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Abstract—Matrix Converters (MCs) have some advantages
when compared to conventional back-to-back PWM voltage
source converters. The converter may be considered more reli-
able and it can be smaller because the bulky dc capacitors are
eliminated from the topology. For ac to ac power conversion,
the size and weight of the whole generation system can be much
reduced when back-to-back converters are replaced by MCs. To
supply electrical energy to an unbalanced 3Φ stand-alone load,
a fourth leg is required to provide a path for the zero-sequence
load current. To regulate the load voltage, closed-loop control is
required. In this paper, the application of d–q controllers and
resonant controllers to four-leg MCs is addressed. The design and
performance issues of the controllers, for operation with balanced,
highly unbalanced loads and nonlinear loads are discussed in this
paper. Experimental results obtained from a small prototype are
presented and analysed in detail.

Index Terms—AC–AC power conversion, control system, power
generation.

I. INTRODUCTION

MATRIX CONVERTERS (MCs) have many advantages,
which are well documented in the literature [1]–[5]. The

MC provides bi-directional power flow, sinusoidal input/output
currents and controllable input displacement factor [1], [4],
[6]. When compared to back-to-back converters, the MC has
some significant advantages. For instance, due to the absence of
electrolytic capacitors, the MC can be more robust and reliable
[2]. The space saved by a MC compared to a conventional back-
to-back converter has been estimated as a factor of three [3].

MCs can be used in portable generation systems, for instance
in those employing variable speed diesel engines [5], [7]. How-
ever, in this case a four-leg MC is required, to provide a path for
the zero-sequence currents. The topology of the four-leg MC
system considered in this work is shown in Fig. 1. A second-
order LC filter is used at the MC input to improve the quality
of the input currents [8], [9]. The input filter capacitors also
provide the essential decoupling to minimize the commutation
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Fig. 1. Matrix converter and input/output filters.

inductance between phases. Usually a resistor in parallel with
the input inductance (see Fig. 1) improves the damping of the
system [10], [11]. At the MC output a second-order LC filter
is provided to reduce the amplitude of the switching harmonics
in the load voltages [6], [7], [12]. Fig. 1 also shows the star-
connected stand-alone load that the four-leg MC is assumed
to feed.

Control systems and modulation algorithms for four-leg ma-
trix converters have recently been reported in the literature [9],
[12], [13]. A space vector modulation (SVM) algorithm was
recently presented in [9], [14], a standard d–q voltage control
system was reported in [5] and resonant controllers have been
discussed in [13].

The performance of the d–q control system reported in
[5] is appropriate when the system is operating with slightly
unbalanced linear load or when the total impedance between the
four-leg MC output and the load is small. Otherwise a control
system implemented in a synchronous rotating frame cannot
eliminate the negative and zero-sequence components from the
load voltages. Sequence components of unbalanced 3φ systems
are discussed in more detail in [15]–[18].

As an alternative to d–q controllers, systems employing
resonant controllers can be applied to four-leg power converters
[13]. Moreover, the distortion produced by nonlinear loads can
be eliminated using several RCs in a cascade implementation
[19]. However, the methodology reported in the literature for
designing resonant controllers is not always appropriate for the
control of high-order plants. For instance, one of the methods
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reported previously is to use resonant controllers with the same
proportional and integral gains of PI controllers designed in a
synchronous rotating frame [20]–[23]. However, this is hardly
appropriate for the application depicted in Fig. 1, because a
single PI controller is not sufficient to ensure good dynamic
performance in the whole operating range when a second or
higher-order load is fed by the MC. Other design methods
have been reported, for instance in [22] it is proposed, without
much analysis, to use a low-pass to high-pass transformation to
referrer a controller designed in the synchronous frame to the
stationary frame.

Because of the lack of appropriate design methods for res-
onant controllers aimed to regulate the voltage of stand-alone
unbalanced loads, design methodologies are discussed in this
work. In Section II of this paper, the equivalence between reso-
nant controllers implemented in the a–b–c frame and controllers
designed in synchronous rotating frames are discussed. The use
of the frequency shifting property of the Laplace transform is
used to analyse the frequency response of the control systems
[24]–[26]. In this section it is analytically shown that some of
the conventional methods used to refer d–q controllers to the
stationary frame do not produce resonant controllers with an
exact equivalence in terms of bandwidth and dynamic perfor-
mance.

In Sections II-B and III the implementation of digital res-
onant controllers applied to four-leg matrix converters is dis-
cussed. Two design approaches are presented and discussed.
In Sections IV and V, the experimental results are presented
and discussed. In Section IV it is shown that a conventional
d–q control system implemented in a positive sequence syn-
chronous rotating frame can also be applied to regulate the
voltage of unbalanced linear/nonlinear loads fed by a four-leg
matrix converter when the output filter inductance is relatively
small. Finally, an appraisal of the proposed control methods is
presented in the Conclusion.

For all the experimental work the SVM algorithm reported in
[9] is used. The design and implementation of SVM algorithms
for four-leg MCs is considered outside the scope of this paper
and the interested reader is referred elsewhere [9], [14].

