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The seasonal cycle of the near-surface circulation off central Chile was analyzed using 

satellite altimetry and an oceanic model. To evaluate the role of the wind-stress curl on 

the circulation we performed two identical simulations except for the wind forcing: the 

“control run” used long-term monthly mean wind-stress and the “no-curl run” used a 

similar wind-stress field, but without curl. The observed and modeled (control run) 

surface currents showed a strong seasonal cycle and a well-defined equatorward flow 

with a jet like-structure. This jet develops during spring and summer, consistent with the 

presence of a low-level wind jet. South of Punta Lavapie cape (∼37°S), the equatorward 

surface current remains close to the coast. After the flow passes this cape, however, it 

separates to become an offshore jet. In contrast, in the no-curl simulation the separation 

at Punta Lavapie is not observed and the offshore jet farther north is not present, 

demonstrating the importance of the wind-stress curl on the dynamics of this flow. 

Although the offshore integrated Sverdrup transport was similar to the model transport, 

the offshore jet was not located where the wind stress curl was maximum. Instead, the 

position of the jet followed approximately the zero wind stress curl, which corresponds 

to the climatological location of the low-level wind jet axis. These results illustrate the 

importance of the offshore upwelling/downwelling associated with curl-driven Ekman 

pumping, which tilts isopycnals upward (downward) toward the east (west) of the wind 

jet, forcing a northward flow through thermal wind balance.  
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Major eastern boundary current systems are driven by predominant equatorward winds, 

which force upwelling of cold subsurface water near the coast, equatorward surface 

flows with a complex spatial and temporal structure, and a poleward undercurrent [e.g., 

Hill et al., 1998]. Seasonal changes in the wind field modulate the upwelling variability 

and the different surface and subsurface flows observed in these regions [Strub et al., 

1998]. In the vast region comprising the Peru-Chile Current system, the seasonal cycle 

of the wind shows contrasts between its northern and southern portions. In the northern 

region off Peru (~5° – 15°S) winds are upwelling favorable all year-round with 

maximum speeds in the austral winter (June, July and August; JJA). Off northern Chile 

(~18°S–28°S) upwelling winds also prevail throughout the year, but they are rather 

weak and stable, with very low synoptic and seasonal variability [Pizarro et al., 1994]. 

In contrast, off central Chile (~30°– 40°S) winds show a large seasonal cycle [e.g., 

Garreaud and Muñoz, 2005]. During austral winter, the Southeast Pacific Anticyclone 

and the westerly wind belt move northward, allowing the arrival of mid-latitude 

atmospheric disturbances to central Chile as far north as ~30°S, which increase the 

frequency and magnitude of poleward winds [e.g., Fuenzalida, 1971; Saavedra and 

Foppiano, 1992]. Indeed, south of ~35°S mean coastal winds are downwelling 

favorable during winter. During summer (December, January and February; DJF), the 

Southeast Pacific Anticyclone moves southward and upwelling winds are predominant 

down to ~40°S. In this season, a synoptic low-level wind jet blowing northward is 

frequently observed between ~38° and 30°S [Garreaud and Muñoz, 2005].  

The presence of the wind jet leads to a consideration of the role of wind stress curl in 

causing upwelling. In the offshore region, the wind stress curl field off central Chile is 

mostly anticyclonic (downwelling favorable). The coastal band is dominated by 
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cyclonic (upwelling favorable) curl, which exhibits a distinct annual cycle [Bakun and 

Nelson, 1991]. In summer, when the equatorward wind stress is more intense, stronger 

cyclonic (anticyclonic) wind stress curl develops east (west) of the wind jet axis, 

commonly located at about 150 km offshore [Garreaud & Muñoz, 2005]. This low-level 

wind jet and the associated wind stress curl may play a major role in coastal upwelling 

dynamics and surface circulation off central Chile, one focus of this paper. 
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The main features of the upper-ocean regional circulation in the eastern South Pacific 

have been extensively reviewed by Strub et al. [1998]. They identified four major 

currents off central Chile: 1) the Chile-Peru Current (also knows as the Humboldt 

Current), which is the surface equatorward flow traditionally identified as the eastern 

branch of the subtropical South Pacific gyre; 2) a coastal jet called the Chile Coastal 

Current that flows equatorward and is directly related to the upwelling dynamics; 3) the 

Peru-Chile Countercurrent, which is a surface poleward flow located farther west of the 

Chile Coastal Current, about 100-300 km offshore [Strub et al., 1995] and 4) the Peru-

Chile Undercurrent, which is a coherent subsurface current that flows poleward over the 

slope along the Peruvian and Chilean coasts [e.g., Silva and Neshyba, 1979; Huyer et 

al., 1991a; Shaffer et al., 1997]. Based on satellite-tracked, near-surface (15-m depth) 

drifters, Chaigneau and Pizarro [2005] observed a mean surface equatoward flow 

extending offshore to about 82°W off central Chile, with a mean speed of  about  6 cm 

s-1. This flow is consistent with the large-scale South Pacific gyre circulation, 

traditionally recognized by classical geostrophic calculations based on hydrographic 

data. However, using satellite-derived surface geostrophic currents Fuenzalida et al., 

[2008] described a jet-like stream as a central component of the Chile-Peru current, with 

a summer intensification. By analyzing satellite winds they suggest that this jet is 
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related to the seasonal increase of the anticyclonic wind stress curl by means of 

Sverdrup dynamics.  

