
A

A
a

b

c

a

A
R
R
A
A

K
R
C
C
M

1

b
m
t
(
t
v
n
a
2
s
o

n
c
d
r
o
s
c
b
s

(

0
d

The Journal of Systems and Software 85 (2012) 511– 524

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

 reusable structural design for mobile collaborative applications

ndrés Neyema,∗, Sergio F. Ochoab, José A. Pinob, Rubén Darío Francoc

Department of Computer Science, Pontificia Universidad Católica de Chile, Av. Vicuña Mackena 4860, Macul, Santiago, Chile
Department of Computer Science, Universidad de Chile, Av. Blanco Encalada 2120, Santiago, Chile
CIGIP Group, Universidad Politécnica de Valencia, Spain

 r t i c l e i n f o

rticle history:
eceived 28 May 2010
eceived in revised form 20 May 2011
ccepted 24 May 2011

a b s t r a c t

Architecting mobile collaborative applications has always been a challenge for designers. However, count-
ing on a structural design as a reference can help developers to reduce risks and efforts involved in system
design. This article presents a reusable architecture which helps modeling the communication and coor-
dination services required by mobile collaborative applications to support collaboration among users.
vailable online 7 June 2011

eywords:
eusable architecture
oordination services design
ommunication services design
obile collaborative applications

This architecture has been used as a basis for the design of several mobile systems. Two of them are
presented in this article to show the applicability of the proposal to real world collaborative systems.

© 2011 Elsevier Inc. All rights reserved.
. Introduction

The complexity of designing and communicating designs has
een recognized by many designers and researchers since the
edieval age. This socio-technical activity, although expensive, is

he key to conceive suitable, usable and implementable solutions
Hubka and Eder, 1987; Bucciarelli, 1994; Eckert et al., 2005). Given
he complexity of such process, the reuse of design knowledge is
alued as a way to reduce the costs and difficulties of creating
ew design solutions. Well-known examples of reusable designs
re software patterns (Gamma et al., 1994; Buschmann et al.,
007). These abstract structures capture the essence of a design
olution and allow inexperienced developers to design as expert
nes.

The definition of reusable designs is more challenging in
ovel application scenarios, such as computer supported mobile
ollaborative work, because the knowledge for such application
omains is being built every day. Herskovic et al. (2011) have
ecognized and discussed the difficulties involved in the design
f mobile collaborative applications, since many groupware

ervices are not visible for designers. These applications involve
ommunication and coordination services that are intended to
e run on several devices and integrate with various back-end
ystems. Building a mobile collaborative solution can often be

∗ Corresponding author. Tel.: +56 2 3547550; fax: ++56 2 354 4444.
E-mail addresses: aneyem@ing.puc.cl (A. Neyem), sochoa@dcc.uchile.cl

S.F. Ochoa), jpino@dcc.uchile.cl (J.A. Pino), dfranco@cigip.upv.es (R.D. Franco).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.05.046
daunting given the many technology choices and implemen-
tation approaches. Thus, the software architecture becomes
the key element for the development of mobile collaborative
systems.

This paper presents a reusable architecture which can be
advantageously applied in the development of several mobile col-
laborative systems. The architecture presents particular design
solutions to address the challenge of modeling coordination and
communication services required to support mobile collaboration.
The article also introduces an autonomous software infrastruc-
ture, named SOMU (Service-Oriented Mobile Unit) (Neyem et al.,
2008), which implements the proposed designs for the communi-
cation and coordination services. SOMU contains a set of generic
components that supports development, deployment and execu-
tion of mobile collaborative applications. Examples of functionality
provided by these components include provision of services to
coordinate the operations on shared resources and support inter-
actions among mobile users. The reuse of services is the most
emphasized benefit of using this type of supporting platforms.
Thus it is possible to enhance the efficiency of applications
development.

Next section presents the main challenges to be met when
designing a solution to support mobile collaborative systems. Sec-
tion 3 presents and discusses related work. Section 4 describes
the proposed reusable architecture. Section 5 introduces the SOMU

platform and shows how it adheres to the proposed architecture.
Section 6 presents two mobile collaborative applications that also
adhere to the reusable structural design. Section 7 presents the
conclusions and future work.

dx.doi.org/10.1016/j.jss.2011.05.046
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:aneyem@ing.puc.cl
mailto:sochoa@dcc.uchile.cl
mailto:jpino@dcc.uchile.cl
mailto:dfranco@cigip.upv.es
dx.doi.org/10.1016/j.jss.2011.05.046

5 stems and Software 85 (2012) 511– 524

2

t
fl
L
a
r
c
r
fl
e
s
T
i
d

•

•

•

•

Table 1
Relating general requirements (Herskovic et al., 2011).
12 A. Neyem et al. / The Journal of Sy

. Requirements for mobile collaborative systems

“Essentially a system’s utility is determined by both its func-
ionality and its non-functional characteristics, such as usability,
exibility, performance, interoperability and security” (Chung and
eite, 2009). In that sense mobile collaborative systems are not
n exception. The authors have specified a list of transversal
equirements that are usually satisfied when developing mobile
ollaborative systems elsewhere (Herskovic et al., 2011). These
equirements are classified into seven categories: users’ interaction
exibility, users’ interaction protection, communication, het-
rogeneity and interoperability, autonomous interaction-support
ervices, user awareness, and data consistency and availability.
his section describes these requirements to show the complex-
ty behind the design of mobile collaborative applications. It also
iscusses the relationships among these requirements.

Users’ interaction flexibility (we will refer to this requirement
as flexibility): The work context is dynamic in mobile activi-
ties. Therefore mobile collaborative applications must react to
changes in the environment, such as changes in group size and
structure, or in the availability of shared resources due to users’
mobility (Neyem et al., 2008). Two mechanisms to provide flex-
ibility are the following ones: automatic user detection and
user connection/disconnection. The first one provides contextual
information to implement awareness mechanisms. The second
one allows applications to work offline and switch to online use
on-demand.
Users’ interaction protection (we will refer to this requirement
as protection). This requirement considers the capability of the
mobile application to protect the work and resources of a
mobile user from possible unauthorized attempts of other users
(Kortuem et al., 2001). Some mechanisms used to provide protec-
tion are ad hoc sessions, explicit user privacy and users’ identity
verification. The first one provides mobile users an interaction
space that can be protected on-demand depending on users’
requirements; e.g. sessions can be public, private or by invitation.
The second mechanism (i.e. explicit user privacy) allows users to
indicate the information they want to share with their collabo-
rators. It is done by copying such information in the public space
each mobile user must have. The third mechanism considers not
only to verify the users’ identity when they login to an ad hoc
session, but also to do it in each access to the shared resources.
The level of users’ identity verification can be set on-demand.
Communication. Communication is the basis that supports coor-
dination and collaboration (Ellis et al., 1991). Typically the
interaction among mobile users involves exchanging several
resources, such as documents, messages or alarms (Caporuscio
and Invernardi, 2003). Since it is not possible to guarantee the
availability of a communication channel in mobile collaboration
when a user decides to interact with other people, several com-
munication services must be considered to support mobile work.
Some of these services are synchronous/asynchronous messag-
ing, file transfer and pushing notifications.
Heterogeneity and interoperability (we will refer to this require-
ment as heterogeneity). The type of device utilized by mobile users
cannot be a limitation to perform on-demand interactions among
them. Therefore mobile collaborative applications must interop-
erate in terms of data and services (Neyem et al., 2008). Two
well-known strategies must be used to address this challenge:
using standard technologies and contextual information. The first

one supports the interoperability requirements and the second
one allows dealing with the devices heterogeneity. Neyem et al.
(2008) propose to use a mobile units’ profile to help collaborative
applications to address the heterogeneity in the work scenario.
• Autonomous interaction support services (we will refer to this
requirement as networking). Users’ mobility generates frequent
disconnections/reconnections, which must be transparent for the
end-user because of usability reasons (Rodríguez-Covili et al.,
2011b). Typically when the work scenario does not provide wire-
less communication support, collaborative applications must
create a Mobile Ad hoc Network (MANET) to support users’ inter-
actions (Neyem et al., 2008). Some mechanisms that can be used
to help provide connectivity in unstable communication scenar-
ios are automatic MANET formation and topology management,
service and device discovery, message routing, gossip delivery
and automatic user connection (Herskovic et al., 2011).

