theorem
for Nn given in Gouet et al. (2007) but here, in order to widen the field of potential
applications, we allow F to be general, unlike in Gouet et al. (2007) where observa-
tions are integer valued or in Balakrishnan et al. (1996), Balakrishnan et al. (2005),
Khmaladze et al. (1997) and Pakes (2007), cited above, where F is assumed to be
continuous.

It is well known that the growth rate of usual records for continuous distributions
is logn, regardless of F , while in the discrete case the rate depends on the tail of F .
Our results show that the growth of the number of δ-records Nn depends on the tail
behavior of F , both for continuous and discrete distributions. In fact, when F is
heavy-tailed (heavier than exponential), the growth rate of Nn is logn, the same than
usual records; when F has moderately heavy tails (such as exponential) the growth
rate is proportional to logn, the factor depending both on F and δ; when F is light-
tailed (lighter than exponential) the growth rate of Nn is faster than logn, the specific
rate depending both on F and δ.

Some particular cases of our results are worth highlighting. First, taking δ = 0 we
have a new strong law of large numbers for the number of records when F has mod-
erately heavy tails; notice that, besides the classical continuous case (Rényi 1962),
only results for discrete (Gouet et al. 2001; Key 2005) and heavy-tailed distributions
(Proposition 3.1 in Gouet et al. 2001) have been reported. On the other hand, in the
case of light-tailed continuous distributions and δ < 0, a direct application of our re-
sults complements those of Balakrishnan et al. (2005) and Pakes (2007) on the growth
of near-records (see Remark 4).

For negative δ, an observation is a δ-record if it is a record or a near-record in
the sense of Balakrishnan et al. (2005). Near-records are potentially useful in several
fields such as insurance theory (see Balakrishnan et al. 2005 and references therein)
and industrial stress-testing. It is therefore interesting to analyze how these data can
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be used in statistical inference (statistical inference based on records values has been
extensively studied; see for instance Arnold et al. 1998 and Gulati and Padgett 2003).
We provide a maximum likelihood estimation procedure for the parameters of the
distribution of the observations, when δ-records are used, and explore its potential in
examples based on real and simulated data.

The paper is organized as follows: in Sect. 2 we give some notation and prelimi-
naries, relating Nn to the sum of partial minima of random variables; in Sect. 3 we
first state and prove our main result (Theorem 1) giving conditions for the strong
and the weak law of large numbers for Nn. Then we apply the result to general dis-
tributions with heavy or moderately heavy tails (Sect. 3.1) or light tails (Sect. 3.2)
including, as examples, the most common discrete and continuous distributions. The
last section is devoted to maximum likelihood estimation based on δ-record values.

2 Notation and preliminaries

Let F be a distribution function concentrated on R+ = [0,∞). We define F(x) =
1 − F(x), F−(x) = limt↑x F (t), for x ≥ 0, and the generalized inverse F←(y) =
inf{x ≥ 0 : F(x) ≥ y}, for y ∈ [0,1). Note that, for all a ∈ R, b ∈ (0,1), F(a) ≥ b if
and only if a ≥ F←(b).

Sequences are denoted by {an,n ≥ 1} or {an} but braces are sometimes omitted
for simplicity. Convergence (divergence) of an to a finite (infinite) limit a, as n → ∞,
is denoted limn an = a, an −→ a or an ↑ a when an is increasing. We write an ∼ bn if
either both sequences diverge to infinity or converge to zero, with limn an/bn = 1, or
both converge to nonzero, possibly different, finite limits. The O(·) and o(·) notations
have their usual meanings. Analogous conventions are used for real functions defined
on [0,∞), regarding limits and the ∼,O(·), o(·) notations. In general, limits for real
functions are taken as the argument goes to infinity. For the floor of x (greatest integer
less than or equal to x) we use the notation 
x�; for the indicator function we use the
symbol 1{·}.

Random variables are defined on a common space (Ω, F ,P ). Probabilities and
expectations are denoted respectively by P [·] and E[·]; conditional probabilities and
conditional expectations with respect to a sub σ -algebra G ⊆ F are denoted by P [·|G]
and E[·|G]. For sequences of random variables, convergence in distribution, in prob-

ability and almost sure (a.s.) are denoted respectively by superscripted arrows
D−→,

P−→
and

a.s.−→. The ∼,O(·), o(·) notations are understood in the a.s. sense.
In the sequel, {Xn} stands for a sequence of nonnegative, independent and identi-

cally distributed (iid) random variables, with common distribution function F , which
is assumed to have an infinite right endpoint, that is, F(x) > 0, for all x ≥ 0. Notice
that there is no loss of generality in assuming the Xn nonnegative since we deal with
upper extremes.

For δ ≤ 0, let I1 = 1 and In = 1{Xn>Mn−1+δ}, n ≥ 2, be the indicators of δ-records
and Nn = ∑n

i=1 Ii , n ≥ 1, the counting process of δ-records among X1, . . . ,Xn,
where Mn = max{X1, . . . ,Xn}. Let Fn = σ {X1, . . . ,Xn}, n ≥ 1, and F0 = {∅,Ω}.
It is easy to see that E[In|Fn−1] = P [Xn > Mn−1 + δ|Fn−1] = F(Mn−1 + δ), a.s.,
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for n ≥ 2. But, since F is decreasing, we have F(Mn + δ) = min{Y1, . . . , Yn}, where
Yn = F(Xn + δ), n ≥ 1.

On the other hand, it is well known (see Corollary VII-2-6 in Neveu 1972) that
sums of indicators and sums of their conditional expectations, with respect to an
increasing family of σ -fields, are a.s. asymptotically equivalent in the sense that they
either both converge or diverge simultaneously; besides, under divergence their ratio
tends a.s. to 1. Since δ ≤ 0, there are more δ-records than records whose number is
unbounded because F(x) < 1 for all x. Therefore Nn ↑ ∞ a.s. and Nn = ∑n

i=1 Ii ∼∑n
i=1 E[Ii |Fi−1] a.s. We have

Lemma 1 Let Nn, Yn be as defined above and Sn = ∑n
k=1 min{Y1, . . . , Yk}, n ≥ 1.

Then, for every δ ≤ 0,

Nn/Sn
a.s.−→ 1. (1)

Convergence in (1) means that the law of large numbers for Nn can be obtained
from the corresponding result for sums of partial minima of nonnegative iid random
variables. The asymptotic behavior of this process is well known. Deheuvels (1974)
established weak and strong convergence results which are useful here.

In what follows, X denotes a generic nonnegative random variable with distribu-
tion F . For t ≥ 1 define m(t) = sup{x ≥ 0 : P [X ≥ x] ≥ 1/t}.

It is clear that, since P [X ≥ x] = 1 − F−(x),

1 − F−(
m(t)

) ≥ 1/t and 1 − F−(
m(t) + ε

)
< 1/t, (2)

for all t ≥ 1, ε > 0. Formulas for the distribution function of F(X + δ) and its gener-
alized inverse are given in the following lemma.

Lemma 2 Let δ ≤ 0 and G(y) = P [F(X + δ) ≤ y]. Then

(a) G(y) = 1 − F−(F←(1 − y) − δ), y ∈ (0,1),
(b) G←(z) = F(m(1/z) + δ), z ∈ (0,1).

