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This work presents new results in the context of minimum probability of error signal representation

(MPE-SR) within the Bayes decision framework. These results justify addressing the MPE-SR criterion as

a complexity-regularized optimization problem, demonstrating the empirically well understood trade-

off between signal representation quality and learning complexity. Contributions are presented in three

folds. First, the stipulation of conditions that guarantee a formal tradeoff between approximation and

estimation errors under sequence of embedded transformations are provided. Second, the use of this

tradeoff to formulate the MPE-SR as a complexity regularized optimization problem, and an approach

to address this oracle criterion in practice is given. Finally, formal connections are provided between

the MPE-SR criterion and two emblematic feature transformation techniques used in pattern recogni-

tion: the optimal quantization problem of classification trees (CART tree pruning algorithms), and some

versions of Fisher linear discriminant analysis (LDA).

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The optimal signal representation is a fundamental problem
that the signal processing community has been addressing from
different angles and under multiple research contexts. The for-
mulation and solution to this problem has provided significant
contributions in lossy compression, estimation and de-noising
realms [1–3]. In the context of pattern recognition, signal repre-
sentation issues are naturally associated with feature extraction
(FE). In contrast to compression and de-noising scenarios, where
the objective is to design bases that allow optimal representation
of the observation source, for instance in the mean square error
sense, in pattern recognition we seek representations that capture
an unobserved finite alphabet phenomena, the class identity,
from the observed signal. Consequently, a suitable optimality
criterion is associated with minimizing the risk of taking the
mentioned decision, as considered in Bayes decision framework
[4–6]. In this context, the observation signal can be considered a
combination of multiple sources not all of them related with the
underlying target phenomenon. Hence, from a signal representa-
tion point of view, one objective is to characterize the observation
subspace which is relevant for the decision problem, the well
ll rights reserved.
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known concept of sufficient statistics [7–9]. An example of the
use of sufficient statistics for feature representation is the basic
detection problem formulated in communication theory [7]. In
this scenario, the signal constellation and the statistics of the
channel are known, and consequently there is an analytical
solution for the observation subspace which captures the suffi-
cient statistics, the well-known matching filter [7]. In pattern
recognition, instead, we are dealing with a more challenging
scenario, because we do not know the generative process in
which different sources are combined to generate the observation
phenomenon and we need to address the problem of FE in an
unsupervised way.

Assuming that we know the observation-class distribution, the
minimum risk decision can be obtained, the well-known Bayes
rule [6,4]. However, in practice this distribution is unknown,
which introduces the learning aspect of the problem. In this
context, signal representation plays a key role, beyond the
concept of sufficient statistics, as a techniques for doing dimen-
sionally reduction (see a recent survey in [10]). The Bayes frame-
work proposes to estimate this joint distribution based on a finite
amount of training data [4,5]. It is well known that the accuracy of
this estimation process is affected by the dimensionality of the
observation space—the curse of dimensionality—which is pro-
portional to the mismatch between the real and the estimated
distributions, the estimation error effect of the learning problem.
Then, an integral part of the feature extraction (FE) is to control
the estimation error by finding suitable parsimonious signal
epresentations within the Bayes decision framework, Pattern
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1 Given that X ¼RK , a natural choice for FX is the Borel sigma field [20], and

for FY the power set of Y.
2 sðFX � FY ) refers to the product sigma field [20].

J.F. Silva, S.S. Narayanan / Pattern Recognition ] (]]]]) ]]]–]]]2
transformations, particularly necessary in scenarios where the
original raw observation measurements lie in a high-dimensional
space and only a limited amount of training data are available
(relative to the raw dimension of the problem), such as in most
speech classification [11], image classification [12] and hyper-
spectral classification scenarios [13,14].

The FE problem in many cases considers a particular domain or
task knowledge. This knowledge is used to characterize poten-
tially salient features. For example, in the case of speech recogni-
tion, the short-term spectral envelope of the speech signal
provides useful phonetic discrimination [15]. However, there are
some problems in which it is not possible to characterize the set
of relevant features in advance. A principle that can be used to
select those salient features from a relatively large collection of
potential representations hence is a central problem in FE. Many
algorithms have been proposed along this direction for finding
feature transformations that minimize some optimality criterion,
directly or indirectly associated with the probability of error.
Examples of these include information measures like the Kull-
back–Leibler divergence (KLD) [16] and mutual information [11],
and empirical measures like the Mahalanobis distance and Fish-
er’s class separability metric [4,12]. The proposed solutions for
the FE problem variedly impose assumptions on the family of
feature transformations, on the joint class-observation distribu-
tions—parametric or non-parametric, and on the optimality
criterion, which allow to approximate or find closed-form solu-
tions in a particular problem domain. Despite issues in finding
feature representations of lower complexity which capture the
most discriminant aspects of the full measurement-observation
space, the problem is a well motivated one and good approxima-
tions have been presented under specific modeling assumptions
[16–18,11]. Nevertheless, there has not been a concrete general
formulation of the ultimate problem, which is to find the mini-
mum probability error signal representation (MPE-SR) con-
strained on a given amount of training data or any additional
operational cost that may constrain the decision task. Such a
formulation would provide a better theoretical support and just-
ification for the aforementioned FE problem and their existing
algorithmic solutions.

Motivated by this need, new results in formalizing the MPE-SR
problem have been presented in the seminal work by Vasconcelos
[18]. Ref. [18] formalizes a tradeoff between the Bayes error and
an information-theoretic indicator of the estimation error, and
connects this result with the concept of optimal signal represen-
tation. The estimation and approximation error tradeoff was
obtained with respect to a sequence of embedded representations
(features) derived from coordinate projections, a special case of
linear transformation. Silva et al. [19] provided a basic extension
of these ideas for more general embedded feature collections. The
present work extends the results in [19], and is motivated by, and
is built upon the ideas in [18].

1.1. Specific contributions

The central result presented in this work is the stipulation of
sufficient conditions that guarantee a formal tradeoff between
Bayes error and estimation error across sequences of embedded
feature transformations for continuous and finite alphabet feature
spaces. These sufficient conditions not only take into considera-
tion the embedded structure of the feature representation family,
as the original results in [18], but also the consistent nature of the
family of the empirical observation-class distributions estimated
across the sequence of transformations—explicitly incorporating
the role of the learning phase of the problem, and consequently
generalizing the results presented in [18] for continuous feature
representations. In addition this tradeoff is obtained for a rich
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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collection of embedded features, significantly extending the scope
of applicability of [18]. Furthermore, for the important scenario of
finite alphabet representations (or quantization of the raw obser-
vation space) new results are presented where the notion of
embedded representations; the estimation error quantity based
on the KLD; and the tradeoff between estimation and approxima-
tion errors are developed in this work.

Following that, the Bayes-estimation error tradeoff is used to
formulate the MPE-SR problem as a complexity-regularized
optimization, with an objective function that considers a fidelity
indicator, which represents the Bayes error, and a cost term—

associated with the complexity of the representation—which
reflects the estimation error. We show that the solution of this
problem relies on a particular sequence of representations, which
is the solution of a cost-fidelity problem. Interestingly restricting
the problem and invoking some approximations, the well known
CART pruning algorithm [5] and Fisher linear discriminant ana-
lysis [4], offer computationally efficient solutions for this cost-
fidelity problem. Consequently, we are able to demonstrate that
these well-known techniques are intrinsically addressing the
MPE-SR problem.

1.2. Paper organization

Section 2 introduces the problem formulation, terminologies and
key results that will be used in the rest of the exposition. Section 3
presents the Bayes-estimation tradeoff and Section 4 the MPE-SR
problem and its cost-fidelity approximation. Sections 5.1 and 5.2
show how the MPE-SR can be addressed practically in two impor-
tant scenarios: classification tree (CART pruning algorithms) and
linear discriminant analysis. To conclude Sections 6 and 7 offer a
discussion of the presented results and future work, respectively.
2. Preliminaries: Bayes decision approach

Let X:ðO,F ,PÞ-ðX ,FX Þ be an observation random vector
taking values in a finite dimensional Euclidean space X ¼RK ,
and Y:ðO,F ,PÞ-ðY,FYÞ be a class label random variable with
values in a finite alphabet space Y.1 ðO,F ,PÞ denotes the under-
lying probability space. Knowing the joint distribution PX,Y in
ðX � Y,sðFX � FYÞÞ,2 the problem is to find a decision function
gð�Þ from X to Y such that for a given realization of X, infer
its discrete counterpart Y with the minimum expected cost, or
minimum risk given by EX,Y ½lðgðXÞ,YÞ�, where lðy1,y2Þ denotes the
risk of labeling an observation with the value y1, when its true
label is y2, 8 y1,y2AY. The minimum risk decision is called the

Bayes rule, where for the classical 0–1 risk function [4],
lðy1,y2Þ ¼ dðy1,y2Þ, the Bayes rule in (1) minimizes the probability
error:

gPX,Y
ðxÞ � arg max

yAY
PX,Y ðx,yÞ, 8 xAX : ð1Þ

In this case the minimum probability error (MPE), or Bayes error,
can be expressed by [6]:

LX �PðfuAO : gPX,Y
ðXðuÞÞaYðuÞgÞ ¼ PX,Y ðfðx,yÞAX � Y : gPX,Y

ðxÞaygÞ

¼ 1�EX ½max
iAY

PY9Xði9XÞ�: ð2Þ

The subscript notation in LX emphasizes that this is an indicator
of the discrimination power of the observation space X and more
precisely of the joint distribution PX,Y . The following lemma states
a version of the well-known result that a transformation of the
epresentations within the Bayes decision framework, Pattern
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observation space X can not provide discrimination gain or the
data-processing inequality.

Lemma 1 (Vasconcelos [18, Theorem 3], Wozencraft and Jacobs

[7]). Consider f : ðX ,FX Þ-ðX 0,FX0 Þ to be a measurable mapping. If

we define X0 � fðXÞ as a new observation random variable, with joint

probability distribution PX0 ,Y induced by fð�Þ and PX,Y [21], we have

that

LX0ZLX : ð3Þ

From the lemma, it is natural to say that the transformation fð�Þ
represents sufficient statistics for the inference problem if LX0 ¼ LX ,
see [7,4,8,22].