• Users awareness (we will refer to this requirement as aware-
ness). Since the interaction among users in mobile collaboration
is performed on-demand, identifying the availability of potential
collaborators is mandatory in this type of systems (Pinelle and
Gutwin, 2005). A well-known strategy to address this require-
ment involves the use of awareness mechanisms (Papadopoulos,
2006). Some of the awareness mechanisms that can be used
by mobile collaborative applications to ease on-demand users
interactions are the following ones: users’ reachability (i.e.
connected/disconnected), users’ availability (i.e. available/busy)
and notification of users’ presence/availability (Herskovic et al.,
2009).

• Data consistency and availability (we will refer to this require-
ment as information support). The offline work and the frequent
disconnections of mobile users typically generate inconsistency
and unavailability of the shared data (Neyem et al., 2008). There-
fore mobile collaborative applications must provide mechanisms
to address such situation. Some mechanisms that can be used are
the following ones: explicit data replication, caching and conflict
resolutions (Herskovic et al., 2011).

Table 1 shows a correspondence matrix among these require-
ments. The impact of a requirement may be positive (if it
contributes to the accomplishment of the other), negative (the
opposite case) or neutral (both requirements are independent).

Typically solutions providing flexibility to mobile collaborative
applications impact negatively the capabilities for communication,
networking, awareness and information support. The main cause is
that flexibility helps increase the autonomous offline work, which

decreases the cohesion of the work sessions’ members and the
interaction capability among them.

Solutions addressing protection requirements affect negatively
communication and awareness capabilities. This occurs because

stems

s
a
t

e
i
i

a
i
t

c
fl
i
f
m
c
t
e
c
t
i
w
n

3

i
d
b
s
2
(
S
p
e
c
p
a
d

k
d
p

a
T
c
d
i
t
g
d
e
n
(
c
c
t

a
v
(
g

A. Neyem et al. / The Journal of Sy

uch solutions typically reduce the visibility that other users have
bout the user being protected. The protection services also reduce
he reachability of protected users.

The communication services are negatively affected by the het-
rogeneity. This happens because the more heterogeneous a group
s in terms of devices and software, the more difficult it is to build
nteroperable communications services.

Finally, information supporting services positively impact
wareness mechanisms embedded in the application, since shared
nformation about users can be transferred or synchronized among
he mobile devices both automatically or on-demand.

The architecture of these systems must be fully distributed
onsidering that mobile collaborative applications must support
exibility of the users’ interactions and collaboration on-demand

n an unstable communication scenario. This is a consequence of the
act the accessibility to data and services – which is required by the

obile workers to perform their activities – should not depend on
entralized components. Centralized components usually reduce
he availability of the system in mobile work scenarios (Neyem
t al., 2008; Rodríguez-Covili et al., 2011a). Moreover, the rapid
hange and heterogeneity of the work scenario force the applica-
ion to be context-aware and interoperable. Typically architectures
ncluding fine-grain components are easier to self-adapt when the

ork context changes, than those embedding coarse-grain compo-
ents. Next section presents and discusses the related work.

. Related work

Most research works in this area are more focused on present-
ng the use and impact of mobile collaborative applications than
escribing the design of these solutions. Many applications have
een reported to support mobile collaboration in several areas
uch as education (Ochoa et al., 2007), healthcare (Morán et al.,
007), emergency support (Monares et al., 2011), m-commerce
Tarasewich, 2003), and productive activities (Ochoa et al., 2008).
ome of these applications are fully distributed, which are appro-
riate to support mobile collaboration. However, there are no
xplanations about the strategies used to deal with the typical
oordination (e.g. distributed sessions and shared information sup-
ort) and communication services (e.g. communication channels
nd routing) required for mobile collaboration. Thus, the potential
esign solutions behind these implementations cannot be reused.

Several approaches have been proposed trying to reuse design
nowledge in the computer supported collaborative work (CSCW)
omain. Some of them are design patterns and pattern languages,
articular architectures, frameworks and toolkits.

A groupware pattern is a structured description of a solution to
 recurrent problem in a particular CSCW context (Avgeriou and
andler, 2006; Dearden and Finlay, 2006). These patterns use spe-
ific examples, state the groupware problem that they address, and
eliberately scope their context of application. However, taken in

solation, patterns only represent unrelated good ideas; thus, a pat-
ern language is required to provide coherent support for design
eneration. A pattern language provides a taxonomy to enable
esigners to find patterns, to find related or proximal patterns, to
valuate the problem from various perspectives, and to develop
ew solutions (Dearden and Finlay, 2006). Schümmer and Lukosch
2007) argue the reuse should focus on design reuse rather than
ode reuse. These researchers also propose a patterns language for
ollaborative stationary scenarios, therefore they do not consider
he users’ mobility.

Groupware architectures determine the nature of the CSCW

pplication components and their location on the devices of the
arious participants in a collaborative effort. According to Phillips
1999), there are three distinct architectural views in synchronous
roupware: (i) reference models, which partition complete sys-
and Software 85 (2012) 511– 524 513

tems into named functional elements and specify how data flows
between those elements; (ii) architectural styles, which prescribe
the type of components and connectors and their allowed interac-
tion patterns; and (iii) distribution architectures, which represent
the distribution of system functionality across connected comput-
ing devices. The relation among these views can be stated as “A
system may be best understood (as a whole) in terms of a partic-
ular reference model, designed in whole or in part according to a
particular architectural style, and implemented using a particular
distribution architecture” (Phillips, 1999). The proposed architec-
ture can be considered mostly as a guideline for designers, as it aims
to specify the complete structure of mobile collaborative applica-
tions, at a high abstraction level, by creating a conceptual structure
consisting of communication services, coordination mechanisms
and interactions spaces for collaboration. Each group of solutions
has well defined interfaces and data flows among these groups.

Several researchers have proposed architectures to deal with
particular problems/challenges. For example, Buschmann et al.
(2007) presented a catalog of typical patterns to distributed com-
puting. This catalog presents a set of general architectural patterns
that could help developers to create sustainable designs for this
kind of systems by designing new applications and improving and
refactoring existing ones. Although such patterns are conceptu-
ally relevant, they do not consider the support required for mobile
collaboration.

Medvidovic and Edwards (2010) provide an overview of the
intersection between software architecture and mobility. Their
work is more focused on mobile software than mobile comput-
ing; therefore it is not particularly suitable to support the design of
mobile collaborative systems.

