
J Intell Robot Syst (2012) 66:125–149
DOI 10.1007/s10846-011-9601-5

Visual SLAM Based on Rigid-Body 3D Landmarks

Patricio Loncomilla · Javier Ruiz del Solar

Received: 17 December 2010 / Accepted: 11 May 2011 / Published online: 17 August 2011
© Springer Science+Business Media B.V. 2011

Abstract In current visual SLAM methods, point-
like landmarks (As in Filliat and Meyer (Cogn
Syst Res 4(4):243–282, 2003), we use this expres-
sion to denote a landmark generated by a point
or an object considered as punctual.) are used
for representation on maps. As the observation
of each point-like landmark gives only angular
information about a bearing camera, a covariance
matrix between point-like landmarks must be es-
timated in order to converge with a global scale
estimation. However, as the computational com-
plexity of covariance matrices scales in a quadratic
way with the number of landmarks, the maxi-
mum number of landmarks that is possible to
use is normally limited to a few hundred. In this
paper, a visual SLAM system based on the use
of what are called rigid-body 3D landmarks is
proposed. A rigid-body 3D landmark represents
the 6D pose of a rigid body in space (position
and orientation), and its observation gives full-
pose information about a bearing camera. Each
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rigid-body 3D landmark is created from a set of N
point-like landmarks by collapsing 3N state com-
ponents into seven state components plus a set of
parameters that describe the shape of the land-
mark. Rigid-body 3D landmarks are represented
and estimated using so-called point-quaternions,
which are introduced here. By using rigid-body
3D landmarks, the computational time of an
EKF-SLAM system can be reduced up to 5.5%, as
the number of landmarks increases. The proposed
visual SLAM system is validated in simulated and
real video sequences (outdoor). The proposed
methodology can be extended to any SLAM sys-
tem based on the use of point-like landmarks,
including those generated by laser measurement.
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1 Introduction

Simultaneous Localization and Mapping (SLAM)
has been one of the most highly investigated topics
in mobile robotics in the last 20 years. Several
workshops, special sessions in conferences and
special issues in journals have been devoted to
this research topic. Vision-based or visual SLAM,
i.e. the attempt to solve SLAM using standard
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cameras as the main sensory input [2], has at-
tracted the attention of the SLAM community
in recent years. Main challenges in vision-based
SLAM are robust feature detection, efficient and
robust data association and loop-closure, and
computationally efficient large-scale state estima-
tion [2]. Visual-landmark definition, representa-
tion, and estimation are some of the key issues to
tackle in order to address these challenges.

In the current vision-based SLAM literature,
points are selected as landmarks because of their
direct geometrical interpretation, which enables
the straightforward formulation of the SLAM
problem [3–5]. However, when a fully calibrated
camera observes a point, only weak angular infor-
mation that relates the observation to the poses
of the landmarks and the camera is obtained.
As only angular information is available, several
possible maps can explain the observations, since
any rotation, translation or scale transformations
applied to them preserve the coherence between
the model and the measurements [3].

As each point-like observation fulfills only 2
degrees of freedom, and the map has 7 degrees
of freedom, sets of several simultaneously ob-
served points must be used in order to estimate
the map, which necessitates the use of a full-
covariance matrix [6]. When the size of the map
increases, the number of landmarks becomes very
relevant, as the number of computations required
to update the covariance matrix is proportional
to the square of the full state size. As a result of
this fact, the map size is limited by the number
of landmarks, which can increase only up to a
few hundred for real-time applications. Since a
map created by using only angular information is
weakly constrained, robustness and precision of
local maps become very limited [3]. Landmark
recognition is based on point-projection predic-
tion and matching of local patches around each
point, which gives weak association information,
forcing the use of RANSAC-like strategies for
discarding sets of false associations [4]. Then, al-
ternative landmark-modeling methodologies are
required in order to overcome the inherent limi-
tations of point-like landmarks.

Landmarks, in their widest sense, are geomet-
rical features that enable the description of a
map in a fashion understandable to humans, and

that make possible self-localization. By following
this wide definition, it can be noted that humans
localize themselves using landmarks that do not
correspond to points, but instead correspond to
wide regions in space that are recognized by visual
inspection, by means of a hierarchy of increasingly
sophisticated representations. Visual observations
from these wide-region landmarks are not limited
to angular information, since they include both
relative distance and orientation between the ob-
server and each landmark. In addition, humans
are able to give descriptions of places or paths
between different places by using references to
semantic information that is more related to full
objects than to points. Thus, the ability of a robot
to use landmarks related to wide areas, instead of
to points, is desirable in order to generate more
robust observations, to facilitate semantic label-
ing, and to reduce the amount of data needed to
maintain the map.

In order to address the previously mentioned
aspects, a methodology for generating, represent-
ing and estimating rigid-body 3D landmarks is
proposed. A rigid-body 3D landmark represents
the 6D pose of a rigid body in space (position and
orientation), and its observation gives full-pose
information about the camera. Each rigid-body
3D landmark is created from a set of N point-
like landmarks by collapsing 3N state components
into seven state components plus a set of parame-
ters that describe the shape of the landmark (so-
called body points and their covariance matrices).
Rigid-body 3D landmarks are represented and
estimated using point-quaternions, which are here
introduced and named.

A visual SLAM system that uses point-like
and rigid-body 3D landmarks, based on the EKF-
SLAM formulation, is also proposed. The use of
rigid-body 3D landmarks permits reducing the
computational time of the EKF-SLAM system up
to 5.5%, as the number of landmarks increases.
The proposed visual SLAM system is validated in
simulated and real video sequences.

This paper is organized as follows. Impor-
tant related work is presented in Section 2. In
Section 3, the proposed methodology used to
represent and estimate rigid-body 3D landmarks
is described. In Section 4, the proposed visual
SLAM system is explained. An experimental
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evaluation of the system is presented in Section 5.
Finally, some conclusions of this work are drawn
in Section 6.

2 Related Work

Vision-based SLAM is an important research
topic that has attracted increasing attention in
the mobile robotics community. Interestingly, as
smart-phones and digital cameras are gaining pop-
ularity, vision-based SLAM has acquired many
potential applications beyond robotics, “due to
the capability it can give a camera to serve as a
general-purpose 3D position sensor” [2].

Most of the current work related to monocular-
based visual localization stands on two ap-
proaches: structure-from-motion recovery, and
monocular SLAM. Structure-from-motion recov-
ery is based on algorithms that estimate cor-
responding points between consecutive images
without using a dynamic model. Methodologies
based on Nistér’s visual odometry [7] using opti-
mal preemptive RANSAC [8] applied over sets
of three- and five-points, which are extracted by
Harris filtering and processed using local bundle
adjustment optimization, can achieve impressive
results over large paths, but they accumulate an
ever-increasing error over time, as they are based
only on relative motion.

Monocular visual SLAM approaches, based on
the seminal works of Davison [6, 9], can achieve
impressive results in small to middle-size maps,
but the management of large maps is a hard
topic to face because of scale drifts, covariance
matrix expansion, and loop-closure limitations.
Live dense reconstruction [10] can be achieved
by updating an active mesh by means of con-
strained optical-flow based minimization. Scalable
active matching [5] has been proposed to man-
age large maps that involve a large amount of
cross-correlation by using a graph-pruning ap-
proach in order to reduce covariance data, and
to limit uncertainty propagation between dis-
tant points. A drift-aware monocular SLAM [3]
has been proposed to model scale-drift by us-
ing a Lie group approach over the rotation-
translation-scale transformation group, to achieve
differential-constrained bundle-adjustment opti-

mization for loop closing. As the time needed
for RANSAC to solve a problem increases dra-
matically with the number of points needed for
conforming a minimal subset, 1-point RANSAC
[4] has been proposed to achieve fast data asso-
ciation. This approach is based on using 1 point
to update the pose of the robot, and then using
the new robot’s pose for evaluating consensus on
the other points using a chi-square test. Finally,
appearance and 3D geometry [11] have been used
to cluster a map into sets of points that are close
in space, and that have similar image areas around
them. This approach looks promising for building
semantic models.