In practice we do not know the joint distribution PX,Y . Instead
we may have access to independent and identically distributed
(i.i.d.) realizations of (X,Y), DN � fðxi,yiÞ : iAf1, . . . ,Ngg, which in
the Bayes approach are used to characterize an estimation of the
joint observation-class distribution, the empirical distribution
denoted by P̂X,Y . This estimated distribution P̂X,Y is used to define
the plug-in empirical Bayes rule, using (1), that we denote as
ĝ P̂ X,Y
ð�Þ. Note that the risk of the empirical Bayes rule in (4), differs

from the Bayes error LX as a consequence of what is called the
estimation error effect in the learning process:

PðfuAO : ĝ P̂ X,Y
ðXðuÞÞaYðuÞgÞ ð4Þ

It is well understood that the magnitude of this estimation
error is a function of some notion of complexity of the observa-
tion space [23,13,18]. This implies a strong relationship between
the number of training examples and the complexity of the
observation space, justifying the widely adopted dimensionality
reduction during FE [10].

In this work, we focus on studying aspects of optimal feature
representation for classification, assuming the Bayes decision
approach, and that the learning framework satisfies certain
conditions that will be detailed in the next section. Under these
assumptions, we can formally consider two signal representation
aspects that affect the performance of a Bayes decision frame-
work. One relates to the signal representation quality, associated
with the Bayes error, and the other to the signal space complexity,
to quantify the effect of the estimation error in the problem. The
formalization of this tradeoff and its implications are the main
topics addressed in the following sections.
3 We assume that the distributions are absolutely continuous with respect

to the Lebesgue measure for defining the KLD using their probability density

functions [24].
4 For all practical purposes X i is a finite dimensional Euclidean space and F i

refers to the Borel sigma field.
3. Signal representation results for the Bayes approach

Let us start with a result that provides an analytical expression
to bound the performance deviation of the empirical Bayes rule
with respect to the Bayes error.

Theorem 1 (Vasconcelos [18, Theorem 4]). Let us consider the joint

observation-class distribution PX,Y and its empirical counterpart P̂X,Y ,
assuming that they only differ in their class conditional probabilities

(i.e., P̂Y ðfygÞ ¼ PY ðfygÞ,8 yAY). Then, the following inequality holds

involving the performance of the empirical Bayes rule ĝ ð�Þ, and the

Bayes error in (2):

PðfuAO : ĝ P̂ X,Y
ðXðuÞÞaYðuÞgÞ�LXrDgMAPðP̂X,Y Þ, ð5Þ

where

DgMAPðP̂X,Y Þ �
ffiffiffiffiffiffiffiffiffiffi
2ln2
p X

yAY
PY ðfygÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfDðPX9Y ð�9yÞJP̂X9Y ð�9yÞÞ,DðP̂X9Y ð�9yÞJPX9Y ð�9yÞÞg

q
ð6Þ
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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and Dð�J�Þ is the Kullback–Leibler divergence (KLD) [8] between two

probability distributions on ðX ,FX Þ, given by,

DðP1JP2
Þ ¼

Z
X

p1ðxÞ � log
p1ðxÞ

p2ðxÞ
@x,

where p1 and p2 are the pdfs of P1 and P2, respectively.3

Note that DgMAPðP̂X,Y Þ is the PY-average of a non-decreasing
function of the KLD between the conditional class probabilities
and their empirical counterparts. The KLD has a well known
interpretation as a statistical discrimination measure between
two probabilistic models [8,24,9], however in this case, it is an
indicator of the performance deviation, relative to the funda-
mental performance bound, as a consequence of the statistical
mismatch occurring in estimating the class-conditional probabil-
ities. Vasconcelos has proved this result for the case when the
classes are equally likely [18, Theorem 4]. The proof of Theorem 1
is a simple extension of that and not reported here for space
considerations.

Remark 1. A necessary condition for DgMAPðP̂X,Y Þ to be well
defined is that the empirical conditional class distributions are
absolute continuous with respect to the other associated distribu-
tions [9,24], see (6). This assumption is not unreasonable because
the empirical joint distribution is induced by i.i.d. realizations of
the true distribution. As a result, it is assumed for the rest of
the paper.

The next result shows an implication of Theorem 1 for the case
when the observation random variable X takes values in a finite
alphabet set (or a quantizations of X), denoted by AX .

Corollary 1. Let (X,Y) be a random vector taking values in the finite

product space AX � Y, with PX,Y and P̂X,Y being the probability and

the empirical probability, respectively. Assuming that PX,Y and P̂X,Y

only differ in their class-conditional probabilities, then (5) and (6)
hold, where DðPX9Y ð�9yÞJP̂X9Y ð�9yÞÞ in this context denotes the discrete

version of the KLD [8,24] given by:

DðPX9Y ð�9yÞJP̂X9Y ð�9yÞÞ ¼
X

xAAX

PX9Y ðx9yÞ � log
PX9Y ðx9yÞ

P̂X9Y ðx9yÞ

 !
:

3.1. Tradeoff between Bayes and the estimation error

The following result introduces aspects of signal representa-
tion into the classification problem. Before that, we need to
introduce the notion of an embedded space sequence, which
provides a sort of order relationship among a family of feature
observation spaces, and the notion of consistent probability
measures associated with an embedded space sequence.

Definition 1. Let fFið�Þ : i¼ 1, . . . ,ng be a family of measurable
transformations from the same domain ðX ,FX Þ and taking values
in fX1, . . . ,Xng, where fX1, . . . ,Xng has increasing finite dimen-
sionality, i.e., dimðXiÞodimðXiþ1Þ,8 iAf1, . . . ,n�1g. We say that
fFið�Þ : i¼ 1, . . . ,ng is dimensionally embedded if, 8 iAf1, . . . ,n�1g,
(piþ1,ið�Þ, a measurable mapping from ðX iþ1,F iþ1Þ to ðX i,F iÞ,

4

such that,

FiðxÞ ¼ piþ1,iðFiþ1ðxÞÞ, 8 xAX :
epresentations within the Bayes decision framework, Pattern
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5 Q is a refinement of Q if, 8 AAQ , (Q A �Q such that A¼
S

BAQ A
B.

6 In this case we consider the power set of Ai � Y as the sigma field, and

consequently we omit it.
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In this context, we also say that fX1, . . . ,Xng is dimensionally
embedded with respect to fFið�Þ : i¼ 1, . . . ,ng and fpiþ1,ið�Þ : i¼

1, . . . ,n�1g.

Definition 2. Let fX i : i¼ 1, . . . ,ng be a sequence of dimensionally
embedded spaces, where fpiþ1,i : ðX iþ1,F iþ1Þ-ðX i,F iÞ : i¼ 1,
. . . ,n�1g is the set of measurable mapping stated in Definition
1. Associated with those spaces, let us consider a probability
measure P̂ i defined on ðX i,F iÞ,8 iAf1, . . .ng. The family of prob-
ability measures fP̂ i : i¼ 1, . . . ,ng is consistent with respect to the
embedded sequence if 8 i,jAf1, . . .ng, io j,8 BAF i

P̂ iðBÞ ¼ P̂ jðp�1
j,i ðBÞÞ,

where pj,ið�Þ � pj,j�1ðpj�1,j�2ð� � �piþ1,ið�Þ � � �ÞÞ.

Definition 2 is equivalent to saying that if we induce a
probability measure on ðX i,F iÞ by using the measurable mapping
pj,ið�Þ and the probability measure P̂ j on the space ðX j,F jÞ, the
induced measure is equivalent to P̂ i. Consequently, the probabil-
istic description of the sequence of embedded spaces is univocally
characterized by the more informative probability space,
ðXn,F n,P̂nÞ, and the family of measurable mappings fpj,ið�Þ : j4 ig

of the embedded structure presented in Definition 1.

Theorem 2. Let (X,Y) be the joint observation-class random vari-

ables with distribution PX,Y on ðX � Y,sðFX � FYÞÞ, where X ¼RK

for some K40. Let fFið�Þ : i¼ 1, . . . ,ng be a sequence of representa-

tion functions, with Fið�Þ : ðX ,FX Þ-ðX i,F iÞ, measurable 8 iA
f1, . . . ,ng. In addition, let us assume that, fFið�Þ : i¼ 1, . . . ,ng is a

family of dimensionally embedded transformations, satisfying

Fið�Þ ¼ pj,iðFjð�ÞÞ for all j4 i in f1, . . . ,ng. Then, considering the family

of observations random variables fXi ¼ FiðXÞ : i¼ 1, . . . ,ng, the Bayes

error satisfies the following relationship:

LX iþ 1
rLX i

, 8 iAf1, . . . ,n�1g: ð7Þ

If in addition we have a family of empirical probability measures

fP̂Xi ,Y : i¼ 1, . . . ,ng, with P̂Xi ,Y on ðX i � Y,sðF i � FY ÞÞ and condi-

tional class distribution families fP̂Xi9Y ð�9yÞ : i¼ 1, . . . ,ng consistent

with respect to fX i : i¼ 1, . . . ,ng 8 yAY, then the following relation-

ship for the estimation error applies:

DgMAPðP̂Xi ,Y ÞrDgMAPðP̂Xiþ 1 ,Y Þ, 8 iAf1, . . . ,n�1g: ð8Þ

This result presents a formal tradeoff between the Bayes and
estimation errors by considering a family of representations of
monotonically increasing complexity. In other words, by increas-
ing complexity we improve the theoretical performance bound—-

Bayes error—that we could achieve, but as a consequence of
increasing the estimation error, which upper bounds the max-
imum deviation from the Bayes error bound, per Theorem 1. The
proof of this result is presented in Appendix A.

The following corollary of Theorem 2 shows the important case
when the embedded sequence of spaces is induced by coordinate
projections (equivalent to a feature selection approach). In this
scenario, the consistency condition of the empirical distributions
can be considered natural and consequently implicitly assumed in
the statement. A version of this result for coordinate projections was
originally presented in [18, Theorem 5].

Corollary 2. Let X ¼RK and the family of coordinate projections

pK
mð�Þ : R

K-Rm, mrK , be given by: pK
mðx1, . . . ,xm, . . . xK Þ ¼

ðx1, . . . ,xmÞ, 8 ðx1, . . . ,xK ÞARK . Let PX,Y and P̂X,Y be the joint prob-

ability measure and its empirical counterpart, respectively, defined

on ðX � Y,sðFX � FYÞÞ. Given that the coordinate projections are

measurable, it is possible to induce those distributions on the
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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sequence of embedded subspaces fX1, . . . ,XKg characterized by:
X i ¼ pK

i ðX Þ, 8 iAf1, . . . ,Kg. Then, the Bayes estimation error tradeoff

is satisfied, i.e., LX iþ 1
rLX i

and DgMAPðP̂Xiþ 1 ,Y ÞZDgMAPðP̂Xi ,Y Þ,
8 iAf1, . . . ,K�1g.