Sama et al. (2010) report that a classical architectural style for
a mobile context-aware adaptive application is typically layered
and it tends to incorporate context-awareness components to sup-
port processing context values. Such components are responsible
for triggering adaptive changes in the application. The proposal is
interesting to support the design of mobile context-aware appli-
cations, but not particularly mobile collaborative systems. Typical
design issues such as sessions and user management, or shared
spaces are not considered in such proposal. Like the pervious case,
Fortier et al. (2010) propose mechanisms for handling variability,
during the evolution of a single mobile context-aware architecture
and across different domains. They also propose design struc-
tures and their underlying rationale, in order to deal with mobility
requirements, such as location sensing, behavior adaptation, and
context variability. This work has the same limitation than the
previous one.

Dewan (1999) proposes a reference model that encapsulates
architectural properties, common to a wide range of collabora-
tive systems. He identifies a set of design issues (e.g. single-user
architecture, collaboration awareness and versioning/replication)
that any groupware architecture must deal with. Based on Dewan’s
work, Laurillau and Nigay (2002) proposed Clover’s architecture,
which defines the classes of services that must be supported by a
groupware application. Duque et al. (2008) propose an architectural
model for the development of groupware systems incorporating
analysis facilities. It can be used by groupware developers as a guide
to the integration of analysis subsystems into groupware applica-
tions. Although these three proposals are interesting they do not
consider users’ mobility because they were conceived with another
goal; therefore they are not suitable to guide the design of mobile
collaborative applications.

Phillips et al. (2005) and then Rodríguez-Covili et al. (2011a)

proposed particular layered architectures to design workspaces.
Although both of them consider users’ mobility, they are focused
on a particular type of mobile groupware application: mobile
workspaces.

5 stems

r
p
s
a
i
a
t
c
t
l
c
D
a
a
c

r
a
t
d
t
e
c
o
t
g
s

4

m
c
o
n
2
t

a
a
f
c
w
i
u

f
r
a
d
f
t
t
i
a
b
b
p

4

d
v
e

14 A. Neyem et al. / The Journal of Sy

Groupware frameworks have also been utilized as vehicles to
euse design solutions in the groupware area. These frameworks
rovide a structure to organize thinking about particular aspects of
upport, a vocabulary for analyzing activities during collaboration
nd for comparing solutions on these aspects, and a set of start-
ng points from which initial solutions could be further developed
nd refined (Pinelle and Gutwin, 2005). High-level frameworks
ypically describe particular aspects of groupware support at a
onceptual level, such as component elements, mechanisms used
o provide actual support and their uses for collaboration. The
ow-level frameworks usually include implementations on spe-
ific languages and object hierarchies to facilitate development (e.g.
OORS, Preguica et al., 2005; Manifold Framework, Marsic, 2001),
nd design constructs such as multi-level architectures that sep-
rate design concerns (e.g. presentation layer, domain logic, and
ollaboration logic).

The reusable architecture presented in this article does not
epresent a pattern since it has not been discovered through the
nalysis of different applications by different groups. The archi-
ecture was created based on the lessons learned by the authors
uring more than six years designing mobile collaborative applica-
ions. Such architecture describes in abstract form and by means of
xamples a solution to the recurrent problem of designing mobile
ollaborative applications. Also, it explicitly establishes the context
f use, the problem to address and a proposed solution. The archi-
ecture has been tested in practice and it has shown to be useful to
uide the design of several mobile collaborative applications. Next
ection describes the proposed structural design.

. The proposed reusable architecture

A layered and fully distributed architecture is recommended for
obile collaborative applications since collaboration is based on

ommunication and coordination (Ellis et al., 1991). The advantages
f the layered architecture have already been discussed and recog-
ized by the software engineering community (Buschmann et al.,
007). Fig. 1 shows the Crosslayer architecture, which structures
he basic functionality of a mobile collaborative application.

The collaboration layer provides solutions to support function-
lities that must be exposed to end-users by a specific mobile
pplication. These solutions are mainly related to the application
ront-end and use services provided by the coordination layer. The
oordination layer provides solutions to support the typical group-
are design aspects (e.g. distributed sessions management and

nformation sharing), but considering work contexts that involve
nstable communication services.

The communication layer focuses on the provision of services
or message interchange among mobile workers’ applications. The
elationship between layers is hierarchical, and the interaction
mong components belonging to two adjacent layers can be done
irectly between the components or through a programming inter-
ace. On the one hand, the direct interactions help to improve
he application performance, which is important if we consider
hat many of these systems run on handheld devices. Thus, direct
nteractions jeopardize the maintainability and flexibility of the
pplication. In that sense it is better to implement the interactions
etween layers through the programming interface. Next section
riefly describes this architecture following the nomenclature pro-
osed by Schümmer and Lukosch (2007).

.1. Context and problem
A mobile groupware environment consists of various indepen-
ent applications, distributed over several mobile nodes connected
ia a wireless network. These applications need to interact with
ach other, exchanging data or accessing each other’s services in
and Software 85 (2012) 511– 524

order to coordinate the work performed by a group of collaborators
who pursue a common goal.

Applications supporting mobile workers’ activities must allow
them to work autonomously and collaborate on-demand. How-
ever, the access to centralized resources (e.g. a server acting as
coordinator) cannot be ensured in such scenario, because the com-
munication support required to access them may not exist or be
highly unstable.

The work context may change frequently due to the users’ move-
ment or changes in the features of the physical facilities where
the user is located. Therefore, the mobile application must detect
changes in the work context and self-adapt its services depending
on them. All functionality supporting mobile collaboration must be
as automatic and seamless as possible because of usability reasons.

It is well known that collaboration support requires com-
munication and coordination services (Ellis et al., 1991).
Thus, mobile collaborative systems require separate function-
ality in three basic concerns: communication, coordination
and collaboration. Each layer provides services and records
data related to such services. These services are different in
terms of concerns and granularity. The interaction between
services related to two concerns is hierarchical (Ellis et al.,
1991; Rodríguez-Covili et al., 2011a): communication ↔
coordination and coordination ↔ collaboration.

Integration of these services is required to support mobile
collaboration, because frequently the service provider and the con-
sumer run on different computing devices. Therefore, if the services
provided by the mobile collaborative system are not well struc-
tured, then the system will have limitations in terms of scalability,
maintainability and adaptability.

4.2. Solution

The services related to different concerns can be grouped in dis-
tinct layers (Fig. 1). Therefore, high-level components depend on
low-level components to perform their functionality, which further
depend on even lower-level components and so on. Decoupling
the components in a vertical manner helps designers to separate
concerns and increase the system scalability, maintainability and
adaptability.

The lowest layer provides services for message interchange.
The coordination layer focuses on coordinating the operations of
mobile workers in order to provide a consistent view of the group
tasks. Finally, the collaboration layer provides support for manag-
ing interactions among mobile workers trying to reach the group
goals.

At first glance, this layered solution may seem similar to
the Model-View-Controller (MVC) architecture (Buschmann et al.,
2007); however, they are structurally different since the proposed
architecture is linear and the MVC architecture is triangular (i.e.
the view sends updates to the controller, the controller updates the
model, and the view gets updated directly from the model). More-
over the roles played by the architectural component in both cases
are quite different. Next subsections present the solutions used to
structure the collaboration, coordination and communication ser-
vices.

4.2.1. Collaboration solutions
Collaboration solutions concern the provision of collaborative

functionalities (or services) that a specific application must expose
to end-users. These solutions are mainly related to the applica-
tion front-end and use services provided by the coordination layer.