Proof Immediate. �

The function

H(x) =
∫ ex

1
G←(1/t) dt, x ≥ 0, (3)

plays a key role in our main result. Observe that since G← is increasing, as n → ∞,

H(logn) =
∫ n

1
G←(1/t) dt ∼

n∑

k=2

G←(1/k). (4)

Two useful formulas for H are presented in Lemmas 3 and 4, for discrete and abso-
lutely continuous distributions respectively.
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2.1 Discrete distributions

Consider X with distribution F concentrated on Z+ := {0,1, . . .} and let pk =
P [X = k] > 0, yk = P [X > k] and rk = P [X = k|X ≥ k] = pk/yk−1 (the dis-
crete hazard rate), for k ∈ Z+. Let also pk = rk = 0 and yk = 1, for k < 0. Then
F(x) = 1 − yk , for k ≤ x < k + 1 and F←(y) = k, for 1 − yk−1 < y ≤ 1 − yk , with
k ∈ Z+. Observe that m(t) takes integer values, for t ≥ 1, and is characterized by
ym(t) < 1/t ≤ ym(t)−1.

For each δ ∈ Z− := {0,−1,−2, . . .}, the random variable F(X + δ) takes values
yk+δ with probabilities pk , for k ≥ −δ and the value 1 with probability

∑
i<−δ pi .

The corresponding distribution function G and its generalized inverse G← are given
by G(y) = yk−1, for yk+δ ≤ y < yk+δ−1, k ≥ −δ, and G←(z) = yk+δ , for yk < z ≤
yk−1, k ≥ 0, z ∈ (0,1). Notice that, by Lemma 2(b),

G←(1/t) = ym(t)+δ, t > 1. (5)

Lemma 3 Let F be concentrated on Z+ and δ ∈ Z−. Then, for t ≥ 1,

H(log t) =
m(t)∑

k=0

yk+δ rk/yk − ρ(t), (6)

where 0 ≤ ρ(t) := ym(t)+δ(y
−1
m(t) − t) ≤ ym(t)+δ rm(t)/ym(t) ≤ ym(t)+δ/ym(t).

Proof From (3) and (5),

H(log t) =
∫ t

1
ym(x)+δ dx =

m(t)∑

k=0

yk+δ

(
y−1
k − y−1

k−1

) − ym(t)+δ

(
y−1
m(t) − t

)

=
m(t)∑

k=0

yk+δ rk/yk − ρ(t).

The inequalities for ρ(t) follow from ym(t) < 1/t ≤ ym(t)−1 and rk ≤ 1. �

2.2 Absolutely continuous distributions

Let X be nonnegative and absolutely continuous, with distribution F and density f ,
such that F(x) > 0, for x ≥ 0. The hazard and the cumulative hazard functions are
defined respectively by

λ(x) = f (x)/F (x) and Λ(x) = − logF(x) =
∫ x

0
λ(t) dt,

for x ≥ 0.
Assuming, moreover, that f is strictly positive on (0,∞), we have m(t) =

F−1(1 − 1/t), for t ≥ 1, where F−1 denotes the usual inverse of F (restricted to
[0,∞), which exists since F is strictly increasing). Clearly, F(m(t)) = 1/t . Thus, for
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δ < 0, F(X + δ) takes values in (0,1], with distribution G(y) = F(F−1(1 − y) − δ),
y ∈ (0,1), and generalized inverse given by G←(z) = F(m(1/z) + δ) = F(F−1(1 −
z) + δ), z ∈ (0,1).

Lemma 4 Let F be concentrated on [0,∞), with strictly positive density f and
hazard function λ, and let δ ≤ 0. Then, for t ≥ 1,

H(log t) =
∫ m(t)

0
λ(u)e− ∫ u+δ

u λ(v) dv du. (7)

Proof Since f is strictly positive, the function m is differentiable and its derivative
is calculated by differentiation of the identity F(m(x)) = 1/x, for x > 1:

m′(x) = 1

xλ(m(x))
. (8)

A simple change of variable in (3) yields

H(log t) =
∫ t

1
F

(
m(x) + δ

)
dx =

∫ m(t)

0
λ(u)

F (u + δ)

F (u)
du. �

3 Main results

In the following theorem we establish the weak and strong laws of large numbers for
Nn, the counting process of δ-records, using Deheuvels’ results and Lemma 1.

Theorem 1 Let {Xn} be an iid sequence with common (general) distribution function
F such that F(x) > 0, for x ≥ 0, and let δ ≤ 0.

(a) If

lim
x→∞H(x + logx)/H(x) = 1 and (9)

∞∑

n=2

[

nG←(1/n)2
/(

n∑

k=2

G←(1/k)

)2]

< ∞ (10)

hold, then

Nn/H(logn)
a.s.−→ 1.

(b) If there exists a sequence of real numbers xn ↑ ∞ such that

lim
n

H(xn + logn)/H(logn) = 1 and (11)

lim
n

n∑

k=2

kG←(1/k)2
/(

n∑

k=2

G←(1/k)

)2

= 0 (12)

hold, then

Nn/H(logn)
P−→ 1.
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Proof First note that limt→∞ H(t) = ∞ because otherwise, by Theorem 7 in De-
heuvels (1974), we have limn→∞ Sn < ∞ and then, the conditional Borel–Cantelli
lemma (see comments before Lemma 1) yields limn→∞ Nn < ∞, which is a con-
tradiction. Now Corollary 4 in Deheuvels (1974) gives Sn/H(logn)

a.s.−→ 1 and

Sn/H(logn)
P−→ 1 under (a) and (b) respectively. Finally, Lemma 1 allows us to re-

place Sn by Nn. �

In the next subsection we consider families of distributions F in terms of their tail
properties and apply Theorem 1 to obtain the asymptotic behavior of Nn by studying
conditions (9)–(12).

3.1 Heavy and exponential-like tails

Definition 1 (a) F is in the class O L (F ∈ O L) if

0 < lim inf
x→∞

F(x + y)

F (x)
≤ lim sup

x→∞
F(x + y)

F (x)
< ∞, y ∈ R. (13)

(b) F is long-tailed (F ∈ L) if

lim
x→∞

F(x + y)

F (x)
= 1, y ∈ R. (14)

(c) F has exponential-like tails (F ∈ Lα) if there exists α > 0 such that

lim
x→∞

F(x + y)

F (x)
= e−αy, y ∈ R, (15)

if F is non-lattice and

lim
n→∞

F(n + 1)

F (n)
= e−α,

if F is concentrated on Z+ (lattice of span 1).

Remark 1 If F ∈ O L then e−αx/F (x) → 0, for some α > 0 while if F ∈ L then
e−αx/F (x) → 0, for all α > 0. Clearly L ⊂ O L and Lα ⊂ O L. The notion of long
tail is also known as moderate growth; see Embrechts et al. (1997). Common distri-
butions belonging to the L class are zeta, Pareto, log-normal, Cauchy and Weibull
(with shape parameter less than 1) distributions. On the other hand, the exponential,
gamma, geometric and negative binomial distributions belong to Lα . See Examples 1
and 2.

Theorem 2 Let F ∈ O L and δ ≤ 0. Then H(logn) = O(logn) and Nn

H(logn)

a.s.−→ 1.

Proof First, note that (1−F−(x))/F (x) ≤ F(x −1)/F (x), for all x > 0. Thus, from
(13), there exists a > 0 such that, for all x > 0,

1 ≤ 1 − F−(x)

F (x)
≤ a.
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Then, from (2), (13) and Lemma 2(b), there exist A,B > 0 such that, for all t > 1,
ε > 0,

A <
F(m(t) + δ)

1 − F−(m(t))
≤ tG←(1/t) <

F(m(t) + δ)

1 − F−(m(t) + ε)
< B. (16)

This implies H(logn) = O(logn) by (4). On the other hand, for all x > 1, (16) im-
plies

0 <
H(x + logx) − H(x)

H(x)
=

∫ xex

ex G←(1/t) dt
∫ ex

1 G←(1/t) dt
<

B logx

Ax
,

and (9) follows. For (10) note that (16) implies G←(1/n) = O(1/n) and∑n
k=2 G←(1/k) = O(logn). Hence (10) is obtained from the convergence of the

series
∑∞

n=2(n(logn)2)−1. The conclusion follows from Theorem 1(b). �

Corollary 1 Let F ∈ L and δ ≤ 0. Then Nn/ logn
a.s.−→ 1.