As has been already mentioned, some of the
current problems of visual SLAM systems are
derived from the fact that the perception of a
point-like landmark does not allow the camera’s
pose to be inferred, and several points must be
perceived and analyzed. To overcome this draw-
back, high-level landmarks based on sets of points
scattered over the object surfaces can be used
[12, 13]. In [12] high-level structures, such as
planes and lines, are built online using a bottom-
up process that first maps point-like and line-like
landmarks, and then searches for sets of them
that agree with the high level landmarks’ hypoth-
esis. In [13] locally planar landmarks represented
using the inverse depth parametrization [14] are
defined. The camera’s state, landmark’s normal-
plane, and measurement errors are represented
as Lie groups. Local reference frames defined by
a central point and Euler-like angles have been
used in 3D laser SLAM for representing local
planar patches, which generate more compact and
meaningfully maps [15–18]. However, the use of
plane-based features limits the ability of the meth-
ods to handle general outdoor environments, and
observations related to planes lose two degrees of
freedom respect to full pose information, which
limits the amount of information gathered from
each observation. The approach proposed in this
work is also based on the collapsing of point-
like landmarks into high-level landmarks, but the
main differences are the use of non-planar 3D
landmarks, which adds flexibility to the system,
and the definition of a methodology for land-
mark representation and estimation that is based
on the use of point-quaternions, which form a



128 J Intell Robot Syst (2012) 66:125–149

rotationally-symmetric algebraic group represen-
tation for poses in space.

3 Rigid-Body 3D Landmark Representation
and Estimation

A rigid-body 3D landmark, from now on referred
to as a 3D landmark, represents the 6D pose of
a rigid body in space. A rigid body is composed
by a set of observable points called body points,
which are used to create a 3D landmark. The pose
of the 3D landmark is determined by the location
of the rigid body points when referred to a global
reference frame. The pose of the 3D landmark
is encoded by using a point and a quaternion
[19] chained into a unique object named a point-
quaternion. The covariance of a 3D landmark’s
pose is determined by the covariance of its asso-
ciated point-quaternion.

In a SLAM system, every time a subset of the
body points is observed, a compatible pose for the
3D landmark is computed and used as a virtual
observation. Uncertainty related to the observa-
tion of the body points can be propagated into
uncertainty in the pose of the 3D landmark. The
virtual observation and its covariance enable the
correction of the 3D landmark pose estimation.

3.1 6D pose representation using
point-quaternions

A point-quaternion η is introduced in this paper
as a 7D mathematical object that is composed by
a point t and a quaternion q. The point is used
to denote a position, and the quaternion is used
to denote an orientation. In this way, a point-
quaternion can represent a 6D pose in space. A
quaternion can be formed by specifying a unitary
rotation axis ω, and a rotation angle θ . Then, η is
defined as:

η7×1 =
(

t3×1

q4×1

)
; q =

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos (θ/2)

ωX sin (θ/2)

ωY sin (θ/2)

ωZ sin (θ/2)

⎞
⎟⎟⎠ ;

t =
⎛
⎝ x

y
z

⎞
⎠ (1)

Similarly as in the case of using transformation
matrices, using point-quaternions allows defining
a transformation operation, transop, over a vec-
tor p, consisting of a rotation followed by a
translation:

transop (η, p) = q · p · q−1 + t (2)

The inverse transformation, inv_transop, is de-
fined as:

inv_transop (η, p) = q−1 · (p − t) · q (3)

Point-quaternions can be composed by using a
multiplication operation, which is defined as:

η1 · η2 =
(

t1
q1

)
·
(

t2
q2

)
=

(
q1 · t2 · q−1

1 + t1
q1 · q2

)
(4)

Point-quaternions containing a zero quaternion
are ill-posed as they do not represent any rotation.
Valid point-quaternions and their multiplication
form a group as they have closure, associativity,
an identity element (ηI) and an inverse element
(see proof in [20]):

ηI =
(

03×1

1

)
=

(
0, 0, 0T

1, 0, 0, 0T

)
,

η−1 =
(−q−1 · t · q

q−1

)
(5)

A special sum for point-quaternions is not
defined because of the lack of distributive prop-
erties, but vector summation can be applied for
Jacobian-calculation purposes [20].

Point-quaternion multiplication can be used
to relate different reference systems as transfor-
mation matrices do. Coordinates from points on
a reference system A can be transformed into
coordinates on a reference system B by using
a point-quaternion ηAB. Coordinate transforma-
tions between reference systems A, B and C can
be composed by using point-quaternion multipli-
cation (the multiplication direction is the same as
that used in homogeneous matrix composition):

ηAC = ηBC · ηAB (6)
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Each point-quaternion η has an associated ho-
mogeneous matrix H(η) that represents the same
transformation:

H (η) = H
((

t
q

))

=

⎛
⎜⎜⎜⎜⎜⎝

a2+b 2−c2−d2

a2+b 2+c2+d2
2bc−ad

a2+b 2+c2+d2
2bd+2ac

a2+b 2+c2+d2 tX

2bc+2ad
a2+b 2+c2+d2

a2−b 2+c2−d2

a2+b 2+c2+d2
2cd−2ab

a2+b 2+c2+d2 tY
2bd−2ac

a2+b 2+c2+d2
2cd+2ab

a2+b 2+c2+d2
a2−b 2−c2+d2

a2+b 2+c2+d2 tZ

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(7)

Thus, point-quaternions can be used for the
same purposes as homogeneous matrices, being
more compact and well-posed as they do not
include distorting effects associated with homo-
geneous matrices. As each homogeneous ma-
trix contains 12 variable components, the error
covariance representation associated with a ho-
mogeneous matrix uses 12 × 12 components,
and it is ill-posed when representing pose un-
certainty as it can encode uncertainty about axis
orthogonality and scaling. Conversely, the co-
variance matrix of a point-quaternion, a 7 × 7
symmetric semipositive-definite matrix, encodes
the uncertainty about a pose in space, and it
is well posed as it always represents pure pose
uncertainties.

3.2 Rigid-body 3D Landmark Generation
Procedure

The procedure used for creating a rigid-body 3D
landmark from N individual point-like landmarks
(points) involves transforming 3N position state
components into seven-pose state components.
The covariance representation must be trans-
formed at the same time.

