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We study the propagation of waves in quasi-one-dimensional finite periodic systems whose classical
(ray) dynamics is diffusive. By considering a random matrix model for a chain of L identical chaotic
cavities, we show that its average conductance as a function of L displays an ohmic behavior even
though the system has no disorder. This behavior, with an average conductance decay N/L, where N

is the number of propagating modes in the leads that connect the cavities, holds for 1� L <∼
√
N.

After this regime, the average conductance saturates at a value of O(
√
N) given by the average

number of propagating Bloch modes 〈NB〉 of the infinite chain. We also study the weak localization
correction and conductance distribution, and characterize its behavior as the system undergoes
the transition from diffusive to Bloch-ballistic. These predictions are tested in a periodic cosine
waveguide.

PACS numbers:

I. INTRODUCTION

Wave propagation in periodic media has been stud-
ied quantitatively at least from the advent of quantum
mechanics and the quantum theory of solids. Bloch-
Floquet theorem, the underlying theoretical tool, allows
to identify the propagating and non-propagating states
that form bands as functions of the quasi-momentum.
The group velocity of the propagating waves is given by
the derivatives of the energy bands with respect to the
quasi-momentum, thus explaining the ballistic character
of the Bloch states [1]. Another well studied subject is
wave propagation in disordered systems [2]. Here, three
regimes are usually recognized depending on the system

size L. When L is smaller than the mean free path ˆ̀

the propagation is in the ballistic regime, if ˆ̀� L � ξ,
with ξ the localization length, the system is in the dif-
fusive regime and if ξ � L it is in the localized regime.
In three dimensional systems ξ could be either finite or
infinite and the transition between these two regimes is
called the Anderson transition. In waveguides (quasi-

one-dimensional systems) [3] ξ ∼ N ˆ̀ with N the number
of modes in the scattering leads, so the diffusive regime
can be observed in the semiclassical limit. The conduc-
tance is a natural quantity [4] to study these wave prop-
erties in electronic, optical and acoustical systems. In
disordered systems, its scaling with L is such that, in
the ballistic regime it is independent of L, in the diffu-
sive regime it scales as 1/L and in the localized regime it
decreases exponentially with L. While the ballistic and
diffusive regimes have been observed in electronic sys-
tems (for a review see [5]), localization has been more
elusive but recently [6] has been experimentally observed
with acoustic waves.

Since the experimental realization of photonic and

phononic crystals [7] many interesting properties of waves
in periodic media have been found [8]. In this work we
will consider a new one, namely the existence of a diffu-
sive regime for waves in periodic media, a property usu-
ally associated to disordered systems. In fact, it is not
always appreciated that the diffusive regime is a semi-
classical property of some chaotic systems and disorder
is not essential for its appearance.

There exists a wealth of literature where the classical
(ray) dynamics of particles in periodic billiards is stud-
ied in relation to transport processes. The Lorentz chan-
nel [9] is probably the best known example because is one
of the few cases where hyperbolicity, the mathematical
expression of hard chaos, has been proved. The Lorentz
channel consists in a quasi-one-dimensional region pop-
ulated by hard wall disks placed regularly in a lattice.
Particles travel freely except for the elastic collisions with
the obstacles. If the geometry of the lattice is such that
there are no trajectories allowed to travel infinitely with-
out collisions, then an initial density of trajectories will
spread such that its variance grows proportional to time
t, i.e. it will exhibit normal diffusion. Otherwise, diffu-
sion is anomalous [10] and the particle density variance
grows as t log t. In this work we always assume normal
diffusive dynamics. The essential ingredient for this dif-
fusive behavior is the chaotic dynamics of the particle in
the billiard unit cell. Hence, a natural question to ask
is to what extent this classical diffusive behavior appears
in the wave transport properties of periodic systems, es-
pecially when we think in the contrast between the well
known ballistic wave propagation of Bloch states and the
diffusive character of the classical dynamics. One ap-
proach to this problem is the one considered in [11] were
they studied the dependence of spectral statistics on the
diffusion coefficient of a ring of L identical chaotic cells.
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Another approach is to study the time evolution of a
wave-packet [12]. Unfortunately, this is numerically diffi-
cult if we are interested in the semiclassical regime. One
can simplify this task by considering model systems like
the spatially extended multibacker map [12], where the
diffusive to ballistic transition was exhibited in the mean
square displacement.

In this work, we consider a time-independent ap-
proach based on the scattering matrix and focus on finite
quasi-one-dimensional periodic systems. Besides solv-
ing the wave equation in a particular waveguide system,
namely the cosine billiard, we use Random Matrix The-
ory (RMT), which has been successfully used to model
the wave properties of chaotic cavities [13] and of dis-
ordered wires, and also to study spectral properties of
extended systems [11]. Here, we employ RMT to study
scattering in chaotic periodic waveguides. Since the unit
cell of the periodic billiard is an open chaotic cavity, its
scattering matrix can be modeled by elements of the
Dyson circular ensembles [13]. Using this matrix, the
scattering matrix of the slab with L identical cells is
constructed, from where physical properties, like conduc-
tance, can be computed [14]. Averaging this conductance
over the appropriate Dyson ensemble of random matrices
we can obtain a prediction for the average conductance
of a periodic waveguide composed of generic chaotic cav-
ities, which we verify in the cosine billiard.

