Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system ${ }^{\star}$

Carlos Conca ${ }^{\text {a,b }}$, Elio Espejo ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Departamento de Ingeniería Matemática (DIM) and Centro de Modelamiento Matemático (CMM), Universidad de Chile (UMI CNRS 2807), Casilla 170-3, Correo 3, Santiago, Chile
${ }^{\mathrm{b}}$ Institute for Cell Dynamics and Biotechnology: a Centre for Systems Biology, University of Chile, Santiago, Chile
${ }^{\text {c }}$ Millennium Institute for Cell Dynamics and Biotechnology, University of Chile, Santiago, Chile

ARTICLE INFO

Article history:

Received 25 October 2010
Received in revised form 25 August 2011
Accepted 7 September 2011

Keywords:

Blow-up
Drift-diffusion
Threshold condition
Parabolic equations

Abstract

For a class of drift-diffusion systems Kurokiba et al. [M. Kurokiba, T. Nagai, T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system, Commun. Pure Appl. Anal. 5 (2006) 97-106.] proved global existence and uniform boundedness of the radial solutions when the L_{1}-norm of the initial data satisfies a threshold condition. We prove in this letter that this result prescribes a region in the plane of masses which is sharp in the sense that if the drift-diffusion system is initiated outside the threshold region of global existence, then blow-up is possible: suitable initial data can be built up in such a way that the corresponding solution blows up in a finite time.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A mathematical model for particles interacting via the gravitational potential is the following system of PDE's:

$$
\left\{\begin{array}{l}
\partial_{t} n-\Delta n+\nabla \cdot(n \nabla \psi)=0 \quad t>0, x \in \mathbb{R}^{2} \\
\partial_{t} p-\Delta p-\nabla \cdot(p \nabla \psi)=0 \quad t>0, x \in \mathbb{R}^{2} \\
-\Delta \psi=-(p-n) \quad x \in \mathbb{R}^{2} \tag{1}\\
n(0, x)=n_{0}(x) \geq 0, \quad p(0, x)=p_{0}(x) \geq 0 \quad x \in \mathbb{R}^{2} .
\end{array}\right.
$$

The initial value problem (1) is one of the most representative systems of the so-called drift-diffusion models. Kurokiba and Ogawa proved in [1] for system (1) local well-posedness, positiveness of the variables n and p, mass conservation and the following blow-up result.

Theorem 1 (Blow-up in Finite Time). Let $s>1$ and

$$
L_{s}^{2}\left(\mathbb{R}^{2}\right)=\left\{f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right) ;\left(1+|x|^{2}\right)^{s / 2} f(x) \in L^{2}\left(\mathbb{R}^{2}\right)\right\}
$$

Let n_{0} and p_{0} be given in $L_{s}^{2}\left(\mathbb{R}^{2}\right)$ with $n_{0}, p_{0} \geq 0$ everywhere, and satisfying

$$
\begin{equation*}
\frac{\left(\int_{\mathbb{R}^{2}}\left(n_{0}-p_{0}\right) d x\right)^{2}}{\int_{\mathbb{R}^{2}}\left(n_{0}+p_{0}\right) d x}>8 \pi \tag{2}
\end{equation*}
$$

Then the solution of (1) blows up in a finite time.

[^0]The possibility of having global existence in time for system (1) whenever

$$
\begin{equation*}
\frac{\left(\int_{\mathbb{R}^{2}}\left(n_{0}-p_{0}\right) d x\right)^{2}}{\int_{\mathbb{R}^{2}}\left(n_{0}+p_{0}\right) d x}<8 \pi \tag{3}
\end{equation*}
$$

was suggested by Kurokiba and Ogawa in [1] and it was partially proved by Kurokiba et al. in [2]. Specifically, they proved in particular the following.

Theorem 2 (Boundedness and Global Existence). Let $s>1$. Suppose that the initial data n_{0} and $p_{0} \in L_{s}^{2}\left(\mathbb{R}^{2}\right) \cap L^{\infty}\left(\mathbb{R}^{2}\right)$ are positive radially symmetric functions. If

$$
\begin{equation*}
\left\|n_{0}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}, \quad\left\|p_{0}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}<8 \pi \tag{4}
\end{equation*}
$$

then the corresponding radially symmetric solution $(n(t), p(t))$ exists globally in $C\left(0, \infty ; L_{s}^{2}\left(\mathbb{R}^{2}\right)\right)$. Moreover, there exists a constant C such that

$$
\sup _{t \geq 0}\|n(t)\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq C, \quad \sup _{t \geq 0}\|p(t)\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq C
$$