Only a few studies have addressed the dynamics of the regional ocean circulation and its 

seasonal variability off Chile. The few numerical modeling studies have focused on the 

intense upwelling region near 37°S [Batteen et al., 1995; Leth and Shaffer, 2001; Leth 

and Middleton, 2004; Mesias et al., 2001, 2003], where the oceanic jet observed farther 

north seems to begin. These simulations have shown a surface coastal jet, which 

separates from the coast around Punta Lavapie (∼37°S, Figure 1b), creating a meander 

that gives rise to a large upwelling plume north of 36°S. This jet and its separation have 

been recently confirmed by satellite and hydrographic data [Letelier et al., 2009]. These 

results suggest that the jet observed in the coastal transition zone (CTZ), about 100-200 

km offshore off central Chile during the upwelling season (usually from November to 

March), is related to a current that detaches from the coast at Punta Lavapie. This jet 

may play a major role in the surface circulation off Central Chile, but its dynamics and 

seasonal variability remain almost unknown. 

Here, we use the Regional Ocean Modeling System (ROMS) along with surface 

geostrophic currents, derived from satellite altimetry, and QuikScat winds to analyze the 

circulation off central Chile (~25°–45°S). The main focus of the paper is on the jet 

observed in the CTZ off central Chile during spring and summer. We particularly 

address the effects of the seasonal variability of the wind stress and the wind stress curl 

on the surface alongshore currents.  

The rest of the paper is organized as follows: in section 2 we describe the satellite 

observations and the numerical model used in this study. The main results are presented 

in section 3, in which we first present the model validation and then address the 

seasonal variability of the upwelling and surface currents. This is followed by an 

 5



123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

analysis of the vertical structure of the major surface currents produced by the model. 

Finally, we analyze the role of the wind stress curl on surface circulation, particularly on 

the position and intensity of the CTZ jet, through a comparison with a second 

simulation which lacks the wind stress curl forcing. The main results are discussed in 

section 4 and conclusions are summarized in section 5. 

 

2. Observations, methods and model 

 

2.1 Datasets and data processing  

We focus on a large region covering central Chile between 25º – 45ºS and extending 

from the coast to 90ºW (Figure 1a). We use sea level anomalies (SLA) and geostrophic 

surface current anomalies derived from altimetry from 1993 to 2007. Maps in a 

Mercator grid of 1/3° spatial resolution are derived by SSALTO/DUACS and 

distributed by AVISO (Archivage, Validation, Interprétation des données des Satellites 

Océanographiques). Time series with weekly temporal resolution are monthly averaged. 

The absolute surface velocity is obtained by adding a mean geostrophic current based 

on the dynamic height estimated using temperature and salinity climatologies from 

CARS (CSIRO Atlas of Regional Seas) 2006 [Ridgway et al., 2002] with 1000 db as the 

reference level. We use wind stress from QuikScat data from 2000 to 2007. Monthly 

mean wind stress data with a spatial resolution of 0.5° are obtained from Centre 

d´Exploitation et de Recherche Satellitaire (CERSAT), at Institut Francais de Recherche 

pour l’Exploitation de la Mer (IFREMER). The seasonal cycles of the wind stress and 

wind stress curl based on these data are presented in Figure 2.  

The wind data allow us to compare the relative contributions of the Ekman transport 

and Ekman pumping to the vertical velocities and transports near the coast. The Ekman 
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pumping vertical velocities (w) are estimated directly from the curl of the wind stress 

( ) fields [e.g., Stewart, 2008] 

148 
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where  ρ is a typical density for seawater (1025 kg m-3) and  f is the Coriolis parameter. 

These vertical velocities are then integrated from the coast to ∼150 km and in each 0.5° 

of latitude to obtain the vertical transports. The Ekman transport near the coast is 

estimated by  
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where τy is the alongshore (assumed meridional in the study region, positive to the 

north) component of wind stress. These values are also integrated every 0.5° of latitude. 

In this case we only integrated meridionally, considering that the offshore Ekman 

transport M (m2 s-1) is completely compensated by a vertical transport near the coast.   

To evaluate the quality of the variability of the velocities estimated from the gridded 

altimetry and the model, in-situ currents measurements are used (Table 1). Hourly data 

were obtained from four moorings located off ∼30°S and ∼37°S (Figure 1b). Two 

moorings were located close to the coast, about 13 km offshore at 30°S (COSMOS) and 

about 20 km offshore at 37°S (Station 18). Both moorings were instrumented with a 

300-kHz acoustic Doppler current profiler (ADCP) pointing upward. In addition, four 

recording current meters (RCM 7) are available at 30°S.  Because the observed vertical 

structure of currents is more clearly defined in coastal regions than in offshore areas, 

these coastal data are used to validate the model velocities profiles. The other two 

moorings are farther offshore (>100 km) and are used to compare upper-ocean current 

variability with the satellite data. At 37°S the mooring was instrumented with an ADCP 
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(Concepción), but we only use the measurements at 50 m depth. At 30°S the shallowest 

measurement is from a RCM 7 located at 340 m depth (OCEMOS). Table 1 lists the 

positions, start and end times of the current meter records, and the depth of the water 

column. The squared coherence values between the satellite-derived geostrophic 

velocities and the in-situ offshore currents are plotted in Figure 3. Despite the fact that 

the satellite-derived geostrophic currents represent surface velocities and the in-situ data 

are from 50 and 340 m depth, they show significant coherence at periods longer than 

100 days. The phase is close to zero at these periods. The use of rotary spectra is 

preferred because oceanic velocity vectors do not present a dominant direction. 