From this corollary a natural approach to ensure that the
family of empirical class conditional distributions fP̂Xi9Y ð�9yÞ :
i¼ 1, . . . ,ng is consistent across a dimensionally embedded space
sequence fX i : i¼ 1, . . . ,ng, is to constructively induce P̂Xi9Y ð�9yÞ
using the empirical distribution on the most informative repre-
sentation space, P̂Xn9Y ð�9yÞ on ðXn,FnÞ, and the measurable map-
pings pn,ið�Þ,8 ion associated with the embedded space sequence,
per Definition 1. For instance, this construction is appealing when
assuming parametric class conditional distributions, like Gaussian
mixture models (GMMs), and standard family of transformations,
like linear operators, where inducing those distributions implies
simpler operation on the parameters of P̂Xn9Y ð�9yÞ. This type of
construction was considered in [18] and will be illustrated in
Section 5.2.

3.2. Bayes-estimation error tradeoff: finite alphabet case

(quantization)

As for Theorem 1, we also extend Theorem 2 for the case when
the family of representation functions fFið�Þ : i¼ 1, . . . ,ng takes
values in finite alphabet sets, and consequently induces quantiza-
tions of X . In this scenario, the concept of embedded representa-
tion is better characterized by properties of the induced family of
partitions. The following definition formalizes this idea.

Definition 3. Let us consider the space ðX � Y,sðFX � FYÞÞ and a
family of measurable functions fFið�Þ : i¼ 1, . . . ,ng, taking values in
finite alphabet sets fAi : i¼ 1, . . . ,ng, i.e., Fið�Þ : ðX ,FX Þ-ðAi,2

Ai Þ,
with Ai

�� ��o1. The family of representations Fið�Þ : i¼ 1, . . . ,n
� �

is
embedded if: 9Ai9o9Aiþ19,8 iAf1, . . . ,n�1g and 8 j,iAf1, . . . ,ng,
j4 i, there exists a function pj,ið�Þ : Aj-Ai such that

FiðxÞ ¼ pj,iðFjðxÞÞ, 8 xAX :

Remark 2. Every representation function Fið�Þ produces a quanti-
zation of X by QFi � fF

�1
ðfagÞ : aAAig �FX , where the embedded

condition implies that: 8 i,j, 1r io jrn, QFj is a refinement of
QFi,

5 (notation, QFi5QFj), and then, QF15QF25 � � �5QFn.

For the next result we also make use of the assumption of
consistency for the empirical distributions across a sequence of
embedded representations, which extends naturally from the
continuous case presented in Definition 2.

Theorem 3. Let (X,Y) be the joint-observation random vector and

fFið�Þ : i¼ 1, . . . ,ng be a family of embedded representation taking

values in finite alphabet sets fAi : i¼ 1, . . . ,ng. Considering the

quantized observation random variables fXi � FiðXÞ : i¼ 1, . . . ,ng
then the Bayes error satisfies: LAiþ 1

rLAi
,8 iAf1, . . . ,n�1g. If in

addition we have empirical probabilities P̂Xi ,Y on the family of

representation spaces Ai � Y6 with conditional class probabilities,
fP̂Xi9Y ð�9yÞ : i¼ 1, . . . ,ng, consistent with respect to fFið�Þ : i¼

1, . . . ,ng,8 yAY, then the estimation error satisfies: DgMAP

ðP̂Xiþ 1 ,Y ÞZ DgMAPðP̂Xi ,Y Þ,8 iAf1, . . . ,n�1g. (The proof is presented in

Appendix B).

Remark 3. In this context, the tradeoff is obtained as a function
of the cardinality of these spaces. In particular, the cardinality is
the natural choice for characterizing feature complexity, because
epresentations within the Bayes decision framework, Pattern
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it is proportional to the estimation error across the embedded
sequence of spaces.

The following proposition states the validity of the consistence
condition for the important scenario when the empirical distribu-
tion is obtained using the maximum likelihood (ML) criterion or
the well-known frequency counts [6].

Proposition 1. For a given amount of training data, i.i.d. realizations

of (X,Y), the ML estimator of PXi9Y ð�9yÞ,8 yAY obtained in the range

of a family of finite alphabet embedded representations fFið�Þ : i¼

1, . . . ,ng, per Definition3, satisfies the consistence condition stated in

Definition2. (The proof is presented in Appendix D).
3.3. Remarks

From the results presented in this section, having a family of
embedded representations, continuous or finite alphabet version,
is not enough to show the result about the evolution of the
estimation error across this embedded sequence of increasing
complexity, Theorems 2 and 3. The additional necessary element
is to have a consistent family of empirical distributions (see
proofs of the theorems for details). This last condition is clearly
a function of the learning methodology used for estimating the
conditional class distributions. In the original version of this
result presented [18], this condition was implicit because the
author considered a family of coordinate-projections for repre-
senting the embedded space sequence, where most of the learn-
ing techniques provide empirical distributions that satisfy the
required consistence condition. In summary, Theorems 2 and 3
stipulate concrete conditions between a sequence of embedded
spaces and a learning scheme that justify a formal tradeoff
between estimation and approximation error. Complementing
this observation, Appendix C shows a concrete scenario where
the mentioned tradeoff is clearly illustrated, and where there are
closed-form expressions for the two error terms in (2) and (6).

As explained in [18], this tradeoff formally justifies the fact
that in the process of doing dimensionality-cardinality reduction,
better estimation of the underlying observation-class distribution
is obtained, in the KLD sense, at the expense of increasing the
underlying Bayes error. In particular these results show that by
constraining to a sequence of embedded representations there is
one that minimizes the probability of error, and from the results
presented here, the one that achieves the optimal Bayes-estima-
tion error tradeoff (Appendix C illustrates this optimal feature
solution for a concrete dimensionally embedded space sequence
and learning scheme). Hence, it is natural to think that having a
rich collection of feature transformations for X , not necessarily
embedded, there is one for which this tradeoff between ‘‘repre-
sentation quality’’ and ‘‘complexity’’ achieves an optimal solution,
a solution that is connected with the MPE-SR problem. This is the
topic addressed in the next section.
4. Minimum probability of error signal
representation (MPE-SR)

Let us consider again fðxi,yiÞ : i¼ 1, . . . ,Ng i.i.d. realizations of
the observation-class ðX,YÞ random variables with distribution
PX,Y on ðX � Y,sðFX � FYÞÞ. In addition, let us consider a family of
measurable functions D, where any fð�ÞAD is defined in X and
takes values in a transform space X f . Every representation
function fð�Þ induces an empirical distribution P̂Xf ,Y on ðX f � Y,
sðF f � FYÞÞ, based on the training data and the adopted learning
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
Recognition (2011), doi:10.1016/j.patcog.2011.11.015
approach, and hence the empirical Bayes rule by

ĝ f ðxÞ ¼ arg max
yAY

P̂Xf ,Y ðx,yÞ, 8 xAX f : ð9Þ

Then, the oracle MPE-SR problem reduces to:

fn ¼ arg max
f AD

EX,Y ðIfðx,yÞAX�Y:ĝ f ðfðxÞÞaygðX,YÞÞ, ð10Þ

where the expected value is taken with respect to the true joint
distribution PX,Y on ðX � Y,sðFX � FYÞÞ. Note that from Lemma 1,
8 fð�ÞAD, EX,Y ðIfðx,yÞAX�Y:ĝ f ðfðxÞÞaygðX,YÞÞZLX f

ZLX , where LX f

denotes the Bayes error associated with X f . Then the MPE
criterion tries to find the representation framework whose per-
formance is the closest to LX , the fundamental error bound of the
problem. Using the upper bound for the risk of the empirical
Bayes rule in Theorem 1, i.e.,

EX,Y ðIfðx,yÞAX�Y:ĝ f ðfðxÞÞaygðX,YÞÞrDgMAPðP̂Xf ,Y ÞþLX f
, 8 fAD,

we take the direction proposed for the structural risk minimiza-
tion (SRM) principle [25], to approximate (10) with the following
decision,

~f
n

¼ arg max
f AD

DgMAPðP̂Xf ,Y Þþ½LX f
�LX �: ð11Þ

Here we have introduced the normalization factor LX to make
explicit that this regularization problem implies finding the
optimal tradeoff between approximation quality, LX f

�LX , and
estimation error, DgMAPðP̂Xf ,Y Þ. Then, the MPE-SR is naturally
formulated as a complexity regularized optimization problem
whose objective function consists of a weighted combination of
a fidelity criterion, reflecting the Bayes error, and a cost term,
penalizing the complexity of the representation scheme. To
contextualize the idea, Appendix C shows the complexity-regu-
larized objective function in (11) in a controlled simulated
scenario, where the oracle MPE-SR problem in (11) can be
addressed. Note that solution to (11) is an oracle type of result,
because neither the fidelity nor the cost term in (11) are available
in practice — both require the knowledge of the true distribution.
Appropriate approximations for the fidelity and cost terms are
needed in the Bayes setting to address this problem in practice.

4.1. Approximating the MPE-SR: the cost-fidelity formulation

For approximating DgMAPðP̂Xf ,Y Þ, from Theorems 2 and 3 we
have that this complexity indicator is proportional to the dimen-
sionality or cardinality of the representation, respectively, and
consequently a function proportional to those terms can be
adopted. On the other hand for the fidelity LX f

, the first natural
candidate to consider is the empirical risk (ER) [25,6] associated
with the family of empirical Bayes rules in (9). In favor of this
choice is the existence of distribution free bounds that control
the uniform deviation of the ER with respect to the risk (the
celebrated Vapnik–Chervonenkis inequality [6,25]). However, this
choice of fidelity indicator raises the problem of addressing the
resulting complexity regularized ER minimization, a problem that
has an algorithmic solution only in very restrictive settings. In this
regard, Section 5.1 presents an emblematic scenario where this
problem can be efficiently solved for a family of tree-structured
vector quantizations.

However, in numerous important cases, the ER is impractical
because the solution to the resulting complexity regularization
requires an exhaustive search. An alternative to approximating
the Bayes risk LX f

is to use some of the information theoretic
quantities like the family of Ali–Silvey distances [26,27], formally
justified for the binary hypothesis testing problem, or the widely
adopted mutual information (MI) [11,28–30]. It is well known that
MI and probability of error are connected by Fano’s inequality and
epresentations within the Bayes decision framework, Pattern
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tightness has been shown asymptotically by the second Shannon

coding theorem [9,24]. Importantly in our problem scenario, MI
satisfies the same monotonic behavior under a sequence of
embedded transformations as the Bayes risk; in the practical side
the empirical MI, denoted by ÎðXf ,YÞ,7 under some problem
settings can offer algorithmic solutions for the resulting complex-
ity regularized problem. One example of this is presented in
following sections and another was recently shown in [31] for
addressing a discriminative filter bank selection problem.