Next we present a brief description of two particular mobile appli-
cations which will be used as examples to help understand the
requirements and solutions involved in the collaborative applica-
tions layer.

A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524 515

to sup

g
e
t
r
m
a
t
p
u
c
s
a
i
fi
s

s
t
c
t
t
a
c
p
o
m
t
c
w
t
s

4

r
o
T
T
a
n

p
p
T
i

Fig. 1. Layere architecture

The first application supports firefighters during urban emer-
ency situations (Monares et al., 2011). Firemen attending common
mergencies (e.g. a fire or car accident) must make decisions when
ravelling to the emergency site and also during the emergency
esponse process. Making such decisions requires knowing infor-
ation about the emergency place, the contingency situation to

ddress and the status of the response process. Therefore, the solu-
ions for this scenario must improve the group decision-making
rocesses and the coordination of efforts when an emergency sit-
ation happens. For example, the mobile collaborative application
ould show a city map where it is possible to identify the emergency
ite, the fire trucks location, and the location of interest points, such
s hospitals or police departments near the emergency place. This
nformation is shared and updated on-demand by firemen in the
eld and also by firefighters who are travelling to the emergency
ite.

The second scenario concerns the design of technological
upport for construction personnel inspecting the physical infras-
ructure of building projects (Ochoa et al., 2008). Typically each
onstruction site has a main contractor. The main contractor in
urn outsources several parts of the construction project, e.g. elec-
rical facilities, gas/water/communication networks, painting and
rchitecture. Some of these sub-contracted companies work con-
urrently and they have to collaborate in order to know each other’s
rogress to plan the execution of their own pending work. More-
ver, all these companies should periodically collaborate with the
ain contractor in order to report their work progress. The con-

ractor is in charge of coordinating the efforts of the subcontracted
ompanies. The solutions for this scenario could provide a shared
orkspace allowing users to manage the blueprint of the construc-

ion project, to do annotations on the maps, and to synchronize and
hare the annotations/maps using a network.

.2.2. Coordination solutions
The coordination solutions concern the provision of services

equired by mobile workers’ applications to coordinate the users’
perations on the shared resources (e.g. files, sessions and services).
hese solutions use services provided by the communication layer.
his layer must separate functionality in the three main concerns
nd it could implement this functionality through various compo-
ents such as the following ones.

Distributed sessions, users and roles management. This component

rovides services which allow multiple work sessions with users
laying several roles (see classes belonging to Group A in Fig. 2).
he rights are related to the role each user has for each session s/he
s working on. Sessions, users and roles management should be fully
port mobile collaboration.

distributed since the workers have to keep their autonomy. More-
over, the loosely coupled work requires on-demand collaboration,
information sharing and data synchronization; thus, explicit ses-
sion management (Pinelle and Gutwin, 2005) should be provided by
this component. In explicit sessions, participants must intention-
ally connect with other clients in order to interchange information
or carry out opportunistic collaboration. The types of explicit work
sessions matching loosely coupled work are the following ones: ad
hoc, public-subscribe and private-subscribe.

Distributed management of shared and private resources. This
component should provide several services for every mobile user
(see classes belonging to Groups B, C and D in Fig. 2). First, a local
(private) repository to store the private resources and second, a
shared (public) repository to store resources the users want to
share. The shared repository contains two types of information
resources: reconcilable and irreconcilable. A reconcilable resource
is a piece of data which can be synchronized with other copies of
such resource in order to obtain a consistent representation of it.
On the other hand, the irreconcilable resources are pieces of data
which cannot be synchronized. The system typically has no infor-
mation about the internal structure of these files. These resources
are shared through file transfer mechanisms.

Context management: This component must provide function-
ality for everything that can influence the behavior of mobile
collaborative applications (Group E in Fig. 2). It includes hardware
resources of computing devices and also external factors (e.g. band-
width or quality of the network connection). This component has to
be fully distributed and it must store, update and monitor current
status of the context. This context manager has also to be carefully
engineered in order to reduce the use of limited resources, such as
battery, CPU, memory and network bandwidth.

Fig. 2 shows the class diagram representing the structure that
provides the functionality for the three main concerns. A detailed
description of this structure can be found in Neyem (2008).

4.2.3. Communication solutions
The communication layer is typically in charge of providing the

support for messages interchange among mobile units. This compo-
nent allows a user to send a message to other users in the wireless
network in several ways: to those connected to a session, to a speci-
fied group of users, or to a single user. Based on that infrastructure, a
mobile collaborative application can send messages to other users.

This layer must separate functionality in two main concerns: com-
munication middleware and wireless routing.

Communication middleware: This component provides a com-
mon programming model able to support several communication

516 A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524

Fi
g.

2.

C
la

ss

d
ia

gr
am

of

th
e

co
or

d
in

at
io

n

la
ye

r.

A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524 517

n serv

s
o
v
t
v
t
e
a
s
e
p
t
t
t
o
c
m
a
n
b

s
i
i
i
v
c
a
(
w
t
O
f
s
s
s
a
p
v
m
l

t
p
t
i
c
a

Fig. 3. Relationship betwee

trategies, which can help developers to minimize the complexity
f a mobile collaborative application. Although the services pro-
ided by this middleware are similar to those provided by the
raditional ones (i.e. for stable communication scenarios), the ser-
ices implementation requirements are quite different because
he work scenarios involve other communication conditions. For
xample, a server (or any centralized component) cannot be used
s coordinator because it is not possible to ensure availability of
uch resource when mobile workers decide to collaborate (Neyem
t al., 2008). This implies the communication middleware that sup-
ort the mobile collaboration must be fully distributed. In addition,
he network supporting the communication has a highly changing
opology due to the users’ movements. It means that, e.g. in a file
ransfer, the packages start to be sent on a certain network topol-
gy and finish using a really different one. It represents a serious
hallenge to implement various services such as messages routing,
obile users detection, and notifications delivery. These problems

re not present in the work scenario used by traditional commu-
ication middleware where the communication link is assumed to
e available and stable.

The architecture of the proposed communication middleware
eparates the design concerns in two layers: service and messag-
ng. The service layer provides a service-oriented approach and
t lets mobile collaborative systems to be extensible, flexible and
nteroperable in terms of services discovery, consumption and pro-
ision (Neyem et al., 2008). The term service refers to a loosely
oupled reusable component that encapsulates discrete function-
lity, which may be distributed and programmatically accessed
Turner et al., 2003). Services exist as physically independent soft-
are component with distinct design characteristics that support

he attainment of the strategic goals associated with Service-
riented Computing (SOC) (Erl, 2007). Thus, this layer provides

unctionality for service design and execution. The service external
tructure includes a service description and an endpoint (Fig. 3). The
ervice description is specified and communicated using several
tandards. This service description provides essential information
bout which particular services (i.e. functions) this component can
rovide and how they can be accessed by proxies belonging to ser-
ice consumers. The proxy provides a service interface that allows
obile collaborative applications to treat the remote services as

ocal ones.
The internal structure of a service contains the binding pro-

ocol, contracts and implementation code (Fig. 3). The binding
rotocol describes how a service should be accessed. The con-

racts describe contextual information related to such service, e.g.
ts behavior, structure, or understandable message format. Thus,
ontracts define certain aspects of the service, such as the format
nd structure of the messages, which are sent between the service
ice provider and consumer.

provider and consumer. Both the service provider and the con-
sumer must agree on the type of operations and structures they
will use during the interaction period. There are two kinds of con-
tracts: (a) service contracts, which describe the operations a service
can perform, and (b) data contracts, which define information struc-
tures passed to service operations. The implementation contains all
the code that will be executed once the service is invoked. The end-
point is in charge of linking a contract and a binding protocol with
a service address.