The plan of the paper is the following. In Sec. II we
review the basic tools to analyze scattering in waveg-
uides, introduce the so called cosine periodic billiard
and a random matrix model for periodic waveguides.
In Sec. III, we show numerically in the random matrix
model and in the cosine billiard that for system length
1 � L <∼

√
N the average conductance behaves diffu-

sively, i.e. as N/(L + 1) and at a length of the order√
N , the so-called diffusive-Bloch ballistic transition oc-

curs and the average conductance saturates to a constant
value. In two different subsections, we analyze conduc-
tance fluctuations and weak localization correction as the
systems undergoes the transition from diffusive to Bloch
ballistic. Finally, in Sec. IV we offer some conclusions.

II. WAVEGUIDE SYSTEM

In this paper, the physical problem we address regards
scattering in a waveguide composed of a slab made of a
finite periodic chain of two dimensional chaotic cavities
connected by leads [see Figs. 1 and 2]. The leftmost and
rightmost leads extend to x going to minus and plus in-
finity. The wave function φ is governed by the Helmholtz
equation

∇2φ+ k2φ = 0, (1)

with Dirichlet boundary conditions at the walls, and
where k is the wavenumber. Experimental realizations
of this system can be built with microwave cavities [15].

The number of cells in the slab is L and we choose the x
direction as the waveguide axis.

A natural way to describe the wavefunction φ(x, y) in
the waveguide is to project it on the local transverse ba-
sis, this is, writing the wavefunction as

φ(x, y) =

∞∑
n=1

(
c+n (x) + c−n (x)

)
ρn(x, y), (2)

where ρn(x, y) are the local transverse modes which
satisfy the boundary conditions on each x, and c+n (x)
(c−n (x)) is the right-going (left-going) longitudinal mode.
In the particular case of a hard-wall waveguide,

ρn(x, y) =

√
2

h(x)
sin

(
nπ

y − h1(x)

h2(x)− h1(x)

)
, (3)

n = 1, . . . ,∞, where h1(x) < h2(x) are the walls height
as a function of the longitudinal coordinate x. This
set of functions satisfies the null boundary conditions
ρn(x, h1(x)) = ρn(x, h2(x)) = 0 everywhere in the guide.
The longitudinal modes are obtained by inserting (2)
in (1), which transforms the original partial differential
equation into a system of coupled ordinary differential
equations which can be efficiently solved numerically [16].

In a plane lead, h1(x) and h2(x) are constant, so (1) is
separable since ρn(x, y) = ρn(y) is independent of x. In
this region, the longitudinal modes c±(x) are given by

e±n (x) =
e±iknx√
kn

, (4)

where k2n = k2 − (nπ/W )
2

is the longitudinal wavenum-
ber, W = h2−h1 is the lead width and the normalization
is to impose unit flux. In this region, there are

N =

⌊
Wk

π

⌋
(5)

propagating modes because for n > N the longitudinal
wavenumber kn is imaginary, implying null flux. These
are called evanescent modes and decay exponentially with
x. The far field wavefunction in the leads can be de-
scribed with a 2N dimensional complex vector composed
of coefficients An and Bn for n = 1, . . . , N and we can
write the wave function as

φ(x, y) =

N∑
n=1

(
Ane

+
n (x) +Bne

−
n (x)

)
ρn(x, y). (6)

Let Ar (Br) be the N dimensional complex vector of
right-going (left-going) amplitudes in the right lead and
Al (Bl) the same on the left lead. We denote the in-
coming and outgoing (or incident and scattered) fields in
vector notation as

ψin =

(
Al

Br

)
and ψout =

(
Bl

Ar

)
. (7)
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The scattering matrix S is defined as the linear transfor-
mation that maps incoming to outgoing fields,

ψout = Sψin, (8)

and has a block structure,

S =

(
r t′

t r′

)
(9)

with r the left (r′ the right) reflection matrix and t the
left to right (t′ the right to left) transmission matrix,
each of them of dimension N×N . The scattering matrix
of a chain of L identical cavities (such as Fig. 2) can be
obtained from a standard concatenation rule [17], start-
ing from the knowledge of the unit cell scattering matrix
i.e. SL = fL(Suc) with f1(Suc) = Suc, where Suc and SL
are the unit cell and L-cells scattering matrices, respec-
tively. It is also useful to consider the transfer matrix
ML, which maps the field on the left lead ψl to the field
in the right lead ψr = MLψl, where

ψr =

(
Ar

Br

)
and ψl =

(
Bl

Al

)
. (10)

The concatenation rule for transfer matrices is a simple
multiplication, so if Muc is the transfer matrix of the
unit cell, then ML = (Muc)

L and if λi are the eigen-
values of Muc then λLi are the eigenvalues of ML. The
consequence of this for the infinite 1D periodic systems
are well known [18]. Since the wavefunction of the infinite
periodic system must remain bounded along the chain,
the only allowed states are those associated to the eigen-
values that satisfies |λi| = 1. The number of these states
is called the number of propagating Bloch states [19] and
will be denoted by 2NB(k). Since in this case we can
write λi = eiθ(k), we can invert the relation and obtain
the allowed energy bands k = kn(θ).