First, the SLAM state vector x (see Section 4)
is divided into the set of points pSET to be fused,
and the other state components o:

x =
(

pSET

o

)
; pSET =

⎛
⎝ p1

. . .

pN

⎞
⎠ ; pi =

⎛
⎝ xi

yi

zi

⎞
⎠ (8)

Body points �i are computed by subtracting
the mean position value from each point pi to be
fused:

�i = pi − m, i = 1, . . . , N; m
1
N

N∑
i=1

pi (9)

In general terms, a point-quaternion defining a
coordinate transformation T that relates a set of
points in a reference frame A to a set of points in a
reference frame B, can be computed with minimal
error as:

T
(

p(B)
1 , . . . , p(B)

N , p(A)
1 , . . . , p(A)

N

)

= arg min
ηLN

(
N∑

i=1

∥∥∥qLN · p(A)

i · q−1
LN + tLN

−p(B)

i

∥∥∥2
)

(10)

Given that the transformation that relates the
body points to the original points corresponds to
a translation m and an identity rotation:

ηLAND−MAP =
(

tLAND−MAP

qLAND−MAP

)

= T (p1, . . . , pN, �1, . . . , �N)

=
(

m
1

)
(11)

The new state representation of the 3D land-
mark is put into the full state vector:

xNEW =
(

ηLAND−MAP

o

)
(12)

The covariance matrix of the state P is divided
into four sub matrices, where Ppp contains the
covariances from the points to be fused:

P =
(

Ppp Ppo

Pop Poo

)
,

Ppp =

⎛
⎜⎜⎜⎝

P(1,1)
3×3 P(1,2)

3×3 . . . P(1,N)
3×3

P(2,1)
3×3 P(2,2)

3×3 . . . . . .

. . . . . . . . . . . .

P(N,1)
3×3 . . . . . . P(N,N)

3×3

⎞
⎟⎟⎟⎠ (13)
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Considering the size reduction of the vector
state, P will adopt the following form:

P =
(

P77 P7o

Po7 Poo

)
(14)

By considering that each body point �i will
have an associated covariance P(i)

� , covariance
propagation from pi and �i into ηLAND−MAP can
be estimated using a first order Taylor expansion:

P77 = Jp Ppp JT
p − J�

⎛
⎝ P(1)

�

. . .

P(N)
�

⎞
⎠ JT

� (15)

with

Jp = ∂T (p1, . . . , pN, �1, . . . , �N)

∂ (p1, . . . , pN)
;

J� = ∂T (p1, . . . , pN, �1, . . . , �N)

∂ (�1, . . . , �N)
= −Jp (16)

P7o and Po7 are updated as:

P7o = Jp Ppo; Po7 = Pop JT
p (17)

The error associated to Ppp must be di-
vided into the P77 pose covariance and the P(i)

�

body-points covariance. The decomposition is
not unique as any choice for the set of co-
variances P(i)

� and P77 is valid, when all of the
involved covariance matrices are positive semi-
definite. Then, several criteria for selecting the
P(i)

� can be generated. In this work, two criteria
will be considered, maximal pose covariance and
maximal body-points covariance.

1. Maximal pose covariance. The procedure con-
siders the following steps. First, transfer all
the covariance error associated to Ppp into
P77:

P77 = Jp Ppp JT
p (18)

Then, compute the covariance matrix PREC,
which corresponds to an approximation of
P77:

PREC = GP77GT (19)

with

G = ∂U (�1, . . . , �N, ηLAND−MAP)

∂ (�1, . . . , �N)
(20)

and

U (�1, . . . , �N, ηLAND−MAP) =
⎛
⎝ qLAND−MAP · �1 · q−1

LAND−MAP + tLAND−MAP

. . .

qLAND−MAP · �N · q−1
LAND−MAP + tLAND−MAP

⎞
⎠ ≈

⎛
⎝ p1

. . .

pN

⎞
⎠ (21)

Afterwards, calculate the covariance matrix
of each body point P(i)

� by subtracting the
original Ppp and its approximation PREC

as:

P(i)
� = D(i,i)

3×3 (22)

PDIFF = Ppp− PREC

=

⎛
⎜⎜⎜⎝

D(1,1)
3×3 D(1,2)

3×3 . . . D(1,N)
3×3

D(2,1)
3×3 D(2,2)

3×3 . . . . . .

. . . . . . . . . . . .

D(N,1)
3×3 . . . . . . D(N,N)

3×3

⎞
⎟⎟⎟⎠ (23)

Finally, each P(i)
� must be checked for positive

semidefiniteness by making zero its negative
eigenvalues and reconstructing the matrix.

2. Maximal body-points covariance. Transfer the
maximal amount of covariance to the set of
body points P(i)

� by minimizing the amount
of covariance that is transferred to P77

(the Levenberg-Marquardt optimization pro-
cedure is used):

min
α1,α2

{
λLOWER

(
Ppp−α1

(
P(1,1)

3x3
. . .

P(N,N)
3x3

)
− α2 D

)}2

(24)

with

D = diag
(
Ppp

)
(25)

and λLOW ER(M) the lower eigenvalue of a
certain matrix M.
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As any covariance matrix must be positive
semidefinite, it is minimal when its lower
eigenvalue is near to zero. After α1 and α2 are
determined, the P(i)

� are updated as:
⎛
⎝ P(i)

�

. . .

P(N)
�

⎞
⎠ = α1

⎛
⎝ P(1,1)

3×3
. . .

P(N,N)
3×3

⎞
⎠

+ α2 D (26)

Then, P77 is computed using (15).
The body points and their covariance matrices
are stored in a special data structure, which
does not need to be updated by the SLAM
update procedure.

3.3 Rigid-body 3D Landmark Generation
Criterion

The decision for generating a new rigid-body 3D
landmark depends on the covariance of the points
to be fused. Small covariances indicate smaller
errors in the observations. Positive and similar
cross-covariances between the points assure that
the correction of one point generates a similar
correction in all the other points, and then they
behave as a rigid body.

The proposed fusion criterion is fast to compute
and enables the creation of sets of landmarks that
are candidates for fusing. It is based on the analy-
sis of the covariance matrix of the points to be
fused. A variability index (varIndex) is computed.
It indicates the degree of variation of the com-
ponents from a subset of the covariance matrix.
Subsets with low variability indicate that cross
covariances are similar.

Before computing the variability indices of the
covariance matrix Ppp, their diagonal components
Pi = P(i,i)

3×3 (see Eq. 13) are ordered by decreas-
ing trace-value of the covariance sub matrices for
each point:

Pi > P j ⇒ PiX X + PiYY + PiZ Z

> P jX X + P jYY + P jZ Z (27)

with

Pi =
⎛
⎝ PiX X PiXY PiX Z

PiY X PiYY PiY Z

PiZ X PiZ Y PiZ Z

⎞
⎠ (28)

The ordering indicated in (27) can be altered
for eliminating terms that have several negative
cross-covariances over the X, Y or Z components
(see details in [20]). The variability index is com-
puted on several windows in the covariance ma-
trix using summed area tables for computing fast
average values into the window:

varIndex = min
q,r

CX (q, r, q + M, r + M)

+ CY (q, r, q + M, r + M)

+ CZ (q, r, q + M, r + M) (29)

with

CX (q0, r0, q1, r1) =

q1∑
q=q0

r1∑
r=r0

P2
qrX X

(q1 − q0 + 1) (r1 − r0 + 1)

×

⎛
⎜⎜⎜⎝

q1∑
q=q0

r1∑
r=r0

PqrX X

(q1−q0+1) (r1−r0+1)

⎞
⎟⎟⎟⎠

2

(30)

CY (q0, r0, q1, r1) =

q1∑
q=q0

r1∑
r=r0

P2
qrYY

(q1 − q0 + 1) (r1 − r0 + 1)

×

⎛
⎜⎜⎜⎝

q1∑
q=q0

r1∑
r=r0

PqrYY

(q1−q0+1) (r1−r0+1)

⎞
⎟⎟⎟⎠

2

(31)

CZ (q0, r0, q1, r1) =

q1∑
q=q0

r1∑
r=r0

P2
qrZ Z

(q1 − q0 + 1) (r1 − r0 + 1)

×

⎛
⎜⎜⎜⎝

q1∑
q=q0

r1∑
r=r0

PqrZ Z

(q1 − q0 + 1) (r1−r0+1)

⎞
⎟⎟⎟⎠

2

(32)

and M the number of points to be grouped (e.g.
M = 10).
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Finally, when a window has a varIndex below a
threshold th, the selected points are collapsed into
a 3D landmark using the procedure described in
Section 3.2.