However, condition (3) results not to be sufficient to guarantee global existence as was proved by Espejo et al. in [3]. The aim of this letter is to show that although condition (3) does not represent a sufficient condition for global existence in time, the condition of global existence (4) is optimal (in the radial case). Precisely, we show that if θ_{1} and θ_{2} are arbitrary positive parameters satisfying

$$
\theta_{1}>8 \pi \quad \text { or } \quad \theta_{2}>8 \pi
$$

then initial data n_{0} and p_{0} can be constructed in such a way that

$$
\theta_{1}=\int_{\mathbb{R}^{2}} n_{0} d x, \quad \theta_{2}=\int_{\mathbb{R}^{2}} p_{0} d x
$$

and system (1) blows up.
We find it worth pointing out that the blow-up result of Theorem 1 is valid even in the non-radial case; meanwhile Theorem 2 holds true only under radially symmetric conditions on the initial data. As already mentioned, condition (4) involves the constant 8π which results to be sharp. The problem of finding a similar optimal threshold condition under nonradial initial conditions remains open. Threshold-type conditions for a similar system, mainly for the Keller-Segel model of two species with non-radial initial conditions, are currently being investigated by Conca et al. (see [4], for example).
Notation. We denote $M_{1}(r, t)=\int_{B(0, r)} n d x=2 \pi \int_{0}^{r} n \rho d \rho, M_{2}(r, t)=\int_{B(0, r)} p d x=2 \pi \int_{0}^{r} p \rho d \rho, \theta_{1}=\int_{\mathbb{R}^{2}} n_{0} d x$ and $\theta_{2}=\int_{\mathbb{R}^{2}} p_{0} d x$. In terms of M_{1} and M_{2}, system (1) reduces to

$$
\left.\begin{array}{rl}
\partial_{t} M_{1} & =r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial M_{1}}{\partial r}\right)-\frac{M_{2}-M_{1}}{2 \pi r} \frac{\partial M_{1}}{\partial r} \tag{5}\\
\partial_{t} M_{2} & =r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial M_{2}}{\partial r}\right)+\frac{M_{2}-M_{1}}{2 \pi r} \frac{\partial M_{2}}{\partial r}
\end{array}\right\} .
$$

2. Optimization of the blow-up condition

In order to simplify system (5) we prove first that under suitable conditions on the initial data, then either $M_{1} \leq M_{2}$ or $M_{1} \geq M_{2}$. This result will allow us to reduce our analysis to only one equation and then obtain our main result concerning blow-up.

Theorem 3 (Mass Comparison). Suppose that the initial data $n_{0}, p_{0} \in L_{s}^{2}\left(\mathbb{R}^{2}\right) \cap C^{2}\left(\mathbb{R}^{2}\right)$ of (1) are positive radially symmetric functions. If

$$
\begin{equation*}
M_{1}(0, r)=\int_{\mathbb{R}^{2}} n_{0} d x \geq \int_{\mathbb{R}^{2}} p_{0} d x=M_{2}(0, r) \tag{6}
\end{equation*}
$$

then for any solution in $C\left([0, T) ; L_{s}^{2}\left(\mathbb{R}^{2}\right)\right) \cap C\left([0, T) ; C^{2}\left(\mathbb{R}^{2}\right)\right)$,

$$
M_{1}(t, r) \geq M_{2}(t, r)
$$

Proof. The idea of the proof is to formulate a suitable parabolic equation in the variable $R:=\int_{0}^{r}(n-p) \rho d \rho$ and then apply the maximum principle to show that $R \geq 0$. With this end in mind, we first define the following variables:

$$
\begin{aligned}
& v(t, x)=n(t, x)+p(t, x) \\
& w(t, x)=n(t, x)-p(t, x)
\end{aligned}
$$

It follows that (v, w) satisfies the following parabollic-elliptic system:

$$
\begin{aligned}
& \partial_{t} v-\Delta v+\nabla(w \nabla \psi)=0 \quad t>0, x \in \mathbb{R}^{2} \\
& \partial_{t} w-\Delta w+\nabla(v \nabla \psi)=0 \quad t>0, x \in \mathbb{R}^{2} \\
& -\Delta \psi=w \quad x \in \mathbb{R}^{2} \\
& v(0, x)=n_{0}(x)+p(x), \quad w(0, x)=n_{0}(x)-p_{0}(x) .
\end{aligned}
$$