As we have already mentioned, in this paper we are
interested in the transport properties of finite periodic
systems, in particular in the dimensionless conductance
of a chain with L cells, which can be obtained directly
from the transmission part of the SL matrix by the Lan-
dauer formula [14],

gk(L) = tr[tLtL
†]. (11)

A. Cosine waveguide

As our particular model we will employ the periodic
cosine billiard. We define the unit cell as the region en-
closed by h1(x) < y < h2(x) for each x ∈ [−1, 1], where

h1(x) =
A1

2
[1 + cos (πx)] and (12)

h2(x) = A1 +
A2

2
[1 + cos (πx)] . (13)

The classical limit of (1) corresponds to noninteracting
free particles within the system; collisions against the bil-
liard boundaries h1 and h2 are elastic, thus the particle

FIG. 1: Cosine billiard chain with five unit cells connected
to two plane leads. The unit cell boundaries are defined in
(12)–(13) as a function of the amplitudes A1 and A2 shown
in the figure. The width W of the leads is A1

speed v is constant. Note that our cosine billiard al-
ways has finite horizon, i.e. it does not allow unbounded
collision-free trajectories for any values of A1 > 0 and
A2 > 0, and is chaotic choosing these parameters appro-
priately [20]. We always consider configurations display-
ing strongly chaotic dynamics such that classical parti-
cles in the cavity follow a normal diffusion process, i.e.
x2 ∼ Dt, where the average (·) is computed for each time
t over an initially spatially-bounded ensemble of initial
conditions [20] with random velocity.

We note that the unit cell mirror symmetry x→ −x is
not relevant for the classical transport properties of the
billiard but makes the numerical solution of the quan-
tum scattering problem faster (the transmission and re-
flexion matrices t and r are the same in both direction).
However, this induces an anti-unitary symmetry in the
quantum Hamiltonian which plays a role in the statistical
and transport properties of the waveguide as we discussed
in [20].

We will solve numerically the scattering wave problem
in this billiard as a function of L and compute the con-
ductance (11). In general, all quantities dependent on
the Muc spectrum (in particular gk(L)) are highly fluc-
tuating as a function of k over variations of the order of
the (unit cell) mean level spacing [11]. Averaging over a k
interval several mean level spacings wide gives a smooth
function that changes on much larger k scales. We call
the ensemble of wavenumbers (or energies) realizations
in this interval the semiclassical ensemble. In the fol-
lowing sections, we will compute these averages for the
cosine billiard and the results will be compared with the
predictions that follows from the RMT periodic waveg-
uide model that we discuss below. If the typical size of
the cavity is much larger than the leads width W , then
it is possible to define the semiclassical ensemble over
a wavenumber interval such that N is constant. This
assumption is important to make the connection to our
RMT model.

B. RMT periodic waveguide model

The RMT model is constructed by taking a 2N × 2N
random matrix from the Dyson Circular Orthogonal
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x

y

FIG. 2: A schematic plot of a periodic chain of chaotic bil-
liards. The leads that connect the chaotic cavities have a
width W such that if the wavenumber is k there are N =
[Wk/π] modes that propagates along them. The cavity has
an area Ac and the length of the unit cell is a which we set to
one unless we specify it otherwise. For the analysis of conduc-
tance the number of cells L is finite (here L = 4), the leftmost
and rightmost leads extend to x minus and plus infinity, and
we deal with a scattering system.

(Unitary) Ensemble COE (CUE) and using it as the scat-
tering matrix Suc of a chaotic unit cell with (without)
time reversal invariance. Modeling the scattering matrix
of a chaotic cavity by elements of these ensembles is a
common method [21] known to be accurate in the pre-
diction of statistical properties. The connection to the
physical system is made by replacing k dependent quan-
tities by RMT realization dependent quantities. The av-
erages over the RMT ensemble take the place of averages
over the semiclassical ensemble. Using the S matrix com-
position rule SL = fL(Suc), the scattering matrix of the
L cells connected by leads with N modes is obtained.
Thus, we have a RMT ensemble for periodic chains of L
chaotic cavities.

If we denote by µ the Dyson measure of the RMT en-
semble and note that the conductance (11) is a functional
of SL, we can express the averaged conductance of the
RMT model as

〈gN (L)〉 =

∫
dµ(Suc)g[SL(Suc)] (14)

We perform this computation numerically.
To end this section we would like to remark that mod-

eling a chaotic cavity by RMT is justified if the particle
stay trapped inside the cavity for a long time [21]. To
be more precise, the RMT model assumes that the parti-
cle escape time is much longer than its correlation decay
characteristic time, so the particle effectively undergoes
a random walk between unit cells. Therefore, the case
of anomalous diffusion mentioned in the introduction is
excluded from our analysis. In order to study this case,
the Dyson ensembles should be properly modified.