3.4 Virtual and Estimated 3D Observations

Every time the rigid body represented by the
rigid-body 3D landmark is observed, measure-
ments involving the body points are obtained. In
this work, body points are detected as points of
interest using the SURF methodology [21]. The
position of each interest point (posx, posy) is
translated into normalized pixel coordinates, and
defines a basic observation zuv to be used by the
SLAM system:

zuv =
(

ux

vy

)
=

(
posx/distFocx

posy/distFocy

)
(33)

with distFocX /distFocY the focal distances in x
and y, respectively.

After data association (see description in
Section 4.2), the set of measurements in normal-
ized coordinates {zuv} can be transformed into a
virtual observation of a rigid-body 3D landmark
zrb3D. This requires minimizing a measurement
error that relates the coordinates of the body
points, the pose of the corresponding rigid-body
3D landmark (whose identity is determined in the
data association process), and the real measured
observations. As the virtual observation computa-
tion involves minimizing an error, an initial pose
must be provided for the minimization algorithm.
The initial pose is estimated by using the three-
point algorithm [22] in several random-selected
triplets of measured interest points. The three-
point algorithm (alg3p function) enables the cal-
culation of the positions of three points in space
when the projected points and the distances be-
tween the points in space are known. As up to
four solutions can be obtained, a fourth point is
needed for disambiguation. Twelve sets of four
points are used to generate a set of candidate
poses. The last detected pose is also added to this
set. The candidate pose with the lowest error is
selected. By using this procedure, an initial pose
η0 that projects a triplet of body points into three

measured interest points on the image with low
error is obtained:

η0 = arg min
ηabcd∈I

(EP (ηabcd)) ; I = {η1, , , η13} (34)

with

ηabcd = alg3p
(

�a, �b , �c, �d,

(
ua

va

)
,

(
ub

vb

)
,

(
uc

vc

)
,

(
ud

vd

))
a �= b �= c �= d (35)

and

EP (ηLC)

=
N∑

i=1

∥∥∥∥projection
(
qLC · �i · q−1

LC + tLC
)−

(
ui

vi

)∥∥∥∥
(36)

The projection operation maps points in space
into the image space:

(
u
v

)
=

(
x/z
y/z

)
= projection

⎛
⎝ x

y
z

⎞
⎠ (37)

Then, the virtual observation zrb3D is com-
puted by iterative optimization using Levenberg-
Marquardt, using as the initial solution η0:

zrb3D = V (u1, v1, . . . , uN, vN, �1, . . . , �N)

= ηLAND−CAM−MEASU RED

= arg min
ηi

EP (ηi) (38)

The error covariance matrix associated with the
virtual observational process, Rrb3D is computed
by propagating the errors associated with the ob-
servations RUV and the error associated with the
body points P�:

Rrb3D =
N∑

i=1

J(i)
UV · RUV ·

(
J(i)

UV

)T+J(i)
� · P(i)

� ·
(

J(i)
�

)T

(39)
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with

RUV

(
α2

pixelX/distFoc2
X 0

0 α2
pixelY/distFoc2

Y

)
(40)

J(i)
UV = ∂V (u1, v1, . . . , uN, vN, �1, . . . , �N)

∂ (ui, vi)
(41)

J(i)
� = ∂V (u1, v1, . . . , uN, vN, �1, . . . , �N)

∂�i
(42)

The procedure used to compute these Jacobians is
detailed in the Appendix.

An observation function hrb3D allows comput-
ing an estimated pose for the rigid-body 3D land-
mark. Since the observation function depends on
the camera pose and the 3D landmark pose, it de-
pends on the representation used for the camera
state. In this work, a point-quaternion ηCAM−MAP

encodes the pose of the camera in respect to the
global reference frame (see Section 4.1). Consid-
ering that the pose of the 3D landmark is encoded
by ηLAND−MAP, hrb3D is given by:

hrb3D (x) = ηLAND−CAM−EX PECT ED

= η−1
CAM−MAP · ηLAND−MAP (43)

When few body points are observed, a virtual ob-
servation zrb3D cannot be computed, but the body
points observations can be used in the SLAM pro-
cedure (see Section 4.3). The observation function
associated with each body point h(i)

b p is given by:

h(i)
b p (x) = projection (ηLAND−CAM−EX PECT ED ·�i

× η−1
LAND−CAM−EX PECT ED

+ tLAND−CAM−EX PECT ED)

(44)

And the associated covariance computed as:

R(i)
b p = RUV + dh(i)

b p(x)

d�i
P(i)

�

(
dh(i)

b p (x)

d�i

)T

(45)

3.5 Quaternion Sign Compatibility

For each possible pose, infinity point-quaternions
can be selected as a possible representation.

When a unitary quaternion constraint is imposed,
there are two possible options: (t, q) and (t, −q).
Because the virtual observation zrb3D and the
estimated observation hrb3D are computed in
an independent way, they may lack compatible
signs. For this reason a procedure for correct-
ing this problem is required. The procedure is
based on computing a cosine distance between the
point-quaternions ηLAND−CAM−MEASU RED and
ηLAND−CAM−EX PECT ED. If they have different
signs, the distance becomes negative and both the
observation and its covariance are corrected:

〈
qLAND−CAM−MEASURED, qLAND−CAM−EXPECTED

〉
< 0

⇒
⎧⎨
⎩

qLAND−CAM−MEASURED =−qLAND−CAM−MEASURED
Rrb3Dtq =−Rrb3Dtq
Rrb3Dqt =−Rrb3Dqt

(46)

with

〈q1, q2〉 = a1a2 + b 1b 2 + c1c2 + d1d2 (47)

and Rrb3Dtq and Rrb3Dqt the covariance elements
that are associated with the point-quaternion’s
components t and q.

3.6 Computational Complexity

Rigid-body 3D landmarks are generated by trans-
forming N point-like landmarks into a 7D pose
plus shape parameters. If the original state has
nO + 3N components before fusion, it will remain
with only nO + 7 components after the transfor-
mation. For illustrating the speed gain caused
by state reduction, two opposing cases will be
analyzed.

In the first case the state of the system contains
a camera state and D rigid-body 3D landmarks.
Given that the camera state, composed by a point-
quaternion, a linear velocity vector and an angular
velocity vector (see Section 4.1), has 13 dimen-
sions, the covariance matrix size is:

size1 (D) = (13 + 7D)2 (48)

In the second case the state of the system contains
a camera state and D∗nP point-like landmarks,
with nP being the number of points that are
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required to form a 3D landmark. Then, the covari-
ance matrix size is:

size2
(
D, np

) = (
13 + 3Dnp

)2 (49)

As the number of landmarks increases, size
differences become more significant:

size1 (D)

size2 (D, nP)
= (13 + 7D)2

(
13 + 3D np

)2

= 49D2 + O (D)

92 D2n2
p + O (D)

≈ 5, 4̄
n2

p
(50)

Then, in case all point-like landmarks are grouped
into 3D landmarks, using 10 point-like landmarks
to form each 3D landmark (np = 10), the state
covariance matrix size can be reduced up to 5.5%
as the number of landmarks increases. It is well
known that the computing time needed in each
iteration of the EKF-SLAM is limited by the com-
putations required in the correction step, when
the number of landmarks is large. As this time
is proportional to the size of the state covariance
matrix, computational time can be reduced up to
5.5%. Thus, the use of 3D landmarks is especially
well-suited for large maps.