To validate the seasonal cycle of modeled sea level, in-situ data near the coast registered 

by tide-gauges at four different locations are analyzed. These data were provided by the 

Servicio hidrográfico y oceanográfico de la Armada (SHOA), and they are from Caldera 

(27.1°S – 70.8°W), Coquimbo (30°S – 71.4°W), Valparaíso (33°S – 71.6°W) and 

Talcahuano (36.7°S – 73.1°W). 

 

2.2 Model and model setup 

The model used in this research is the Regional Oceanic Modeling System, which is a 

split-explicit, free surface, topographically-following-coordinates oceanic model 

[Shchepetkin and McWilliams, 2005]. ROMS solves the primitive-equations in 

hydrostatic and incompressible conditions. Where boundaries are open, oblique 

radiation conditions are used to estimate the direction of information flux in order to 

treat the inward and outward fluxes of information separately. When information fluxes 

are outward the boundary is passive and when they are inward the boundary is active 

[Marchesiello et al., 2001]. In order to absorb disturbances and reduce noise associated 

with the radiation condition, the model uses a sponge layer, which is a region of 
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increased horizontal viscosity close to the open boundaries. In our simulations we use a 

50-km-wide sponge layer. The vertical mixing is parameterized using the K-Profile 

Parameterization (KPP), which is a non-local closure scheme based on the boundary 

layer formulation by Large et al., [1994].   

We carried out a climatological simulation (control run) off central Chile (between 25°–

45°S, and  70°– 90°W) with a horizontal resolution of 1/10° (between 7.9 and 10.1 km) 

and 32 sigma levels in the vertical. We used long-term monthly means from eight years 

of QuikScat data (2000-2007) as surface boundary conditions of wind stress and 

Comprehensive Ocean-Atmosphere Data Set (COADS) climatology to calculate the 

surface heat and freshwater fluxes [Da Silva et al., 1994]. The initial and lateral 

boundary conditions were obtained from the World Ocean Atlas 2005 monthly 

climatology [Locarnini et al., 2006; Antonov et al., 2006]. The model topography 

(Figure 1b) is based on the global ETOPO2 at 2’ resolution [Smith and Sandwell, 1997]. 

The model runs for ten years of 360 days with a spin up period of 2 years, so model 

climatology was based on the last eight years. All the output variables were daily 

averaged. Geostrophic surface currents were calculated using the model sea level (η) to 

better compare with satellite-derived surface currents. 

To understand the role of the wind stress curl in the formation of the CTZ jet we 

performed a second simulation, identical to the control run except that the wind stress 

forcing did not have curl (no-curl simulation). The wind stress field only has the 

meridional component (τx = 0 everywhere), which retains the observed latitudinal 

variation but it is constant in longitude. At each latitude, the modified wind stress is 

estimated by averaging the meridional component of the wind stress between the coast 

and 80°W. 
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3.1 Model validation 

We use satellite and in-situ data to validate the model outputs and we contrast the model 

near-surface circulation with known features of the Chile-Perú Current System.  

The seasonal mean of the simulated and satellite SLA are compared, but it is important 

to note that a climatological simulation lacks  the energetics of intraseasonal and 

interannual forcing. This last may modulate the amplitude of the seasonal scale 

variability. Although the altimeter data exhibits larger seasonal amplitude, the modeled 

and observed SLA are similar in their patterns (Figure 4). Low (high) anomalies are 

generated in a narrow strip close to the coast during summer (winter), consistent with 

the seasonal variability of the wind stress. Offshore, the simulated SLA show more 

structures with relatively smaller scales than those observed in the altimetry data, which 

is smoothed in the process of creating gridded fields from multiple altimeters. To 

validate the model seasonal variability near the coast, we compared the model coastal 

sea level with tide-gauges data at four different locations (Figure 5). Model sea level 

agrees well with the in-situ observations, including the fact that the annual cycle is 

larger at Talcahuano (∼36.6°S).   

The vertical sections of the alongshore (meridional) currents at latitudes of 30°S and 

36°S (Figure 6a,c) are consistent with the major currents of the Southeast Pacific as 

identified by Strub et al., [1998]. Near the coast, within the first ∼50 km, the model 

reproduces an equatorward jet that represents the Chile Coastal Current (CCC). At 30°S 

the CCC is stable and is present year-round; it only slightly weakens during fall (not 

shown). Over the continental slope, below the CCC, the model exhibits a poleward flow 

that is consistent with the Peru-Chile Undercurrent (PCU). At 30°S, this current is 
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observed during the whole year, with maximum values of ~15 cm s-1 near its core, 

which is located
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 between 150 and 300 m depth. This mean value agrees well with the 

annual mean value of 13 cm s-1 obtained for a six year period of current measurements 

near the PCU core over the slope at 30°S [Shaffer et al., 1999].  

Another poleward flow is observed farther offshore, between 150 and 200 km from the 

coast, extending from surface to more than 500 m north of ∼33°S. This flow can be 

associated with the Peru-Chile Countercurrent (PCCC). The PCCC may be clearly 

differentiated from the PCU north of ∼33°S. In contrast, at 36°S the poleward flow that 

reaches the surface west of the CCC, may be associated with an outcrop of the PCU 

more than the PCCC. Penven et al., [2005] found that the PCCC appears indiscernible 

from the PCU at lower latitudes (6° - 10°S) and that the PCU outcrops at about 100 km 

from the shore at southern latitudes (10° - 20°S). These results seem to be consistent 

with those obtained using a linear model by McCreary and Chao [1985], who argued 

that the undercurrent may reach the surface in the case of cyclonic stress curl. 