Proof Since L ⊂ O L, Theorem 2 applies. By (2) and Lemma 2(b),

F(m(t) + δ)

1 − F−(m(t))
≤ tG←(1/t) <

F(m(t) + δ)

1 − F−(m(t) + ε)
(17)

for all t > 1, ε > 0, and the left and right sides above converge to 1 by (14). Therefore
G←(1/t) ∼ 1/t , as t → ∞, and H(logn) ∼ logn by (4). �

Remark 2 Observe that for F ∈ L the growth rate of δ-record counts is logn, so, in
this case, δ-records for δ < 0 appear as frequently as records (δ = 0). We stress that
the above result applies to general distributions (not only discrete or continuous). In
the discrete or continuous cases we have the next corollary.

Corollary 2 (a) Let F be concentrated on Z+, with hazard rates rk → 0, and let

δ ∈ Z−. Then Nn/ logn
a.s.−→ 1.

(b) Let F be absolutely continuous, with hazard function λ(x) → 0, and let δ ≤ 0.
Then Nn/ logn

a.s.−→ 1.

Proof (a) For x ≥ 0, F(x) = F(
x�) = ∏
x�
k=0(1 − rk). Then, for every y ∈ R,

F(x + y)/F (x) → 1 as x → ∞ since rk → 0. Hence, F ∈ L and the conclusion
follows from Corollary 1.

(b) The result follows immediately from

F(x + y)/F (x) = exp

(

−
∫ x+y

x

λ(t) dt

)

→ 1

as x → ∞, and Corollary 1. �
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Example 1 Consider the following distributions in L: the zeta distribution on Z+,
with F(x) = C(
x� + 1)−a, x ≥ 0, a > 0; the Pareto distribution, with density
f (x) = K/xr , for x ≥ a, a > 0, r > 1; and the heavy-tailed Weibull distribution,
with f (x) = αβ−αxα−1e−(x/β)α , for x ≥ 0, α ∈ (0,1) and β > 0. In all the cases we
obtain Nn/ logn

a.s.−→ 1.

We now turn our attention to exponential-like distributions.

Corollary 3 Let F ∈ Lα non-lattice and δ ≤ 0. Then Nn/ logn
a.s.−→ e−αδ . In partic-

ular, if F is absolutely continuous, with hazard function λ(x) → a ∈ (0,+∞), then

Nn/ logn
a.s.−→ e−aδ .

Proof Since Lα ⊂ O L, Theorem 2 applies. The left- and right-hand sides of (17)
tend respectively to e−αδ and e−α(δ−ε), by (15). Therefore G←(1/t) ∼ e−αδ/t and
H(logn) ∼ e−αδ logn, by (4).

If F is absolutely continuous, from F(x + y)/F (x) = exp(− ∫ x+y

x
λ(t) dt) →

e−ay , as x → ∞, we obtain that F ∈ Lα , with α = a. �

Corollary 4 Let F be concentrated on Z+, with hazard rates rk → r ∈ (0,1), and

let δ ∈ Z−. Then Nn/ logn
a.s.−→ −r(1 − r)δ/ log(1 − r).

Proof F is lattice with span 1. For x ≥ 0, F(x) = F(
x�) = ∏
x�
k=0(1 − rk). Then, as

x → ∞, F(x + 1)/F (x) = 1 − r
x�+1 −→ 1 − r, so F ∈ Lα , with α = − log(1 − r),

and Nn/H(logn)
a.s.−→ 1 by Theorem 2. Also, from (6), we have

H(logn) ∼
m(n)∑

k=0

rkyk+δ

yk

∼ r(1 − r)δm(n).

The result follows from m(n) ∼ − logn/ log(1 − r); see Proposition 3.3 in Gouet et
al. (2001). �

Example 2 (a) The exponential distribution with parameter μ > 0 is in Lα since
λ(x) = μ, for all x ≥ 0. The same conclusion applies to the gamma distribution, with
density f (x) = μpe−μxxp−1/�(p), for x ≥ 0,μ,p > 0, since λ(x) → μ. In both
cases Nn/ logn

a.s.−→ e−μδ , for δ ≤ 0.
(b) The geometric distribution on Z+, with parameter p ∈ (0,1), is in Lα

since rk = p, for all k ∈ Z+. The negative binomial distribution, with pk =
(−1)k

(−a
k

)
pa(1 − p)k , for k ≥ 0, p ∈ (0,1) and a > 1, is also in Lα since rk → p.

In both cases we obtain Nn/ logn
a.s.−→ −p(1 − p)δ/ log(1 − p), for δ ∈ Z−.

3.2 Light tails

Definition 2 F is light-tailed if there exists a > 0 such that

lim
x→∞

F(x + t)

F (x)
= 0, t ≥ a.
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For these distributions we do not have a result as general as Theorem 2, valid for
all F ∈ O L. We consider discrete and absolutely continuous distributions separately.

Lemma 5 Let F be concentrated on Z+ with hazard rates rk → 1. Then F is light-
tailed.

Proof It is clear that, for x ≥ 0 and t ≥ 1,

F(x + t)

F (x)
≤ y
x�+1

y
x�
= 1 − r
x�+1 → 0,

and the result is proved. �

Remark 3 Common distributions with light tails are the normal, Weibull (with shape
parameter greater than 1) and Poisson distributions. See Examples 3 and 4.

Theorem 3 Let F be concentrated on Z+, with hazard rates rk → 1, and δ ∈ Z−\{0}
(the negative integers). Let cn = ∑m(n)

k=0 ak , with ak = (1 − rk)
δ .

(a) If (1 − rk)/(1 − rk−1) → 1 then Nn/cn
P−→ 1.

(b) If kα(rk − rk−1)/(1 − rk−1) → 0, for some α > 1/2, then Nn/cn
a.s.−→ 1.

Proof (a) Convergence in probability is directly deduced from Theorem 3.1(b) in
Gouet et al. (2007), which asserts that, if rk → 1 and (1 − rk)/(1 − rk−1) → 1, then

Nn − ∑m(n)
k=0 pk+δ/yk−1

√∑m(n)
k=0 a2

k

D−→ N(0,1).

The hypothesis on rk implies
∑m(n)

k=0 pk+δ/yk−1 ∼ cn. Also, by Lemma A.1 in Gouet

et al. (2007), we have
∑m(n)

k=0 a2
k/c

2
n → 0 and the conclusion follows.

(b) The case δ = −1 is Theorem 2.1(b) in Gouet et al. (2008). It is not difficult
to check that the proof of that result is valid for δ < −1 with obvious modifications,
provided kα(1− ak−1

ak
) → 0, for some α > 1/2. Thus, it suffices to check that kαϕk →

0 implies kα(1 − ak−1
ak

) → 0, with ϕk = (rk − rk−1)/(1 − rk−1). In fact,

kα

(

1 − ak−1

ak

)

= kα
(
1 − (1 − ϕk)

−δ
) = (−δ)kαϕk

(
1 + o(1)

) → 0. �

Example 3 The Poisson distribution, with pk = e−λλk/k!, k ∈ Z+, λ > 0, is light-
tailed and the hazard rates satisfy rk = 1 − λ/k + o(1/k) (see p. 328 in Vervaat
1973). Clearly, (rk − rk−1)/(1− rk−1) < C/k for some C > 0 and every k ≥ 1. Thus,
condition (b) of Theorem 3 holds with α = 3/4. Moreover, since ak ∼ λδ/kδ and
m(n) ∼ logn/ log logn, we have

Nn

(logn/ log logn)1−δ

a.s.−→ λδ/(1 − δ).