Returning to the problem, generally denoting by ÎðfÞ and RðfÞ
the approximated fidelity and cost terms for fAD, respectively,
(11) can be approximated by:

fnðlÞ ¼ arg max
f AD

CðÎðfÞÞþl �FðRðfÞÞ, ð12Þ

where considering the tendency of the new fidelity-cost indica-
tors, Cð�Þ should be a strictly decreasing real function, Fð�Þ, a
strictly increasing function from N to R and l40. Noting that the
real dependency between Bayes and estimation errors in terms of
our new fidelity complexity values, ÎðfÞ and RðfÞ, is hidden and,
furthermore, problem dependent, then C, F and lARþ provide
degrees of freedom for approximating the oracle MPE-SR in (11).
Remarkable, it is important to note that independent of those
degrees of freedom, (12) can be expressed by:

fnðlÞ ¼ arg max
f A ffnk :kAKðDÞtg

CðÎðfÞÞþl �FðRðfÞÞ, ð13Þ

with ffnk : kAKðDÞg �D the solutions of the following cost-fidelity

problem:

fnk ¼ arg max
f AD

RðfÞr k

ÎðfÞ, ð14Þ

8 kAKðDÞ, where KðDÞ � RðfÞ : fAD
� �

�N. Then, the approxi-
mated MPE-SR solution in (12) can be restricted, without any loss,
to what we call the optimal achievable cost-fidelity family

ffnk : kAKðDÞg. Note that the cardinality of KðDÞ could be signifi-
cantly smaller than 9D9 and as a result, the domain of solutions of
the original problem. Finally, the empirical risk minimization
criterion among ffnk : kAKðDÞg �D, for instance using cross vali-
dation [6,5], can be the final decision step for solving (13), as it
has been widely used for addressing a similar complexity reg-
ularization problem in the context of regression and classification
trees [5,32].
5. Applications

By stipulating a learning technique and a family of representa-
tion functions, we can obtain instances of the MPE-SR complexity
regularized formulation. Two important cases where this parti-
cularization offers algorithmic solutions are presented in this
section, while another interesting case was presented by the
authors for the problem of discriminative Wavelet Packet filter
bank selection in [31].

5.1. Classification trees: CART and minimum cost tree pruning

algorithms

Let X ¼RK be a finite dimension Euclidean space, and let D be
a family of vector quantizers (VQs) with a binary tree structure
[33–35]. Then the MPE-SR problem reduces to finding an optimal
binary classification tree topology. Interestingly the pruning tree
algorithms proposed by Breiman, Friedman, Olshen and Stone
7
8 f AD the empirical MI ÎðXf ,YÞ can be obtained from the available empirical

distribution P̂ Xf ,Y .

Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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(BFOS) [5]8 can be shown to address an instance of the complexity
regularized problem presented in (12)

Let us introduce some basic terminology.9 Using Breiman et al.
conventions [5], a tree T is represented by a collection of nodes in
a graph, with implicit left and right mappings reflecting the
parent–child relationship among them. T is a rooted binary tree

if every nonterminal node has two descendants, where we denote
by LðTÞ � T the sub-collection of leaves or terminal nodes (nodes
that do not have a descendent). In addition, 9T9 denotes the norm
of the tree, which is the cardinality of LðTÞ. Let S and T be two
binary tress, then if S� T and both have the same root node, we
say that S is a pruned version of T, and we denote this relationship
by S5T . Finally, we denote by Tfull the tree formed for all the
nodes in the graph and by troot its root.

The tree structure is used to index a family of vector quantiza-
tions for X . In order to formalize this idea, we can consider that
every node tATfull has associated a measurable subset X t �X ,
such that X troot ¼X and if t1 and t2 are the direct descendants of a
nonterminal node t, we then have that: X t ¼X t1

[ X t2
and

X t1
\ X t2

¼f. Therefore, any rooted binary tree T5Tfull induces
a measurable partition of the observation space given by
VT ¼ fX t : tALðTÞg, where importantly, if T15T2 then VT2

is a
refinement of VT1

. With this concept in mind, we can define a pair
of tree indexed representations by ½T ,fT ð�Þ� for all T5Tfull, with
fT ð�Þ being a measurable function from ðX ,FX Þ to LðTÞ, such that
X t ¼ f�1

T ðftgÞ,8 tALðTÞ. Hence, fT ð�Þ induces the previously defined
measurable partition VT on ðX ,FX Þ. Then formally, the family of
tree indexed representations is given by D¼ ffT ð�Þ : T5Tfullg.

Following the convention in [32], a classification tree is a triple
½T ,fT ð�Þ,gT ð�Þ�, where gT ð�Þ from LðTÞ to Y is the classifier that infers
Y based on the quantized random variable XfT

� fT ðXÞ. In parti-
cular the Bayes rule is

gT ðtÞ ¼ arg max
yAY

PXfT
,Y ðt,yÞ, 8 tALðTÞ,

with Bayes error RðTÞ ¼PðfuAO : gT ðXfT
ðuÞÞÞaYðuÞgÞ. Breiman

et al. [5, Chapter 9] show that R(T) can be written as an additive
non-negative function of the terminal nodes of T,

RðTÞ ¼
X

tALðTÞ
RðtÞ, ð15Þ

where for the 0–1 cost function RðtÞ ¼PðXfT
ðuÞ ¼ tÞ � ð1�maxyAY

PY9XfT
ðy9tÞÞ. As we know if PX,Y is available, the best performance is

obtained for the finest representation, i.e., ½Tfull,fTfull
ð�Þ,gTfull

ð�Þ�;
however, our case of interest is when under the constraint of
finite i.i.d. samples of (X,Y), DN ¼ fðxi,yiÞ : i¼ 1, . . . ,Ng, we want to
address the MPE-SR problem formulated in Section 4. In this case,
the maximum likelihood (ML) empirical distribution P̂XfT

,Y is
considered for all T5Tfull, which reduces the problem to a family
of classification trees ½T ,fT ð�Þ,ĝ T ð�Þ� with the empirical Bayes
decision ĝ T ð�Þ corresponding to the majority vote decision rule [5].
The next result shows that the Bayes-estimation error tradeoff
holds for a sequence of embedded representations in D.

Proposition 2. Let us take a sequence of embedded trees T15

T25T3, . . . ,5Tk, subsets of Tfull. Then, RðTiþ1ÞrRðTiÞ, for all

iAf1, . . . ,n�1g. On the other hand, considering ½Ti,fTi
ð�Þ,ĝ Ti

ð�Þ�, for

all iAf1, . . . ,kg and the estimation error of these empirical Bayes

decisions, denoted by DgðP̂XfTi
,Y Þ for all iAf1, . . . ,kg (Theorem 1), it

follows that DgðP̂XfTi
,Y ÞrDgðP̂XfTiþ 1

,Y Þ, for all iAf1, . . . ,n�1g.
8 The seminal work of Breiman et al. [5] addresses the more general case of

classification and regression trees (CART), where for the context of this work we

just highlight results concerning the classification part.
9 The interested reader is referred to [5,36] for a more systematic exposition.

epresentations within the Bayes decision framework, Pattern
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Proof. We have developed all the machinery to prove this result.
We know that the family of representations ffT1

ð�Þ, . . . ,fTn
ð�Þg is

embedded, where by Proposition 1 the induced empirical dis-
tributions—conditional class probabilities—are consistent with
respect to the embedded representation family. Consequently, the
result extends directly from Theorem 3. &

This result provides a strong justification to use the complexity
regularized approximation in (12) for the MPE-SR problem. For that
we can use the additive structure of the Bayes error in (15), to
consider the empirical Bayes error and cardinality as the fidelity and
complexity indicators for (12), which in fact are additive tree
functionals [33,37]. In fact under an additive cost assumption for
the term f in (12), the solution to this problem is the well known
CART pruning algorithm [5], which finds an algorithmic solution for,10

Tn

nðaÞ ¼ arg max
T 5Tfull

R̂ðTÞþa � 9T9, ð16Þ

with R̂ðTÞ ¼ ð1=NÞ
PN

i ¼ 1 Ifðt,yÞALT�Y:ĝ T ðtÞaygðfT ðxiÞ,yiÞ the empirical
risk. More precisely, Breiman et al. [5, Chapter 10] use the additivity
of the objective function in (16) to formulate a dynamic programming
solution for Tn

nðaÞ in Oð9Tfull9Þ. Moreover, they proved that there exists
a sequence of optimal embedded representations, denoted by
Tfull ¼ Tn

1bTn

2b , . . . ,bTn

m ¼ ftrootg, which are the solutions of (16)
for all possible values of the complexity weight aARþ . More
precisely, (a0 ¼ 0oa1o , . . . ,oam ¼1, and for all iAf1, . . . ,mg,
such that,

Tn

nðaÞ ¼ Tn

i , 8 aA ½ai�1,aiÞ: ð17Þ

Note that this result connects the MPE-SR tree pruning problem with
the solutions for our cost-fidelity problem, as Scott [37] had recently
pointed out. The reason is that this family of optimal embedded
sequences is the solution to the cost-fidelity problem in (14), which is
expressed in this context by:

Tn

j ¼ arg max
T 5 Tfull

9T9r m�j�1

R̂ðTÞ, 8 jAf1, . . . ,mg: ð18Þ

Scott coined the solution of (18) as the minimum cost trees, and has
presented a general algorithm to solve it in Oð9Tfull9

2
Þ [37]. Also the

connection of this cost-fidelity problem with a more general com-
plexity regularized objective criterion was presented, where the cost
term a � 9T9 is substituted for a general sized-based penalty a �Fð9T9Þ,
where Fð�Þ is a non-decreasing function. Moreover an algorithm
based on the characterization of the operational cost-fidelity bound-
ary, was presented for finding explicitly a0oa1o , . . . ,oam as in
(17). Scott’s work is the first one that formally presented the
connections between the general CART complexity regularized prun-
ing problem and the solution of a cost-fidelity problem. Here we
provide the context to show that the algorithms used to solve the
cost-fidelity problem are implicitly addressing the ultimate MPE-SR
problem.

5.2. Linear discriminant analysis

Let us consider again X ¼RK and the family of linear trans-
formations as the dictionary:

D¼ ff : RK-Rm : f linear,mrKg:

An element fAD can be univocally represented by a matrix
AARðm,KÞ.11 In particular, we restrict D to the family of full-
rank matrices. If we consider that the conditional class probability
follows a multivariate Gaussian distribution, then pX9Y ð�9yÞ ¼
10 From this point we consider the tree index T for referring to the

representation function fT ð�Þ and the empirical Bayes classifier ½T ,fT ð�Þ,ĝ T ð�Þ�,

depending on the context.
11 Rðm,nÞ represents the collection of m�n matrices with entries in R.
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N ð�,my,SyÞ and pXð�Þ ¼
P

yAYPðYðuÞ ¼ yÞ �N ð�,my,SyÞ, where N ð�,m,
SÞ is a Gaussian pdf with mean m and covariance matrix S.