Therefore, Penven et al. speculated that the currents observed by Strub et al. [1995] in 

three years of altimeter data and identified as the PCCC might correspond to the 

outcropping of the PCU. Nevertheless, in our model fields north of ∼33°S, the PCCC is 

clearly different than the PCU and flows poleward offshore of the CCC and onshore of 

the Chile-Perú Current (CPC), in agreement with the location described by Strub et al., 

[1995]. The CTZ jet’s seasonality, origin, structure, transports and dynamics, as key 

components of the CPC, are the focus of this paper. A validation of the surface currents 

of this flow using altimetry data is part of the next section.     

Further verification of the model performance in simulating the mean currents is 

provided in Figure 6b,d by the mean vertical profiles of zonal (u) and meridional (v) 

velocity components, along with their observational counterparts from two moorings at 
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COSMOS and Station 18 (Table 1). Mean profiles from model and observations are 

very similar – their shapes agree well and the model captures the reversal of the currents 

at different depths. At COSMOS, the model profiles show an overestimation of the 

northward surface current, but the intensity of the PCU at 220 m depth is well 

represented by the model with values around 15 cm s
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3.2 Seasonal variability of the upwelling and surface currents 

Near the Chilean coast north of 36°S, both the offshore Ekman transport and the Ekman 

pumping due to the wind stress curl are predominantly upwelling favorable (Figure 

7a,b; see also Figure 2). South of 36°S, poleward wind stress induces downwelling 

during winter. Slight downwelling is also induced by the anticyclonic wind stress curl 

near 38°S during much of the winter and spring. Vertical transport associated with 

Ekman transport is about one order of magnitude larger than the transport related to 

Ekman pumping in most of the region. But during summer, between 32°S and 37°S, the 

low level atmospheric jet centered around 150 km offshore reaches maximum 

intensities and the Ekman pumping is also intensified, reaching about one half of the 

Ekman transport. Figure 7d shows the vertical transport near the coast integrated 

between 27°S and 40°S, and the vertical transport obtained from the ROMS model. 

Model vertical transport agrees well with the vertical transport estimated from the 

Ekman transport plus Ekman pumping, with a maximum value of ∼1.7 Sverdrup (Sv) 

during summer and a minimum of ∼0.6 Sv in winter. If we consider the total wind-

driven upwelling, model values are slightly lower (higher) than those estimated from the 

satellite wind stress during the first (second) half of the year. Note that model vertical 

velocities may also be affected by other mechanisms, particularly by mesoscale eddies, 

which become important south of 30°S [e.g., Hormazabal et al., 2004]. Nevertheless, 
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those values should tend to vanish when we integrate in a large area that may include 

cyclonic and anticyclonic eddies.  

These results show that Ekman transport is the main mechanism forcing coastal 

upwelling since Ekman pumping –related to the wind stress curl– is always much 

smaller off central Chile. Nevertheless we are probably underestimating the wind stress 

curl due to the resolution of QuikScat data, in particular near the coast, where the curl is 

negative (upwelling favorable). In fact, Capet et al., [2004] infer that present wind 

analyses do not adequately represent the speed drop-off near the coast. Specifically, off 

central Chile the cross-shore wind gradient may be large due to the low-level 

atmospheric jet observed during upwelling seasons [cf., Muñoz and Garreaud, 2005]. 

Differences in the wind stress curl near the coast may also influence the coastal 

circulation [Capet et al., 2004]. 

The surface geostrophic flow estimated from both satellite altimetry and model sea level 

shows a well defined equatorward current with a jet like-structure during spring and 

summer (Figure 8a,b). The jet remains close to the coast south of Punta Lavapie 

(∼37°S) with velocities larger than 10 cm s-1. North of Punta Lavapie, the coast changes 

its orientation and the jet separates from the coast. Farther north, during summer, the jet 

bends to the northwest at around 30°S, remaining over the deep ocean. During fall the 

jet is still observed, but it is located farther offshore –with a core west of 75°W– 

between 35°S and 39°S. In contrast, during winter the equatorward flow is much weaker 

and disorganized, and a poleward flow develops close to the coast in the southern 

region, consistent with the predominant poleward wind stress found there (Figure 2).  

The model reproduces reasonably well the coastal jet in the southern part of the domain 

and very importantly, the jet separation observed at Punta Lavapie (∼37°S), which 

subsequently forms the CTZ equatorward flow centered at 75°W (Figure 8b). 
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Nevertheless, model velocities show more spatial structure than observations and larger 

values than that estimated from satellite altimetry.  In addition, the model exhibits an 

intense coastal equatorward jet year-round within a narrow coastal strip (∼40 km), 

which can not be compared using satellite-derived geostrophic currents. During summer 

the model exhibits a surface poleward flow east of the CTZ jet (between 27°S and 33°S) 

consistent with the PCCC, which was also suggested by three years of satellite-derived 

currents anomalies [Strub et al., 1995], although it is not clearly distinguished in our 

longer record  of surface geostrophic current (Figure 8a). 

The jet-like stream observed during summer was originally described by Fuenzalida et 

al., [2008] using maps of absolute dynamical topography combining satellite sea level 

height anomalies and mean ocean dynamic topography. They indicate that maximum 

values of the geostrophic velocities do not exceed 10 cm s-1. In our case, we used a 

different ocean dynamic topography, but maximum equatorward speeds are similar to 

those found by Fuenzalida et al. [2008]. Equatorward speeds rarely exceed 13.0 cm s-1 

(in fact, using weekly data only 5% of the summer equatorward velocities are larger 

than 13.0 cm s-1). 