The messaging layer provides the general model allowing the
message communication. In this layer, the messages are serialized
and transmitted using the selected transport, protocol rules (like
reliable messaging) and security policies (like encryption). A key
component of this layer is the channel (Fig. 4), which represents
the pathway over which the messages travel. This channel is an
abstraction hiding all the underlying details of the communication
process. For example, before two mobile collaborative applications
can exchange messages, a channel must be established between
them. The first step involves a client trying to create a channel
towards the endpoint of the service provider. If the service is avail-
able and reachable at that destination address, a channel can be
established and the message exchange can take place. Once com-
munication is completed, the channel can be turned down.

Wireless routing layer: This layer provides a transparent solu-
tion when mobile collaborative applications are running in ad hoc
wireless mode. This mode refers to a wireless network without
fixed infrastructure (i.e. access points or fixed antennas). When
the nodes are assumed to be capable of moving, either on their
own or carried by their users, these networks are called MANETs.
The network nodes rely on wireless communication to collaborate
with each other. The advantage of ad hoc networking is that the
absence of a fixed infrastructure reduces the cost, complexity, time
required to deploy the network and it allows nodes to be on the
move (Neyem et al., 2008).

The solution in this layer involves the provision of a message
router which provides routing support in MANETs. Routing capa-
bilities are vital not only to increase the communication threshold
but also to reduce the cost of messages delivery. Thus, the mes-
sage router consumes messages from various message channels,
and it splits them in packets which are routed to the receiver.
Finally, this router rebuilds the message based on the received
packets. The packet delivery service should offer an intermediate
solution between the routing and flooding techniques in order
to achieve better performance in terms of reliability and energy

consumption (Abbas and Kure, 2010). This intermediate solution
involves routing with a settable level of redundancy. Redundancy
can be discarded depending on the reliability required in the
communication process.

518 A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524

n of th

c
t
a
c
s
t
i
e
c
T
S
F
t
m
a
m
v
o

I
o
a
i
s
p
i

Fig. 4. Conceptual desig

Fig. 4 describes the structure including the main concerns of the
ommunication layer. A detailed description of these functionali-
ies can be found in Neyem et al. (2008). Services are represented
s a series of objects containing the service description, program
ode and runtime information. The service description includes the
ervice contracts, behaviors and endpoints. The program code for
he service is represented through the service type. The runtime
nformation includes channels, instances of the service type, and
xtensions to the service. For each service there exists a master
lass, representing a service at runtime, called ServiceDispatcher.
he ServiceDispatcher object contains the service type. When a
erviceDispatcher object is created, the service type is specified.
rom the client side, this application is responsible for triggering
he processing in a service-oriented solution by initiating the com-

unication. Since services can call other services, client code can
ppear in both client and service programs. Any program initiating
essages is acting as a client, even if that program is also a ser-

ice. Clients talk to services via proxies. A client accesses service
perations by calling proxy methods.

The transport indicates the protocol the channel is going to use.
f the transport is TCP/IP then the applications will interact with
ther mobile applications using sockets. The channel transport is
lways the lowest level of the channel component. The channel

s the last component in the communication pipeline from the
ervice consumer’s perspective. By contrast, from the receiver’s
erspective, it is the first one. Several channel protocols can be

mplemented over the transport. These protocols are responsible
e communication layer.

for performing additional functionalities on the message objects,
e.g. encryption/decryption, or format transformations.

Finally, the channel mode allows the channel pipeline to change
the messaging models. Three messaging models can be used: One-
way, Request-Response and Dual. These delivery strategies are not
all necessarily available for any transport protocol. For example,
the transport does not support dual communication for Message
Queuing. Next section introduces implementation of the proposed
architecture, which was done on the SOMU platform (Neyem et al.,
2008).

5. SOMU platform

The Service-Oriented Mobile Unit (SOMU) is a lightweight col-
laboration platform, able to run over wireless networks with or
without infrastructure. By default the platform works in ad hoc
wireless mode (i.e. without infrastructure). However if mobile
users know that an infrastructure-based wireless network is avail-
able in the work scenario (e.g. a corporative wireless network)
they can set the platform on-demand, and indicate they want to
use such network. This situation typically occurs when the mobile
work is performed at a specific place, such as a hospital, a school

or an offices building. Using an infrastructure-based wireless net-
work frequently helps to increase the communication threshold
and bandwidth during mobile collaborative activities. However,
it reduces the flexibility of the solution because the collaboration

A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524 519

 basic

a
T
p
c
(

t
e
d
c
e
i
s
a
c
a
f
l
s

6

p
u
w
u
n
t
d

Fig. 5. SOMU

ctivities are supported just at locations within the network scope.
he platform is fully distributed and it enables each mobile com-
uting device to produce and consume services from other peers
onnected to the MANET. It is described in detail in Neyem et al.
2008).

The SOMU architecture consists of components organized in
wo layers (Fig. 5): coordination and communication. These lay-
rs manage the corresponding collaborative services and a shared
ata space. Mobile collaborative applications developed on SOMU
an use the general communication and coordination solutions
ncapsulated in the platform. Thus, developers can reuse the
mplemented designs. These solutions include the management of
essions, users, messages delivery, shared objects and repositories;
nd it partially allows management of the work context. Mobile
ollaborative systems inherit the capabilities for interacting with
pplications running on other mobile units. It helps developers to
ocus on the application’s main goal, freeing them to deal with low-
evel interaction processes (i.e. communication and coordination
ervices).

. Applying the proposed architecture

This section shows how the design solutions embedded in the
roposed architecture were reused for the design of two partic-
lar mobile collaborative applications. These applications, which
ere briefly introduced in Section 4.2.1, were developed by grad-

ate students as part of their MSc. theses. These students did
ot participate in the definition process of the reusable architec-
ure, and they voluntarily used it as support for their applications
esign.
 architecture.

The process of reusing the architecture in order to develop new
mobile collaborative systems involves four stages: (1) modeling the
interaction scenario, (2) identifying the requirements involved in
the application, (3) identifying the services that will allow the sys-
tem to provide such functionality, and (4) reusing the components
providing services from SOMU. Modeling the interaction scenario
was done with the MCM (Mobile Collaboration Modeling) language
(Herskovic et al., 2009) to represent all interaction among mobile
devices that would be required in the work scenario. Moreover, the
language also allows designers to identify which user roles would
be involved in each interaction type. The result of this activity is an
interaction graph, which can be input to a software module. The
output of running this module is a list of requirements that must
be included in the application in order to support the previously
described interactions (Herskovic, 2010). During the third stage,
the designer has to identify which components of the architecture
provide services needed to address the requirements of the list.
Typically they are components of the coordination layer, because
all components of the communication layer are usually required.
Finally, the designer has a basic architecture that will allow users
to perform the interactions described by the MCM graph. The com-
ponents of such basic architecture can be reused from SOMU or
from another framework providing them.