II. CONTROL SYSTEMS APPROACHES FOR

FOUR-LEG MATRIX CONVERTERS

A. Conventional d–q Control Systems

Control systems based on synchronously rotating refer-
ence frames are a standard method for the regulation of
voltages and currents in electrical machines and power con-
verters [27]–[29]. Using d–q rotating frames, 3φ voltages
and currents are transformed into dc signals for steady state
operation.

Fig. 2. Control diagram for a standard d–q control system for a four-leg
matrix converter.

The d–q control topology proposed for four-leg MCs is
shown in Fig. 2. The block labeled SVM includes the modula-
tion algorithm and the converter. The load voltages are referred
to a d–q frame rotating at the output frequency ωo. The transfer
functions Ga(s), Gb(s) and Gc(s) relate the line to neutral four-
leg MC output voltage with the corresponding load voltage. In
a–b–c coordinates, the transfer function between the phase to
neutral voltages and the load voltages is (see Fig. 1)

Ga(s) =
VaL

V aN
=

RLa

s2RLaCfLf + sLf + RLa
(1)

where VaN is the line to neutral voltage of phase “a” at the MC
output; RLa is the resistive load in phase a; Lf and Cf are the
parameters of the second-order power filter (see Fig. 1) and “s”
is the Laplace operator. The transfer functions Gb(s) and Gc(s)
are obtained by replacing RLa with RLb and RLc, respectively.

To design the system in a synchronous rotating frame, the
plant dynamics in α–β coordinates have to be transferred to d–q
coordinates. In this paper, the frequency shifting property of the
Laplace transform is used for this analysis, instead of the rather
complex time domain approach presented previously in [22],
[30]. The frequency shifting property of the Laplace transform
is represented by

L
(
f(t)e−jωot

)
= F (s + jωo) (2)

where the symbol “L” represents the Laplace transform. In this
paper, to refer a transfer function from the stationary frame
(positive sequence) α–β to d–q, the operator “s” is replaced
by “s + jωo”. On the other hand, to refer a transfer function
from d–q to α–β, the operator “s” is replaced by “s − jωo”.
Therefore, the transfer function of (1) can be referred to the syn-
chronous rotating frame as (3), shown at the bottom of the page.

Gdq(s) =
V dqL

V dqN

=
RLa

(s + jωo)2RLaCfLf + (s + jωo)Lf + RLa

=
RLa

s2CfLfRLa + (Lf + 2jLfCfRLaωo)s + (jωoLf + RLa − CfLfRLaω2
o)

(3)
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Fig. 3. Simplified d–q control system considering decoupling terms.

Using (3) the voltage at the controller output is related to the
load voltage as [

VdN

VqN

]
= A(s)

[
VdL

VqL

]
(4)

with the matrix A(s) defined as (5), shown at the bottom of the
page. The terms relating the d-axis controller output with the
q-axis load voltage (and vice versa) are called “cross-coupling”
terms which are usually introduced by the presence of the
complex operator “j” in the transfer function of the plant or
controller. In d–q control systems, it is a standard practice to
add decoupling terms to the controller output to eliminate the
cross-coupling [31], [32]. This is shown in Fig. 3, where the
label “DT ” stands for “Decoupling Terms”.

The decoupling terms are plant dependent. For the plant
of (3), it can be shown that these terms are

Plant(s)
1 + DT (s)Plant(s)

=
RLa

s2RLaCfLf + sLf + RLa
→DT (s)

= (2jCfLfωos + jLfωo/RLa

− CfLfω2
o

)
V dqL(s) (6)

where Plant(s) is the transfer function of (3).
Because of the difficulties associated with the implementa-

tion of a real time differentiation, DT (s) can be approximated
to

DT (s) ≈
(
jLfωo/Ra − CfLfω2

o

)
V dqL(s). (7)

After some manipulation it is relatively simple to demon-
strate that (7) can be simplified to

DT (s) ≈ jωoLf idq(s) (8)

where idq is the MC output current vector. In a matrix converter
this current is usually measured, because it is required in the
modulation algorithm [8].

The frequency response of the closed-loop transfer function
V dqL(s)/V

∗
dqL(s) (see Fig. 3) is shown in Fig. 4. Negative

frequencies are shown in this graphic to facilitate comparing
the frequency response of Fig. 4, with the corresponding closed-
loop frequency response obtained with RCs in Section II-B.

Fig. 4. Bode plot of the transfer function V dqL(s)/V
∗
dq(s) (see Fig. 3),

considering exact decoupling and the decoupling of (8).

Fig. 5. Root-Locus of the d–q control system.

For the results shown in Fig. 4 the d–q controllers have been
designed for a Phase Margin (PM) of 65◦ and a bandwidth of
about 80 Hz. For the plant the values of RL = 10 Ω, Cf =
40 μF and Lf = 5 mH have been considered. As shown in
Fig. 4, only a small bandwidth variation is produced when the
simplified decoupling of (8) is used.