The seasonal cycle –estimated by least-square fitting of an annual harmonic– of the 

meridional geostrophic currents has maximum amplitude near the coast south of 35°S, 

with maximum equatorward values occurring during February and March for both 

satellite altimetry and in the model (Fig. 9b-c). In this region the maximum amplitude 

(∼5 m s-1) of the wind is also observed (Figure 9a). In the northern part of the study 

region the annual cycle of the meridional geostrophic current is not significant (white 

regions); i.e. the correlation coefficients between the adjusted annual harmonic and the 

observed (or model) time series are not significantly different from zero (at the 95% 

level of confidence according to the t-test). On the other hand, the phase observed in the 
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satellite and model geostrophic current (arrows in Figure 9) are similar. In both cases 

the phases suggest an offshore propagation of the meridional current. The large 

amplitude observed offshore north of Punta Lavapie (∼37°S) is directly related to the 

presence of the CTZ jet during spring and summer (cf. Figure 8a,b). 

Spectra for the wind stress and surface geostrophic currents were calculated based on 

the corresponding time series and then averaged inside a box of 1° of latitude and 5° of 

longitude starting with the valid data near the coast. The relative importance of the 

annual cycle of the wind stress and the meridional surface current from the model and 

altimetry increases with latitude (Figure 10). In fact, in the northern part of the domain 

(i.e. north of 35°S), the spectral maxima for the surface geostrophic flow are near the 

semiannual frequency, with no significant peaks at the annual frequency. The spectral 

maxima for this variable are near the semiannual frequency. In contrast, south of 36°S 

all the spectra are dominated by an annual peak. 

 

3.3 Vertical structure of the coastal transition zone (CTZ) jet 

In this section we present the vertical structure of the CTZ jet through vertical sections 

of the simulated meridional currents. Because the CTZ jet is fully developed during 

summer (DJF), only summer means at different latitudes are presented (Figure 11). The 

axis of the CTZ jet observed during summer clearly exhibits its westward displacement 

as the flow travels northward (see red arrows in Figure 11). The vertical extension of the 

CTZ jet increases at lower latitudes reaching values close to 10 cm s-1 at about 200 m 

depth at 30°S and 33°S, transporting approximately 3.2 Sv. This deepening may 

represent the process referred as “barotropization”, in which the jet separates from the 

coast at Punta Lavapie and undergoes baroclinic instability, deepening through the 
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transformation of kinetic energy from vertically sheared flow into the vertical mean 

flow [Haney et al., 2001].  

In Table 2 we quantify the meridional transports (Sv) for the four main alongshore 

flows off central Chile at four latitudes. We also estimate the Humboldt transport as the 

large scale equatorward flow between 200 and 600 km offshore and 600 m depth. 

Transport due to the simulated CTZ jet was calculated only for the summer season, 

when it is well developed. At 30° and 33°S the transport of the CTZ jet during summer 

is a significant proportion (60-80%) of this Humboldt transport. 

Transport calculations for the other major flows off central Chile (Table 2) show that 

the CCC exhibits a distinct seasonal cycle in the southern part of the domain, being 

more intense during spring-summer and weaker in fall-winter. This seasonality is 

directly related to the upwelling dynamics [e.g., Aiken et al., 2008]. The PCU shows 

more seasonality at 33°S and 36°S with higher values during spring-summer and 

summer-fall, respectively. At 39°S the PCU is considerably weaker and it is not present 

during spring. According to model results the PCCC does not show strong seasonality, 

but is very weak (velocities < 3 cm s-1) during spring at 33°S. 

 

3.4 The role of wind stress curl in the CTZ jet variability 

In the large scale context, the wind stress curl field (cf. Figure 2) suggests, through 

Sverdrup dynamics, a southward transport during spring and summer close to the coast 

(within the first 150 km) and northward transport offshore. Sverdrup transport estimated 

directly from the wind stress curl agrees well with the model meridional transport 

(Figure 12). Estimates of geostrophic transport based on hydrographic data from WOCE 

P06 line at 32°S have values of ∼8 Sv to 90°W [Shaffer et al., 2004], which also agree 

well with our model meridional transports. However, even though the large scale 
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Sverdrup transports are consistent with the model transports, the CTZ jet itself could be 

controlled by other dynamics that also involve the wind stress curl [Castelao and Barth, 

2007]. 

In order to evaluate the impact of the wind stress curl on the CTZ jet dynamics, we used 

a no-curl simulation (see methodology section). Comparing results between both 

simulations (i.e. the control and the no-curl runs) we found major differences only far 

from the coast (cf. Figures 8b and 8c). The CCC remains close to the coast and a 

poleward flow is developed during winter in the southern region, consistent with the 

wind stress there. The vertical structure of currents during summer at 30°S shows that 

both the CCC and the PCU are similar in both simulations (Figure 13). The poleward 

and the equatorward flows, associated with the PCCC and the CTZ jet respectively, in 

the control run, are still present in the no-curl simulation; but their transports are 

reduced in magnitude. Notably, the equatorward jet-like flow observed offshore in the 

satellite data and in the control run, is not observed in the no-curl simulation. It is worth 

noting that boundary conditions may indirectly be imposing a flow by the use of 

climatological temperature and salinity fields. At 36°S, only the CCC is similar in both 

simulations. The PCU is weaker in the no curl simulation, but it still outcrops the 

surface as in the control run. The equatorward flow observed offshore of 100 km from 

the coast at 36°S is considerably weaker in the no curl simulation.  