Consider a finite amount of training data fðxi,yiÞ : i¼ 1, . . . ,Ng
and maximum likelihood (ML) estimation techniques [4], and that
the empirical distributions fp̂X9Y ð�9yÞ : yAYg and p̂Xð�Þ are Gaus-
sian and Gaussian mixtures, respectively, characterized by the
empirical mean and covariance matrices:

m̂y ¼
1

Ny

XN

i ¼ 1

IfygðyiÞ � xi and Ŝy ¼
1

Ny

XN

i ¼ 1

IfygðyiÞ � ðxi�m̂yÞðxi�m̂yÞ
y,

with Ny ¼ 9f1r irN : yi ¼ yg9,8 yAY.

Proposition 3. Let A1, . . . ,An be a family of full-rank linear trans-

formations taking values in fRk1, . . . ,Rkn
g with 0ok1ok2o

� � �oknrK. In addition, let us assume that the sequence of

transformations is dimensionally embedded, per Definition1, i.e.,
8 j,i,j4 i there exists Bj,iARðki,kjÞ, such that Ai ¼ Bj,i � Aj. Under the

Gaussian parametric assumption the empirical sequence of class

conditional pdfs fp̂AiX9Y ð�9yÞ : i¼ 1, . . . ,ng, estimated across fRk1,
. . . ,Rkn

g (ML criterion), characterize a sequence of consistent prob-

ability measures with respect to fRk1, . . . ,Rkn
g, in the sense presented

in Definition2.

Proof. Proof provided in Appendix D.

This last result formally extends Theorem 2, for the case
of embedded sequences of full-rank linear transformations
A1, . . . ,An. and provides justification for addressing the MPE-SR
problem using the cost-fidelity approach. In this context, as
considered by Padmanabhan et al. [11] the empirical mutual
information is used as the objective indicator. Then, the solution
of the MPE-SR problem resides in the solution of:

An

k ¼ arg max
AARðk,KÞ

Î Að Þ, 8 kAf1, . . . ,Kg, ð19Þ

where ÎðAÞ denotes the empirical mutual information between AX

and Y. Let us write IðAÞ ¼HðAXÞ�HðAX9YÞ [24,9]. Then under the
Gaussian assumption and considering AARðk,KÞ, it follows that,
HðAX9Y ¼ yÞ ¼ ðk=2Þlogð2pÞþ 1

2 logð9ASyAy9Þþ 1
2 [9]. Given that AX

has a Gaussian mixture distribution, a closed-form expression is
not available for the differential entropy. Padmanabhan et al. [11]
proposed to use an upper bound based on the well known fact
that the Gaussian law maximizes the differential entropy under
second moment constraints [9]. Then, denoting S� EðXXyÞ�

EðXÞEðXÞy, we have that HðAXÞrðk=2Þlogð2pÞþ 1
2 log ð9ASAy9Þþ 1

2

and then

IðAÞr
1

2
log

ASAy
��� ���Q

yAY9ASyAy9PðYðuÞ ¼ yÞ

2
4

3
5:

Using this bound the cost-fidelity problem in (19) reduces to

An

k ¼ arg max
AARðk,KÞ

log
9AŜAy9Q

yAY9AŜyAy9PðY ¼ yÞ

2
4

3
5, ð20Þ

where Ŝy and Ŝ are the empirical class conditional covariance
matrices and the unconditional covariance matrices, respectively.
Ŝ can be written as ŜwþŜb [11], with Ŝw ¼

P
yAY P̂Y ðfygÞ � Ŝy and

Ŝb ¼
P

yAY P̂Y ðfygÞ � ðm̂�m̂yÞðm̂�m̂yÞ
y the between-class and within-

class scatter matrices used in linear discriminant analysis [4]. As
pointed out in [11], under the additional assumption that class
conditional covariance matrices are equivalent, the problem
reduces to

An

k ¼ arg max
AARðk,KÞ

log
9AŜAy9

9AŜyAy9

" #
,

epresentations within the Bayes decision framework, Pattern
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which is exactly the objective function used for finding the
optimal linear transformation used in multiple discriminant
analysis (MDA), the case k¼1 being the Fisher linear discriminant
analysis problem [4].
6. Final discussion and connections with structural
risk minimization

The MPE-SR formulation presents some interesting conceptual
connection with other complexity regularization formulation
developed in statistics and pattern recognition like the minimum

description length (MDL) [38], Bayesian information criterion (BIC),
Akaike information criterion, and structural risk minimization

(SRM). All these learning principles also reduce to a complexity
regularization problem, although they focus on model selection or
rule selection, rather than on the signal representation, which was
the focus of this work. To the best of our knowledge these
techniques do not have a counterpart in the problem addressed
in this work, however, they are interesting connections between
them. For completeness, here we provide some analogies with the
well-known SRM principle (a comprehensive treatment can be
found in [39,25,6] and a good survey emphasizing results in
pattern classification can be found in [40]). Similar connections
can be stipulated with the other mentioned methods (an excel-
lent exposition can be found in [38, Chapters 17.3 and 17.10]).

The empirical risk minimization (ERM) principle considers a
class C of classifiers—a subset of the set of measurable functions
from X to Y—and naturally formalizes the learning problem as
finding the decision rule gð�Þ in C that minimizes the empirical
risk R̂ðgÞ in (21), based on a finite amount of training data,
fðxi,yiÞ : i¼ 1, . . . ,Ng: i.i.d. realization of the observation and class
random phenomenon ðXðuÞ,YðuÞÞ with values in X � Y:

R̂ðgÞ �
1

N
�
XN

i ¼ 1

IfgðxiÞayig: ð21Þ

In this formulation the observation feature space X is fixed and
the learning problem is given by:

ĝ
n

Nð�Þ � arg max
gAC

R̂ðgÞ: ð22Þ

Formal results have been derived to show consistency of the
learning principle [6] as the number of samples tends to infinity.
Furthermore, uniform bounds in C for the rate of convergence of
empirical risk R̂ðgÞ to the expected risk RðgÞ �Pð gðXðuÞÞaYðuÞ

� �
Þ

have been derived as a function of a combinatorial notion of the
complexity for C, the Vapnik–Chervonenkis (VC) dimension of the
class [41,42]. The notion of VC dimension is particularly crucial in
the development of this theory because it allows controlling the
generalization ability of the learning principle, i.e., how far Rðĝ

n

NÞ

can be from the actual minimal risk decision in C, infgACRðgÞ,
independent of the joint distribution of ðXðuÞ,YðuÞÞ. This is parti-
cularly crucial when dealing with sample sizes which are small
relative to the VC dimension of the class C, and consequently the
gap between empirical and average risk turns out to be signifi-
cant. This last scenario presents the formal justification to address
the learning problem as a complexity regularized optimization,
where in one hand, we have a fidelity function (empirical risk)
and on the other, some notion of complexity associated with the
estimation error. This complexity notion is explicitly a function of
the VC dimension [39,25]. Then, the structural risk minimization

(SRM) principle was aimed at formalizing this regularization
problem. This was proposed to find the optimal tradeoff between
fidelity and complexity for a given amount of training data in a
sequence of classifier families, C1 �C2 � � � �, with a structure of
increasing VC dimensions.
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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At this point it is interesting to discuss some natural analogies and
differences with the formulation of the MPE-SR problem. First, the
MPE-SR makes uses of the Bayes decision approach as a way to define
the optimal decision rule based on estimated empirical distributions
and the plug-in Bayes rules. Second, the domain to address the MPE
learning problem is with respect to a family of feature representa-
tions. On the other hand the SRM uses the ERM as learning principle
in (22); and the degree of freedom is on the family of classifiers, i.e.,
C. Concerning similarities, as in the SRM the MPE-SR approach
provides an upper bound for measuring the deviation of the empirical
Bayes rule with respect to the Bayes rule. More precisely, the
deviation of the risk of the empirical Bayes rule with respect to the
Bayes error bound—estimation error—is a function of the average
KLD between the involved class conditional distributions, see Section
3. In this respect, it is not possible to characterize a universal closed-
form expression as the one obtained in ERM theory. However, under
some parametric assumption like that of multivariate Gaussian
distribution, generalized Gaussian distribution, or Gaussian mixture
models, KLD closed-form or KLD upper bound closed-form expres-
sions are available [9,43]. This allows us to find distribution depen-
dent bounds to analyze the rate of convergence of the estimation
error as a function of the number of training points and the
dimensionality of the feature space. This issue is interesting to
address, in particular considering the fact that this family of para-
metric models has been used extensively under the Bayes decision
approach [4]. On the other hand, in the MPE-SR the notion of
complexity is directly associated with common engineering indica-
tors, cardinality and dimensionality of the feature space depending on
the family of representations considered in the problem. This is not
the case for the ERM principle where the VC dimension is an abstract
concept and potentially difficult to characterize for a given family of
classifiers.