Controllers implemented in synchronous rotating axis have
advantages and disadvantages when applied to four-leg matrix
converters. The design is simple and the “s” domain plant does
not change with the output frequency when decoupling terms
are considered. The best performance with d–q controllers
is achieved when the load is balanced, slightly unbalanced,
and/or when the filter inductance in the second-order output
filter is very small, i.e., Ga(s), Gb(s), and Gc(s) ≈ 1 [see
(1)]. However, because of the small inductance, the switching
frequency has to be relatively high to reduce the load total
harmonic distortion (THD). Therefore, a rather fast digital
signal processing (DSP) platform has to be used to implement
the modulation and control algorithm.

A(s) =

⎡
⎣

(
CfLfs2 + Lf

RLa
s +

(
1 − CfLfω2

o

))
−

(
2CfLfωos + Lf

RLa
ωo

)
(
2CfLfωos + Lf

RLa
ωo

) (
CfLfs2 + Lf

RLa
s +

(
1 − CfLfω2

o

))
⎤
⎦ (5)
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Assuming the plant described by (1), the z-plane root locus
for the design of a d–q voltage control system is shown in
Fig. 5. A time delay of one sample period is added to the
plant to represent the digital implementation of the modulation
algorithm. The control loops are designed to have appropriate
dynamic response in the worst case situation, i.e., without any
load connected to the output (RLa → ∞ in (1)). Because a
single PI controller is not sufficient to provide good dynamic
response in the whole operating range, a second-order lead-lag
network is added to the controller (see Fig. 5).

B. Resonant Control Systems

A control system implemented in d–q coordinates can be
referred to the stationary α–β axis using the frequency shifting
property of the Laplace transform. Therefore, a PI controller in
the d–q axis is transformed to[

kp(s + a)
s

]
dq

dq2αβ
=⇒

[
kp ((s − jωo) + a)

s − jωo

]
αβ

. (9)

After some manipulation it is relatively simple to demon-
strate that the PI controller in a d–q axis is equivalent to a
resonant controller in the α–β axis. This is written as[

kp(s + a)
s

]
dq

dq2αβ
=⇒

[
kp

(
s2 + as +

(
ω2

o + ajωo

))
s2 + ω2

o

]
αβ

.

(10)

Therefore, using the frequency shifting property of the Laplace
transform, equivalent controllers can be implemented in either
the d–q or α–β frames. The α–β controller of (10) has high
gains for error signals with frequency close to ωo. These
controllers are usually called Resonant Controllers (RCs)

Using the frequency shifting property of (2), the decoupling
terms of (10) can also be transformed to α–β coordinates as

DTαβ(s) = jLfωoiαβ(s). (11)

In most of the reported cases, and even for three-leg inverters
feeding balanced loads, the decoupling terms are not considered
when a resonant controller is implemented. To the best of our
knowledge only one recent publication discusses the use of
decoupling terms in resonant controllers [25] concluding that
including this term improves the bandwidth of the closed-loop
system [this is also shown in Fig. 8(a) and (b)].

Even when the controllers of (9) and (10) are equivalent in
terms of bandwidth and PM, the RC of (10) has cross-coupling
terms between the α–β components. This is not appropriate
for four-leg matrix converters feeding highly unbalanced loads,
because the zero-sequence components of the load voltage
are not eliminated unless three independent RCs are used to
regulate each phase to neutral load voltage. This topology is
shown in Fig. 6, and a simplified single block diagram of Fig. 6
is shown in Fig. 7.

There is no reported methodology to implement a resonant
controller in a–b–c coordinates (i.e., without the presence of
the complex “j” operator in the RC transfer function) with a
bandwidth and PM completely equivalent to a corresponding

Fig. 6. Resonant controllers, SVM algorithm, and plants.

Fig. 7. Simplified single-phase equivalent of Fig. 6.

d–q positive sequence controller. For instance in [21], [22] it is
proposed to transform a d–q controller to the α–β frame using
the following approximations:

[Gc(s)]αβ → 1
2

[Gc(s + jωo) + Gc(s − jωo)]dq (12)

or using [20]

[Gc(s)]αβ → [Gc(s + jωo) + Gc(s − jωo)]dq . (13)

These transformations produce controllers without cross-
couplings. However, the dynamic responses of [Gc(s)]αβ are
not equal to that of [Gc(s)]dq. To study the performance of
the controllers obtained from (10), (12) and (13), the d–q
controller corresponding to the Bode diagram of Fig. 4 has been
transformed into resonant controllers using (10), (12) and (13).

The corresponding closed-loop frequency responses are
shown in Fig. 8. Fig. 8(a) shows the response considering
the RC obtained from (10) with the cross coupling term of
(11) considered. Figs. 8(a) and 4 are identical with one of the
magnitudes shifted by 50 Hz to the right. In this case the RC is
completely equivalent to the d–q controller.

