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The energy of a dislocation loop in a continuum elastic solid under pressure is considered within
the framework of classical mechanics. For a circular loop, this is a function with a maximum at
pressures that are well within reach of experimental conditions for solid helium suggesting, in this
case, that dislocation loops can be generated by a pressure-assisted thermally activated process. It
is also pointed out that pinned dislocations segments can alter the shear response of solid helium,
by an amount consistent with current measurements, without any unpinning.

Introduction. Dislocations in a solid, when present in
sufficient number, change its elastic properties [1]. This
classic subject has been recently revisited [2, 3] with the
aim of using acoustics as a nonintrusive probe of plas-
ticity in metals [4]. In the early days of dislocation the-
ory there was an interest in the pressure-assisted thermal
generation of dislocation loops [5]. Interest in this topic
decayed because the needed pressures would be much too
big for usual engineering materials. Solid helium, how-
ever, offers the possibility of laboratory measurements to
test these ideas, since in this case experimental pressures
are a significant fraction of the shear modulus and, as we
point out below, have measurable effects in the experi-
mental temperature range. Indeed, recent experimental
results on the mechanical properties of solid helium have
brought the influence of dislocations to the fore.

At temperatures on the order of 100 mK, torsional os-
cillator experiments suggest that solid helium may dis-
play superfluid properties [6–12], theoretically predicted
more than forty years ago [13–15]. Mechanical properties
of solid helium in that regime have also been probed: “al-
most static” strain-stress [16], as well as acoustic [17, 18]
and dc rotation [11] measurements have shown that the
shear modulus of solid helium presents an anomaly at
low temperatures. Indeed, starting at about 70 mK, as
the temperature increases the shear modulus abruptly
decreases to a constant value that is 4% to 10% smaller,
at a temperature on the order of 200 mK. It has been sug-
gested [16, 17, 19] that the presence of dislocations may
be responsible of this behavior: at low temperatures 3He
impurities are strongly pinned and they, in turn, pin the
dislocations that are regarded as a stiff network. As tem-
perature increases the 3He impurities are released, thus
unpinning the dislocations that become mobile, and the
solid softens. While this is a physically appealing picture,
in this Letter we point out additional properties of dis-
locations, within a classical mechanics framework, that
provide further insight into the observed shear modulus
anomalies. One of them stems from the fact that solid
helium exists only under pressure, at a level that is at
least on the order of 15% of its shear modulus, and can
go considerably over that value. The other is that, even

when strongly pinned, a dislocation network will alter
the shear response of a solid.

An important aspect of the debate concerning the role
of dislocations is to understand to what extent some of
the available data can be understood on purely classical
grounds. Although helium is a quantum solid, from a
mechanical point of view the quantum character can be
manifested computing a dimensionless analog of de Boer
parameter, in which the interaction energy is estimated
through the shear modulus:

Λµ =
~2

mHea5µ
,

where ~ is Planck’s constant, a is a typical microscopic
length, say the lattice constant, mHe is the atomic mass,
and µ the shear modulus at standard conditions [20].
This gives Λµ ≈ 1.6 × 10−2 for 4He, to be compared
with 3.8 × 10−3 for solid hydrogen, 3 × 10−5 for neon,
and 3.5×10−7 for copper. The smallness of Λµ indicates
that a classical treatment of the mechanical properties of
solid helium is a reasonable first approximation.

Scattering of elastic waves by dislocation segments.
Maurel et al. [2], using multiple scattering theory, have
generalized the Granato-Lücke theory [21] to study the
coherent propagation of waves in an elastic medium that
is filled with dislocation segments, pinned at their ends,
and with random locations, orientations, equilibrium
lengths, and Burgers vectors. These (vector) dislocation
segments oscillate like strings when forced by an elastic
wave (Figure 1).