Results that present the tradeoff between Bayes error and
estimation error across sequences of embedded representation pre-
sented in Section 3.1, and the motivation to address the MPE-SR as a
complexity regularized criterion have equivalent counterpart in the
SRM inductive principle. This explains why the two frameworks
address similar tradeoffs between complexity and fidelity for finding
the minimum probability of error decisions. Regarding practical
implementation, the MPE-SR needs to address the complexity reg-
ularized optimization problem. Given the empirical probability of
error as fidelity, in most of the cases this indicator does not have any
closed-form expression. Empirical mutual information turns to be a
naturally attractive candidate in particular considering some family of
parametric models and potential embedded structure of feature
representations, which is the motivation of the formulation presented
in Section 4. In this direction, this paper presents two emblematic
learning scenarios that show how this principle can be practically
implemented: one under some parametric assumptions for the
case of a finite dimensional feature family (Section 5.2), and
the other considering a family of vector quantizations with a
strong tree-embedded structure, where the induced combinatorial
problem can be solved using dynamic programming (DP) techniques
(Section 5.1). The SRM inductive principle, on the other hand, has
the same issues for addressing the empirical risk minimization
problem in (22). In this case some approximations based on dis-
criminant cost functions have been considered which allow to
address the optimization problem for particular families of classifiers.
Examples of those practical learning frameworks are Boosting tech-
niques, neural networks and support vector machines (SVM) [40,25].
7. Future work

It is important to emphasize that the access to the true
estimation and approximation expression in the oracle MPE-SR
epresentations within the Bayes decision framework, Pattern
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problem in (11), DgMAPð�Þ and LX , is not possible, as they require
the true distribution. Hence, practical approximations are strictly
needed to reduce the oracle MPE-SR to problem that could be
addressed as a concrete algorithm. In particular, the choice of
mutual information to approximate the Bayes error is natural and
offers interesting connections with practical schemes as pre-
sented in Section 5.2. However, we believe that much more can
be done in this direction to understand and shrink the gap
between the oracle MPE-SR and practical solutions based on
approximated fidelity and cost measures. This motivates the
direction of evaluating in much more detail the estimation of
DgMAPð�Þ and LX , based on empirical data, and with that propose
better expressions to address in practice the MPE-SR problem.
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12 It is important to note that this sequence of induced sigma fields

characterizes a filtration [21], in other words sðFiÞ � sðFiþ1Þ, because of the

existence of a measurable mapping piþ1,ið�Þ from ðX iþ1 ,F iþ1Þ to ðX i ,F iÞ.
Appendix A. Proof of Theorem 2: Bayes-estimation
error tradeoff

Given that fFið�Þ : i¼ 1, . . . ,ng is a sequence of embedded
transformations, i.e., 8 iAf1, . . . ,n�1g, there exists a measurable
mapping piþ1,i : X iþ1-X i such that Xi ¼ piþ1,iðXiþ1Þ, then from
Lemma 1 we have that LX iþ 1

rLX i
. Concerning the estimation

error inequality across the sequence of embedded spaces, a
sufficient condition given in Theorem 1, is to prove that

DðX i ,F iÞðPXi9Y ð�9yÞJP̂Xi9Y ð�9yÞÞrDðX iþ 1 ,F iþ 1ÞðPXiþ 19Y ð�9yÞJP̂Xiþ 19Y ð�9yÞÞ,

DðX i ,F iÞðP̂Xi9Y ð�9yÞJPXi9Y ð�9yÞÞrDðX iþ 1 ,F iþ 1ÞðP̂Xiþ 19Y ð�9yÞJPXiþ 19Y ð�9yÞÞ,

ð23Þ

8 iAf1, . . . ,n�1g and 8 yAY. We will focus on proving the first set
of inequalities in (23), and the same argument can be applied for
the other family. Here DðX i ,F iÞ

ðPXi9Y ð�9yÞJP̂Xi9Y ð�9yÞÞ denotes the KLD
of the conditional class probability PXi9Y ð�9yÞ with respect to the
empirical counterpart in ðX i,F iÞ. The fact of considering the
dependency with respect to the measurable space in the KLD
notation, which is usually implicit, is conceptually important for
the rest of the proof.

The main idea is to represent the empirical distribution as an
underlying measure defined on the original measurable space
ðX ,FX Þ. This is possible using the fact that the functions in fFið�Þ :

i¼ 1, . . . ,ng are measurable [21]. Consequently given the empirical
class conditional probability P̂Xi9Y ð�9yÞ in the representation space
ðX i,F iÞ, we can induce a probability measure P̂X9Y ð�9yÞ in the
measurable space ðX ,sðFiÞÞ, with sðFiÞ is the smallest sigma field
that makes Fið�Þ a measurable transformation [20], where it is
clear that sðFiÞ �FX [20]. More precisely, sðFiÞ ¼ fF

�1
i ðBÞ : BAFX g

and P̂X9Y ð�9yÞ is constructed by

8 AAsðFiÞ,(BAF i, st: A¼ F�1
i ðBÞ and P̂X9Y ðA9yÞ ¼ P̂Xi9Y ðB9yÞ:

ð24Þ

By the consistence property of P̂Xi9Y ð�9yÞ : i¼ 1, . . . ,n
n o

, it is easy
to show that there is a unique measure P̂X9Y ð�9yÞ defined on
ðX,sðFnÞÞ that represents the family of empirical distributions
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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fP̂Xi9Y ð�9yÞ : i¼ 1, . . . ,ng using the procedure presented in (24).12 As
a consequence, the empirical measure P̂X9Y ð�9yÞ is uniquely char-
acterized in X using the finest sigma field sðFnÞ. On the other
hand, the original probability measure PX9Y ð�9yÞ is originally
defined on ðX ,FX Þ and given that sðFnÞ �FX , it extends naturally
to ðX,sðFiÞÞ,8 iAf1, . . . ,ng.

The next step is to represent the KLD in (23), as a KLD in the
original observation space X relative to a particular sigma field.
Using a classical result from measure theory [20], it is possible to
prove that [24, Lemma 5.2.4]

DðX ,sðFiÞÞ
ðPX9Y ð�9yÞJP̂X9Y ð�9yÞÞ ¼DðX i ,F iÞðPXi9Y ð�9yÞJP̂Xi9Y ð�9yÞÞ: ð25Þ

Finally from proving (23), we make use of the following lemma.

Lemma 2 (Gray [24, Lemma 5.2.5]). Let us consider two measurable

spaces ðX ,F Þ and ðX ,F Þ, such that F is a refinement of F , in other

words F �F . In addition, let us consider two probability measures

P1 and P2 defined on ðX ,F Þ, then assuming that P15P2, the

following inequality holds:

D
ðX ,F ÞðP1JP2ÞZDðX ,F ÞðP1JP2Þ: ð26Þ

In our context we have PX9Y ð�9yÞ and P̂X9Y ð�9yÞ defined on
ðX ,sðFiþ1ÞÞ and consequently on ðX ,sðFiÞÞ, because sðFiþ1Þ is a
refinement of sðFiÞ, then (23) follows directly from Lemma 2. &
Appendix B. Proof of the Bayes-estimation error tradeoff:
finite alphabet case

This proof follows the same arguments as the one presented in
Appendix A. Let us denote the Bayes rule for ðXi,YÞ by gPXi ,Y

ð�Þ with
error probability LAi

, given by LAi
¼ PXi ,Y ðfðx,yÞAAi � Y : gPXi ,Y

ðxÞaygÞ,8 iAf1, . . . ,ng.
By the assumption that the family fFið�Þ : i¼ 1, . . . ,ng is

embedded, we have that 8 0r io jrn, Xi � FiðXÞ ¼ pj,iðFjðXÞÞ ¼

pj,iðXjÞ. Consequently using Lemma 1, the Bayes error inequality,
LAiþ 1

rLAi
,8 iAf1,ldots,n�1g, follows directly. For the estimation

error inequality, we will prove the following sufficient condition:

DðPXi9Y ð�9yÞJP̂Xi9Y ð�9yÞÞrDðPX þ 1 i9Y ð�9yÞJP̂Xiþ 19Y ð�9yÞÞ,

DðP̂Xi9Y ð�9yÞJPXi9Y ð�9yÞÞrDðP̂X þ 1 i9Y ð�9yÞJPXiþ 19Y ð�9yÞÞ, ð27Þ

8 iAf1, . . . ,n�1g and 8 yAY. We focus on proving one of the set of
inequalities in (27), the proof of the other set of inequalities is
equivalent.

Without loss of generality let us consider a generic pair
ðio,yoÞA 1, . . . ,n�1f g � Y. Let P̂ io be the empirical distribution on
ðX ,sioÞ induced by the measurable transformation Fioð�Þ and the
probability space ðAi,P̂Xio9Y ð�9yoÞÞ. In this case sio is the sigma filed
induced by the partition Qio � fF

�1
io ðfagÞ : aAAiog, and conse-

quently the measure P̂ io is univocally characterized by [20]:

P̂ ioðF
�1
i ðfagÞÞ ¼ P̂Xio9Y ðfag9yoÞ, 8 aAAio: ð28Þ

The same process can be used to induce a measure P̂ ioþ1 on
ðX ,sioþ1Þ. Note that given that the family of representations is
embedded, we have that Qioþ1 is a refinement of Qio in X and
consequently sio � sioþ1 [20]. Then we have that P̂ ioþ1 is also well
defined on ðX ,sioÞ. Moreover, by the consistence property of the
conditional class probabilities fP̂Xi9Y ð�9yoÞ : i¼ 1, . . . ,ng on the
family of representation functions fFið�Þ : i¼ 1, . . . ,ng, we want to
epresentations within the Bayes decision framework, Pattern
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show that the two measures agree on sio. For that we just need to
show that they agree on the set of events that generate the sigma
field, i.e., in Qio ¼ fF

�1
io ðfagÞ : aAAiog, because Qio is a partition and

in particular a semi-algebra [20]. Then without loss of generality
let us consider the event F�1

io ðfagÞ, then we have that:

P̂ ioþ1ðF
�1
io ðfagÞÞ ¼ P̂ ioþ1ðF

�1
ioþ1ðp

�1
ioþ1,ioðfagÞÞÞ

¼ P̂Xioþ 19Y ðp
�1
ioþ1,ioðfagÞ9yoÞ ¼ P̂Xio9Y ðfag9yoÞ

¼ P̂ ioðF
�1
io ðfagÞÞ, 8 aAAio: ð29Þ

The first equality is because of the fact that Fið�Þ ¼ pioþ1,io

ðFjð�ÞÞ—embedded property of the representation family, the
second by (28), the third by the consistence property of the
conditional class probabilities and the last again by definition of
Pioð�Þ, (28). Consequently, we can just consider P � Pioþ1 as the
empirical probability measure well defined on ðX ,sioþ1Þ and
ðX ,sioÞ. Also note that the original probability measure PX9Y ð�9yoÞ

is well defined on ðX ,sioþ1Þ and ðX ,sioÞ by the measurability of Fio

and Fioþ1, respectively [20].
Finally, from the definition of the KLD [24, Chapter 5]:

DðPXio9Y ð�9yoÞJP̂Xio9Y ð�9yoÞÞ ¼DðX ,sioÞ
ðPX9Y ð�9yoÞJP̂Þ, ð30Þ

DðPXioþ 19Y ð�9yoÞJP̂Xioþ 19Y ð�9yoÞÞ ¼DðX ,sioþ 1ÞðPX9Y ð�9yoÞJP̂Þ, ð31Þ

where

DðX ,sioÞðPX9Y ð�9yoÞJP̂Þ ¼
X

AAQio

PX9Y ðA9yoÞ log
PX9Y ðA9yoÞ

P̂ðAÞ
,

DðX ,sioþ 1ÞðPX9Y ð�9yoÞJP̂Þ ¼
X

AAQioþ 1

PX9Y ðA9yoÞ log
PX9Y ðA9yoÞ

P̂ðAÞ
,

and using the Lemma 2 presented in Appendix A, considering that
sio � sioþ1, and Eqs. (30) and (31), we prove the sufficient
condition stated in (27) and consequently the result. &
Appendix C. A simulated scenario to compute the oracle
estimation and approximation errors