These results show that the oceanic CTZ jet north of Punta Lavapie observed during 

spring and summer is not present in the no-curl simulation. In the satellite observations 

and in the control run the coastal jet observed south of 37°S separates from the coast at 

Punta Lavapie to form the CTZ jet. The separation of the coastal jet seems to be directly 

related to the wind stress curl. Indeed, the axis of the CTZ jet tends to follow the 

contour of zero wind stress curl from 37°S to 32°S (Figure 14). But farther north the 
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CTZ is observed west of the zero wind stress curl during spring. According to the 

Sverdrup balance it is expected that the long-term mean position of the maximum 

surface current would be located near the contour of maximum anticyclonic curl. 

However, this contour is located far westward (more than 200 km) from the CTZ jet 

axis.  

On the other hand, the zero wind stress curl moves slightly offshore and extends 

southward from spring to summer, following the displacement of the axis of the 

atmospheric low-level jet present in the region from around 38°S to 27°S [Garreaud 

and Muñoz, 2005]. Note that the axis of the CTZ jet is observed just west of the zero 

wind stress curl in summer. The possible mechanism relating the wind stress curl and 

the CTZ jet are discussed below.   

 

4. Discussion 

Studies in the Pacific eastern boundary current systems provide examples of upwelling 

jets that separate from the coast near capes to become oceanic jets [e.g. Barth and 

Smith, 1998; Barth et al., 2000]. Insights into this process were obtained by numerical 

experiments [Castelao and Barth, 2006, 2007; Mesias et al., 2003]. These model 

analyses showed that capes play a crucial role for separation of the coastal jet, and that 

the nonlinear terms in the equations that govern the flow are increased in the vicinity of 

a coastline perturbation or where the bottom topography orientation changes. In 

contrast, our two simulations (control and no-curl runs) used the same topography, but 

the CTZ jet was only observed when the wind stress curl was present in the surface 

forcing. This result shows that the wind stress curl plays a major role in the dynamics of 

the CTZ jet. Although the cape may be important for the separation of the coastal jet at 

Punta Lavapie, by itself it could not generate the CTZ jet observed off central Chile. 
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Using an f –plane model, Castelao and Barth [2007], showed that the intensity of the 

wind stress is much less important than the position of the zero wind stress curl, which 

controls the location of the offshore jet. The mechanism proposed by those authors is 

that the spatial pattern of the wind stress curl generates a couplet of upwelling and 

downwelling regions (on each side of the zero wind stress curl line) that modify the 

density field and, thus, the position and intensity of the geostrophically balanced jet. 

This process is consistent with our model observations, which find a region of cyclonic 

curl onshore (upwelling) and anticyclonic curl offshore (downwelling) of the CTZ jet. 

The jet follows (approximately) the zero wind stress curl. Hence, the seasonal 

variability of the CTZ jet is related to the seasonal variability of the Ekman pumping 

process superimposed on a large scale context dominated by the Sverdrup dynamics.  
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Tracing these processes into the atmosphere, the positions of the zero wind stress curl 

and the CTZ jet correspond approximately to the climatological position of the core of 

the low-level atmospheric jet that is rooted at Punta Lavapie. This wind jet, in turn, is 

determined by the temperature gradient in the lower troposphere, which is maximum 

downstream of the major capes along the coast [Rahn et al., 2011]. Thus, Punta Lavapie 

may indirectly affect the location of the CTZ jet separation, by generating a recurrent 

atmospheric coastal wind jet during summer. The wind jet then impacts the upper-ocean 

circulation via the wind stress curl field.   

Major eastern boundary current systems are driven by predominant equatorward winds, 

which force coastal upwelling, equatorward surface flows and a poleward undercurrent 

[e.g., Hill et al., 1998]. In this context, it is worth mentioning a brief comparison 

between the California and Humboldt Current System, particularly on the CTZ jet. The 

Coastal Transition Zone experiment conducted off northern California (∼39°N) 

provided evidences of a strong surface alongshore jet flowing equatorward [Brink and 
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Cowles, 1991]. During spring and summer the model fields strongly support the concept 

of a meandering jet, which carries most of the surface transport in this period [Strub et 

al., 1991]. The equatorward CTZ jet is narrow (50–75 km) and exhibits its maximum 

values at the surface (> 50 cm s
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-1), decreasing to velocities of 10 cm s-1 about 200 m 

deep. Its equatorward transport is ∼4 Sv and it may be identified as the core of the 

California Current [Huyer et al., 1991b]. The spatial pattern and the equatorward 

transport associated with the CTZ jet during spring and summer in the California 

Current agrees well with the CTZ jet described here off central Chile as a major 

component of the Humboldt Current. This jet transports about 3 Sv, which is ~1 Sv 

smaller than its counterpart in the California Current System. Using satellite height 

fields Strub and James [2000] define a conceptual model of the seasonal evolution of 

the surface circulation in the California Current System. During spring and summer, an 

equatorward flow develops close to the coast (∼123ºW), with an initial latitudinal 

structure that responds to the latitudinal distribution of the equatorward winds. This jet 

moves offshore from spring to fall to around 130ºW, where the jet weakens and 

dissipates. The westward velocity propagation of the jet is consistent with the Rossby 

wave dynamics. A similar seasonal cycle is found in the Humboldt Current System. The 

jet develops during spring and summer, responding to the wind forcing, and 

continuously moves offshore, becoming a more disorganized structure in winter. 

However, the CTZ jet of the Humboldt Current seems to be formed by the coastal jet 

separation observed at Punta Lavapie. 