Consider a dislocation segment ~X(s, t) of length L at
equilibrium, moving at low velocities (i.e., small com-
pared with the speeds of elastic waves) with pinned
ends, in an isotropic, homogeneous, elastic continuum
of density ρ, (bare) Lamé parameters λ and µ and cor-
responding longitudinal and transverse wave velocities
cL =

√
(λ+ 2µ)/ρ and cT =

√
µ/ρ. Low accelerations

are also assumed, so that the back-reaction of the radia-
tion on the dislocation dynamics can be neglected. Fol-
lowing Ref. [22] and under these hypothesis, the equa-
tion of motion of an edge dislocation takes the form
of the equation of motion for a string endowed with
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FIG. 1: The basic scattering mechanism of an elastic wave
by an oscillating line dislocation: an elastic wave of wave

vector ~ki is incident upon a dislocation segment of length L
that oscillates in response. As it does, it re-emits waves with

scattered wave vector ~ks.

mass and line tension, forced by the usual Peach-Koehler
force [23, 24]

mẌk(s, t)−BẊk(s, t)− ΓX ′′k (s, t) = Fk, (1)

and the associated boundary conditions at pinned ends
Xk(±L/2, t) = 0 (see Fig. 1). In Eqn. (1)

m ≡ ρb2

4π
(1 + γ−4) ln(Λ/Λ0) ∼ ρb2, (2)

defines a mass per unit length (with Λ, Λ0 the long- and
short-distance cut-off lengths, respectively) and

Γ ≡ ρb2

2π
(1− γ−2)c2T ln(Λ/Λ0) ∼ µb2 (3)

is the line tension, γ ≡ cL/cT = [2(1 − ν)/(1 − 2ν)]1/2,

with ν the Poisson’s ratio, and b = |~b| where ~b is the
Burgers vector. B is the viscous drag coefficient, and
Fk = εkjmtmbiσij is the Peach-Koehler force with tm the
unit tangent along the dislocation segment (εijk denotes
the usual completely antisymmetric tensor). A similar
expression is valid for screw dislocations. In the fol-
lowing, the mass term will be ignored, since only over-
damped dislocation motion will be considered, an ap-
proximation valid for frequencies ω small compared to
the lowest resonant frequency of the dislocation segment,
ω � ω1 ≡ (Γ/m)1/2π/L, where ω1/(2π) is of the order
of GHz for helium. Equivalently, this is valid for wave-
lengths λ very large compared to the dislocation distance
between pinning points: λ� L.

Effective elastic constants. When many of these dis-
locations are present, with probability p(L)dL of having a
length between L and L+dL, Maurel et al. [2] used mul-
tiple scattering theory to compute an effective, complex
index of refraction whose real part gives a renormalized

velocity of propagation for both longitudinal and trans-
verse waves. In the latter case the result is

ceff
T = cT

∫ [
1− δ

1 + (ωtB)2

]
p(L)dL, (4)

from which an effective shear modulus follows:

µeff = µ

∫ [
1− 2δ

1 + (ωtB)2

]
p(L)dL. (5)

The imaginary part gives attenuation (in units of inverse
distance) from which a quality factor can be extracted:

Q−1
T =

∫
2δ

1 + (ωtB)2

[
(ωtB) +O

(
L

λ

)3
]
p(L)dL (6)

where

δ ≡ (4/5π4)(µb2/Γ)nL3 ∼ nL3, (7)

n is the number of dislocations of length L per unit vol-
ume, λ is wavelength, and tB ≡ (BL2/π2Γ) is a relax-
ation time related to the parameters determining the dis-
location dynamics. Similar expressions can be obtained
for longitudinal waves. Expressions such as (5) and (6)
have been considered by Beamish et al. [17], with relax-
ation times corresponding to thermally activated relax-
ation processes with a log-normal distribution of excita-
tion energies.

The reasoning above suggests that the shear modulus
behavior studied by Beamish could, at least in part, be
attributed to the dynamical response of dislocation seg-
ments. But, where would the dislocations come from?
They may be an artifact of preparation. On the other
hand, as we show below, they can also be generated by
a thermally activated process, with an activation energy
that depends on the external pressure.