III. CONDUCTANCE OF A FINITE PERIODIC
CHAIN OF CHAOTIC CAVITIES

Landauer’s formula can be written more explicitly as

gk(L) = tr[tLtL
†] =

N∑
i=1

Ti(L), (15)

where {Ti(L)}Ni=1 are the N eigenvalues of the N × N
matrix tLtL

† which are bounded in the real interval [0,1].
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FIG. 3: The first five transmission eigenvalues Ti(L) in a
cosine billiard with A1 = 0.5 and A2 = 4.5 for k = 30.2157π.
For this energy, NB=4 and the associated Ti are plotted with
circles. In addition, the slowest to decay evanescent mode is
also plotted with squares. It can be seen that the ballistic
transmission modes tend to spread in the [0,1] interval and
therefore 〈g(L)〉 < NB in the generic case.

They are related to the eigenvalues {Λi(L),Λi(L)−1}Ni=1

of the 2N × 2N matrix MLM
†
L by

Ti(L) =
4

2 + Λi(L) + Λ−1i (L)
, i = 1, . . . , N, (16)

a relation that follows from the polar decomposition [23].
To simplify notation, we drop the explicitly k dependence
in all quantities below; we note that N = [Wk/π] is also
k dependent.

The conductance (15) – and in general any other trans-
port property dependent of the transmission eigenvalues

Ti – is a function of MLM
†
L eigenvalues. In view of the

simple description of the infinite periodic system in terms
of allowed and forbidden states it is interesting to link the
eigenvalues {Λi(L),Λi(L)−1}Ni=1 to the eigenvalues λi of
Muc. Oseledets theorem [22] provides us such relation,
given by [23]

Λi(L) −→
L→∞

ai(L)e−2L log |λi|, (17)

where ai(L) is a positive and (generically) bounded func-
tion of L. Then, using relation (16), we can decompose
g(L) [Eq.(15)] in two terms, one with the sum of the NB
non-decaying transmission modes Ti related by Eqs. (16)
and (17) to the 2NB propagating Bloch modes |λi| = 1
(which we choose to have indices i = 1, . . . , NB), and
another with the sum of the transmission modes related
to evanescent Bloch states |λi| 6= 1 (which we choose to
have indices i = NB + 1, . . . , N). The second term has a
decay length

` =

(
min
|λi|>1

{log |λi|}
)−1

, (18)
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determined by the slowest to decay non-propagating
state. From (17) and (16) we deduce that the NB trans-
mission eigenvalues Ti associated to Bloch modes is of
order one, so for chains of length L >∼ `,

g(L) <∼ NB + 4am(L) e−2L/`, (19)

where am is the Oseledet function ai associated to the
mode with decay length `. The equality in (19) is non-
generic and occurs if Muc is a normal matrix (as we
discuss below), in which case Ti(L) = 1 for all Bloch
modes. More generally, for chains of length L � `, all
transmission modes contribute to the conductance,

g(L) = NBP (L) +

N∑
i=NB+1

4

2 + Λi(L) + Λ−1i (L)
(20)

with 0 < P (L) < 1 an O(1) quasi-periodic function of
L. The function P (L) takes into account the fact that
there exists a repulsion between the eigenvalues Ti(L)
associated to propagative Bloch modes and that these
quantities fluctuate quasi-periodically as a function of L
[see Fig. 3]. This effect makes the conductance strictly
lower than NB in the generic case, and can be thought
as a geometric consequence of Muc being not normal, i.e.
not diagonalizable in a orthogonal base. The transmis-
sion eigenvalues repulsion is also observed in disordered
chains [23].

We remark that P (L), NB and the spectrum λi are
k dependent. Intervals where NB(k) = 0 corresponds to
forbidden bands and Eq. (20) shows, as expected, that for
k values in a forbidden band, g(L) decrease exponentially
with L, while in allowed bands, where NB(k) ≥ 1, the
conductance remains finite as L → ∞. As k increases,
the probability of finding an energy gap decreases, nev-
ertheless gaps play an important role in some statistical
measures [see Fig. 5].

A. Digression: the Disordered chain

We will contrast our results for the periodic RMT chain
with a disordered RMT chain, where the composition of
the scattering matrix is performed each time with a dif-
ferent realization of the CUE or COE ensemble. The sta-
tistical properties of the conductance of this disordered
chain are expected to be well described by the statistical
properties of the disordered wire which allow an analyti-
cal study [23]. One of the theoretical frameworks to study
this model is through a Fokker-Planck equation for the
probability P (T1, . . . , TN ;L). In this approach, the sys-
tem size L is a continuous variable and the transmission
coefficients are random variables that evolves stochas-
tically as L increase. There are important hypothesis
in the derivation of this Fokker-Plank equation (called
DMPK equation in this context [24, 25]), for instance,
the disorder is spatially homogeneous and the scattering
produced by a short slab of the wire is isotropic and weak.