 

5. Conclusions 

In this work we have characterized the alongshore flows off central Chile, particularly 

the coastal transition zone jet and its seasonal variability, using geostrophic velocities 
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derived from satellite altimetry and from simulations using the regional ocean model 

(ROMS). We perform two simulations that only differ in their surface wind forcing. The 

standard case uses long-term monthly mean wind stress from QuikSCAT and the 

second uses a wind stress field without curl (the “no curl” simulation). Both the 

observed and model geostrophic surface currents show a well defined equatorward flow 

with a jet like-structure which develops during spring and summer and moves westward 

as the year progresses. In fall the jet is located offshore and becomes weaker. In 

contrast, during winter the flow is in general much weaker and a poleward flow is 

observed close to the coast in the southern region. There, the amplitude of the annual 

cycle of the geostrophic current is larger, consistent with the maximum amplitude of the 

annual cycle of the wind stress.   

The model is able to reproduce the major features observed off central Chile, such as a 

coastal surface equatorward jet, a poleward undercurrent with a core over the upper 

slope, and a countercurrent located westward of the coastal jet. In addition, the model 

reproduces the coastal jet separation at Punta Lavapie (∼37°S) during summer to 

become the offshore CTZ jet, which is also observed by altimetry data. This striking 

feature is not replicated by the surface geostrophic currents in the no-curl simulation, so 

the CTZ is not present during the spring and summer off central Chile. Although 

Sverdrup transport was similar to the model transport in a large scale context, the CTZ 

jet is not located where the positive wind stress curl is maximum (Sverdrup transport is 

maximum), which is found farther offshore. In contrast, the position of the CTZ jet 

seems to be related to the zero wind stress curl contour, which corresponds to the 

climatological location of the axis of the low-level atmospheric jet. Thus, both the 

oceanic and the atmospheric jets are aligned about the same axis. These results illustrate 

the importance of the offshore upwelling/downwelling associated with the Ekman 
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pumping, which tilts the isopycnals upward, creating a northward flow through thermal 

wind balance. Our results show that the cape could be important for separation of the 

coastal jet at Punta Lavapie, but is not enough to generate (by itself) the CTZ jet 

observed off central Chile. Indeed, the presence of Punta Lavapie and the abrupt change 

in coastline orientation downstream of it seem fundamental in producing a recurrent and 

intense atmospheric low-level coastal wind jet in this area, which in turn produces the 

marked change in wind stress curl near the coast and offshore.  

In this work we have focused on the seasonal variability of the alongshore currents, 

without considering intraseasonal fluctuations, the large, well-documented interannual 

variability, and climate change. South of 20°S intraseasonal wind fluctuations are well 

correlated with wind fluctuations in the equatorial Pacific, associated with the Madden-

Julian Oscillation [Hormazabal et al., 2002]. Although intraseasonal fluctuations in the 

wind stress curl itself have not been specifically addressed, it is plausible that these 

exist, which could introduce intraseasonal variability in the CTZ jet. The interannual 

variability related to the El Niño-Southern Oscillation (ENSO) cycle may directly 

modulate the CTZ jet due to changes in the wind stress related, in turn, to disturbances 

in the South Pacific subtropical anticyclone, or indirectly due to the extra-tropical 

interannual oceanic Rossby wave that is forced by the ENSO in the eastern South 

Pacific [Vega et al., 2003]. On the other hand, regional climate simulations for future 

scenarios of increased warming have indicated an increase in southerly winds during 

spring and summer off western subtropical South America, expanding the upwelling-

favorable regime [Garreaud and Falvey, 2008]. If the wind stress curl pattern is 

changed, the equatorward CTZ jet would presumably be influenced. The interannual 

variability of the CTZ jet as well its long-term change is under consideration as a future 

work in order to document more completely the dynamics of this flow.        
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Figure Captions 

Figure 1. a) Mean of the meridional wind stress magnitudes (colors, in N m-2) and wind 

stress vectors (arrows) derived from QuikSCAT satellite data for the period 2000-2007. 

The black square indicates the model domain used in this study. b) Bottom topography 

of the study area obtained from the ETOPO2 data set. Depth contours are shown for 

1000 m, 2500 m, 4000 m and 5000 m. In addition, yellow dots indicate the mooring 

locations.  
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Figure 2. Mean wind velocity (vectors) and wind stress curl (colors, 10-7 N m-3) off 

central Chile derived from QuikSCAT satellite data for the period 2000-2007. 
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 Figure 3. Rotary coherence (upper panels) and phase (lower panels) between the 

cyclonic and anticyclonic components of the satellite-derived surface current anomalies 

(AVISO) and in-situ observations at OCEMOS (∼30°S-73.3°W) and Concepción 

(∼37°S-78.4°W). Horizontal lines indicate 80% and 95% coherence significance levels. 

Phase results for values higher than 80% are plotted for the cyclonic (triangles) and 

anticyclonic (dots) components. The depths of the in-situ currents are 340 m at 30° S 

and 50 m at 37° S. 

Figure 4. Seasonal climatology of the sea level anomalies (SLA) obtained from AVISO 

altimetry (left panels) and from ROMS sea level data (right panels).   

Figure 5. Seasonal sea level at the coast in Caldera (27.1°S - 70.8°W), Coquimbo (30°S 

– 71.4°W), Valparaíso (33°S – 71.6°W) and Talcahuano (36.7°S – 73.1°W) obtained 

from tide gauges and the simulated sea level approximately 4 km offshore. 

Figure 6. Mean vertical section of the simulated meridional currents at a) 30°S and c) 

36°S. Mean profiles of the meridional (black) and zonal (gray) currents at the moorings 

b) COSMOS and d) Station 18.  