Thermal activation of a single dislocation loop. Con-
sider a circular dislocation loop of radius R, core radius
τ (Fig. 2) in the presence of an external pressure ∆P
above the liquid-solid transition pressure PLS(≈ 25 bar).
For R� τ the energy of the loop is [25]

U(R, θ) = V sin2 θ +W cos2 θ + C cos θ, (8)

where θ is the angle between the Burgers vector and the
normal to the plane that contains the loop,

V (R) =
µ0(2− ν)b2R

4(1− ν)

[
ln

(
R

τ

)
+ C1

]
, (9)

W (R) =
µ0b

2R

2(1− ν)

[
ln

(
R

τ

)
+ C2

]
, (10)

C(R) = πR2b∆P, (11)

and C1, C2 are constants of order one; they provide the
energy it takes to create a loop of minimal radius R = τ .
We shall use this formula even for small radii, respecting
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FIG. 2: Geometry of a dislocation loop under pressure. See
Eqn. (8).

R ≥ τ . Note that we take as ∆P the excess pressure
above the minimum value needed to have a solid.

It has a global minimum on the circle R = τ , and a
saddle point on the axis θ = π (∆P > 0). The loca-
tion of this saddle point provides an energy barrier to be
overcome by a thermal activation process. Moreover, we
shall see next that the curvature at the saddle provides
the pre-factor of the activation time.

The saddle is located at R∗, the solution of

R∗ =
bµ

4π(1− ν)∆P

(
ln

(
R∗
τ

)
+ C2 + 1

)
, (12)

and the corresponding energy is

U(R∗, π) =
µ2b3

16π(1− ν)2∆P

([
ln

(
R∗
τ

)
+ C2

]2

− 1

)
.

Thus, when ∆P > 0, there is a significant change in the
physics of dislocation generation, compared to the ∆P =
0 case: at any temperature there will now be a finite rate
of dislocation loop generation given by an Arrhenius-like
expression. A similar physics was considered by Langer
and Fisher when studying the influence of an external
flow in the generation of vortex loops in superfluid helium
[26].

The barrier height ∆U ≡ U(R∗, π) − U(τ, π) is given
by

∆U = U(R∗, π)−
(

µb2τ

2(1− ν)
C2 − π∆Pbτ2

)
(13)

and, at temperature T there will be a generation of dis-
location loops at a rate f given by

f = f0e
−∆U/kBT , (14)

where f0 is a microscopic frequency which we take to be
of order of cT /b ≈ 1012 s−1.

Let us look at the conditions for the barrier to disap-
pear, that is, when the saddle and the minimum collide,
R∗ = τ . In this case, from (12) one has that the critical
pressure is

∆P = µ
C2 + 1

4π(1− ν)

b

τ
≈ 0.21µ.

This is an excess external pressure of order 20% of the
shear modulus. Note that, at this level, we do not con-
sider the possible dependence of elastic constants and
lattice parameters on external pressure.

For a barrier of finite height, the Arrhenius formula
(14) provides a relation between ∆P , T and the rate of
dislocation loop generation:

∆U

kBT
= ln

(
f0

f

)
≡ Lf. (15)

Hence, because ∆U depends explicitly on ∆P it is possi-
ble to trace a P −T curve separating the regions of large
and small dislocation loop generation rate. This family
of curves is plotted in Fig. 3-a. It gives the nucleation
pressure as a remarkably flat function of temperature, at
around 50 bar.

Derivation of exit time. Next, we infer from the fre-
quency rate for dislocation nucleation a drag coefficient
that controls dislocation growth. From Eqn. (8), dislo-
cations loops with Burgers vector parallel to the nor-
mal to the dislocation loop (θ = π) have an energy
U(R) ≡ W (R) − C(R). We assume that, due to ther-
mal exitations, R will satisfy a Langevin-type equation

B̄Ṙ = −∂U
∂R

+ ξ(t) (16)

with ξ(t) a white thermal noise 〈ξ(t)ξ(t′)〉 = 2B̄kBTδ(t−
t′) and B̄ a drag coefficient. Note that, in the config-
uration considered, the loop is a prismatic dislocation
loop whose radius will increase by climb so this drag will
differ qualitatively from the B coefficient that appears
in Eqn. (1), that describes glide, conservative, motion.
Also, both coefficients have different units: B ∼ kg/(m s)
and B̄ ∼ kg/s.