Fig. 8(b), shows the closed-loop frequency response obtained
from (12). The bandwidth is reduced [when compared to that
obtained in Fig. 8(a)]. Moreover, because the cross-coupling is
eliminated, the s-domain plant is no longer constant and the
phase margin is dependent on the output frequency. For instance
the PM for an output frequency of 25 Hz is ≈65◦. However, for
an output frequency of 120 Hz, the PM reduces to about 50◦.

Fig. 8(c) shows the closed-loop frequency response obtained
when the resonant controller is obtained using (13). In this case
the PM for ωo = 25 Hz is about 50◦ and PM = 40◦ when the
output frequency is 120 Hz. From the viewpoint of the dynamic
response, this is the controller with the worst performance.



CÁRDENAS et al.: VALIDATION OF CONTROL SYSTEMS FOR MC APPLICATIONS 145

Fig. 8. Bode plots for resonant controllers. (a) Resonant controller of (10)
including decoupling terms. (b) Resonant controller of (12). (c) Resonant
controller of (13).

Therefore, neither (12) nor (13) are able to fully maintain the
dynamic response of a d–q controller designed for regulating
a positive sequence signal. This results is in broad agreement
with the research reported in [25], [34] where three resonant
controllers, derived from a single d–q control system are com-
pared using simulation. It is demonstrated in [34] that when
the decoupling terms of DT(s) and the cross-coupling terms of
(10) are neglected, the settling time obtained with the resonant
controller is larger with relatively poor damped oscillations in
the time response. Moreover, in [25] is shown that the frequency
response obtained with a resonant controller derived from (12)
is much more sensitive to changes in the reference output
frequency than the original d–q controller [the same conclusion
is obtained by comparing Fig. 8(a) and (b)].

It has been reported in [20], [33] that (13) is equivalent
to the transformed PI controllers designed in the positive and
negative synchronous rotating frames, to the stationary frame.
However, this is not completely correct from the implemen-
tation viewpoint. Most of the control systems designed to
regulate positive and negative sequence signals, require a notch
filter, tuned to twice the operating frequency, to decouple the
positive/negative sequence control systems [32]. These filters
are not usually considered in the reported implementation of
(13). The dynamic effects of the notch filters are not negligible
and they cannot be ignored if equivalent controllers between the
d–q and stationary frame are required.

Because the reported control methods used to design reso-
nant controllers are not always appropriate, especially when
high-order plants are considered, in this work linear control
design methods, as Bode and root-locus are applied to the
design.

III. DIGITAL IMPLEMENTATION OF

RESONANT CONTROLLERS

As stated in the previous section, for the application studied
in this work the preferred implementation of RCs is in a,
b, c coordinates, regulating the output voltage of each phase

Fig. 9. Poles and zeros of the resonant controller and output filter.

with respect to the neutral connection “n”. Without considering
cross-couplings, the RC is composed of a couple of purely
imaginary poles with a resonant frequency of ωo, where ωo is
the desired output frequency [33]

Gc(s) = Kc
s2 + 2ζωns + ω2

n

s2 + ω2
o

(14)

Kc is the controller gain. In the z-plane, the transfer function of
the resonant controller is [19], [35]

Gc(z) = Kc
z2 + a1z + a2

z2 + b1z + b2
. (15)

In this case the resonant poles are located along the unit
circle, as shown in Fig. 9, with an angle with respect to the
real axis of ωoTs rads, where Ts is the sampling time and ωo is
the output frequency.

In the frequency domain, the tracking error e(jωo) is calcu-
lated as (see Fig. 6)

e(jωo) =
V ∗

aL(jωo)
1 + Gc(jωo)SV M(jωo)Plant(jωo)

. (16)

The operating principle of the RC is that |Gc(jω)| → ∞
for a frequency ω = ωo [see (14)]. Therefore, the error cal-
culated from (16) is zero for a sinusoidal reference voltage
(V ∗

aL) of frequency ωo. However, in a practical implementation
the numerical resolution of the DSP platform as well as the
interaction between the poles and zeros located at different
frequencies, reduces the gain |Gc(jωo)| [35], [36]. This is
shown in Fig. 10. Nevertheless, according to the experimental
results shown in the next section, the controller gains obtained
in the experimental rig are appropriate for the regulation of
heavily unbalanced and/or nonlinear loads.

A. Implementing a Resonant Controller From a d–q Design

A first approximation of a digital RC could be obtained
from a controller using the frequency shifting property of the
Laplace transform [see (2)]. In the z-domain

z = esTs (17)

where Ts is the sampling frequency. In the continuous domain
to replace “s” by “s − jωo” is equivalent to replace “z” by
“ze−jωoTs” in the discrete domain. Therefore, from (12), in a,
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Fig. 10. Bode diagram of the RC magnitude for a practical implementation.

b, c coordinates a first approximation of a digital RC can be
obtained from a d–q controller using the expression

[Gc(z)]αβ → 1
2

[
Gc(zejωoTs) + Gc(ze−jωoTs)

]
dq

(18)

which is the z-domain equivalent of (12). Using (18), a RC is
derived from a PI controller implemented in the d–q frame as[

kp
z − a

z − 1

]
dq

(18)−→
[

kp

(
z2 − (1 + a) cos(ωoTs)z + a

)
z2 − 2 cos(ωoTs)z + 1

]
αβ

.