Figure 7. Contributions of the Ekman transport and Ekman pumping to the vertical 

transport near the coast (within the first 150 km offshore). a) Seasonal vertical transport 

associated with Ekman transport, b) seasonal vertical transport associated with Ekman 

pumping, c) seasonal total wind induced vertical transport (Ekman transport + Ekman 

pumping). d) Vertical transport (Sv) associated with Ekman transport (red), Ekman 

pumping (green), total wind induced vertical transport (Ekman transport + Ekman 

pumping, black) and simulated vertical velocities at 30 m depth (blue). Vertical 

velocities were integrated between 27° and 40°S, and the first 150 km offshore. 
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Figure 8. Seasonal climatology of the surface geostrophic meridional currents obtained 

from: a) a combination of mean surface geostrophic currents based on CARS 

temperature and salinity climatology (assuming a level of no motion at 1000 db) and 

geostrophic current anomalies derived from AVISO altimetry. b) ROMS (control 

simulation) surface geostrophic meridional current and c) ROMS (no-curl simulation) 

surface geostrophic meridional current.  Vectors are shown only if the current speeds 

are higher than 5 cm s
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Figure 9. Amplitude (colors) and phase (vectors) of the annual cycle of the a) 

meridional wind speed (QuikSCAT), b) observed surface geostrophic meridional 

current (AVISO) and c) model surface geostrophic meridional current. Results are 

plotted only when the adjusted annual harmonic of the wind and the observed (or 

model) time series of currents are significantly correlated using a t-test at the 95% level 

of confidence. White regions show not significant correlations. 

Figure 10. Spectra of the meridional geostrophic surface currents from altimetry data 

(AVISO) and model data (ROMS), and the spectra of the meridional wind stress from 

QuikSCAT data at different latitudes. The spectra inside a “box” of 1° latitude and the 

first 5° longitude offshore were averaged. The dashed line indicates the annual period 

and the dotted lines indicate the 6 and 3 months periods.  

Figure 11. Vertical sections of the model meridional currents (cm s-1) at different 

latitudes during summer (DJF). The red arrows indicate the axis of the CTZ jet. Note 

that south of 37°S the CTZ jet can not be separated from the CCC.  

Figure 12. Seasonal surface transport (0-600 m depth) integrated westward along 

different latitudes from the Chilean coast based on model results. The thick black line 

shows the Sverdrup transport estimated directly from the annual mean wind stress curl 

(QuikScat data).  
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Figure 13. Vertical sections of the summer mean meridional flow at 30°S (left) and 

36°S (right) obtained from the control (upper) and the no-curl (bottom) simulations. 
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Figure 14. Spring and summer climatology of the observed surface geostrophic 

meridional currents from CARS 2006 plus AVISO (colors) as in Figure 8a. The 

continuous line indicates the zero wind stress curl and the dotted line indicates the 

position of the maximum values of the anticylonic wind stress curl.     

 

 

 

 

Tables 

 

Table 1. Information about the moorings and measurements.  

 

Site Instrument Latitude Longitude Start time End time Instrument depth 
measurement 

 

 

Water 
depth 

 

 
OCEMOS 

 
RCM7 30° 00’ S 73° 15’ W Jan 1996 Sep 2006 340 m 4400 m 

 
 

COSMOS 
 
 

ADCP 
RCM7 
RCM7 
RCM7 
RCM7 

 
 

30° 21’ S 
 
 

 
 

71° 47’ W 
 
 

Apr 2003 
Nov 1991 
Sep 2000 
Nov 1991 
Nov 1991 

Sep 2006 
Sep 2008 
Oct 2003 
Apr 2009 
Jun 2008 

10-110 m (bin 5m) 
220 m 
330 m 
480 m 
750 m 

 
 

950 m 
 

 
Concepción 

 
ADCP 37° 03’ S 74° 50’ W Nov 2003 Oct 2006 50 m 4600 m 

Station 18 
 

ADCP 36° 28’ S 73° 10’ W Jan 2009 Jan 2011 6-86 m (bin 4 m) 
 

100 m 

754 

755 

756 

757 

758 
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 759 

760 

761 

762 

763 

 

 

Table 2. Seasonal transport (Sv) of the major currents of the Chile-Perú Current System, 

obtained integrating to 600 m deep.  

 CCC PCU PCCC Humboldt CTZ jet 1

Fall 0.77 -1.06 -1.78 3.15 - 

Winter 1.73 -0.86 -1.99 3.60 - 

Spring 1.96 -0.87 -0.90 3.01 - 
30°S 

Summer 1.13 -0.81 -2.27 3.96 3.16 

Fall 0.51 -0.81 -1.49 4.70 - 

Winter 0.78 -0.61 -1.29  3.57 - 

Spring 1.09 -0.70 -0.26 4.97 - 
33°S 

Summer 0.54 -0.73 -1.39 5.18 3.17 

Fall 0.47 -0.68 - 3.75 - 

Winter 0.39 -0.55 - 3.85 - 

Spring 1.05 -0.43 - 3.44 - 
36°S 

Summer 0.47 -0.85 - 4.44 1.37 

Fall 0.62 -0.34 - 1.86 - 

Winter 0.36 -0.20 - 2.14 - 

Spring 1.20 - - 2.01 - 
39°S 

Summer 1.072 -0.17 - 1.54 1.072

764 

765 

1 The transport of the CTZ jet is only estimated during summer when it is fully developed.  

2  South of 37°S, the CTZ jet cannot be separated from the CCC.  
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