The above convergence also holds for records (δ = 0); see Gouet et al. (2001).
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In the sequel, F is assumed to be absolutely continuous, with differentiable den-
sity f , such that λ(x) → ∞. Since the latter condition implies f (x) > 0, for x large
enough, and the asymptotic behavior of Nn depends only on the tail of F , we assume,
without loss of generality, that f (x) > 0, for all x > 0. Derivatives of a function g

are denoted g′, g′′, etc.

Lemma 6 Let F be absolutely continuous, with hazard function λ(x) → ∞. Then F

is light-tailed.

Proof The conclusion follows from F(x + y)/F (x) = e− ∫ x+y
x λ(t) dt , y ≥ 0. �

Theorem 4 Let F be absolutely continuous, with differentiable hazard function
λ(x) → ∞, and let δ < 0. Let also ct = ∫ m(t)

0 λ(z)a(z) dz, for t ≥ 1, with a(z) =
e
∫ z
z+δ λ(u)du.

(a) If λ′ is bounded then Nn/cn
P−→ 1.

(b) If |λ′(x)| < 1/xr , for some r> 1/2 and all x large enough, then Nn/cn
a.s.−→ 1.

Proof From (7) we know that H(log t) = ct , for t ≥ 1, and we have to prove (11) and
(12) for the weak law or (9) and (10) for the strong law.

(a) If z > 0, t ∈ (z + δ, z) and M is an upper bound for |λ′|, then

∣
∣λ(t) − λ(z)

∣
∣ ≤

∫ z

t

∣
∣λ′(u)

∣
∣du < M|δ|.

So,
∣
∣
∣
∣
∣

∫ z

z+δ

λ(t) dt + δλ(z)

∣
∣
∣
∣
∣
< Mδ2

and there exist A,B > 0 such that, for all z > 0,

Ae−δλ(z) < a(z) < Be−δλ(z). (18)

From (7) and (18) we obtain that (11) is equivalent to the existence of un ↑ ∞
such that

∫ m(nun)

m(n)
λ(z)e−δλ(z) dz

∫ m(n)

0 λ(z)e−δλ(z) dz
→ 0.

In order to prove the convergence stated above, we let u(x) = logλ(m(x)) and
show that

∫ m(xu(x))

0 λ(z)e−δλ(z) dz
∫ m(x)

0 λ(z)e−δλ(z) dz
→ 1, (19)

by using L’Hôpital’s rule and (8). First, notice that
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(u(x) + xu′(x))m′(xu(x))λ(m(xu(x)))e−δλ(m(xu(x)))

m′(x)λ(m(x))e−δλ(m(x))

=
(

1 + xu′(x)

u(x)

)

e−δ(λ(m(xu(x)))−λ(m(x))).

It is clear that

xu′(x)

u(x)
= λ′(m(x))

λ2(m(x)) logλ(m(x))
→ 0

since λ′ is bounded. Therefore, (19) follows if λ(m(xu(x))) − λ(m(x)) → 0, which
is implied by m(xu(x)) − m(x) → 0, since λ′ is bounded. Let us then check that
m(xu(x)) − m(x) → 0. We have

∣
∣m

(
xu(x)

) − m(x)
∣
∣ ≤ m′(θ(x)

)
xu(x) = xu(x)

θ(x)λ(m(θ(x)))
, (20)

where θ(x) ∈ (x, xu(x)) and the last equality follows from (8). Now, since |λ′(t)| <

M for every t > 0, we have, for x large enough,

∣
∣λ

(
m

(
θ(x)

)) − λ
(
m(x)

)∣
∣ < M

(
m

(
θ(x)

) − m(x)
) = Mm′(ψ(x)

)(
θ(x) − x

)
, (21)

with ψ(x) ∈ (x, θ(x)) ⊂ (x, xu(x)). So, using again (8), we find that (21) is bounded
above by

Mxu(x)

ψ(x)λ(m(ψ(x)))
<

Mu(x)

λ(m(ψ(x)))
.

Thus

|λ(m(θ(x))) − λ(m(x))|
λ(m(x))

<
Mu(x)

λ(m(ψ(x)))λ(m(x))
= M logλ(m(x))

λ(m(ψ(x)))λ(m(x))
→ 0.

Therefore, λ(m(θ(x))) ∼ λ(m(x)) and the right-hand side of (20) is equivalent to

xu(x)

θ(x)λ(m(x))
<

u(x)

λ(m(x))
= logλ(m(x))

λ(m(x))
→ 0

and (19) follows. Now, defining un = mink≥n{u(k)}, which is increasing, we have

∫ m(nun)

m(n)
λ(z)e−δλ(z) dz

∫ m(n)

0 λ(z)e−δλ(z) dz
≤

∫ m(nu(n))

m(n)
λ(z)e−δλ(z) dz

∫ m(n)

0 λ(z)e−δλ(z) dz
→ 0

and (11) is proved.
For (12) recall that G←(1/k) = F(m(k) + δ) and kG←(1/k) = a(m(k)). Thus,

the sequence in (12) is equal to

∑n
k=2 a(m(k))2/k

(
∑n

k=2 a(m(k))/k)2
.
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For k ≥ 2, let μ(k) = 
m(k)�. As |μ(k) − m(k)| < 1 and λ′ is bounded, from (18)
there exist α,β > 0 such that α < a(μ(k))/a(m(k)) < β , for all k ≥ 2. Thus (12) is
equivalent to

∑n
k=2 a(μ(k))2/k

(
∑n

k=2 a(μ(k))/k)2
→ 0. (22)

Note that, as i → ∞,

∞∑

k=2

1

k
1{μ(k)=i} ∼ log

F(i)

F (i + 1)
=

∫ i+1

i

λ(t) dt ∼ λ(i), (23)

since λ(t) → ∞ and λ′ is bounded. Thus, the numerator in (22) is bounded above by

μ(n)∑

i=0

∞∑

k=2

a(μ(k))2

k
1{μ(k)=i} ∼

μ(n)∑

i=1

a(i)2λ(i) < B2
μ(n)∑

i=1

λ(i)e−2δλ(i),

as n → ∞, where the last inequality comes from (18). Analogously, the square root
of the denominator in (22) is bounded below by

μ(n)−1∑

i=0

∞∑

k=2

a(μ(k))

k
1{μ(k)=i} ∼

μ(n)−1∑

i=1

a(i)λ(i) > A

μ(n)−1∑

i=1

λ(i)e−δλ(i).

Thus, we have to prove that

∑n+1
k=1 λ(k)e−2δλ(k)

(
∑n

k=1 λ(k)e−δλ(k))2
→ 0. (24)

We decompose the sequence above as

∑n
k=1 λ(k)e−2δλ(k)

(
∑n

k=1 λ(k)e−δλ(k))2
+ λ(n + 1)e−2δλ(n+1)

(
∑n

k=1 λ(k)e−δλ(k))2
.