From P (T1, . . . , TN ;L) it is possible to obtain all the de-
sired statistical information of the conductance, which
can be written as ĝ(L) =

∫
dTPL(T )T with PL(T ) =

N
∫
dT2 . . . dTNP (T, T2, . . . , TN ;L) (withN a normaliza-

tion constant ). From the solution of the DMPK equa-
tion, it is possible to show that the conductance behaves

diffusively i.e. as ĝ(L) = N ˆ̀/(L+1) for ˆ̀< L < ˆ̀N , and

then, for L > ˆ̀N , as ĝ(L) ∝ exp(−L/2βN ˆ̀) with β = 1
( β = 2) for systems with (without) time reversal invari-

ance and ˆ̀ the mean free path in the disordered medium
up to a numerical constant [23]. From this analysis it also
follows that the localization length for the disordered wire

is ˆ̀N . It is also possible to characterize the fluctuations
for instance to give an explicit expression for PL(T ). For

instance PL(T ) = N ˆ̀

2L
1

T
√
1−T , the so called Dorokhov dis-

tribution, in the diffusive regime ˆ̀< L < ˆ̀N . This result
is linked to the distribution of the localization lengths

spectrum ˆ̀
n = ln |λ̂n| defined from the eigenvalues of the

disordered M matrix satisfying |λ̂n| > 1. Acording to

Dorokhov [24] ˆ̀
n(N)−1 ∼ n/N ˆ̀ for n = 1, . . . , N . It is

interesting to note, that as a consequence of ˆ̀−1
n linear de-

pendence on n, (16) implies that ĝ(L) ∼ 1/L in the inter-

val ˆ̀� L� ˆ̀N . There are other two important results
that follow from the DMPK equation. Firstly, there is a
weak localization correction (WLC) that has to be added
to ĝ(L) in the metallic (ohmic) regime in time reversal
invariant systems, which for large N is δĝ(L) = −1/3
independent of L. Secondly, the conductance distribu-
tion in the metallic regime turn out to be Gaussian with
O(1) variance, independent of the system length and of
the disorder properties (universal conductance fluctua-
tions), and then changes from this Gaussian form to a
log-normal distribution as the size of the wire reaches
the localization length.

Other approaches have been used to study the conduc-
tance of a disordered wire, for instance using a random
matrix theory for the description of the hamiltonian in
the scattering region [26], but in the appropriate limits of
the weakly disordered wire these descriptions were shown
to be equivalent. It is expected that the disordered RMT
chain is well described by this model, except perhaps in
the transition between the different regimes. Our numer-
ical results [see Fig.4 (lower panel)] confirm this expec-
tation. For instance, a transition from the diffusive to
the localized regime when the system reaches a length
L ∼ O(N) corresponding to the localization length.

B. Average conductance of the periodic waveguide

In this section we focus on the average conductance
〈g(L)〉 and resistance 〈1/g(L)〉, that we compute in the
semiclassical and RMT ensembles for a periodic waveg-
uide. From the decomposition (20) of g(L) as a sum
of propagating and decaying modes, it is clear that for
small values of L we have 〈g(L)〉 ∼ O(N), as in the dis-
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ordered case [23] and, for L large enough, 〈g(L)〉 <∼ 〈NB〉
is independent of L. The average number of propa-
gating Bloch modes in the infinite periodic waveguide,
〈NB〉, was studied in [19] and [20], where it was shown
that for the diffusive waveguides we consider it scales
as 〈NB〉 ∼

√
N . Therefore, as L increases, there is a

transition from the ballistic propagation 〈g(L)〉 ∼ O(N)
through short systems to the Bloch-ballistic propagation
〈g(L)〉 <∼ 〈NB〉 ∼ O(

√
N) through long finite periodic

systems. In order to study this transition we compute
〈g(L)〉 as a function of L for the cosine periodic waveg-
uide and for the RMT model of a periodic waveguide.
We focus in particular in the limit of large N , i.e. the
semiclassical limit.

In Fig. 4 (upper panel) we present the scaled averaged
conductance 〈g(L)/N〉 as a function of L for our RMT
model with Suc taken from the COE ensemble and com-
pare it with the characteristic 1/(L + 1) decay of the
ohmic behavior [3]. We observe that the numerical data
follows

〈g(L)〉COE =


N

(L+ 1)
1� L <∼

√
N

〈NBP (L)〉
√
N � L

(21)

with the ohmic behavior, 〈g(L)〉 = N/(L + 1), up to a

given length O(
√
N) close to 〈NB〉 where a transition to

an L independent regime is observed. This is the diffusive
to Bloch-ballistic transition. The ohmic regime manifest
itself also in the resistance,

〈R〉 =

〈
1

g(L)

〉
, (22)

which is plotted in the inset of Fig. 4 (upper panel) for
the RMT model and in Fig. 5 for a cosine waveguide.
Qualitatively, we found Ohm’s law 〈R〉 = (L + 1)/N
holds for small L, before 〈g(L)〉 reaches its asymptotic
value. This regime is followed by localization-like ex-
ponential grow of the resistance. The latter may seem
surprising but is a consequence of the non-null proba-
bility of NB = 0. In fact, although this probability de-
cays to zero as N →∞ [27], it dominates in the average
〈1/g(L)〉 for long chains. However, in the limit of large
N , for particular realizations of 1/g(L) the most probable
is 1/g(L) = 1/(NBP (L)) <∞ with NB 6= 0.