6.1. MobileMap
MobileMap is a fully distributed mobile collaborative applica-
tion that allows firefighters to share information during an urban
emergency (e.g. a fire or car accident), using a peer-to-peer or an
ad hoc interaction strategy (Monares et al., 2011). This application

520 A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524

eMap

i
d
n
a
m
c
p
a

e
h
p
w
s

i
r
e
r
d
d
s
M
t

Fig. 6. Mobil

s routinely used on laptops and smartphones (Fig. 6a and b)
epending on the user’s role. MobileMap is set to utilize the 3G
etwork as the default communication support. In that case the
pplication uses a peer-to-peer communication strategy. All infor-
ation shared by the peers can be locally stored by any other node

onnected to the same work session (i.e. an emergency response
rocess). When the 3G network is unavailable, the application
utomatically switches to the ad hoc mode.

Devices running MobileMap have locally pre-stored much
mergency support data, including city maps, location of hydrants,
ospitals and schools. Therefore just information concerning the
articular emergency relief operation is exchanged among the net-
ork members. This reduces the network traffic and increases the

hared information availability.
The response to urban emergencies is typically in charge of an

ncident commander, who is in the field to manage the emergency
esponse process. Several other roles are also played by firefight-
rs in the field; for example, communication officer, rescuers, and
esponse and logistics personnel. All of them make decisions in a
istributed way, based on the available shared information. Such

ecisions must be coordinated to ensure the response process
uccess. Fig. 6c shows the shared information firemen get with
obileMap. The application runs on PDAs, smartphones and lap-

op/tablet PC.
 application.

6.1.1. MobileMap architecture
The architecture of MobileMap is layered (Fig. 7) and it adheres

to the cross layer architecture. The collaboration layer implements
the front-end and uses services provided by the coordination layer.
The UsersView (in coordination layer) shows a collection of all
mobile users currently signed on to the MobileMap application. The
MapView shows a map where it is possible to identify the emer-
gency place, the fire trucks locations, and the location of interest
points, such as hospitals or police departments near the emergency
site. Such information can be stored locally in the mobile device or
consumed from any other device member of the MANET. Fig. 6b
shows its representation on the application’s user interface. The
ResourcesView shows a set of files (e.g. pictures of the current emer-
gency or maps of the affected area) that are shared among firemen
both in the field and going to the emergency place. Fig. 6c shows
this component on the MobileMap user interface.

The coordination layer indicates the use of a MobileMap Envi-
ronment which is an engine allowing the creation of workgroups.
It allows the workgroup owners to populate the shared environ-
ment with the tools and contents required to solve the problem.

The component is used to manage and provide general services
to support the shared environment. The Session Manager carries
out work with a session involving users playing roles. This man-
ager records information about users, sessions, roles and shared

A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524 521

cture o

r
p
r
a

a
w
i
a
e
a

m
T
S
m
t
s
g
c
h

6

(
e

Fig. 7. Archite

esources. The Session Role is just informative data, since it is not
ossible to carry out a distributed control of it. Since this component
ecords users and roles data, it is possible to provide users/roles
wareness information to other users in the session.

The Session Dataspace is a component which records information
bout private and shared resources and it also lets users interact
ith the objects shared by other users logged into the session. This

nformation is stored in files and the FileTransfer Manager provides
 mechanism to manage all the file transfer processes in a transpar-
nt way. Finally, the emergency tool manages detailed information
bout emergencies and it is used by the Emergencies View.

Concerning the communication layer, it provides support for
essage interchange among users of the MobileMap application.

he services are grouped as Coordination Services and Emergency
ervices. The first group includes the typical services that imple-
ent functionalities for managing sessions, shared resources and

ransfer processes. The second group includes specific application
ervices implementing the communication aspect of the emer-
ency tool. All these services are managed by a Service Manager
omponent which is responsible for processing messages between
ost and proxy services.
.1.2. MobileMap design evaluation
The design embedded in the application was evaluated through

1) focus groups and (2) the empirical use of the application in real
mergencies. Three focus groups were done with firefighters who
f MobileMap.

usually make decisions in the field, and some of them act as inci-
dent commanders. Each focus group had 5–7 persons belonging to
various firefighting companies. The MobileMap functionality was
explained in those meetings. Thereafter they were able to use the
application to make decisions on a hypothetical response process
to a fire that was happening in the Company quarter. The quarter
has three floors and each floor has around 300 m2 and the goal of
the response process was to rescue three simulated victims.

The fireman playing the role of incident commander used a lap-
top (with MS Windows XP) and the rest of the team used several
smartphones with MS Windows Mobile. A MANET was used as
communication support. The simulated victims were located in the
facilities and several areas were marked as “on fire” so that firemen
must locate each victim and then find a path to rescue them. Three
observers participated in the process by recording the exercise.

The goal of the evaluation process was to determine that
MobileMap is functionally able to deal with mobile work during
an emergency. Most requirements described in Section 2 were
observed, particularly flexibility (i.e. automatic users’ detection
and management of users’ connection/disconnection), protection
(particularly the use of ad hoc sessions), communication (i.e. shar-
ing resources), networking (i.e. communication on the MANET),

heterogeneity (particularly interoperability between devices, and
awareness of users’ presence and availability). All these require-
ments were considered important to support the response process
of that emergency.

522 A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524

ain u

a
c
c
m
h
s

fi
m
e
w
n
c
w

f
g
e
c

f
e
M

t
n
s
h
d
a

6

w
F
p
a
(
fi
o

Fig. 8. COIN m

All participants were able to enter and leave the work session
nd also share information with the teammates. The communi-
ation support was able to manage the users’ disconnection/re-
onnection to the MANET and also indicate (through the awareness
echanisms) when a mobile user is reachable and available. The

eterogeneity of the devices was not a problem, but we must con-
ider that all the devices used the same operating system family.

The interview performed after the exercise indicated the
remen felt comfortable using the application and they were
otivated for trying to use the application afterwards in a real

mergency scenario. The changes in the communication scenarios
ere automatically managed by the application and the users were
ot conscious of such changes. These preliminary results show the
omponents included in the architecture played the roles which
ere designed for.

The Nunoa command center and the 2nd Fire Company (both
rom Santiago, Chile) used the tool in five typical urban emer-
encies. It was used to retrieve and share information about the
mergency. In these cases the 3G network was used as communi-
ation support.

The obtained results were similar to those obtained with the
ocus groups and the details have been reported in Monares
t al. (2011). These preliminary results indicate the architecture of
obileMap helps to coordinate firemen during urban emergencies.
Finally, the student in charge of designing this application found

he proposed architecture intuitive and easy to use. Although he did
ot have experience designing coordination and communication
ervices for collaborative systems, he felt the use of this solution
elped him to find a sound design option. After this experience, the
esigner thinks he is able to apply this structural design to other
pplication scenarios.

.2. COIN (COnstruction INspector)

COIN is a mobile collaborative application which supports the
ork of inspectors in construction projects (Ochoa et al., 2008).

ig. 8 shows the main user interface of COIN. The inspection
rocess typically involves three activities: registration, validation

nd reporting. Inspectors review part of the physical infrastructure
e.g. electrical facilities, water network or the painting) during the
rst activity and record the project advances through annotations
n blueprints. When COIN is used to support such activity, the
ser interface.

annotations can be done on digital blueprints using tablet PCs.
During the validation activity, the inspectors physically meet to
synchronize annotations and resolve contradictory annotations.
If inspectors identify inconsistencies between annotations from
two inspectors, then a new review is performed at the interest
locations. Finally, the chief inspector reports the results to the
contractor during the reporting activity.