(19)

An initial design of a resonant controller in the z-domain can
be obtained from (18) and (19). However, it has be considered
that neither (12) nor (18) maintains the dynamic characteristics
of the original controller. Therefore, reshaping of the frequency
response using Bode diagrams or Root-locus has to be used to
correct the response of the resonant controller in the bandwidth
of interest.

B. Design of a Resonant Controller Using
Standard Control Design Methods

Some standard design methodologies, such as root locus
or Bode plots [37], can be used to design digital resonant
controllers in the z-plane. In fact this approach has some
advantages because it is simpler to include other effects, e.g.,
plant and serial A/D converter delays, when standard design
tools are applied. In this paper,z-domain root-locus are used to
design d–q controllers as well as RCs.

As mentioned before, the controllers should have appropriate
dynamic response in the worst case situation, i.e., with no load
connected to the output. Therefore, in this case the damping
coefficient of the output stage is close to zero and the plant is
composed only of the complex poles of the second-order output
filter. To improve the dynamic performance of the control
system, a second-order lead-lag network is used.

The root locus of the plant + RC is shown in Fig. 11. The
plant parameters depicted in the Appendix are used to obtain
Fig. 11 The resonant controller poles/zeros are located in the
dashed box at the right of the root locus. A zoomed view of the
resonant controller poles/zeros is shown below the z-plane unit
circle.

In this paper, the RC and associated lead-lag network have
been designed to obtain damping ratios above ≈0.3 for all the

Fig. 11. Design of the closed-loop RC using root locus in the z-plane.

closed-loop poles. For the control system implemented in the
experimental rig discussed in Section IV, with Lf = 5 mH,
Cf = 40 μF, Ts ≈ 100 μS and ωo = 50 Hz, a suitable RC
which meets this design criteria is

Gc(s) = 4.9
(z2 − 1.926z + 0.9276)

(z2 − 1.99z + 1)
(z2 − 1.336z + 0.45)
(z2 − 0.024z + 0.042)

(20)

where the first term after the gain is the RC and the last term is
the lead-lag network. A closed-loop bandwidth of about 60 Hz
is obtained with this voltage controller.

C. Design of a Resonant Control System to
Eliminate Harmonic Distortion

When nonlinear loads are connected to the four-leg MC
output, a resonant control system can be also used to eliminate
most of the harmonic distortion from the load voltages [27].

This is achieved by locating a pair of poles and zeroes in the
z-plane to eliminate the most important harmonics contributing
to the THD of the load voltage. A cascaded controller is
obtained as

Gc(s) = Kc

(
s2 + 2ζωns + ω2

n

s2 + ω2
o

) (
s2 + 2ζωnas + ω2

na

s2 + ω2
oa

)

×
(

s2 + 2ζωnbs + ω2
nb

s2 + ω2
ob

) (
s2 + 2ζωnms + ω2

nm

s2 + ω2
om

)
(21)

where the poles of each transfer function are tuned to track a
particular frequency. In (21) the subscripts “a, b . . . m” are used
to indicate harmonics of order a, b, m etc.

With the controller of (21), |Gc(jω)| → ∞ for the frequen-
cies ω = ωo, ω = aωo, ω = bωo, . . . ω = mωo. Therefore, the
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tracking error is theoretically zero for all those frequencies [see
(16)]. For instance the z-domain transfer function of a con-
troller designed to track a 50-Hz reference signal, eliminating
the dc, second, third, fourth, and fifth harmonic is

Gc(z) = 2 ·
(

z − 0.9872
z − 1

)
·
(

z2 − 1.942z + 0.9462
z2 − 1.996z + 1

)

·
(

z2 − 1.954z − 0.9681
z2 − 1.984z + 1

)

·
(

z2 − 1.86z + 0.8832
z2 − 1.965z + 1

)

·
(

z2 − 1.938z + 0.9743
z2 − 1.937z + 1

)

·
(

z2 − 1.906z + 0.9741
z2 − 1.902z + 1

)

·
(

z2 − 1.863z + 0.9508
z2 − 1.295z + 0.6889

)
. (22)

The 13th-order transfer function of (23) is implemented
using a state space digital implementation in the DSP platform.
All the matrices required are sent from the controller design
software to the DSP board. Because of the high complexity in
implementing the 13th-order RC discussed above, the sampling
time had to be increased to 200 μS.