4 Visual SLAM System Using Rigid-Body
3D Landmarks

The proposed visual SLAM system is based on
MonoSLAM [6], but it incorporates the simulta-
neous use of point-like and rigid-body 3D land-
marks. EKF-SLAM is used as the basis algorithm
for implementing the SLAM system. In a first
stage point-like landmarks are stored using the in-
verse depth parametrization [14], then as standard
3D points.

4.1 State Representation

The state of the system x incorporates information
about the camera state, and the poses of point-
like, inverse-depth, and rigid-body 3D landmarks.
The camera state xCAMERA includes the camera
pose, represented by using a point-quaternion

ηCAM−MAP, and linear and angular velocity vec-
tors, vCAM−MAP and ωCAM−MAP, respectively:

xCAMERA =
⎛
⎝ ηCAM−MAP

vCAM−MAP

ωCAM−MAP

⎞
⎠ (51)

The state update equation for the camera is given
by (assuming a zero-mean Gaussian noise added
to both velocities):

fcamera =

⎛
⎜⎜⎝

tcam−map(k+1)

qcam−map(k+1)

vcam−map(k+1)

ωcam−map(k+1)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

tcam−map(k)+
(
vcam−map(k) + nV(k)

)
	t

quat
((

ωcam−map(k)+nW(k)

)
	t

)
qcam−map(k)

vcam−map(k)+nV(k)

ωcam−map(k) + nW(k)

⎞
⎟⎟⎠

(52)

with

quat (ω) =

⎛
⎜⎜⎝

cos ‖ω/2‖
ωX/ ‖ω‖ · sin ‖ω/2‖
ωY/ ‖ω‖ · sin ‖ω/2‖
ωZ / ‖ω‖ · sin ‖ω/2‖

⎞
⎟⎟⎠ (53)

and

nV ∼ N (0, PV)

nW ∼ N (0, PW) (54)

Given the fact that the inverse depth parame-
trization [14] permits an efficient and accurate
representation of uncertainty during undelayed
initialization of point-like landmarks, the position
of these landmarks is represented in a first stage
using 6D inverse depth points qi:

qi = (
xi yi zi θi φi ρi

)T
(55)

with (xi yi zi)
T the first camera position from

which the feature was observed [14], θ i and φi

azimuth and elevation angles of the first feature
observation, and ρi the inverse of the distance to
the first observation.

The error covariance associated with qi is given
by (40). Every time the uncertainty associated
with landmark represented using the inverse-
depth parametrization drops below a given
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threshold (see details in [14]), the landmark is
represented as a 3D Cartesian point pi.

The pose of rigid-body 3D landmarks is repre-
sented using point-quaternions ηi, as explained in
Section 3.

The state update equation for point-like and
rigid-body 3D landmarks is the identity.

4.2 Visual Observations and Data Association

Observations are generated by computing
SURF’s interest points and descriptors [21]. Since
SURF’s interest points computation is based on
the use of non-smooth square kernels, they can
be computed quickly, but some interest points
appear over lines. These interest points have
non-repeatable positions because they move on
the line from frame to frame. Unrepeatable points
are deleted by applying the Harris cornerness
test [23] on each individual interest point (point
with a cornerness less than 1E-30 are eliminated).
The parameters for the Harris filter are sd = 1.3,
si = 2.0, a = 0.04.

Observations, i.e. measured interest points, are
compared with estimated observations that are
produced by projecting 3D points li belonging
to point-like, inverse-depth, and rigid-body land-
marks onto pixels coordinates. First, point posi-
tions are estimated using huv :

h(i)
uv

(
u
v

)
= projection

× (
q−1

CAM−MAP · (li − tCAM−MAP)

· qCAM−MAP
)

(56)

Then, pixel coordinates are obtained by using the
focal distance in x and y:

(
x
y

)
=

(
u · distFocx

v · distFocy

)
(57)

In the case of point-like landmarks the points
to be projected are the ones defining the land-
marks (pi). In the case of rigid-body landmarks
the points to be projected are the rigid-body
points associated with the landmark, which po-
sition is given by pi = qLN · �i · q−1

LN + tLN , with

qLN and tLN the quaternion and point defining the
landmark.

Finally, in the case of inverse-depth landmarks,
the coordinates of the points to be projected are
given by [14]:

li =
⎛
⎝ xi

yi

zi

⎞
⎠ + 1

ρi

⎛
⎝ cos φi sin θi

− sin φi

cos φi cos θi

⎞
⎠ (58)

A planar model is detected on the set of measured
descriptors by searching a similarity transforma-
tion that relates both sets of associated descrip-
tors. The similarity transformation is computed
by using the L&R matching procedure [24, 25],
which uses an approximate nearest neighbor pro-
cedure based on a kd-tree representation for gen-
erating matches between descriptors, a Hough
transform for filtering outliers, and several tests
to reject incorrect transformations. The system
works by generating correspondences between
keypoints from both sets of descriptors, then it
uses differences in position, orientation and scale
associated to each correspondence for computing
similarity transformations. Hypothesis with high
consensus are used to generate an affine trans-
formation that relate both images, and several
consistence tests are done for rejecting transfor-
mations with low score, transformations suffering
from excessive distortion and for deleting wrong
matches in correct transformations. When camera
rotates, all keypoints are displaced in a coherent
way and the system is able to find the transfor-
mation that relates all of the displacements, which
give it the ability to cope with significant camera
rotations. Transformations that have an excessive
associated translation or scaling are rejected as
possible detections. A chi-square test is used to
reject some false landmark detections that can
survive the tests. For rigid body 3D landmarks,
7 × 7-dimensional covariance S matrices are used
for the chi-square test, while for the point-like
landmarks, 2 × 2-dimensional matrices are used.
The similarity transformation stage can be relaxed
when the camera is lost.

This system does not use pixel tracking, but
uses landmark detection in each frame. Then,
loop closure occurs naturally as old descriptors are
found.
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4.3 SLAM Algorithm Formulation

The SLAM algorithm includes the following
stages: SURF features detection, Matching of
SURF features with point-like, inverse-point and
rigid-body landmarks, EKF State Prediction, EKF
State Update, Inverse-depth landmarks collaps-
ing, Point-like landmarks collapsing, Inverse-
depth landmarks generation, and Inverse-depth
landmarks deletion.

1. SURF features detection. SURF features are
detected in the current image, and translated
into normalized pixel coordinates as described
in Section 4.2.

2. Matching of SURF features with point-like,
inverse-point and rigid-body landmarks. As
outlined in Section 4.2, the L&R matching sys-
tem is used, which includes several rejection
tests.

3. EKF State Prediction. The state xk and the
covariance matrix of the state Pk are updated
using the standard EKF prediction step [26].
The camera state is updated using (52) and
(53). The state update equation of the land-
marks is the identity. Pk is updated using the
usual EKF procedure.

4. EKF State Update. The observation model is
used to update the system state and covari-
ance by using the difference between the ex-
pected and real values of the observations for
correcting the model.

As usual, the innovation yk and the innovation
covariance Sk are computed as:

yk = zk − Hk · x−
k

Sk = Hk · P−
k · HT

k + Rk (59)

Four different cases for the innovation computa-
tion need to be considered:

– In the case of point-like landmarks, zk and Rk

are given by (33) and (40), respectively, and
Hk is the Jacobian matrix of partial derivatives
of h(i)

uv (given by (56)), with respect to x.
– In the case of inverse-depth landmarks, zk and

Rk are given by (33) and (40), respectively,
and Hk is the Jacobian of h(i)

uv , given by (56)
and (58).