We change now to polar coordinates and integrate on $(0, r)$. Denoting $S=\int_{0}^{r} v \rho d \rho, R=\int_{0}^{r} w \rho d \rho$ and using $v=$ $\frac{1}{r} \frac{\partial}{\partial r} \int_{0}^{r} v \rho d \rho=\frac{1}{r} \frac{\partial S}{\partial r}$ and $w=\frac{1}{r} \frac{\partial}{\partial r} \int_{0}^{r} w \rho d \rho=\frac{1}{r} \frac{\partial R}{\partial r}$ we get after simplyfing the following reduced system:

$$
\begin{align*}
& \partial_{t} S-r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial S}{\partial r}\right)-\frac{1}{r} \frac{\partial R}{\partial r} R=0 \tag{7}\\
& \partial_{t} R-r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial R}{\partial r}\right)-\frac{1}{r} \frac{\partial S}{\partial r} R=0 \tag{8}
\end{align*}
$$

By hypothesis in $t=0$ we have $R \geq 0$ and $R=0$ on $r=0$, in addition the coefficient of R is negative. By means of the change of variables $R=\bar{R} e^{t}$ in (8) we get

$$
\partial_{t} \bar{R}-r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \bar{R}}{\partial r}\right)+\left(-\frac{1}{r} \frac{\partial S}{\partial r}-1\right) \bar{R}=0
$$

Now if the minimum of \bar{R} were negative at this point we would have $\partial_{t} \bar{R} \leq 0, \frac{\partial \bar{R}}{\partial r}=0$ and $\frac{\partial^{2} \bar{R}}{\partial r^{2}} \geq 0$ and therefore $\partial_{t} \bar{R}-r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \bar{R}}{\partial r}\right)=\partial_{t} \bar{R}-\frac{\partial^{2} \bar{R}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \bar{R}}{\partial r} \leq 0$ and $\left(-\frac{1}{r} \frac{\partial S}{\partial r}-1\right) \bar{R}>0$ getting a contradiction with (8). It follows that $\bar{R} \geq 0$ and consequently $R \geq 0$. Using that

$$
\begin{aligned}
R & =\int_{0}^{r} w \rho d \rho=\int_{0}^{r}(n-p) \rho d \rho \\
& =\frac{1}{2 \pi}\left(\int_{B(0, r)} n \rho d \rho-\int_{B(0, r)} p \rho d \rho\right)=\frac{1}{2 \pi}\left(M_{1}-M_{2}\right)
\end{aligned}
$$

we conclude that

$$
\begin{equation*}
M_{1} \geq M_{2} \tag{9}
\end{equation*}
$$

Therefore, variables M_{1} and M_{2} are comparable.
The following result was proved in [[3], Th. 3] and it plays an essential role for our considerations. For the sake of completeness we outline the proof here.

Theorem 4 (Conditions for the Boundedness of p). Suppose that the initial data $n_{0}, p_{0} \in L_{s}^{2}\left(\mathbb{R}^{2}\right) \cap C^{2}\left(\mathbb{R}^{2}\right)$ of (1) are positive radially symmetric functions. If the initial data of (1) satisfy

$$
\begin{equation*}
n(r, 0) \geq p(r, 0) \tag{10}
\end{equation*}
$$

then for any solution in $C\left([0, T) ; L_{s}^{2}\left(\mathbb{R}^{2}\right)\right) \cap C\left([0, T) ; C^{2}\left(\mathbb{R}^{2}\right)\right)$ there exists a constant C such that

$$
p(r, t) \leq C \quad \forall t>0, x \in \mathbb{R}^{2}
$$

Proof. From (5) and (9) it follows that

$$
\begin{equation*}
\partial_{t} M_{2} \leq r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial M_{2}}{\partial r}\right) . \tag{11}
\end{equation*}
$$

At the time $t=0$, the variable p_{0} is bounded for some constant C, then we have $M_{2}(r, 0)=\frac{1}{2 \pi} \int_{B(0, r)} p_{0} \rho d \rho \leq$ $\frac{1}{2 \pi} C \int_{B(0, r)} \rho d \rho=C r^{2}$. Introducing the transformation $\bar{M}(r, t)=M_{2}(r, t)-C r^{2}$, it follows from (11) that \bar{M} satisfies

$$
\begin{align*}
& \partial_{t} \bar{M} \leq \frac{\partial^{2} \bar{M}}{\partial r^{2}}-\frac{1}{r} \frac{\partial \bar{M}}{\partial r} \tag{12}\\
& \bar{M}(r, 0) \leq 0, \quad \bar{M}(0, t)=0, \quad \bar{M}(R, t) \leq 0
\end{align*}
$$

Thus the maximum principle yields

$$
\bar{M}(r, t)=M_{2}(r, t)-C r^{2} \leq 0
$$

and, hence, $M_{2}(r, t)=2 \pi \int_{0}^{r} p \rho d \rho \leq C r^{2}$. Using regularity theory for parabolic equations (see [5]), we then obtain the bound $p=\frac{1}{r} \frac{\partial M_{2}}{\partial r} \leq C$, for a suitable constant $C>0$.