An asymptotic approximation for the exit time from
the barrier can be obtained with little modification of the
case in which the potential has a minimum and a saddle
[27]. In the present case the potential grows linearly at
R = τ and, since R can not be smaller than this value,
we take a reflecting boundary condition at R = τ for the
exit time computation [27]. In the small temperature
limit the mean first passage time f−1 through the saddle
gives the following approximation

1

f
=

B̄

|U ′(τ)|

√
2π kBT

|U ′′(R∗)|
× e

∆U
kBT . (17)

Evaluating the derivatives of the potential we get for the
prefactor to the Arrhenius law Eq.(17), f−1

0 = B̄Φ, with

Φ =
1

b
∣∣∣ (1+C2)

2(1−ν)µb− 2πτ ∆P
∣∣∣
√√√√ 2π kBT

b
∣∣∣−2π∆P + µb

2(1−ν)R∗

∣∣∣ ,
where it is understood that R∗ depends on ∆P through
(12). The plot of Φ as a function of ∆P is given in Fig.
3-b.
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FIG. 3: a) Plot of the most likely-unlikely critical pressure
P for dislocation loop generation vs. temperature, after (15).
The inset plots the most likely-unlikely critical pressure as a
function Lf = log(f0/f)[20]. b) The value of Φ, the function
appearing in the pre-factor of Arrhenius’ law Eq.(17) as a
function of pressure P for the values of temperature T =
50, 100, 200 mK [20]. Both figures plot the actual imposed
pressure P = PLS + ∆P with PLS = 25 bar, for ease of
visualization.

One may estimate B̄ taking f0 ∼ cT /b ≈ 1012 s−1 and
Φ ≈ 60 s2/kg, to get

B̄

τ
∼ 1

cTΦ
≈ 5× 10−5 Pa · s, (18)

which coincides with typical values for dislocation drag
in ordinary metals at room temperature [28].

Discussion. We have shown that the low shear mod-
ulus of solid helium makes it possible to achieve pressure-
driven thermally activated generation of dislocation loops
at pressures that appear to be achievable in the labora-
tory. Their presence, according to the multiple scattering
theory of elastic waves by dislocations, can give rise to a
change in shear modulus and to a quality factor of the
type that has been considered by Beamish and collabora-
tors [17] and by recent interpretation in terms of a com-
plex rheology [29, 30]. An Arrhenius formula for the rate
of dislocation generation is in agreement with available
data. However, the corresponding calculation has been
carried out for an isolated dislocation loop that, in the
absence of interactions with impurities, grain boundaries,
or other dislocations, will grow without limit. Therefore

the model, cannot, by itself, account for the saturation
of the medium with dislocations. Something, at some
point, must stop the dislocation generation. How will
this happen?

The presence of 3He impurities may prevent an unlim-
ited increase of dislocation loops because as a dislocation
touches an impurity it is pinned, thus the extension en-
ergy required becomes higher. A thermodynamical equi-
librium state dominated by dislocation is then possible.
Let us assume that the mean distance between pinning
points, L, is given by the mean distance between 3He
impurities or, L ∼ 102τ to 103τ , depending if their con-
centration is 1 ppM or 1 ppb, respectively. If the disloca-
tions segments covered all bonds associated with a simple
cubic lattice of 3He atoms, we would have nL3 ∼ 3.

According to (5) and (7), and the discussion in [17],
there is a change in shear modulus as a function of tem-
perature given by [20]

∆µ

µ
≈ 0.02nL3 (19)

which, under the previous assumption gives a change of
about 6%, which is in agreement with current experi-
mental results. Different geometrical arrangements could
explain easily observed variations of this ratio.

Finally, the drag coefficient B can be estimated via
the relaxation time tB , which is, after Beamish and co
workers [17], of order 9 ns. Thus B = π2ΓtB/L

2 ≈
10−4−10−6 Pa s depending on the value of L. This is not
very different from the “climb” drag estimated in (18),
and consistent with the smaller value for “glide” drag
compared to “climb” drag that one would expect on clas-
sical grounds. No quantum modeling of dislocation drag
appears to be available.

To conclude, we have shown that pinned dislocation
segments can significantly alter the shear response of
solid helium even without their unpinning, and that ex-
ternal pressure may generate thermally excited disloca-
tion loops at a significant rate under experimentally re-
alistic conditions. This suggests that it could be inter-
esting to perform systematic measurements of the shear
response of solid helium as a function of pressure.
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