In this section we present a controlled simulated scenario to
illustrate the trade-off between the estimation and approxima-
tion error reported in Section 3, across a sequence of embedded
feature spaces. Since the estimation and approximation error, i.e.,
DgMAPðP̂Xi ,Y Þ and LX i

considered in Theorem 2, are functions of the
true joint probability measure PX,Y , the only way to measure those
quantities directly and analyze their trend is by a controlled
simulated scenario. For that reason, we choose a simple two-class
problem associated with the classical binary detection in the
presence of additive white Gaussian noise (AWGN) [7,4]. In
particular, we assume Y ¼ f0;1g, PY ð0Þ ¼ PY ð1Þ ¼ 1=2, X ¼Rd with
d¼10, and a multivariate Gaussian class conditional density, i.e.,
PX9Y ð�9yÞ �N ðmy,KyÞ for yA 0;1f g with m0 ¼ ð1;1, . . . ,1Þy ¼�m1 and
K0 ¼ K1 ¼ s2 � Id�d.13 In this context, we consider the family of
coordinate projections (presented in Corollary 2) to induce the
family of embedded features spaces given by: X1 ¼R,
X2 ¼R2, . . . ,Xd ¼Rd

¼X . In the Bayes context, we use the stan-
dard maximum likelihood (ML) criterion to estimate the para-
meters of the densities from the class-conditional empirical data.
More precisely, given X1,X2, . . . ,XN i.i.d. realizations driven by
N ðmy,KyÞ, we estimate the mean vector and covariance matrix by:

m̂y,N ¼
1

N

XN

i ¼ 1

Xi, K̂ y,N ¼
1

N

XN

i ¼ 1

Xi � Xi�m̂y,N � m̂
y

y,N : ð32Þ
13 Id�d denotes the identity matrix.
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Note that as required in Theorem 2, this learning criterion induces
a family of empirical class-conditional distributions which are
consistent with the sequence of coordinate projections (see
Appendix E for more details on this). Since the true distribution
that generates the training data is known, we have access to PXi ,Y

and P̂Xi ,Y for all iAf1, . . . ,10g, and consequently, we can compute
the Bayes error directly by (see details in [22]):

LX i
¼PðWðuÞ4

ffiffi
i
p
=sÞ ¼

Z 1ffi
i
p
=s

1ffiffiffiffiffiffi
2p
p e�ð1=2Þx2

dx, ð33Þ

where W(u) is a scalar zero mean and unit variance Gaussian
random variable. On the other hand, the KLD between Gaussian
densities has a closed-form expression [8,44] and consequently
from (6):

DgMAPðP̂Xi ,Y Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ln2

q
�

X
yA f0;1g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minfDðN ðmy,KyÞJN ðm̂y,N ,K̂ y,NÞÞ,DðN ðm̂y,N ,K̂ y,NÞJN ðmy,KyÞÞg

q
,

ð34Þ

with DðN ðm̂y,N , K̂ y,NÞJN ðmy, KyÞÞ ¼
1
2 ½log ðdetKy=detK̂ y,NÞ � iþtrace

ðK�1
y � K̂ y,NÞþðm̂y,N�myÞ

yK�1
y ðm̂y,N�myÞ� [8,9].

Therefore from the oracle expressions in (33) and (34), we
can measure the trade-off reported in Theorem 2 as a function of
the dimension of X i and the number of sample point used to
estimate the empirical class-conditional densities in (32). Figs.
1–3 report the estimation and approximation errors trends
across the embedded space sequence for three learning condi-
tions ðN¼ 100,N¼ 10;000,N¼ 1;000,000Þ with s¼ 1. As theory
predicts, in the three learning regimes the monotonic behavior
of the estimation and Bayes error are shown. Furthermore, the
estimation error dominates the approximation error in the
regime of few samples (see Fig. 1 for N¼100) and that trend
is reversed as we move to the large sampling regime (in this
case in the order of hundred of thousands points in Fig. 2).
This is expected, because as N goes to infinity the term
DðN ðm̂y,N ,K̂ y,NÞJN ðmy,KyÞÞ in (34) tends to zero with probability
one (almost-surely), as a direct consequence of the strong law of

large numbers [21].
Finally, if we add the two error terms DgMAPðP̂Xi ,Y ÞþLX i

for all
iAf1, . . . ,10g, we can solve the oracle MPE-SR problem in (11)
and, consequently, find the feature dimension that offers the
optimal balance between estimation and approximation error
(see Section 4). As it can be seen in the bottom sub-figures in
Figs. 1–3, the optimal dimensions (2, 6 and 10, respectively) are
proportional to the number of sample points (N¼100, N¼10,000
and N¼1,000,000) because the estimation error has a monotonic
decreasing behavior as a function of N.
Appendix D. Proof that maximum likelihood estimation is
consistent with respect to a sequence of finite embedded
representations

Let fFið�Þ : i¼ 1, . . . ,ng be the family of embedded representa-
tion functions taking values in finite alphabet sets fAi : i¼ 1,
. . . ,ng, respectively. For every representation space Ai, the empiri-
cal distribution is obtained by the ML criterion [4,5], where the
conditional class distribution is given by,

P̂Xi9Y ðfag9yÞ ¼
PN

k ¼ 1 Ifða,yÞgðFiðxkÞ,ykÞ

Ny
, ð35Þ

8 iAf1, . . . ,ng,8 aAAi and 8 yAY, where Ny �
PN

k ¼ 1 IfygðykÞ is

assumed to be strictly greater than zero. For the proof we will
epresentations within the Bayes decision framework, Pattern
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Fig. 1. The top figure reports the trend of the estimation error DgMAP ðP̂Xi ,Y Þ and the approximation error LX i
as a function of the space dimensionality, for a dimensionally

embedded space sequence. The bottom figure shows the sum of the two error terms, i.e., DgMAPðP̂ Xi ,Y ÞþLX i
, as a function of the space dimensionality. These results were

obtained for N¼100 i.i.d. realizations of the class conditional densities.
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Fig. 2. Same description as Fig. 1. These results were obtained for N¼10,000 i.i.d. realizations of the class conditional densities.
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use the induced probability measure on the original observation
space ðX ,FX Þ, that we define by

P̂ i9yðF
�1
i ðfagÞÞ � P̂X 9Y ðfag9yÞ ð36Þ
i

Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
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for all iAf1, . . . ,ng and yAY. By (35), it is straightforward to
show that for any aAAi

P̂ i9yðF
�1
i ðfagÞÞ ¼

PN
k ¼ 1 IfðF�1

i ðfagÞ,yÞg
ðxk,ykÞ

Ny
: ð37Þ
epresentations within the Bayes decision framework, Pattern
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Fig. 3. Same description as Fig. 1. These results were obtained for N¼1,000,000 i.i.d. realizations of the class conditional densities.
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Without loss of generality, let us consider io,joAf1, . . . ,ng and

yoAY, such that ioo jo. For proving the consistence condition of
the ML empirical distributions, we just need to show that

P̂Xio9Y ðfag9yoÞ ¼ P̂Xjo9Y ðp
�1
jo,ioðfagÞ9yoÞ, 8 aAAio: ð38Þ

By Remark 2, we have that the induced quantization QFjo
�

fF�1
jo ðfagÞ : aAAjog is a refinement of QFio

� fF�1
io ðfagÞ : aAAiog.

Then, any atom F�1
jo ðfagÞ indexed by aAAio, can be expressed as

disjoint unions of atoms in QFjo
; more precisely, we have that:

F�1
io ðfagÞ ¼

[
bAp�1

jo,io
ðfagÞ

F�1
jo ðfbgÞ ¼ F�1

jo ðp
�1
jo,ioðfagÞÞ ð39Þ

where finally by (36) and (37), we have that:

P̂Xio9Y ðfag9yoÞ ¼

PN
k ¼ 1 IfðF�1

io ðaÞ,yoÞgðxk,ykÞ

Nyo

¼

PN
k ¼ 1 IfðF�1

jo ðp�1
jo,io
ðfagÞÞ,yoÞgðxk,ykÞ

Nyo
¼ P̂Xjo9Y ðp

�1
jo,ioðfagÞ9yoÞ: &

ð40Þ
Appendix E. Proof that maximum likelihood estimation is
consistent for the Gaussian parametric assumption

Without loss of generality, let us consider just f1ðxÞ ¼ A1 � x and
f2ðxÞ ¼A2 � x, with A1ARðk1,KÞ and A2ARðk2,KÞ (0ok1ok2oK).
We need to show that P̂ f2ðXÞ9Y ð�9yÞ defined on ðRk2,Bk2

Þ is consis-

tent with respect to P̂ f1ðXÞ9Y ð�9yÞ defined on ðRk1,Bk1Þ, in the sense

that P̂ f2ðXÞ9Y ð�9yÞ induces P̂ f1ðXÞ9Y ð�9yÞ by the measurable mapping

B2;1 : ðR
k2,Bk2

Þ-ðRk1,Bk1
Þ. However, under the Gaussian para-

metric assumption, this condition reduces to checking the first
and second order statistics of the involved distributions [22].
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Considering the training data, it is direct to show that the

empirical mean and covariance matrix for P̂ f2ðXÞ9Y ð�9yÞ is given by

A2m̂y and A2ŜyAy2, respectively, where m̂y and Ŝy are the respec-

tive empirical values in the original observation space X . Analo-

gous results hold for the case of P̂ f1ðXÞ9Y ð�9yÞ.

Given that linear transformations preserve the multivariate
Gaussian distribution, we have that P̂ f2ðXÞ9Y ð�9yÞ induces a Gaussian
distribution on ðRk1,Bk1

Þ with mean B2;1A2m̂ and covariance
matrix B2;1A2ŜyAy2By2;1. Finally, given that the linear transforma-
tions f1ð�Þ and f2ð�Þ preserve the consistence structure of Rk1,
Rk2, we have that B2;1A2 ¼A1 which is sufficient to prove the
result. &

References

[1] V.K. Goyal, M. Vetterli, N.T. Thao, Quantized overcomplete expansions in Rn:
Analysis, synthesis and algorithms, IEEE Transactions on Information Theory
44 (7) (1998) 16–31.

[2] K. Ramchandran, M. Vetterli, C. Herley, Wavelet, subband coding, and best
bases, Proceedings of the IEEE 84 (4) (1996) 541–560.