– In the case of rigid-body landmarks, zk and Rk

are given by (38) and (39), respectively, and
Hk is the Jacobian of hrb3D, given by (43).

– In case a virtual observation can not be ob-
tained for an existing landmark because not
enough body points are observed, body points
can also be used in the correction process. In
this case, for each observed body point, zk and
Rk are given by (33) and (45), respectively,
and Hk is the Jacobian of h(i)

b p, given by (44).

Fast covariance correction can be achieved
by decomposing the state covariance matrix P
into observed (o) and non-observed (n) compo-
nents before applying Kalman correction step, as
follows:

Kk = (
Hk P−

k

)T
S−1

k

Pk = P−
k − Kk

(
Hk P−

K

)
(60)

with

Hk = (
Ho 0

)
, P−

k =
(

Poo Pon

PT
on Pnm

)

Hk P−
k = (

Ho Poo Ho Pon
)

(61)

In a very small percentage of the frames, numer-
ically unstable state covariance matrices are ob-
tained by using the fast covariance update formula
because of floating-point rounding errors. In this
work, a covariance matrix is considered unstable
if Pii P jj < P2

ij for any combination of (i, j). In that
case, covariance correction step is done by using
Cholesky downdating, which is a method involv-
ing Cholesky decomposition that gives a positive
semidefinite matrix as result:

P−
k = LPLT

P, S−1
k = U T

S US

K (Hk PK) = (Hk Pk)
T S−1

k (Hk Pk)
T

= (Hk PkUS)
T (Hk PkUS)

= (
v1 v2 . . . vno

) (
v1 v2 . . . vno

)T

Pk = P−
k − KHk P−

k ⇔ (
LPLT

P

)
k

= (
LPLT

P

)−
k −

no∑
i=1

viv
T
i (62)

A good implementation of Cholesky decompo-
sition is faster than normal matrix multiplication.
As a C or C++ efficient code for Cholesky down-
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dating is not available, a C version of the zchdd
subroutine from LINPACK library [27], originally
written in Fortran, was obtained using fable [28].

After each correction step, the quaternion
components in state are normalized. To ensure
coherence in the SLAM, a Jacobian from the
normalizing function is used to propagate normal-
ization effects into the state covariance matrix.

5. Inverse-depth landmarks collapsing. Inverse-
depth landmarks whose uncertainty drops be-
low a threshold are converted into normal
point-like landmarks.

6. Point-like landmarks collapsing. The covari-
ance of points Ppp is analyzed in order to
verify if a set of point-like landmarks exists
that can generate a rigid-body landmark. As
explained in Section 3.3, the procedure re-
quires verifying whether a variability index
associated with a set of point-like landmarks
is below a threshold th (Eqs. 29, 30, 31). In
case a rigid-body landmark can be generated,
the procedure described in Section 3.2 is used
(Eqs. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26).

7. Inverse-depth landmarks generation. Image
SURF features that were not matched, i.e.
they are distant from landmarks in the im-
age domain, are added as new inverse-depth
landmarks, using the procedure described in
Section 4.1. By selecting an appropriate dis-
tance threshold, the density of observed de-
scriptors in the image can be kept within a
desired range.

8. Inverse-depth landmarks deletion. New
inverse-depth landmarks need to be observed
for a certain number of frames in order to be
confirmed. If the number of frames in which
an inverse-depth landmark was not observed,
but was expected to be, is over a certain
threshold, the landmark is deleted.

5 Experimental Evaluation

5.1 Simulated Experiments

The system is evaluated by simulating the move-
ment of a camera using four types of trajectories,

and applying different visual SLAM approaches
for recovering the camera’s path. In all cases the
simulated camera moves looking all the time at
a fixed point. The following six trajectories are
used, which have closed form for repeatability
purposes.

1. U-shaped path

– Trajectory: x = −60 sin
(

π
2 sin

(
2π t

8

))
, y =

−90 cos
(

π
2 sin

(
2π t

8

))
, z = 0

– Camera looking at position (0,0,0)

2. S-shaped path

– Trajectory: x = −40 1+t
54 cos

(
cos

( t
3t

))
, y =

40 1+t
54 sin

(
cos

( t
3t

))
, z = 0

– Camera looking at position (30,0,0)

3. Continual Lost path

– Trajectory: S-shaped path (80 s) followed
by a square path with four very distant
points (−90, −40), (−90, 40), (−30, 40),
(−30, −40). Each periodic sequence takes
4 s, and the transition between the four
points is done without any delay.

– Camera looking at position (30,0,0)

4. S-shaped+Random-Walk path

– Trajectory: S-shaped path (80 s) followed
by a random walk: xt = xt+1 + nX, yt =
yt+1 + nY , zt = zt+1 + nz, nX, nY , nZ →

N (0, 100) .

– Camera looking at position (30,0,0)

The trajectories were sampled into control
points by using a 1 s step. Intermediate points
were calculated by using spline interpolation in
the point-quaternion space. A set of 900 SURF
descriptors are generated randomly in a 400 × 400
square area centered at the origin of the global
coordinate system by using a uniform distribu-
tion; 64D values for the SURF descriptors are
initialized in a random way by using a uniform
distribution followed by a normalization. Some of
the descriptors will give rise to landmarks when
observed by first time, and then each landmark
corresponds to a unique known feature in space,
which enables comparing landmarks and original
features. The frame rate of the simulated camera
is 15 fps. Gaussian noise with a standard devia-



138 J Intell Robot Syst (2012) 66:125–149

Fig. 1 Simulated camera
trajectories used in
experiments

U-shaped S-shaped

Continual Lost S-shaped+Random-Walk

tion of six pixels was added to the observations
in order to simulate noise which is intrinsic to
SURF detection process. The simulated camera
has a resolution of 320 × 200. A visualization
example of each path, showing both the control
points and the spline interpolation is shown in
Fig. 1.

Several simulation tests were carried out in
each of the paths. Each test takes 2,800 frames,
and it is started with the restriction of having a
maximum of 60 landmarks:

Test 1: Only point-like landmarks are used.
Test 2: All kind of landmarks are used. The max-

imal pose covariance criterion is used in
case of body-point 3D landmarks.

Test 3: All kind of landmarks are used. The max-
imal body-points covariance criterion is
used in case of body-point 3D landmarks.

Test 4: Only point-like landmarks are used. The
maximum number of landmarks is con-
strained to 4 at frame 1,800.

Test 5: All kind of landmarks are used. The
maximal pose covariance criterion is ap-
plied. The maximum number of rigid
body landmarks is constrained to 4 at
frame 1,800, and no point-like landmarks
are used.

Test 6: Same as test 5, but the maximal body-
points covariance criterion is applied.

In all cases, point-like landmarks are first cre-
ated as inverse-depth landmarks.

Given that map building by using a single cam-
era can produce differences in position, orien-
tation and scale respect to the ground-truth, an
optimal transformation that consider all three
characteristics is found and applied to experimen-
tal path for making comparison possible (least
squares procedure). The average Euclidean dis-
tance between correspondent pairs of points in the
ground truth and the computed paths, i.e. pairs of
points that correspond to the same time, is used as
error measurement.