For the first term, let ε > 0 and k0 be such that λ(k) > 2/ε for all k ≥ k0; we have

∑n
k=1 λ(k)e−2δλ(k)

(
∑n

k=1 λ(k)e−δλ(k))2
<

∑k0
k=1 λ(k)e−2δλ(k)

(
∑n

k=1 λ(k)e−δλ(k))2
+ (ε/2)

∑n
k=1(λ(k)e−δλ(k))2

(
∑n

k=1 λ(k)e−δλ(k))2

<

∑k0
k=1 λ(k)e−2δλ(k)

(
∑n

k=1 λ(k)e−δλ(k))2
+ ε

2
< ε

for n large enough. Last,

λ(n + 1)e−2δλ(n+1)

(
∑n

k=1 λ(k)e−δλ(k))2
<

λ(n + 1)e−2δλ(n+1)

λ(n)2e−2δλ(n)
→ 0,

since, as |λ′(t)| < M , we have |λ(n + 1) − λ(n)| < M . Thus, (24) follows.
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(b) For z > 0 and t ∈ (z+ δ, z), we have |λ(t)−λ(z)| ≤ ∫ z

z+δ
|λ′(u)|du. It follows

that λ(t) − λ(z) → 0, as z → ∞, for t ∈ (z + δ, z). Thus,
∫ z

z+δ
λ(t) dt + δλ(z) =

∫ z

z+δ
(λ(t) − λ(z)) dt → 0, so

a(z) = e
∫ z
z+δ λ(t) dt ∼ e−δλ(z) (25)

and ct ∼ ∫ m(t)

0 λ(z)e−δλ(z)dz. Therefore, (9) is equivalent to

∫ m(u logu)

0 λ(z)e−δλ(z) dz
∫ m(u)

0 λ(z)e−δλ(z) dz
→ 1.

In order to apply L’Hôpital’s rule to the above, note that, by (8),

m′(u logu)(logu + 1)λ(m(u logu))e−δλ(m(u logu))

m′(u)λ(m(u))e−δλ(m(u))
∼ e−δ(λ(m(u logu))−λ(m(u))),

as u → ∞. To see that λ(m(u logu)) − λ(m(u)) → 0, note that
∣
∣λ

(
m(u logu)

) − λ
(
m(u)

)∣
∣ = ∣

∣λ′(θ(u)
)∣
∣
(
m(u logu) − m(u)

)
, (26)

with θ(u) ∈ (m(u),m(u logu)), so the right-hand side of (26) is bounded above, for
u large enough, by (m(u logu) − m(u))/(m(u))r . We now prove that

m(u logu) − m(u)

m(u)r
→ 0, (27)

for any r > 0. Since λ′(t) → 0, there exists x0 > 0 such that |λ′(x)| < 1 for all x > x0.
Then, for all x > x0, we have λ(x) < λ(x0) + (x − x0) < λ(x0) + x, so

log
F(x0)

F (x)
=

∫ x

x0

λ(z) dz < λ(x0)x + x2/2 < Kx2,

for some K > 0 and all x large enough. Therefore,

logn = − log
(
F

(
m(n)

))
< − log

(
F(x0)

) + Km(n)2

and there exists C > 0 such that m(n) > C
√

logn, for n large enough. On the other
hand, we have λ(x) > 1, for x large enough, since λ(x) → ∞. Thus, log logn =
∫ m(n logn)

m(n) λ(x) dx > m(n logn) − m(n). Then, for n large enough,

m(n logn) − m(n)

m(n)r
<

log logn

Cr(logn)r/2
→ 0

and (27) follows.
For (10) note first that, without loss of generality, we may assume r ∈ (1/2,1).

Since, by (4),
∑n

k=2 G←(1/k) ∼ H(logn), (10) holds if

∞∑

n=2

a(m(n))2/n

(
∫ m(n)

0 λ(z)a(z) dz)2
< ∞
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or, letting (as in part (a)) μ(k) = 
m(k)�, if

∞∑

k=0

a(k)2

(
∫ k

0 a(z)λ(z) dz)2

∞∑

n=2

1

n
1{μ(n)=k} < ∞, (28)

since a(m(n)) = O(a(μ(n))) and
∫ μ(n)

0 a(z)λ(z) dz ≤ ∫ m(n)

0 a(z)λ(z) dz. From (23)
and (25), we have, for k → ∞,

a(k)2

(
∫ k

0 a(z)λ(z) dz)2

∞∑

n=2

1

n
1{μ(n)=k} ∼ λ(k)e−2δλ(k)

(
∫ k

0 λ(z)e−δλ(z) dz)2
.

In order to compare the right-hand side above with k−2r , we compute

lim
x→∞

xr
√

λ(x)e−δλ(x)

∫ x

0 λ(z)e−δλ(z) dz

by using L’Hôpital’s rule. Note that

(

rxr−1
√

λ(x) + xrλ′(x)

2
√

λ(x)
− δλ′(x)xr

√
λ(x)

)

/λ(x) ∼ xr−1(r − δxλ′(x))√
λ(x)

→ 0,

since |λ′(x)| < x−r for x large enough. Therefore, for k large enough,

λ(k)e−2δλ(k)

(
∫ k

0 λ(z)e−δλ(z) dz)2
< k−2r

and, since r ∈ (1/2,1), the series in (28) converges. �

Remark 4 Our results complement those of Balakrishnan et al. (2005) and Pakes
(2007) for the number ξn(a) of near-records, which is defined as the number of ob-
servations Xi in (X(n) − a,X(n)], for i ∈ (L(n),L(n + 1)), where L(n) is the nth
record time, X(n) is the nth record value and a > 0 is fixed. For continuous distri-
butions with λ(x) → ∞, it is shown in Theorem 4.1 of Balakrishnan et al. (2005)

that ξn(a)
P−→ ∞ and a weak law of large numbers is given for log ξn(a) in Sect. 6 of

Pakes (2007). If we add the near-record counts for the first n inter-record intervals,
we have

∑n
k=1 ξk(a) = N−a

L(n+1)
−N0

L(n+1)
= N−a

L(n+1)
− (n+1), where N−a

n denotes

the number of (−a)-records and N0
n the number of records among the first n obser-

vations. From Theorem 4 we have that, if λ(x) → ∞, with |λ′(x)| < x−r , for some
r > 1/2,

N−a
n

∫ m(n)

0 λ(x)F (x − a)/F (x)dx

a.s.−→ 1; N0
n

N−a
n

a.s.−→ 0,

so
∑n

k=1 ξk(a)
∫ m(L(n+1))

0 λ(x)F (x − a)/F (x)dx

a.s.−→ 1.



Asymptotic rates for δ-records 203

The above result gives the precise growth rate of the cumulative number of near-
records in terms of record times.

Example 4 Consider the family of distributions with density f (x) = axγ e−bxν
, for

x > 1, with a, b > 0, ν > 1, γ ∈ R (note that the values of f (x) for x < 1 have no
effect on the asymptotic behavior of Nn). Clearly, this family contains the normal
distribution N(0,1) (ν = 2, b = 1/2 and γ = 0) and the light-tailed Weibull distri-
bution, with density f (x) = αβ−αxα−1e−(x/β)α , for x ≥ 0, α > 1 and β > 0 (ν = α,
γ = α − 1 and b = β−α). It is easy to see that

F(x) = axγ+1e−bxν

bν

(

x−ν + γ − ν + 1

bν
x−2ν + o

(
x−2ν

)
)

.

Therefore λ(x) ∼ bνxν−1 → ∞. Also, simple calculations show that λ′(x) ∼ bν(ν −
1)xν−2 as x → ∞.

Fix δ < 0. Then, since λ′(x) ∼ bν(ν − 1)xν−2, condition (a) of Theorem 4 holds,
for ν ∈ (1,2], while condition (b) holds for ν ∈ (1,3/2).

Let cν = 1 for ν ∈ (1,2) and cν = e−bδ2
for ν = 2. We have F(x + δ)/F (x) ∼

cνe
−bνδxν−1

. Moreover, it is easy to see, using L’Hôpital’s rule, that

∫ t

0
bνxν−1e−bνδxν−1

dx ∼ te−bνδtν−1

−δ(ν − 1)
.

Therefore,

Nn

m(n)e−bνδ(m(n))ν−1 −→ cν

−δ(ν − 1)
,

a.s. for ν ∈ (1,3/2) and in probability for ν ∈ (1,2].
In the particular case of the normal distribution we have ν = 2 and m(n) −√

2 logn → 0, so

Nn√
2 logn e−δ

√
2 logn

P−→ e−δ2/2

−δ
.