6.2.1. COIN architecture
The COIN architecture (Fig. 9) is layered and adheres to the

cross-layer architecture. The collaboration layer provides the func-
tionality for handling several projects through the Project View.
Each project is represented by an XML file storing all related infor-
mation. The associated manipulation menu provides facilities for
creating, opening, storing, saving, re-naming, importing/exporting
and synchronizing projects. The Blueprints View is available once
the inspector has selected a project to work on. A particular
floor of the building can be selected to be inspected using the
blueprints manager, and then a particular map can be loaded on
the shared panel. It allows the inspector to start the inspection
process. Through this view, inspectors are able to handle all infor-
mation related to an annotation. It shows all the data related to the
annotation being selected on the shared panel, e.g. author of the
annotation, current state and creation date. The panel also allows
changing the state of an annotation, and therefore the state of all
the tasks related to it. Finally, the users have a Resources View to
share resources that are important for the inspection process.

The coordination layer involves the use of COIN Environment
which is an engine providing the same functionality of MobileMap
Environment for managing multiple work sessions (e.g. for multi-
ple inspections). Just private work sessions (i.e. a type of subscribe
session) are supported because the information used and recorded
during an inspection is private and it cannot be shared with per-
sons outside the team. Each session has its own shared workspace
through the use of the Session Dataspace component, list of mobile
users and awareness mechanisms. Two users’ roles are supported in
COIN: inspector and chief inspector, and also two data replication
mechanisms: file transfer and reconciliation through a data syn-

chronization process. All these components adhere to the solution
defined in the coordination layer.

The communication layer provides the typical services for mes-
sage interchange among mobile applications (e.g. allowing a user

A. Neyem et al. / The Journal of Systems and Software 85 (2012) 511– 524 523

itectu

t
s
u
m
t

6

r
i
c
t
C
p
i
p
b
a
t
t
A
i
b
I
r
a
t
i

7

t

Fig. 9. Arch

o send a message to other users connected to a session, to a
pecified group of users, or to a single user). These services are
sed by the coordination layer for coordinating the operations of
obile workers in order to provide a consistent view of the group

asks.

.2.2. COIN design evaluation
The design solutions embedded in COIN were evaluated and

eported in Ochoa et al. (2008). The experimentation scenario
nvolved a simulated construction project. The reviewing process
onsidered two inspectors, who recorded contingency issues of
he physical facilities. The results showed that inspectors using
OIN were able to perform the three activities involved in this
rocess. Moreover both felt comfortable using the solution. Dur-

ng this experiment we compared the inspection process using
aper-based blueprints with a process using COIN with digital
lueprints. The obtained results show the registration activity was

 little bit favorable to the COIN usage; however, inspectors using
he application in the validation and reporting stages completed
heir work several orders of magnitude faster than without it.
lthough the time involved in the registration activity was sim-

lar, inspectors preferred to use COIN instead of the paper-based
lueprints because of the simplicity to handle these resources.

nspectors also found the functionality supporting mobile collabo-
ation is appropriate to support this activity. Although the results
re still preliminary, they indicate the proposed reusable architec-
ure could be suitable to support coordination and communication
n construction inspection scenarios.
. Conclusions and further work

Developing mobile collaborative applications is a challenging
ask, since this is a recent area and software must overcome
re of COIN.

challenges in technical implementation, collaboration support and
users’ adoption. Designers of these applications have to invent par-
ticular solutions to deal with the systems modeling, because there
are no reference models. Design solutions for stationary groupware
systems are not suitable to support mobile collaboration, because
most of them use centralized components that jeopardize the avail-
ability of communication or coordination services for mobile users.

This paper presents a reusable architecture to support the design
of coordination and communication services required by mobile
collaborative systems. This architecture deals with most of the
requirements stated in Section 2, and it also serves as educational
and communicative media for developers, students or researchers
on how to design coordination and communication mechanisms for
mobile collaborative applications. It also fosters the reuse of proven
solutions.

At the moment, this architecture has shown to be useful to
design both mobile collaborative applications (Ochoa et al., 2008;
Monares et al., 2011) and a middleware to support the develop-
ment of mobile collaborative systems (Neyem, 2008). The reuse of
these designs and the implementation of the proposed solutions
have been quite simple. However, the authors have been involved
in most of the evaluation experiences. Therefore, future work is
required to carry out evaluations activities with external collab-
orative developers in order to determine the real contribution of
this proposal. Moreover, the solutions proposed by the architecture
should be extended to support an ample variety of mobile com-
puting devices, involving various hardware resources, computing
power and user interaction paradigms.

Acknowledgements
This work was partially supported by Fondecyt (Chile), grant
Nos: 11090224, 11060467 and 1080352 and LACCIR grant No:
R0308LAC005.

5 stems

R

A

A

B
B

C

C

D

D

D

E

E

E
F

G

H

H

H

H

K

L

M

M

M

M

N

N

24 A. Neyem et al. / The Journal of Sy

eferences

bbas, A.M., Kure, O., 2010. Quality of service in mobile ad hoc networks: a survey.
International Journal of Ad hoc and Ubiquitous Computing 6 (2), 75–98.

vgeriou, P., Tandler, P., 2006. Architectural patterns for collaborative applications.
International Journal of Computer Applications in Technology 25 (2/3), 86–101.

ucciarelli, L., 1994. Designing Engineers. MIT Press, Cambridge.
uschmann, F., Henney, K., Schmidt, D.C., 2007. Pattern-Oriented Software Archi-

tecture. A Pattern Language for Distributed Computing, vol. 4. John Wiley &
Sons.

aporuscio, M., Invernardi, P., 2003. Yet another framework for supporting mobile
and collaborative work. In: Proceedings of the International Workshop on
Enabling Technologies ,. IEEE Press, Washington, DC, pp. 81–86.

hung, L., Leite, J., 2009. On non-functional requirements in software engineering.
LNCS 5600, 363–369.

earden, A., Finlay, J., 2006. Pattern languages in HCI: a critical review. Human
Computer Interaction 21 (1), 49–102.

ewan, P., 1999. Architectures for collaborative applications. In: Beaudouin-Lafon,
M. (Ed.), Computer Supported Cooperative Work. John Wiley & Sons Ltd..

uque, R., Rodríguez, M.L., Hurtado, M.V., Noguera, M., Bravo, C., 2008. An architec-
ture to integrate automatic observation mechanisms for collaboration analysis
in groupware. In: Proceedings of the OTM Workshops 2008. LNCS, vol. 5333 ,
pp. 354–363.

ckert, C.M., Maier, A.M., McMahon, C., 2005. Communication in design. In: Clark-
son, P.J., Eckert, C.M. (Eds.), Design Process Improvement – A Review of Current
Practice. Springer, London.

llis, C.A., Gibbs, S., Rein, G.L., 1991. Groupware: some issues and experiences. Com-
munications of the ACM 43 (1), 38–58.

rl, T., 2007. SOA: Principles of Service Design. Prentice Hall.
ortier, A., Rossi, G., Gordillo, S.E., Challiol, C., 2010. Dealing with variability

in context-aware mobile software. Journal of Systems and Software 83 (6),
915–936.

amma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns: Elements of
Reusable Object Oriented Software. Addison-Wesley.

erskovic, V., Ochoa, S.F., Pino, J.A., 2009. Modeling groupware for mobile collab-
orative work. In: Proceedings of the International Conference on Computer
Supported Cooperative Work in Design ,. IEEE Press, Santiago, Chile, pp. 384–389.