IV. EXPERIMENTAL RESULTS OBTAINED

WITH A d–q CONTROLLER

The control methodology discussed in this work has been
validated using the experimental system shown in Fig. 12.
The SVM algorithm and proposed control systems are imple-
mented using a DSP-based control board and an FPGA, the
latter implementing the four-step commutation method [1] and
generating the switching signals for the IGBT gate drivers. The
MC is connected to a three-phase variable transformer at the
input. At the output the MC is connected to a three-phase load
via a second-order LC output filter to reduce the harmonic
content in the voltages and currents. For data acquisition an
external board, with 10 analog-to-digital (ADC) channels of
14 bits, 1 μs conversion time each is interfaced to the DSP. This
board also has four digital-to-analog (DAC) channels available,
which are used to fire a solid state relay to produce load step
variations. Hall-effect transducers are used to measure the input
currents, input voltages and output currents. Anti-aliasing filters
are applied to the measurements. A digital storage oscilloscope
is used to measure steady state signals from the experimental
system. A host parallel interface (HPI) is use to connect the
DSP board to the host computer through a standard USB
interface.

Unless otherwise stated, the sampling time used by the SVM
and control algorithm is 100 μs.

As mentioned before, the d–q controller presented in this
work has good performance when the Lf impedance (see
Fig. 12) is small. In this case a d–q controller can be used to
adequately regulate the output voltage of a four-leg MC.

Fig. 12. Experimental system used in this work.

Fig. 13. Response of the d–q control system to an unbalanced load step.
(a) Load voltage for 1-Hz operation. (b) Matrix converter output current for
1-Hz operation. (c) Load voltage for 50-Hz operation.

To test the performance of a d–q control system with a
low Lf impedance, the output frequency is reduced to 1 Hz.
A 5 mH inductance operating at 1 Hz has the equivalent
impedance of a 100 μH inductance operating at 50 Hz. For
this test the control system has been designed for a bandwidth
of about 60 Hz, with a damping coefficient of ζ ≈ 0.707.
Initially a load of 12 Ω is connected to each phase. In t ≈ 0.5 s
the load in phase a is varied to 6.7 Ω. Fig. 13 shows the
response of the system to the unbalanced load step. The load
voltages are shown in Fig. 13(a). Notice that the voltage drop in
phase a is small (about 4%) which is considered good, for the
relatively large load step applied to that phase. Fig. 13(c) shows
the steady state performance of the d–q controller when the
system is feeding at 50 Hz the unbalanced load corresponding
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Fig. 14. Control system performance considering a nonlinear load connected
in phase a. (a) Load voltages at 1-Hz operation. (b) MC output currents at
1-Hz operation. (c) Load voltages at 50-Hz operation.

to the test in Fig. 13(b). In this case the voltage drop in the
Lf impedance cannot be considered negligible and the output
voltage is unbalanced and distorted.

Fig. 14 shows the operation of the d–q control system consid-
ering a combination of linear load (in two phases) and nonlinear
load (in one phase). The latter is implemented using a rectifier
diode in series with a resistor.

Fig. 14(a), shows the load voltages. The waveforms have
little distortion with good regulation. Fig. 14(b) shows the MC
output current. Notice that the current in phase a is highly
distorted. In spite of this distortion, the control system has a
good performance for this application.

Fig. 14(c) shows the experimental results obtained with an
output frequency of 50 Hz and the nonlinear load connected
to one phase. Because of the relatively large impedance repre-
sented by the output filter inductance at 50 Hz, the waveform
in Fig. 14(c) is severely distorted especially in the phase where
the nonlinear load is connected.

When the system is operating with a standard d–q controller
and considering a relatively large Lf impedance, the controller
cannot eliminate the negative and zero-sequence components
produced by the unbalanced nonlinear load. This is shown
in Fig. 15 for the test corresponding to Fig. 14(c). In this
case relatively high zero-sequence voltage (with a peak voltage
of about 12 V) is shown in Fig. 15. The negative sequence
component, with a peak value below 4 V is also shown in
Fig. 15.

V. EXPERIMENTAL RESULTS OBTAINED WITH

RESONANT CONTROLLERS

As mentioned before, standard d–q controllers can be ap-
plied to systems based in four-leg MCs, operating with some
restrictions. Otherwise RCs have a better performance in term
of load voltage regulation. Therefore, in this section experimen-

Fig. 15. Zero and negative sequence in the load voltage corresponding to the
test in Fig. 14.

Fig. 16. Control system response for a step in the demanded load voltage.
(a) d–q control system. (b) Resonant controller implemented from (18).

tal results obtained with resonant controllers are extensively
discussed.

A. Design of a RC Using (18)

In this section, a controller implemented using (18) is ex-
perimentally tested. A fast d–q controller is designed using
root locus for a bandwidth of ≈90 Hz, damping coefficient of
≈0.707. Considering a sampling period of Ts = 100 μs, the
z-transfer function for this PI controller + lead lag network is

Gc(z) = 2
(z − 0.8046)

(z − 1)
(z2 − 1.343z + 0.4521)

(z2 − z + 0.7466)
(23)

Using (23) and (18) a resonant controller has been implemented
for an output frequency of 50 Hz. The d–q controller of (23)
and the corresponding RC obtained from (18) were tested in
the experimental system of Fig. 12. The decoupling terms of
(11) are considered in the d–q implementation, but eliminated
from the RC.