For the Weibull distribution we have m(n) = β(logn)1/α , thus obtaining

Nn

(logn)1/αe−δα(logn)(α−1)/α/β
−→ βcα

−δ(α − 1)
,

a.s. for α ∈ (1,3/2) and in probability for α ∈ (1,2].

4 Maximum likelihood estimation

In this section we show how δ-record statistics can be used to estimate the param-
eters of the parent distribution Fθ , which is assumed to be absolutely continuous,
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with density fθ and hazard function λθ , depending on a k-dimensional parameter
θ ∈ Θ ⊆ R

k . For additional information on inference using record data, see Gulati
and Padgett (2003).

It is well known (see Arnold et al. 1998, p. 10) that the likelihood function of the
n first record values R1, . . . ,Rn, in a sequence of iid observations, is given by

L(r1, . . . , rn; θ) = Fθ(rn)

n∏

i=1

λθ (ri). (29)

Fix δ < 0 and suppose that instead of collecting only record values, we collect δ-
record values. That is, after a record value Ri is observed, we also keep all observa-
tions at a distance less than |δ| of Ri , until the next record value Ri+1 is observed. Let
Ki be the number of such observations and Y 1

i , . . . , Y
Ki

i their values. Recall that Ki

is the number of near-records as defined in Balakrishnan et al. (2005), with a = −δ.
Thus, our sample consists of the n first record values (R1, . . . ,Rn) plus, for each
record value Ri , the number Ki and the values Y 1

i , . . . , Y
Ki

i of near-records associ-

ated with Ri ; in other words, R1, Y
1
1 , . . . , Y

K1
1 , . . . ,Rn,Y

1
n , . . . , Y

Kn
n are the δ-record

values before the arrival of the (n + 1)-th record. Note that, when collecting the data,
near-records associated with a record Ri need not be ordered, that is, we do not nec-
essarily have Y

j
i < Y

j+1
i . Moreover, if two consecutive records are distance less than

|δ| apart, their associated near-records may be not ordered either, that is, we do not
necessarily have Y

j
i < Y k

i+1.
In the following proposition we give the likelihood function for the sample of

δ-records (Rn,Kn,Yn), where Rn = (R1, . . . ,Rn), Kn = (K1, . . . ,Kn) and Yn =
(Y 1

1 , . . . , Y
K1
1 , . . . , Y 1

n , . . . , Y
Kn
n ).

Proposition 1 The likelihood function of (Rn,Kn,Yn) is given by

L(rn,kn,yn; θ) = Fθ(rn)

n∏

i=1

fθ (ri)

F θ (ri + δ)ki+1

ki∏

j=1

fθ

(
y

j
i

)
, (30)

with 0 < r1 < · · · < rn < ∞, ki ∈ Z+ and y
j
i ∈ (ri + δ, ri), for j = 1, . . . , ki , i =

1, . . . , n.

Proof Given a record value t , the number of near-records has a geometric distribu-
tion (starting at 0) with success probability equal to pθ(t) := Fθ(t)/F θ (t + δ). Also,
given that ki near-records have been observed, their values are independent with den-
sity fθ (x)/(F θ (t + δ) − Fθ(t)), for x ∈ (t + δ, t), and 0 otherwise. Moreover, con-
ditional on a record value Ri , the number and values of its associated near-records
are independent of the values of records Rj , j > i, and the number and values of
their associated near-records. Therefore, by successively conditioning on the record
values Ri and recalling that, given a record value Ri = ri , the density of Ri+1 is
fθ (x)/F θ (ri) on x > ri , we obtain
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L(rn,kn,yn; θ) = fθ (r1)
(
1 − pθ(r1)

)k1pθ(r1)

k1∏

j=1

fθ (y
j

1 )

F θ (r1 + δ) − Fθ(r1)

× · · ·

× fθ (rn)

F θ (rn−1)

(
1 − pθ(rn)

)knpθ (rn)

kn∏

j=1

fθ (y
j
n)

F θ (rn + δ) − Fθ(rn)
,

which yields the result. �

Expression (29) can be used to find the maximum likelihood estimator (MLE)
of functions h(θ) of the parameter, based on the sample of record values. While in
most situations maximization of (29) must be done numerically, there are cases where
an explicit expression of the MLE can be obtained. For instance, in the exponential
distribution with parameter λ > 0, the MLE of its mean 1/λ based on the first n record
values is given by Rn/n. In a similar way, expression (30) can be used for maximum
likelihood estimation.

In the following subsections we explore the potential of δ-records in estimation,
by carrying out series of simulations for the Weibull and the exponential distributions.
We also consider two illustrative examples using real data.

4.1 Simulated data

4.1.1 Weibull distribution

We consider here the MLE for the parameters α,β of the Weibull distribution, with
density f (x) = αβ−αxα−1e−(x/β)α , for x ≥ 0, α > 0 and β > 0. The logarithm of the
likelihood function of (Rn,Kn,Yn), obtained from (30), is given by

l(α,β) = −β−αg(α) + N(logα − α logβ) + (α − 1)S, (31)

where g(α) = rα
n + ∑n

i=1(r
α
i − ((ri + δ)+)α) + ∑n

i=i

∑ki

j=1((y
j
i )α − ((ri + δ)+)α),

S = ∑n
i=1(log ri + ∑ki

j=1 logy
j
i ) and N = n + ∑n

i=1 ki .
We now analyze (31) and show how the MLE of the parameters can be computed.

Observe that, for fixed α, function l is maximized at β̂(α) = (g(α)/N)1/α . Hence,
for all α,

max
β

l(α,β) = l(α, β̂) = N(logN − 1) + N
(
logα − logg(α)

) + (α − 1)S.

Now, in order to obtain the MLE of α, we maximize l(α, β̂) or, equivalently,
h(α) = logα − logg(α)+ (α − 1)S, with S = S/N. Thus, the problem of finding the
MLE α̂, β̂ is reduced to the maximization of a function on the line. Furthermore, it is
easy to find a compact interval which contains the optimum, noting that rα

n < g(α) <

(N + 1)rα
n holds, so h2(α) ≤ h(α) ≤ h1(α), where h1(α) = logα − α log rn +

(α − 1)S and h2(α) = h1(α) − log(N + 1). Next, we observe that h1 and h2 are
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Table 1 Estimation of parameters α,β in the Weibull distribution from 10,000 simulation runs, with
α = 2, β = 1 and n = 10 records

δ α,β unknown β known α known

α β α β

0 min 0.661 0.091 1.206 0.502

max 12.404 3.098 4.349 1.626

mean 2.489 1.169 2.096 0.989

sdev 0.924 0.422 0.304 0.158

rmse 1.046 0.455 0.319 0.158

−0.5 min 1.023 0.374 1.328 0.762

max 5.188 2.473 2.766 1.363

mean 2.155 1.084 1.998 1.005

sdev 0.431 0.247 0.101 0.060

rmse 0.458 0.261 0.101 0.060

concave and attain their maxima at α∗ = 1/K , where K = log rn − S > 0. Therefore,
h2(α

∗) ≤ maxα h(α) ≤ h1(α
∗).

Since h1 is concave and limα→0+ h1(α) = limα→+∞ = −∞, we conclude that
there are two unique real numbers L < R such that h1(L) = h1(R) = h2(α

∗) =
− logK − 1 −S − log(N + 1), so α̂ = argmax h(α) ∈ [L,R]. Elementary analysis of
functions h1, h2 yields explicit bounds for L and R, such as L′ = α∗/(3N + 2) < L

and R′ = 2α∗(1 + log(N + 1)) > R. Therefore, the computation of the MLE is re-
duced to the maximization of h in the interval [L′,R′], which can be done using
standard numerical methods.