The existence of the ohmic regime is a consequence

of the full MLM
†
L matrix spectrum and it is observed

for for lengths L � `, where several non-propagating
Ti still contribute to the sum in the right hand side of
(20). This is clearly observed in Fig. 6 where the aver-
age conductance of the cosine billiard (filled squares) is
compared to the average of (20) eliminating the second
term of the right hand side (filled circles). In order to un-
derstand this ohmic regime we remember (see Sec.III A)
that, for the disordered wire, it can be explained by the
scaling of Dorokhov localization lengths spectrum [24]
ˆ̀
n(N)−1 ∼ n/N ˆ̀, n = 0, . . . , N − 1. Now, it turns out

that, in our model for periodic waveguides, the spectrum
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FIG. 4: Upper panel: For the periodic RMT chain, plots of
〈g(L)/N〉 as a function of L for N = 10 (dots), 20 (squares),
30 (triangles up), 40 (triangles down) and 50 (diamonds) for
the COE case. As N increase, convergence to the linear de-
pendence on 1/(L + 1) (line) and the scaling with N of the
diffusive regime are clearly observed. The departure from this
law to an L independent regime signals the diffusive to Bloch
ballistic transition. In the inset we depict 〈N/g(L)〉 for the
same values of N and the line L+ 1 predicted by Ohm’s law.
The divergence of this quantity that follows after the ohmic
behavior is discussed in the text. Lower panel: For the disor-
dered RMT chain (see sect. III A), plots of 〈g(L)/N〉. Sym-
bols correspond to the same matrix dimension as in upper
panel (N = 10 not shown). The continuous line for L < 20
represents Ohm’s law and for L > 20 an exponential decay as
expected in the localized regime.

|λn| of Muc = Muc(Suc) with Suc taken from COE has
a similar property, namely `−1n = log |λn| ≈ n/N for
〈NB〉 ≤ n � N , from which we conclude the existence
of an ohmic regime, in periodic diffusive waveguides [see
Fig. 7]. This is a statistical characteristic of the transfer
matrix spectrum, which can be recasted stating that

p(|λ|) ∼ 1

|λ|
, for

〈NB〉
N

< log |λ| � 1 (23)

with p(|λ|) the marginal pdf of the spectrum absolute
values |λn|. From this follows that 1/g ∼ L for L <∼
N/〈NB〉 ∼

√
N , which can also be understood from the

two following arguments.
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FIG. 5: Average resistance 〈1/g(L)〉k (black dots) for the
cosine billiard with A1 = 0.5, A2 = 4.5 and k = 30.33π.
The full line shows the ohmic regime holding for L < 10.
Also, several realizations of 1/g(L) are displayed in gray: a
few cases with NB = 0 grow exponentially and the rest reach
an asymptotic oscillating value 1/g∞(L) ∼ O(1/NB). The
exponential grow of the average resistance 〈R〉k for L > 10 is
explained by the presence of the rare cases with NB = 0.
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First, if we consider that the conductance in the diffu-
sive regime 〈g(L)〉 ≈ N/(1 + L) must match its asymp-
totic average value 〈g∞(L)〉 ∼ 〈NB〉, we obtain that this
happens at L ∼ N/〈NB〉.

Second, if we consider a wave-packet representing an
electron in a periodic system, we expect from semiclassi-
cal arguments to observe chaotic diffusion if many energy
bands contribute to the superposition. This is the case
if the diffusion time tD = L2/D is smaller than the unit-
cell Heisenberg time tH = mAc/~, where we recall that
D = D1v, with v the particle’s speed and m the elec-
tron mass. Then, we obtain that tD < tH if and only
if L <∼

√
AcD1k ∼

√
N which is the expected result.

For longer times (correspondingly L >∼
√
N) the energy

bands are resolved and the wave-packet starts to propa-
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FIG. 7: Average inverse decay lengths spectrum `−1
n =

log |λn| for the COE periodic chain model. The plot shows
N`−1

n for N = 10, 20, 30, 40, 50, 60, 70 (circles, squares, up tri-
angles, down triangles, stars, diamonds). The integer n is the
absolute-value-sorted λn eigenvalue index. For this system
〈NB〉 = 4.7. As can be seen in the plot N`−1

n is close to zero
for n <∼ 〈NB〉 and is followed by a range with linear growth

N`−1
n ∼ n (dashed line) which explains the existence of the

ohmic regime in the periodic chain for L < 〈NB〉/N . In the
inset, part of the pdf P (N`−1) for N = 70 is plotted, showing
a constant range for 10 <∼ N`−1 <∼ 30 which is equivalent to

P (|λ|) ∼ |λ|−1 [see (23)].

gate ballistically.