In Fig. 16 the control system responses are shown. For the
d–q controller of (23), the settling time is about 9 ms, less than
half a cycle [see Fig. 16(a)]. For the RC the settling time is
about 16 ms with some small oscillations in steady state. The
instantaneous load voltages in phase a corresponding to both
controllers are shown in Fig. 17. From the first half cycle of the
responses, it is concluded that the d–q controller is faster than
the “equivalent” resonant controller obtained from (18).
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Fig. 17. Instantaneous phase to neutral voltage corresponding to the test
in Fig. 16. (a) d–q control system. (b) Resonant controller implemented
from (18).

The experimental results shown in Figs. 16 and 17 demon-
strate the analysis of Section II. When an a–b–c resonant
controller is derived from a controller implemented in a syn-
chronous rotating frame, its dynamic response is not com-
pletely equivalent to that of the d–q controller, and part of the
bandwidth is lost using (18) (see Fig. 8). Reshaping of the
frequency response obtained from (18) is possible using
the Bode diagrams.

B. Output Frequency Variation

When output frequency variation is required, for instance in
droop control applications, a relatively simple discrete imple-
mentation is achieved with d–q controllers. In this case, the
angle used to modulate/demodulate the load voltage (see Fig. 2)
is obtained as

θk = θk−1 + ωoTs (24)

where θk−1 is the value of the angle in the previous sampling
period. The output frequency can be adjusted on-line by chang-
ing ωo in (24).

Frequency variations with resonant controllers are more dif-
ficult to realize. If it is assumed that the resonant controller has
a couple of complex conjugated poles and zeros located in the
position shown in Fig. 9, then a variable frequency resonant
controller could be achieved using

Gc(z) =
(z − rejωoTs)(z − re−jωoTs)
(z − ejωoTs)(z − e−jωoTs)

=

(
z2 − 2rcos(ωoTs) + r2

)
(z2 − 2cos(ωoTs) + 1)

(25)

where “r” is the distance between the complex conjugate zeros
and the origin of the z-plane (see Fig. 9). In this paper, good
experimental results are obtained using r = 0.96. In addition to
(25), a lead-lag network has to be considered in the controller
implementation [see (20)].

Fig. 18 shows the response of the system when output
frequency variation is experimentally implemented considering
on-line changes of ωo in (25). The waveforms obtained with this

Fig. 18. Frequency variation from 50 Hz to 0 Hz using a resonant controller.
(a) Load voltages. (b) MC output current.

Fig. 19. Four-leg MC output currents for a load step in phase c.

test are appropriate, with little distortion in the load voltages
[see Fig. 18(a)] and currents [see Fig. 18(b)]. This is a good
dynamic response considering the relatively fast variation in the
output frequency (from 50 Hz to 0 Hz).

The resonant controller of (25) has also been experimentally
implemented considering a frequency variation from 50 to
100 Hz with good dynamic performance.

C. Performance of an RC Considering Unbalanced Operation

The response of the RC depicted in (20) for an unbalanced
load step is shown in Figs. 19 and 20. Before the step all the
phases have a resistive load of about 20 Ω. At t ≈ 65 ms, an
additional load is connected in parallel to phase c, reducing the
resistance in that phase to 10 ω. In Fig. 19 the 50-Hz four-
leg MC output currents are shown. The steady state voltages
corresponding to the unbalanced load operation are depicted in
Fig. 20. Little distortion is present in the waveforms shown in
Figs. 19 and 20.

D. Control System Performance for
Nonlinear Load Operation

In this section the performance of the proposed RC con-
trollers is studied considering a nonlinear load connected to
one phase. This load is similar to that discussed in Section IV.
The THD obtained with two RC topologies is shown in Table I.
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Fig. 20. Load voltages corresponding to the test in Fig. 19.

TABLE I
THD VALUES OBTAINED FOR A NONLINEAR LOAD

CONNECTED TO A SINGLE PHASE

Fig. 21. Performance of the control systems for a nonlinear load connected to
one phase. (a) Open loop response. (b) Performance of RC I. (c) Response of
the 13th-order resonant controller.

The controller labeled “Resonant Controller I” has a transfer
function similar to (20).

The “Resonant Controller II” is an 13th-order controller and
is implemented with a transfer function similar to (22). This
high-order RC has the best performance in terms of voltage
distortion reduction. For open loop operation the THD is about
14.7%

Fig. 21 shows the steady state response for the RCs discussed
previously. In Fig. 21(a) open loop operation is shown. Notice
the high distortion of the waveform. Fig. 21(b) shows the
performance of a single gain RC tuned for 50 Hz. Finally,
Fig. 21(c) shows the time response of the high-order RC. The
performance of this controller is good, considering the high
distortion introduced by the nonlinear load in phase c. A lower
THD can be obtained by increasing the controller order to elim-
inate, for instance, the 7th harmonic. Nevertheless, a tradeoff
between THD and computing burden has to be considered to
avoid increasing too much the size of the input and output filters
by maintaining an acceptable switching frequency.