In Fig. 2 are shown some examples of recovered
paths together with the corresponding ground
truth. As obtained results need to be analyzed
very carefully, histograms of the errors will be
presented in addition to mean errors and standard
deviation values. In the histograms visualization,
errors with values over 60 will be cut to that valor
for maintaining an adequate scale, and they will
be considered failures. Table 1 presents experi-
mental results in terms of mean error, standard
deviation, and failure percentage for all experi-
ments, while Figs. 3, 4, 5, 6 shows the histograms
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Fig. 2 Simulation
example of the recovered
paths drawn over the
ground truth one for each
kind of path is shown.
The set of all features is
shown in blue, the set of
features that were
selected as landmarks is
shown in green and
current landmarks are
shown in red

Continual Lost S-shaped+Random-Walk

U-shaped S-shaped

Table 1 Experimental
results of visual SLAM
for the different
trajectories and simulated
tests

Path Test Max num. Mean Standard Failure
Landmarks error deviation percentage

U-shaped 1 60 1.79 0.69 0%
U-shaped 2 60 8.02 5.80 0%
U-shaped 3 60 3.67 0.84 0%
U-shaped 4 4 – – 100%
U-shaped 5 4 41.03 16.18 76.7%
U-shaped 6 4 4.19 0.93 0%
S-shaped 1 60 6.81 3.53 0%
S-shaped 2 60 26.12 20.78 86.67%
S-shaped 3 60 10.95 6.64 0%
S-shaped 4 4 18.34 5.67 90%
S-shaped 5 4 – – 100%
S-shaped 6 4 13.22 6.52 0%
Continual lost 1 60 11.69 3.18 0%
Continual lost 2 60 30.07 14.49 70%
Continual lost 3 60 25.34 10.9 6.67%
Continual lost 4 4 – – 100%
Continual lost 5 4 – – 100%
Continual lost 6 4 25.75 6.25 0%
S-shaped+R 1 60 2.54 1.24 0%
S-shaped+R 2 60 20.89 13.66 0%
S-shaped+R 3 60 3.80 1.10 0%
S-shaped+R 4 4 32.97 7.10 0%
S-shaped+R 5 4 29.75 7.87 0%
S-shaped+R 6 4 3.57 0.86 0%
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Test 1 Test 2 Test 3

Test 4 Test 5 Test 6

19

30 23

Fig. 3 Histograms of tests applied over the U-shaped path

Test 1 Test 2 Test 3

Test 4 Test 5 Test 6

26

3027

Fig. 4 Histograms of tests applied over the S-shaped path



J Intell Robot Syst (2012) 66:125–149 141

Test 1 Test 2 Test 3

Test 4 Test 5 Test 6

30 30

21

Fig. 5 Histograms of tests applied over the Continual Lost path

Test 1 Test 2 Test 3

Test 4 Test 5 Test 6

Fig. 6 Histograms of tests applied over the S-shaped + Random walk path
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Fig. 7 Execution time for
SLAM prediction-update
steps versus number of
features in the map

Fig. 8 Visualization example of the SLAM system working
in a video sequence. Observations are shown as rhombs
over imposed on captured image and innovation covari-
ance is drawn as a set of ellipses. Point-like landmarks are

drawn as blue dots. Rigid body landmarks are drawn as
white reference systems with white body points. Matrices
CX , CY and CZ , used to evaluate variability index, are
shown bottom left. Full covariance matrix is shown top right
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Fig. 9 Selected images from the garden video database. In each image rhombs correspond to real observations (SURF
interest points), and ellipses represent the innovation covariance

for the errors. In all cases each test was run 30
times in every path in order to generate robust
statistics.

In the case of the U-shaped, S-shaped, and
S-shaped+Random-Walk paths (see Table 1 and
Figs. 3, 4, 5, 6), it can be observed that when the
number of landmarks is limited to 60, the best
option is to use point-like landmarks, and rigid-

body landmarks using the maximal body-points
covariance criterion produce a slightly larger
error.

However, when the number of landmarks is
very small (limited to 4), rigid-body landmarks
using the maximal body-points covariance crite-
rion show an impressive advantage over point-
like landmarks, as the reduction of the number

Fig. 10 Example of the visual SLAM system running in
one of the real video sequence. The camera is shown in
yellow. Blue dots correspond to point-like landmarks, while

white structures consisting in three perpendicular axis and
a set of white body points denote rigid-body landmarks
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of landmarks produce only a very weak error
increase. Even in some cases where the use of
point-like landmarks fails completely (U-shaped

path and test 4), the use of rigid-body landmarks
with the maximal body-points covariance criterion
behave appropriately. In all cases the use of the

Fig. 11 Maps and
reconstructed paths for
the seven tested videos.
The camera is shown in
yellow. Blue dots
correspond to point-like
landmarks, while white
structures consisting in
three perpendicular axis
and a set of white body
points denote rigid-body
landmarks

Video sequence 1; 1,338 frames. Video sequence 2; 1,134 frames.

Video sequence 3; 1,107 frames. Video sequence 4; 1,491 frames.

Video sequence 5; 1,469 frames. Video sequence 6; 1,372 frames.

Video sequence 7; 1,494 frames.
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maximal body-points covariance criterion appears
as the best option.

The Continual Lost path is a very hard test as
it involves instantaneous and very large changes
of the position of the camera, which can pro-
duce divergences in the SLAM system. Point-like
landmarks behave better when the number of ob-
served features is high. However, errors involved
in all of the results are very high as they are of
the same magnitude order than the size of the
full path (around 30). In the case of using just
four landmarks in the map, point-like landmarks
are not able to follow the path, failing in all of
the cases. Rigid-body landmarks with the maximal
body-points covariance criterion are able to follow
appropriately the path.

From the experimental data, it is clear that in
cases where the number of landmarks needs to
be limited, because of computational reasons or
because of the large size of the map, the use of
rigid-body landmarks is very useful. In addition,
it is evident that it is convenient to propagate
the most possible quantity of covariance from
the original point landmarks into the body point
covariances. As the positions of body points are
not adapted before its creation, the error asso-
ciated to them does not decrease, and then its

covariances must be constant over time. If the
covariance from the original points is propagated
mainly into the covariance of the pose, covariance
from rigid-body landmarks will be underestimated
because the covariance of the pose decrease to
zero when it is observed, and the covariance from
body points remains very low. This fact can cause
a severe covariance underestimation when ob-
serving a landmark several frames before its cre-
ation. Then, maximizing propagation of original
covariance into body point covariances is the best
option.

Execution times for SLAM, including both pre-
diction and update steps, were measured as a func-
tion of the number of features used in the SLAM
system. In the runtime experiment, the path and
feature configuration used in the U-shaped path
test was selected. As it can be observed in the
results shown in Fig. 7, the ratio between exe-
cution times for a SLAM using only point-like
points versus a SLAM using rigid-body landmarks
converges to the 5.5% limit, as the number of
features in the map increases. This can be ex-
plained because matrix operations in the EKF up-
date step become the most expensive computation
in SLAM when the number of features is high,
because of their quadratic nature. Then the state

Fig. 12 Camera moving
in a polygonal trajectory
(f irst), and moving on an
elliptical trajectory
(second row). In both
cases, the ideal camera
trajectory, as well as the
maps and the
reconstructed paths are
shown

3m

2m

1m

2m

4m

6m
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reduction capabilities of the rigid body approach
have an impressive impact in the execution time.
The performance penalty related to the compu-

tation of virtual observations is very low when
compared to matrix operations, as they grow in a
linear fashion. This experiment was realized in an

Fig. 13 Recovered
elliptic paths, and error
between start and end
points

Start-endpoint error:  4.19% Start-endpoint error: 13.67%

Start-endpoint error:  6.25%

Start-endpoint error: 2.97%

Start-endpoint error: 9.80%

Start-endpoint error: 4.04%

Start-endpoint error: 4.41%
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Intel Core Duo processor at 1.6 GHz using only
one core.