C. Weak localization

Having established the existence of the diffusive regime
we turn to the issue of weak localization. So far we have
focused only on time-reversal symmetric systems, which
are described by the COE ensemble. On the other hand,
the CUE ensemble models chaotic cavities where time-
reversal invariance has been broken, for instance, a two-
dimensional degenerate electron gas in a diffusive peri-
odic structure subject to a perpendicular magnetic field.
For a chaotic quantum dot, i.e. a chain of length L = 1,
it is well known that the conductance is given by [5]

〈g(L = 1)〉 =
N

2
+

(
1− 2

β

)
1

4
, (24)

where β = 1 for the COE case and β = 2 for the CUE
case. The difference δg(1) = 〈g(1)〉COE − 〈g(1)〉CUE =
−1/4 is called Weak Localization Correction (WLC) and
can be explained semiclassically by the enhancement of
the reflection probability due to constructive interference
of time-reversed trajectories in time-reversal invariant
systems [28]. In the disordered wire, the WLC is ob-
server in the metallic (ohmic) regime and is of slightly
larger magnitude with δĝ(L) = −1/3 independent of L.

Now we consider the WLC in a periodic chain. It can
be assumed that a weak magnetic field will not change
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FIG. 8: For the RMT model, plots of the WLC δg(L) for
N = 10, 20, 30, 40, 50 using the same symbols as in Fig. 4.
In the inset we plot the conductance variance Var[g(L)] for
N = 1 to N = 50 for the COE case.

the diffusion coefficient of a chain of strongly chaotic
systems, thus we can extract the WLC in the periodic
chain as a function of L analogously to the quantum
dot as δg(L) = 〈g(L)〉COE − 〈g(L)〉CUE. In Fig. 8 we
plot δg(L), which for an N -dependent L-range is close to
the weak localization correction of a disordered wire [23].
Although weak localization is usually associated to the
metallic regime, here we see that in periodic systems it
extends for large L with a correction δg(L) ≈ −0.2 that
persists during the Bloch-ballistic regime.

Recently, the WLC for a periodic system was stud-
ied [29] assuming that the Ehrenfest time of the cavity
is larger than the ergodic time [30] of the (closed) cavity.
We have in mind the opposite case, where the Ehrenfest
time is smaller than the ergodic time ensuring that RMT
is a good model for the periodic waveguide.

D. Conductance Fluctuations

In the previous discussion we noticed that finite pe-
riodic waveguides with chaotic cells possess a diffusive
regime where 〈g(L)〉, including its WLC, are similar to
those of the metallic regime in a disordered wire. We
now address conductance fluctuations. In a disordered
wire in the metallic regime, the conductance has a Gaus-
sian distribution with O(1) variance, independent of the
system length and of the disorder properties. The con-
ductance distribution changes from this Gaussian form to
a log-normal distribution as the size of the wire reaches
the localization length. In our periodic chain, we also
found that in the diffusive regime the conductance has
Gaussian fluctuations [see Fig. 10], however its variance
Var[g(L)] = βL depends linearly on L [see inset in Fig. 8]
but with a slope β ≈ 0.05 sufficiently small to ensure that
the average is representative of a typical value, e.g. we
check that 1/〈g(L)〉 ≈ 〈1/g(L)〉 in this regime. Let’s

PLHTL

0.0 0.2 0.4 0.6 0.8 1.0
T

1

2

3

4

PLHTL

0.0 0.2 0.4 0.6 0.8 1.0
T

1
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4

FIG. 9: Transmission pdf PL(T ) of a cosine periodic waveg-
uide chain model with N = 50 for L = 5 in the diffusive
regime. The continuous line represents Dorokhov’s distribu-
tion for a disordered wire PL(T ) = N

2L
1

T
√
1−T

. Histogram is

computed with the same parameters than Fig. 3. The inset
shows the histogram of PL(T ) for L = 25, deep in the Bloch-
ballistic regime and the continuous line is the corresponding
Dorokhov’s distribution.

consider the second order expansion

〈g−1(L)〉
〈g(L)〉−1

= 1−Var[g(L)] 〈g(L)〉−2+O
(
〈g(L)〉−3

)
. (25)

Since 〈g(L)〉 = N/(L + 1) we have that, deep in the

ohmic regime, where L �
√
N < N , Var[g(L)] � L

and Var[g(L)] 〈g(L)〉−2 � 1. Hence, keeping the domi-
nant term in (25) we obtain 〈1/g(L)〉 ∼ 1/〈g(L)〉. Inset
in Fig. 8 shows that the variance grows linearly with L
for L <∼