erskovic, V., 2010. Evaluation of Mobile Shared Workspaces to Improve their Sup-
port for Collaboration. Ph.D. Thesis, Universidad de Chile.

erskovic, V., Ochoa, S.F., Pino, J.A., Neyem, A., 2011. The iceberg effect: behind the
user interface of mobile collaborative systems. Journal of Universal Computer
Science 17 (2), 183–202.

ubka, V., Eder, E.W., 1987. A scientific approach to engineering design. Design
Studies 8, 123–137.

ortuem, G., Schneider, J., Preuitt, D., Thompson, T.G., Fickas, S., Segall, Z., 2001.
When peer-to-peer comes face-to-face: collaborative peer-to-peer computing
in mobile ad hoc networks. In: Proceedings of the International Conference on
Peer-to-Peer Computing ,. IEEE Press, Washington, DC, pp. 75–91.

aurillau, Y., Nigay, L., 2002. Clover architecture for groupware. In: Proceedings of
the Conference on Computer-Supported Cooperative Work ,. ACM Press, USA,
pp. 236–245.

arsic, I., 2001. An architecture for heterogeneous groupware applications. In: Pro-
ceedings of the International Conference on Software Engineering ,. IEEE Press,
Canada, pp. 475–484.

edvidovic, N., Edwards, G., 2010. Software architecture and mobility: a roadmap.
Journal of Systems and Software 83 (6), 885–898.

onares, A., Ochoa, S.F., Pino, J.A., Herskovic, V., Rodriguez-Covili, J., Neyem, A., 2011.
Mobile computing in urban emergency situations: improving the support to
firefighters in the field. Expert Systems with Applications 38 (2), 1255–1267.

orán, E.B., Tentori, M., Gonzalez, V.M., Favela, J., Martínez-Garcia, A.I., 2007. Mobil-
ity in hospital work: towards a pervasive computing hospital environment.
International Journal of Electronic Healthcare 3, 72–89.

eyem, A., Ochoa, S., Pino, J., 2008. Integrating service-oriented mobile units to sup-

port collaboration in ad-hoc scenarios. Journal of Universal Computer Science
14 (1), 88–122.

eyem, A., 2008. A Framework for Supporting Development of Collaborative Sys-
tems for Mobile Communication Infrastructures. Ph.D. Thesis, Universidad de
Chile.
and Software 85 (2012) 511– 524

Ochoa, S.F., Neyem, A., Bravo, G., Ormeño, E., 2007. MOCET: a MObile Collabora-
tive Examination Tool. In: Proceedings of the 12th International Conference on
Human-Computer Interaction (HCI). LNCS, vol. 4558 , pp. 440–449.

Ochoa, S.F., Pino, J.A., Bravo, G., Dujovne, N., Neyem, A., 2008. Mobile shared
workspaces to support construction inspection activities. In: Proceedings of
the IFIP International Conference on Collaborative Decision Making (CDM) ,
Toulouse, France, pp. 270–280.

Papadopoulos, C., 2006. Improving awareness in mobile CSCW. IEEE Transactions
on Mobile Computing 5 (10), 1331–1346.

Phillips, W.G., 1999. Architectures for synchronous groupware. Technical Report
1999-425, Queen’s University.

Phillips, W.G., Graham, T.C.N., Wolfe, C., 2005. A calculus for the refinement and
evolution of multi-user mobile applications. In: Gilroy, S., Harrison, M. (Eds.),
DSV-IS 2005, LNCS, vol. 3941. , pp. 137–148.

Pinelle, D., Gutwin, C., 2005. A collaborative design framework for loosely coupled
workgroups. In: Proceedings of the 9th European Conference on CSCW , pp.
65–82.

Preguica, N., Martins, J.L., Domingos, H.J.L., Duarte, S., 2005. Integrating synchronous
and asynchronous interactions in groupware applications. In: Proceedings of
the 11th International Workshop on Groupware (CRIWG). LNCS, vol. 3706 , pp.
89–104.

Rodríguez-Covili, J., Ochoa, S.F., Pino, J.A., Herskovic, V., Favela, J., Mejía, D., Morán,
A.L., 2011a. Towards a reference architecture for the design of mobile shared
workspaces. Future Generation Computer Systems 27 (1), 109–118.

Rodríguez-Covili, J.F., Ochoa, S.F., Pino, J.A., Messeguer, R., Medina, E., Royo, D., 2011b.
A communication infrastructure to ease the development of mobile collabora-
tive applications. Journal of Network and Computer Applications.

Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Wang, Z., 2010. Context-aware
adaptive applications: fault patterns and their automated identification. IEEE
Transactions on Software Engineering 36 (5), 644–661.

Schümmer, T., Lukosch, S., 2007. Patterns for Computer-Mediated Interaction. John
Wiley & Sons, West Sussex, England.

Tarasewich, P., 2003. Designing mobile commerce applications. Communications of
the ACM 46 (12), 57–60.

Turner, M., Budgen, D., Brereton, P., 2003. Turning software into a service. IEEE
Computer 36 (10), 38–44.

Andrés Neyem is an Assistant Professor in the Computer Science Department at the
Pontificia Universidad Católica de Chile. He received his Ph.D. in Computer Science
from the Universidad de Chile. His research interests include mobile computing,
software engineering and computer supported collaborative work. He has published
several papers in conferences proceedings and journals in these research areas.

Sergio F. Ochoa is an Assistant Professor of Computer Science at the University of
Chile. He received his Ph.D. in Computer Science from the Catholic University of
Chile. His research interests include computer supported collaborative work, edu-
cational technology and software engineering. Dr. Ochoa is a member of IEEE, ACM
and the Chilean Computer Society and sits on the Steering Committee of the LACCIR
(Latin American and Caribbean Collaborative ITC Research Initiative). He currently
serves as an IT consultant for a number of public and private organizations.

José A. Pino is a Full Professor of computer science at the Universidad de
Chile. His research interests include computer supported collaborative work,
human–computer interaction, and software industry studies. He has served as Pres-
ident of the Chilean Computer Science Society (SCCC) and President of CLEI (the
Latin American Association of Universities Concerning Information Technology).
He has co-authored six books and published research papers in international con-
ferences and journals, including Journal of the ACM, Communications of the ACM,
Decision Support Systems, Interacting with Computers, and Information Technology
and People.

Rubén Darío Franco is an Associate Professor in the Business Administration
Department and researcher of the Research Center on Production, Management

and Engineering at the Technical University of Valencia. His research topics are in
the area of software architecture with focus on digital business ecosystems and
service engineering for Operations Management improvement. He has published
several papers on the topic and has also co-authored and co-edited some books
from international publishers.

	A reusable structural design for mobile collaborative applications
	1 Introduction
	2 Requirements for mobile collaborative systems
	3 Related work
	4 The proposed reusable architecture
	4.1 Context and problem
	4.2 Solution
	4.2.1 Collaboration solutions
	4.2.2 Coordination solutions
	4.2.3 Communication solutions

	5 SOMU platform
	6 Applying the proposed architecture
	6.1 MobileMap
	6.1.1 MobileMap architecture
	6.1.2 MobileMap design evaluation

	6.2 COIN (COnstruction INspector)
	6.2.1 COIN architecture
	6.2.2 COIN design evaluation

	7 Conclusions and further work
	Acknowledgements
	References