5.2 Experiments with Real Video Sequences

In a first set of experiments, the system was eval-
uated qualitatively. A handheld camera was used
to produce seven video sequences in an outdoor
environment. In order to generate the sequences,
the handheld camera followed a path inside a
house’s garden. In each of the cases, the path
finished near its starting point. The camera has a
normal lens, the video sequences were captures at
30 fps, and their duration in frames is 1,338, 1,134,
1,107, 1,491, 1,469, 1,372 and 1494.

The proposed visual SLAM system using point-
like and rigid-body 3D landmarks was tested in
these video sequences. The system runs in a stan-
dard low-end laptop. Figure 8 shows a visualiza-
tion tool used to analyze the performance of the
visual SLAM system in the video sequences. The
poses from rigid bodies are represented by using a
small reference system represented by using three
orthogonal axis x, y, z, which are drawn in white.
In Fig. 9 some selected images from the garden
video database are shown. Figure 10 shows an
example of the visual SLAM system running in
one of the real video sequence.

In all of the tests the proposed SLAM system
was able to build a coherent map and to recover
the path. In Fig. 10 the reconstructed paths for
the seven tested videos are shown: the camera is
shown in yellow, point-like landmarks are shown
as blue dots, and rigid-body landmarks are denote
as white structures.

The system was also able to recognize the first
generated landmarks (loop closing) easily because
no tracking is used; instead descriptor matching
between the map and the current image’s obser-
vations is done by using L&R system. The ro-
bustness of the matching system is reflected in
its capacity to recover the seven paths that were
tested (Fig. 11).

In a second set of experiments, the system
was evaluated quantitatively using ground-truth
paths of specific regular shapes. In the initial
experiments, about 40 runs were carried out in
different environments, using different polygonal
paths containing right angles, but the results were

inaccurate in around half of the cases. The system
was able to reconstruct the angles from the poly-
gons, but estimations of the sides were not regu-
lar, and the estimated pose of camera sometimes
moved long distances when the loop was closed.
The explanation found is that straight angles cause
a loss of the speed information as the camera must
stop moving, and features come out of the camera
when it turns in zones of the path with high curva-
ture. Both problems limit scale preservation. This
problem is aggravated by the decision of using a
standard narrow-angle camera instead of a wide
angle one, which could provide major parallax for
the points when moving. Then, movements of the
camera in visual SLAM cannot be arbitrary as
they require some softness, as some parallax on
the features is required to estimate the map, and
the speed of the camera helps to preserve scale.

As paths with sharp angles were troublesome,
elliptical paths, as the ones shown in Fig. 12,
were selected in order to generate seven video
sequences for testing purposes. As ellipses have
some degree of rotational symmetry, the mean ab-
solute error between the best possible ellipse and
the recovered path can cause an underestimation
of the error. This occurs because errors in length
of the path will not produce errors as long as path
remains into the ellipse. For this reason, the dis-
tance between the initial and final points from the
recovered path was used as a quantitative measure
of the accuracy of the proposed system. Figure 13
shows the recovered paths and the error between
the start and end points, normalized respect to
the length of the ellipse, for ach case. It can be
observed that in most of the cases the start-end
point error is smaller than 10%, and that its mean
value is 6.47%.

6 Conclusions

In this work a visual SLAM system based on the
use of what are called rigid-body 3D landmarks
was proposed. A rigid-body 3D landmark repre-
sents the 6D pose of a rigid body in space, and
its observation gives full-pose information about
a bearing camera. The use of rigid-body 3D land-
marks permits reducing the computational time
of the EKF-SLAM system up to 5.5%, as the
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number of landmarks increases. The proposed
visual SLAM system was validated in simulated
data and real video sequences using a standard,
low cost camera. Remarkably the system performs
very well in outdoor environments, allowing very
good camera localization.

The analysis of the visual SLAM system oper-
ation in real video sequences shows that the im-
plemented system has a good performance when
tested in the real-world. Rigid-body 3D landmarks
are able to reduce the state dimensionality in
unstructured environments with low information
loss, which enables the camera to recover the full
path in a reliable way, avoiding EKF covariance
overload. SURF descriptors with delayed Harris
testing are both fast and repeatable enough to
provide good quality information about structures
in the real-world, even when systems with limited
computing capabilities are used. Data association
based on L&R system, which has been created for
robust object recognition, shows very good per-
formance for map association tasks and enables
the EKF to work without map corruption due to
wrong associations even in long video sequences,
and without needing special loop-closing tech-
niques as all the features have the same oppor-
tunity for being detected in every frame, because
no features are tracked. Results show that the
rigid-body landmarks paradigm is both promising
and powerful, and new field application can be
explored in future works.

The experimental data indicates that the visual
SLAM system achieves good localization when
the number of observed landmarks is very low,
working very well with only four landmarks be-
ing available for observation permanently, which
is possible by using feature-rich individual land-
marks. This property enables them to be used in
the generation of large maps as very few land-
marks per area are needed. As body-points are
parameters and no states in this system, their er-
ror does not decrease in time, which can explain
the slight better performance of point-like land-
marks when the density of landmarks is very high.
Possible adaptation of body points by creating
a dynamical sub system inside each rigid body
landmark (EKF-like adaptation of positions and
covariances from individual body points) and the
use of semantical cues for improving selection of

rigid bodies remains open problems that can be
addressed in future work.
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Appendix

Computation of Jacobians J(i)
UV and J(i)

� , defined in
(41) and (42).

As function V(·) is the result of an iterative
minimization (see (38)), the computation of J(i)

UV

and J(i)
� by using finite differences over several

minimizations is a very slow process. The partial
derivatives of EP(·)respect to the pose must be
zero when evaluated at the optimal value, this
leads to a closed form for the Jacobians. For
simplifying the notation, the vector a = (u1, v1, ...,
�1,..., �N)T collecting all the parameters will be
used in the following expressions:

V (a) = arg min
η

(EP (η; a)) (63)

∂

∂ηi
EP (η; a) |η = V (a) = 0, ∀i (64)

d
da j

(
∂

∂ηi
EP (V (a) ; a)

)
= 0, ∀i, j (65)

∑
k

∂2 EP

∂ηi∂ηk

∂V (a)k

∂a j
+ ∂2 EP

∂ηi∂a j
= 0 ∀i, j (66)

The last expression can be converted into matrix
form by making the following definitions:

Eηη (V (a) ; a)(i. j) = ∂2 EP

∂ηi∂η j
(67)

EηA (V (a) ; a)(i. j) = ∂2 EP

∂ηi∂a j
(68)

After the replacements, the following expressions
hold.

Eηη (V (a) ; a)
∂V
∂a

(a) + EηA (V (a) ; a) = 0 (69)

⇒ ∂V
∂a

(a) = −E−1
ηη (V (a) ; a) EηA (V (a) ; a) (70)
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The last expression has a closed form, and enables
a straightforward computation of the Jacobians
of V(·). As the quaternion is a non-minimal rep-
resentation for rotations, there is a direction in
the observation vector that contains no real in-
formation, then variations of the vector in that
direction leaves the value of the error unmodified.
In consequence, the Hessian has a null space and
cannot be inverted directly. The problem can be
solved by computing the inverse using an eigen-
value decomposition and by bounding the smallest
eigenvalue from the Hessian by a small value (e.g.
10−30).
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