√
N and then reaches a constant value with

Var[g(L)] ∼ O(
√
N), signaling the diffusive to Bloch-

ballistic transition. From the RMT quantum dot de-
scription we know that Var[g(L = 1)] = 1/8. On the
other hand, the limit value Var[g(L → ∞)] can be un-
derstood from the fluctuations of NB which are of order
O(
√
N) [27]. The similarities and differences between the

diffusive regime of periodic systems and disordered sys-
tems is also illustrated in Fig. 9 where we compare his-
togram of the probability distribution function PL(T ) of
transmission eigenvalues Ti for the periodic cosine waveg-
uide with the Dorokhov’s distribution for a disordered
wire [23, 24]. We can observe that qualitatively the dis-
tributions resembles each other but they differ quantita-
tively, for instance for the periodic waveguide there is a
slightly increase in the population of transmission eigen-
values larger than 0.8 and a corresponding decrease in
the eigenvalues smaller than that. On the other hand,
as illustrate the inset in Fig. 9 deep in the Bloch-ballistic
regime large transmission probabilities occurs much more
often than in the diffusive regime as expected.

A remarkable feature that characterize the Bloch-
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FIG. 10: Conductance pdf PL(g) of a COE periodic chain
model with N = 50 for several values of L. We see that up
to L = 9 the distribution is clearly gaussian (black line) and
at L = 17 peaks start to develop. At L = 50 the distri-
bution has reached its long-chain stationary form consisting
in a multimodal structure which arises from the asymptotic
quasi-periodic behavior of g around its average ∼ NB . Given
an integer n the peak just below g = n is due to realizations
with NB = n. Note that for NB = 1 the peak is very narrow
and its center close to one but for bigger NB the peaks start
to spread and locate further away from its respective integer
upper boundary. This issue is addressed in the main text.
Note that the x-axis range covered changes in each plot.

ballistic regime is the conductance distribution multi-
modal shape observed in Fig. 10. In fact, as we have al-
ready mentioned, the conductance in the Bloch-ballistic
regime is dominated by the first term in Eq. (20) that

represent the sum
∑NB

i=1 Ti over the NB non-decaying Ti.
Therefore the fluctuations of g(L) are related to the fluc-
tuations of these Ti and also to the fluctuations in their
number NB which take only integer values. The sharp
peaks of the conductance distribution PL(g) at g = 0
and g = 1 corresponds to realizations with NB = 0 and
NB = 1, respectively. We see that peaks at larger value
of g becomes less sharp and also are not located at in-
teger values of g. This is due to the repulsion between

transmission coefficients which we have discussed in sec-
tion III. Owing to this repulsion, only one Ti ∼ 1 and the
rest are necessarily smaller, spreading in the [0,1] interval

as shown in Fig.3, thus g(L) =
∑NB

i=1 Ti < NB .

IV. CONCLUSIONS

In this work we have studied the propagation of waves
in diffusive periodic quasi-one-dimensional systems, by
numerically computing the conductance of a cosine-
shaped waveguide and by employing a RMT model to
describe the system. We have shown that wave propaga-
tion in such systems displays a diffusive regime for sys-
tems of length L in the range 1 � L �

√
N , where the

conductance varies from O(N) to O(
√
N). This should

be compared with the diffusive regime of disordered sys-
tems which holds for 1� L� N , where the conductance
varies from O(N) to O(1). The ohmic behavior of bulk
disordered wires has been studied for a long time [31]
and more recently was reported in surface disordered
wires [3]. Here we have shown that this regime is also
observed in periodic chains of cavities with diffusive clas-
sical dynamics.

On the other hand, for periodic waveguides with length
L �

√
N , wave propagation acquires the ballistic char-

acter of the Bloch states of the associated unfolded in-
finite periodic system, with a constant average conduc-
tance 〈g(L)〉 which is close (and bounded by) 〈NB〉. We
found that there is a WLC in the conductance both in the
ohmic and Bloch-ballistic regimes. In the former, we ob-
serve a value similar to disordered wires with δg(L) ≈ 0.3,
whereas in the latter the corrections is somewhat smaller
with δg(L) ≈ 0.2.

A difference we have observed between the ohmic
regimes in disordered and periodic systems is in the con-
ductance fluctuations. While the conductance variance
Var[g(L)] is O(1) for the disordered wire, in diffusive pe-

riodic waveguides it grows linearly with L up to L ∼
√
N

and then reaches a constant asymptotic value. The pas-
sage between these two regions signals the diffusive to
Bloch-ballistic transition.
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Berlin, 2000); H.-J. Stöckmann. Quantum chaos: An
Introduction (Cambridge University Press, Cambridge,
England, 1999).

[22] V. I. Oseledec, Trans. Moscow. Math. Soc. 19, 197
(1968).

[23] C. W. J. Beenakker, Rev. Mod. Phys. 69 731 (1997).
[24] O. N. Dorokhov, Pis’ma Zh. Eksp. Teor. Fiz. 36 259

(1982).
[25] P. A. Mello, P. Pereyra and N. Kumar, Ann. Phys. (N.Y.)

181, 290, (1988).
[26] S. Iida, H. A. Weidenmüller, and J Zuk, Phys. Rev. Lett.

64, 583 (1990); Ann. of Phys. 200, 219 (1990).
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