In order to compare the estimators based on usual records with those using δ-
record data, we consider the Weibull distribution with shape parameter α = 2 and
scale parameter β = 1, which is light-tailed (see Example 4). We set δ = −0.5 and
the number of records n = 10. We make 10,000 simulation runs and compute the
MLE of α and β when both are unknown and of each parameter, when the other one
is known. The values of the MLEs based on records (δ = 0), when both parameters
are unknown, or when α is known, are obtained from their explicit expressions shown
in Soliman et al. (2006). When β is known, the MLE of α based on records is com-
puted numerically. The minimum (min), maximum (max), mean, standard deviation
(sdev) and root mean square error (rmse) of the estimations are displayed in Table 1.
We observe that the estimations based on δ-records have much smaller rmse than
estimations based on records.

Results in Sect. 3 give the asymptotic number of δ-records as a function of the
number of observations and can be used as a guide to find the number of data available
for estimation when δ-records are used. See Example 4.

4.1.2 Exponential distribution

The exponential distribution, with density f (x) = λe−λx, x ≥ 0, λ > 0 can be seen
as a special case of the Weibull distribution, considered previously, with α = 1 and
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Table 2 Estimation of 1/λ in the exponential distribution, from 10,000 simulation runs with parameter
λ = 1 and n = 5,10,15,20 records

δ n = 5 n = 10 n = 15 n = 20

0
1/λ 1.000 1.000 1.000 1.000

1/
√

nλ 0.447 0.316 0.258 0.224

−1 min 0.253 0.533 0.589 0.630

max 3.462 2.338 1.958 1.816

mean 1.070 1.038 1.025 1.018

sdev 0.321 0.212 0.165 0.142

rmse 0.329 0.215 0.167 0.143

−2 min 0.237 0.648 0.755 0.775

max 2.899 2.273 2.074 1.554

mean 1.055 1.028 1.019 1.014

sdev 0.244 0.143 0.108 0.090

rmse 0.250 0.146 0.109 0.091

β = 1/λ. The log-likelihood function is obtained from (30) as

−λ

(
n∑

i=1

(
ri − (ri + δ)+

) +
n∑

i=1

ki∑

j=1

(
y

j
i − (ri + δ)+

) + rn

)

+ logλ

(
n∑

i=1

ki + n

)

.

Maximization of the expression above yields the following formula for the MLE of
1/λ:

1

N

n∑

i=1

(

Ri − (Ri + δ)+ +
Ki∑

j=1

(
Y

j
i − (Ri + δ)+

) + Rn

n

)

. (32)

Table 2 shows the results of the estimation of 1/λ in the exponential distribution,
for different values of δ and n (number of records). For δ = 0 (usual records) the true
values are displayed, that is, the expectation (1/λ) and the sdev 1/

√
nλ. Note that in

this case the rmse and the sdev are equal, since the MLE is unbiased (see Arnold et
al. 1998, p. 122). We observe that the estimations improve when |δ| grows, and this
is consistent with the fact that more data are being used.

Corollary 3 shows that the asymptotic ratio of the number of δ-records and the
number of records is e−δλ. This means that we expect to have e−δλ times more
δ-records than records for the exponential distribution.

4.2 Real data

In this subsection, maximum likelihood estimation using δ-records is applied to two
different sets of real data. The first contains cumulative precipitation data, from
September to November, recorded at Castellote (meteorological station located at the
Guadalope river in Teruel, Spain), between 1927 and 2000. The second corresponds
to fracture-stress data of brittle materials (Guerra Rosa et al. 2006).
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Results for the precipitation data are mainly illustrative because, in most cases,
weather stations record all observations and not only records. However, this allows
us to compare the estimates obtained from records and δ-records, using the estimate
from the whole sample as reference.

In the second example, about fracture-stress data, the usefulness of δ-record ob-
servations is more easily seen. An important application of inference based on usual
records is in destructive stress testing experiments. See Glick (1978) and Gulati and
Padgett (2003). In a classical sampling scheme, stress is applied to all specimens of
the sample until they break. Alternatively, in a record sampling scheme, the elements
arrive sequentially and are stressed only up to the minimum level that some previous
element broke at, thus obtaining a sequence of lower-record values, which can be
used for inferential purposes.

We propose an improvement over this scheme, which consists in stressing the ele-
ments a bit further than the previous lower-record value, by a fixed factor γ > 1, say.
This procedure yields a sequence of multiplicative δ-lower-records, which provide
better inferences, as shown below. We say that an observation Xn is a multiplica-
tive δ-lower-record, with parameter γ ≥ 1, if Xn < γ min{X1, . . . ,Xn−1} (the case
γ = 1 yields lower-records). This concept is analogous to that of δ-records: the ad-
ditive parameter δ is replaced by a multiplicative parameter γ and the upper-record
is replaced by a lower-record. Asymptotic results for the number of multiplicative
δ-lower-records can be easily obtained from results in Sect. 3, because − log of a
multiplicative δ-lower-record is a δ-record.

4.2.1 Precipitation data

A Weibull model has been fit to the Castellote precipitation data of Table 3. The
corresponding Q–Q plot is displayed in Fig. 1. The MLEs of α,β , using the complete
sample are given by α̂ = 2.04 and β̂ = 130.38. If only record values are used, the
estimations computed from the formulas in Soliman et al. (2006) are α̂ = 3.93 and
β̂ = 185.06.

In order to compare the behavior of estimators using records and δ-records,
we carry out the δ-record-based estimation of α and β , choosing the values
−25,−50,−75 for δ. Given that the sample may not contain all near-records cor-
responding to the last record value, formula (30) has to be slightly modified. That is,
the probability, (1 −pθ(rn))

knpθ (rn), of the event {Kn = kn} must be replaced by the
probability, (1 − pθ(rn))

kn , of {Kn ≥ kn}. We obtain

L(rn,kn,yn; θ) = Fθ(rn + δ)

n∏

i=1

fθ (ri)

F θ (ri + δ)ki+1

ki∏

j=1

fθ

(
y

j
i

)
. (33)

The samples of δ-records, for each δ, are shown in Table 4 and results are pre-
sented in Table 5. As no closed-form expressions for the sdev and rmse are available,
their estimations were obtained through simulations of samples of size 74 containing
5 records, under the assumption that the true values of the parameters are the MLEs
based on the complete sample, namely α = 2.04 and β = 130.38. For ease of expo-
sition, the estimations of sdev and rmse are also referred to as sdev and rmse. Since
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Table 3 Precipitation data from Castellote meteorological station

1927–1939 1940–1952 1953–1965 1966–1978 1979–1991 1992–2000

164.6 74.6 88.5 123.5 182.0 119.0

32.2 78.0 10.9 150.0 63.0 112.7

138.5 124.0 111.6 60.0 38.0 206.0

108.0 154.1 84.9 173.0 167.0 54.0

62.8 97.0 247.1 76.0 67.3 96.5

184.9 151.1 112.0 100.0 124.0 97.6

164.7 52.2 278.8 230.0 60.8 37.1

130.1 77.5 176.5 82.0 214.0 119.4

17.3 48.0 123.0 65.0 136.0 209.1

224.9 42.2 204.3 102.0 148.0

179.5 65.7 112.3 73.2 112.0

145.2 157.3 51.6 75.0 96.2

131.5 30.6 143.3 62.0 98.5

Fig. 1 Weibull Q–Q plot of Castellote precipitation data

2.04 and 130.38 are not the real values of α and β , we have also performed simula-
tions using values of α and β in a neighborhood of 2.04 and 130.38 and studied how
the rmse vary. For illustrative purposes we describe results for records and δ-records