The zero and negative sequence load voltage corresponding
to the test in Fig. 21(c) are shown in Fig. 22. If these exper-
imental results are compared with those shown in Fig. 15, it
is concluded that the high-order controller is able to eliminate

Fig. 22. Zero and negative sequence in the load voltage corresponding to the
test in Fig. 21(c).

Fig. 23. Phase and neutral current for a nonlinear load step. (a) Current in the
phase c of the four-leg MC, where a nonlinear load is connected in t = 60 ms.
(b) Current in the fouth leg used as load neutral connection.

most of the imbalance and distortion from the load voltage
waveforms.

In Fig. 23 the matrix converter output currents for a nonlinear
load step change are shown. The load voltages are regulated
using the high-order RC of (22). For t < 60 ms a linear load of
about 10 Ω is connected to phase c. At t ≈ 60 ms, the linear
load is off and a nonlinear load composed of a rectifier diode
and a resistance of 10 Ω is connected to this phase. As shown
in Fig. 23(a), for t > 60 ms the phase current becomes very
distorted. Because of the imbalance produced by the nonlinear
load, there are zero-sequence components in the neutral current
[see Fig. 23(b)].

E. Additional Applications

The SVM algorithm discussed in [12] can be used to syn-
thesise independent line to neutral output voltages. Therefore,
some applications, for instance to supply different frequencies
to two phases of the 3Φ load, can be implemented using a four-
leg MC. This is rather unrealistic, however the results depicted
in Figs. 24 and 25 show the flexibility of RCs designed to
independently regulate the output voltages of four-leg MCs,
modulating even signals of different frequencies at the MC
output.

In Fig. 24, the load voltages are shown (peak voltage ≈70 V).
Two resonant controllers are used in this application. The first
controller is tuned to regulate a 50-Hz load voltage in two of the
phases. The second controller is designed to regulate a 30-Hz
load voltage in the remaining phase.

In Fig. 25 the four-leg MC output currents are shown.
Fig. 25(a) shows the 30-Hz current and Fig. 25(b) shows the
50-Hz current Finally, Fig. 25(c) shows the neutral current.
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Fig. 24. Performance of a resonant control system regulating load voltages of
50 Hz and 30 Hz.

Fig. 25. Currents corresponding to the test in Fig. 24. (a) 30-Hz current.
(b) 50-Hz current. (c) Neutral current.

Notice the distortion produced in this current which has strong
components of 30- and 50-Hz frequencies.

The performance of RCs has also been tested considering
MC outputs with voltages in phase (i.e., without a phase shift
of 120◦ between them). The performance obtained with this test
was also considered good.

VI. CONCLUSION

In this paper, controllers suitable for regulating the phase to
neutral voltages of a load fed by a four-leg matrix converter
have been tested. The performance of resonant controllers im-
plemented in a–b–c coordinates has been tested to regulate the
voltages of nonlinear loads fed by a four-leg MC. Resonant con-
trollers have also been tested considering heavily unbalanced
loads. In all the cases the performance has been considered
appropriate.

RCs can be derived from d–q controllers designed to op-
erate in synchronous rotating frames. However, the dynamic
performance of RCs implemented using (18) is not identi-
cal to the corresponding d–q controller unless cross-coupling
terms between α–β coordinates [see (9)–(11)] are considered.
However, this is not adequate for systems based in four-leg
MC, where each phase to neutral voltage could be indepen-
dently regulated by resonant controllers implemented in a, b, c
coordinates.

Another alternative to design RCs is to used standard control
design tools such as root-locus, Bode plots, etc. In this case
some practical effects, for instance the delay of serial A/D con-
verters, some effects introduced by the digital implementation
of the modulation algorithm, etc., can be easily considered.

In this paper,d–q controllers have also been considered for
the regulation of the load voltage connected at the output of the
four-leg MC. The main disadvantages are in the restricted op-
erating conditions where d–q controllers are applicable. In this
paper, it has been shown that these controllers can operate with
good dynamic performance in balanced/ slightly unbalanced
systems or when the impedance of the MC output filter induc-
tance is small. Otherwise d–q controllers cannot successfully
eliminate the negative and zero-sequence components from the
load voltages. On the other hand RCs can be used with heavily
unbalanced loads and relatively large filter inductances.

Another advantage of RCs is the possibility of eliminating
most of the harmonic distortion from the load voltage. However,
a tradeoff between processing time and harmonic distortion has
to be considered when a high-order controller is implemented.

APPENDIX

PARAMETERS OF THE EXPERIMENTAL RIG

Matrix Converter: Input filter Lf = 0.625 mH, Cf = 2 μF,
(delta connected capacitors), four-step commutation method
implemented with a 0.7 μs for each step. The matrix converter
is controlled with a 10 kHz switching frequency.

MC Output Filter: Output filter implemented with 5 mH
inductances and 40 uF capacitors.

Output Load: The filter capacitors are connected in parallel
with a resistive load. In the experimental test, the load is
implemented using switchable resistor banks of 140 Ω per
phase.
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