[3] A. Cohen, I. Daubechies, O. Guleryuz, M. Orchard, On the importance of
combining wavelet-based nonlinear approximation with coding strategies,
IEEE Transactions on Information Theory 48 (7) (2002) 1895–1921.

[4] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley
New York, 1983.

[5] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression
Trees, Wadsworth, Belmont, CA, 1984.

[6] L. Devroye, L. Gyorfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition,
Springer-Verlag, New York, 1996.

[7] J. Wozencraft, I. Jacobs, Principles of Communication Engineering, Waveland
Press, 1965.

[8] S. Kullback, Information Theory and Statistics, Wiley, New York, 1958.
[9] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley Interscience,

New York, 1991.
[10] Special issue: Dimensionality reduction, IEEE Signal Processing Magazine

28 (2) (2011) 1–128.
[11] M. Padmanabhan, S. Dharanipragada, Maximizing information content in

feature extraction, IEEE Transactions on Speech and Audio Processing 13 (4)
(2005) 512–519.

[12] K. Etemad, R. Chellapa, Separability-based multiscale basis selection and
feature extraction for signal and image classification, IEEE Transactions on
Image Processing 7 (10) (1998) 1453–1465.
epresentations within the Bayes decision framework, Pattern

dx.doi.org/10.1016/j.patcog.2011.11.015


J.F. Silva, S.S. Narayanan / Pattern Recognition ] (]]]]) ]]]–]]] 13
[13] L.O. Jimenez, D.A. Landgrebe, Hyperspectral data analysis and supervised
feature reduction via projection pursuit, IEEE Transactions on Geoscience and
Remote Sensing 37 (6) (1999) 2653–2667.

[14] S. Kumar, J. Ghosh, M.M. Crawford, Best-bases feature extraction algorithms
for classification of hyperspectral data, IEEE Transactions on Geoscience and
Remote Sensing 39 (7) (2001) 1368–1379.

[15] T.F. Quatieri, Discrete-time Speech Signal Processing Principles and Practice,
Prentice Hall, 2002.

[16] J. Novovicova, P. Pudil, J. Kittler, Divergence based feature selection for
multimodal class densities, IEEE Transactions on Pattern Analysis and
Machine Intelligence 18 (2) (1996) 218–223.

[17] A.K. Jain, R.P.W. Duin, J. Mao, Statistical pattern recognition: a review, IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 4–36.

[18] N. Vasconcelos, Minimum probability of error image retrieval, IEEE Transac-
tions on Signal Processing 52 (8) (2004) 2322–2336.

[19] J. Silva, S. Narayanan, Minimum probability of error signal representation, in:
IEEE International Workshop on Machine Learning for Signal Processing,
Thessaloniki, Greece, 2007.

[20] P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
[21] L. Breiman, Probability, Addison-Wesley, 1968.
[22] R. Gray, L.D. Davisson, Introduction to Statistical Signal Processing, Cambridge

University Press, 2004.
[23] N.A. Schmid, J.A. O’Sullivan, Thresholding method for dimensionality reduc-

tion in recognition system, IEEE Transactions on Information Theory 47 (7)
(2001) 2903–2920.

[24] R.M. Gray, Entropy and Information Theory, Springer-Verlag, New York, 1990.
[25] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag

New York, 1999.
[26] A. Jain, P. Moulin, M.I. Miller, K. Ramchandran, Information-theoretic bounds

on target recognition performances based on degraded image data, IEEE
Transactions on Pattern Analysis and Machine Intelligence 24 (9) (2002)
1153–1166.

[27] H.V. Poor, J.B. Thomas, Applications of Ali–Silvey distance measures in the
design of generalized quantizers for binary decision problems, IEEE Transac-
tions on Communications 25 (9) (1977) 893–900.

[28] J.W. Fisher III, T. Darrel, W. Freeman, P. Viola, Learning joint statistical models
for audio-visual fusion and segregation, in: Advances in Neural Information
Processing System, Denver, USA, Advances in Neural Information Processing
Systems, 2000.
Please cite this article as: J.F. Silva, S.S. Narayanan, On signal r
Recognition (2011), doi:10.1016/j.patcog.2011.11.015
[29] M.L. Cooper, M.I. Miller, Information measures for object recognition accom-
modating signature variability, IEEE Transactions on Information Theory
46 (5) (2000) 1896–1907.

[30] J. Kim, J.W. Fisher III, A. Yezzi, M. Cetin, A.S. Willsky, A nonparametric
statistical method for image segmentation using information theory and
curve evolution, IEEE Transactions on Image Processing 14 (10) (2005)
1486–1502.

[31] J. Silva, S. Narayanan, Discriminative wavelet packet filter bank selection for
pattern recognition, IEEE Transactions on Signal Processing 57 (5) (2009)
1796–1810.

[32] A.B. Nobel, Analysis of a complexity-based pruning scheme for classification
tree, IEEE Transactions on Information Theory 48 (8) (2002) 2362–2368.

[33] P. Chou, T. Lookabaugh, R. Gray, Optimal pruning with applications to tree-
structure source coding and modeling, IEEE Transactions on Information
Theory 35 (2) (1989) 299–315.

[34] A.B. Nobel, Recursive partitioning to reduce distortion, IEEE Transactions on
Information Theory 43 (4) (1997) 1122–1133.

[35] C. Scott, R.D. Nowak, Minimax-optimal classification with dyadic decision
trees, IEEE Transactions on Information Theory 52 (4) (2006) 1335–1353.

[36] B.D. Ripley, Patten Recognition and Neural Networks, Cambridge University
Press, 1996.

[37] C. Scott, Tree pruning with subadditive penalties, IEEE Transactions on Signal
Processing 53 (12) (2005) 4518–4525.

[38] P.D. Grunwald, The Minimum Description Length Principle, The MIT Press,
Cambridge, Massachusetts, 2007.

[39] V. Vapnik, Statistical Learning Theory, John Wiley, 1998.
[40] O. Bousquet, S. Boucheron, G. Lugosi, Theory of classification: a survey of

recent advances, ESAIM: Probability and Statistics 9 (2005) 323–375.
[41] V. Vapnik, Estimation of Dependencies based on Empirical Data, Springer-

Verlag, New York, 1979.
[42] V. Vapnik, A.J. Chervonenkis, On the uniform convergence of relative frequencies

of events to their probabilities, Theory of Probability and its Application 16
(1971) 264–280.

[43] J. Silva, S. Narayanan, Upper bound Kullback–Leibler divergence for hidden
Markov models with application as discrimination measure for speech
recognition, in: IEEE International Symposium on Information Theory, 2006.

[44] J. Silva, S. Narayanan, Upper bound Kullback–Leibler divergence for transient
hidden Markov models, IEEE Transactions on Signal Processing 56 (9) (2008)
4176–4188.
Jorge Silva is Assistant Professor at the Electrical Engineering Department, University of Chile, Santiago, Chile. He received the Master of Science (2005) and Ph.D (2008) in
Electrical Engineering from the University of Southern California (USC). He is IEEE member of the Signal Processing and Information Theory Societies and he has
participated as a reviewer in various IEEE journals on Signal Processing. Jorge Silva was research assistant at the Signal Analysis and Interpretation Laboratory (SAIL) at USC
(2003–2008) and was also research intern at the Speech Research Group, Microsoft Corporation, Redmond (Summer 2005).

Jorge Silva is recipient of the Outstanding Thesis Award 2009 for Theoretical Research of the Viterbi School of Engineering, the Viterbi Doctoral Fellowship 2007-2008
and Simon Ramo Scholarship 2007–2008 at USC. His research interests include: non-parametric learning; optimal signal representation for pattern recognition; tree-
structured vector quantization for lossy compression and statistical learning; universal quantization; sequential detection; distributive learning and sensor networks.
Shrikanth (Shri) Narayanan is the Andrew J. Viterbi Professor of Engineering at the University of Southern California (USC), and holds appointments as Professor of
Electrical Engineering, Computer Science, Linguistics and Psychology. Prior to USC he was with AT&T Bell Labs and AT&T Research from 1995–2000. At USC he directs the
Signal Analysis and Interpretation Laboratory. His research focuses on human-centered information processing and communication technologies.

Shri Narayanan is an Editor for the Computer Speech and Language Journal and an Associate Editor for the IEEE Transactions on Multimedia, IEEE Transactions on
Affective Computing, and for the Journal of the Acoustical Society of America. He was also previously an Associate Editor of the IEEE Transactions of Speech and Audio
Processing (2000–2004) and the IEEE Signal Processing Magazine (2005–2008). He served on the Speech Processing technical committee (2005–2008) and Multimedia
Signal Processing technical committees (2004–2008) of the IEEE Signal Processing Society and presently serves on the Speech Communication committee of the Acoustical
Society of America and the Advisory Council of the International Speech Communication Association.

Shri Narayanan is a Fellow of the Acoustical Society of America, IEEE, and the American Association for the Advancement of Science and a member of Tau–Beta–Pi, Phi
Kappa Phi and Eta–Kappa–Nu. He is a recipient of a number of honors including Best Paper awards from the IEEE Signal Processing society in 2005 (with Alex Potamianos)
and in 2009 (with Chul Min Lee) and appointment as a Signal Processing Society Distinguished Lecturer for 2010–2011. Papers with his students have won awards at
ICSLP’02, ICASSP’05, MMSP’06, MMSP’07 and DCOSS’09 and InterSpeech2009-Emotion Challenge, Interspeech-2010 and InterSpeech2011-Speaker State Challenge. He has
published over 450 papers and has twelve granted U.S. patents.
epresentations within the Bayes decision framework, Pattern

dx.doi.org/10.1016/j.patcog.2011.11.015

	On signal representations within the Bayes decision framework
	Introduction
	Specific contributions
	Paper organization

	Preliminaries: Bayes decision approach
	Signal representation results for the Bayes approach
	Tradeoff between Bayes and the estimation error
	Bayes-estimation error tradeoff: finite alphabet case (quantization)
	Remarks

	Minimum probability of error signal representation (MPE-SR)
	Approximating the MPE-SR: the cost-fidelity formulation

	Applications
	Classification trees: CART and minimum cost tree pruning algorithms
	Linear discriminant analysis

	Final discussion and connections with structural risk minimization
	Future work
	Acknowledgments
	Proof of Theorem 2: Bayes-estimation error tradeoff
	Proof of the Bayes-estimation error tradeoff: finite alphabet case
	A simulated scenario to compute the oracle estimation and approximation errors
	Proof that maximum likelihood estimation is consistent with respect to a sequence of finite embedded representations
	Proof that maximum likelihood estimation is consistent for the Gaussian parametric assumption
	References