210 R. Gouet et al.

Table 4 δ-record values for the Castellote precipitation data

l δ-record values

0 164.6, 184.9, 224.9, 247.1, 278.8

−25 164.6, 184.9, 164.7, 224.9, 247.1, 278.8

−50 164.6, 138.5, 184.9, 164.7, 224.9, 179.5, 247.1, 278.8, 230.5

−75 164.6, 138.5, 108.0, 184.9, 164.7, 130.1, 224.9, 179.5, 154.1,

151.1, 157.3, 247.1, 278.8, 204.3, 230.5, 214.0, 206.0, 209.1

Table 5 Parameter estimation of the Weibull model for Castellote data

δ α̂ rmse α̂ sdev α̂ β̂ rmse β̂ sdev β̂

0 3.93 1.86 1.69 185.06 39.70 38.26

−25 3.46 1.80 1.65 188.32 41.67 38.66

−50 3.44 1.50 1.35 181.69 39.74 36.35

−75 2.90 1.10 0.98 150.17 34.52 31.75

Complete sample 2.04 130.38

with δ = −75. For α varying in [1.5,2.5] and β = 130.38, the rmse of α̂ varies from
1.30 to 2.19 using records and from 1.02 to 1.15 using δ-records. The rmse of β̂

varies from 31.80 to 54.53 using records and from 23.45 to 55.74 using δ-records.
When β varies in [100,160], and α = 2.04, the rmse of α̂ varies from 1.74 to 1.91
using records and from 0.82 to 1.30 using δ-records. The rmse of β̂ varies from 29.84
to 47.80 using records and from 21.91 to 45.34 using δ-records.

Considering the values of the rmse and how close α̂ and β̂ are to the MLEs based
on the whole sample (Table 5), we conclude that, for the scale parameter β , the esti-
mations based on δ-records yield results similar to those obtained from records, for
δ = −25,−50 while, for δ = −75, there is a significant improvement. For the shape
parameter α, estimations using δ-records, for all values of δ analyzed, are noticeably
better than estimations using only records.

4.2.2 Ceramic data

We analyze the silicon carbide stress data shown in Table 5 in Guerra Rosa et al.
(2006). The Weibull distribution fits well the sample of size 69 and the correspond-
ing Q–Q plot is shown in Fig. 2. The MLEs of the parameters, based on the complete
sample, are α̂ = 10.62 and β̂ = 362.14. If the experiment had been conducted using
the sequential sampling strategy, as described in Gulati and Padgett (2003), the data
set would consist only of lower-record values, shown in the first row of Table 6. Us-
ing these record-breaking data, the MLEs of the parameters, computed numerically,
are α̂ = 29.77 and β̂ = 305.16. If the experiment had been conducted using our pro-
posal of stressing each element a bit further than the previous minimum, as explained
above, the sample would consist of multiplicative δ-lower-records, as seen in rows 2
to 5 of Table 6.
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Fig. 2 Weibull Q–Q plot of silicon carbide stress data

Table 6 Multiplicative δ-lower-record values for the silicon carbide stress data

γ Multiplicative δ-lower-record values

1 306, 300, 274, 260, 256

1.05 306, 300, 314, 305, 306, 305, 274, 260, 256, 265

1.10 306, 300, 314, 305, 306, 305, 274, 260, 282, 256, 265, 276

1.15 306, 349, 300, 314, 305, 306, 305, 274, 332, 260, 282, 256, 265, 276, 292

The likelihood of the multiplicative δ-lower-record sample can be obtained by a
similar reasoning to that of Proposition 1. In fact, we only have to replace Fθ by Fθ

and +δ by ·γ in (30). Furthermore, as in Sect. 4.2.1, we do not know the exact number
of multiplicative near-records associated with the last record, and the likelihood has
to be modified as in (33). Finally, we obtain

L(sn,kn, zn; θ) = Fθ(snγ )

n∏

i=1

fθ (si)

Fθ (siγ )ki+1

ki∏

j=1

fθ

(
z
j
i

)
, (34)

with s1 > · · · > sn, ki ∈ Z+ and z
j
i ∈ (si , γ si), for j = 1, . . . , ki , i = 1, . . . , n.

The maximum likelihood estimation of parameters α,β is based on (34), special-
ized to the Weibull distribution. The maximization is carried out numerically and
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Table 7 Parameter estimation of the Weibull model for the silicon carbide stress data

γ α̂ rmse α̂ sdev α̂ β̂ rmse β̂ sdev β̂

1 29.77 7.92 6.88 305.16 31.08 28.69

1.05 26.22 5.68 5.05 309.30 31.56 28.19

1.10 24.44 4.25 3.84 304.27 29.39 26.19

1.15 13.29 3.29 3.06 321.32 25.59 23.13

Complete sample 10.62 362.14

results are shown in Table 7. As for the precipitation data, the rmse and the sdev
were estimated through simulation, assuming the parameter values equal to the MLEs
based on the complete sample. We have also analyzed the variation in the rmse of α̂

and β̂ when the values of α and β vary in a neighborhood of 10.62 and 362.14. For
α varying in [10,11] and β = 362.14, the rmse of α̂ varies from 6.43 to 10.34 using
records and from 3.08 to 3.42 for γ = 1.15. The rmse of β̂ varies from 29.64 to 33.04
using records and from 23.71 to 28.98 for γ = 1.15. When β varies in [320,400] and
α = 10.62, the rmse of α̂ varies from 6.83 to 8.85 using records and from 3.12 to 3.42
for γ = 1.15. The rmse of β̂ varies from 27.87 to 35.82 using records and from 22.86
to 29.70 for γ = 1.15.

For the scale parameter β we observe similar performances of estimators based
on records and estimators based on multiplicative δ-records when γ = 1.05 or γ =
1.10, while estimations clearly improve when γ = 1.15. For the shape parameter α,
estimations based on multiplicative δ-records are better than estimations based only
on records, especially when γ = 1.15.

4.3 Concluding remarks

One important issue of statistical inference based on record values is their scarceness.
In fact, the number of trials needed to observe a reasonable number of records may
be very large, which makes small values of the rmse unattainable by estimators using
only records. In this section we show that, if δ-records are available or the experiment
can be conducted in such a way that δ-records are registered, these data can be suc-
cessfully incorporated in the likelihood, yielding better results than the estimations
based on record values only. Table 2 shows that estimations based on δ-records, re-
lated to a low number of records, have smaller rmse than estimators based only on a
high number of records.

Regarding the practical applications of estimations based on δ-records, we be-
lieve that they can play an important role in destructive stress testing, as explained
in Sect. 4.2.2. Another field of potential application is actuarial mathematics; for in-
stance, Teugels (1982) describes a procedure based on records to assess the validity
of a model for insurance claims, which could be improved by the inclusion of near-
records.

Finally, some extensions of δ-record based estimation worth considering are:

– Other sampling schemes: for instance, sampling can be continued until an obser-
vation greater than a fixed value is obtained. Another situation to be considered is
to register only a random sample of near-records along with each record.
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– Take δ as a function of the record value: throughout this paper we have assumed
that δ is fixed. However, the likelihood function can be rewritten in the case that δ

depends on the corresponding record value.
– Discrete observations: arguments similar to those in Proposition 1 can be used to

analyze discrete observations. In this situation, the likelihood is given by

L(rn,kn,yn; θ) = Fθ(rn)

n∏

i=1

πθ (ri)

F θ (ri + δ)ki+1

ki∏

j=1

πθ

(
y

j
i

)
, (35)

with r1 < · · · < rn, ki ∈ Z+ and y
j
i ∈ (ri + δ, ri], for j = 1, . . . , ki , i = 1, . . . , n

and πθ (x) = Pθ [X1 = x].
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