The last theorem will allow us to simplify system (5) and apply the moments technique (see, e.g. [6-8]) to prove blowup. This final result shows that in the radial case condition (2) for blow-up can be improved and even more it shows that conditions (4) for global existence (2) are optimal.

Theorem 5 (Finite Time of Existence for p). Suppose that the initial data $n_{0}, p_{0} \in L_{s}^{2}\left(\mathbb{R}^{2}\right) \cap C^{2}\left(\mathbb{R}^{2}\right)$ are positive radially symmetric functions and that the inequality $n(r, 0) \geq p(r, 0)$ is satisfied. If

$$
\begin{equation*}
\frac{\theta_{1}}{2 \pi}\left(8 \pi-\theta_{1}\right)+C m_{1}(0)<0 \tag{13}
\end{equation*}
$$

where

$$
\theta_{1}=\int_{\mathbb{R}^{2}} n_{0} d x \quad \theta_{2}=\int_{\mathbb{R}^{2}} p_{0} d x
$$

is fulfilled, then we have $T_{\max }<\infty$, where $T_{\max }$ is the maximum time of existence of solution n.
Proof. Let $m_{1}(t)=\int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x$. Multiplying the first equation of (1) by $|x|^{2}$ and integrating the resulting relation over \mathbb{R}^{2}, we obtain

$$
\begin{equation*}
\partial_{t} \int_{\mathbb{R}^{2}} n|x|^{2} d x=\int_{\mathbb{R}^{2}}|x|^{2} \Delta n d x-\int_{\mathbb{R}^{2}}|x|^{2} \nabla \cdot(n \nabla \psi) d x . \tag{14}
\end{equation*}
$$

From Green's identity we get

$$
\begin{aligned}
\partial_{t} \int_{\mathbb{R}^{2}} n|x|^{2} d x & =\int_{\mathbb{R}^{2}}\left(\Delta|x|^{2}\right) n d x-\int_{\mathbb{R}^{2}}|x|^{2} \nabla \cdot(n \nabla \psi) d x=4 \int_{\mathbb{R}^{2}} n d x+\int_{\mathbb{R}^{2}} \nabla\left(|x|^{2}\right) \cdot(n \nabla \psi) d x \\
& =4 \int_{\mathbb{R}^{2}} n d x+2 \int_{\mathbb{R}^{2}} n(x \cdot \nabla \psi) d x .
\end{aligned}
$$

From $\frac{\partial \psi}{\partial r}=\frac{M_{2}-M_{1}}{2 \pi r}$ and the identity for radial symmetric functions $x \cdot \nabla \psi=r \frac{\partial \psi}{\partial r}$ we get

$$
\begin{align*}
\int_{\mathbb{R}^{2}} n(x \cdot \nabla \psi) d x & =2 \pi \int_{0}^{\infty} n r \frac{\partial \psi}{\partial r} r d r=2 \pi \int_{0}^{\infty} n\left(\frac{M_{2}-M_{1}}{2 \pi}\right) r d r \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} M_{2} n r d r-\int_{0}^{\infty} M_{1} n r d r \tag{15}
\end{align*}
$$

From Theorem 4 we know that p is bounded. Thus we obtain the estimate $M_{2} \leq c r^{2}$. It follows from (15) that

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} n(x \cdot \nabla \psi) d x & \leq C \int_{0}^{\infty} n r^{3} d r-\frac{1}{2 \pi} \int_{0}^{\infty} M_{1} \frac{\partial M_{1}}{\partial r} d r \\
& =\frac{C}{2 \pi} \int_{\mathbb{R}^{2}} n|x|^{2} d x-\frac{1}{4 \pi} \theta_{1}^{2}
\end{aligned}
$$

From (14) it follows that

$$
\begin{aligned}
\frac{d}{d t} m_{1}(t) & \leq 4 \theta_{1}+2\left(-\frac{1}{4 \pi} \theta_{1}^{2}\right)+C m_{1}(t) \\
& =4 \theta_{1}-\frac{1}{2 \pi} \theta_{1}^{2}+C m_{1}(t) \\
& =\frac{\theta_{1}}{2 \pi}\left(8 \pi-\theta_{1}\right)+C m_{1}(t)
\end{aligned}
$$

Suppose

$$
\frac{\theta_{1}}{2 \pi}\left(8 \pi-\theta_{1}\right)+C m_{1}(0)<0
$$

In consequence,

$$
0 \leq m_{1}(t)<m_{1}(0)+\left(\frac{\theta_{1}}{2 \pi}\left(8 \pi-\theta_{1}\right)+C m_{1}(0)\right) t
$$

Thus there exists $T_{0} \in(0, \infty)$ such that

$$
m_{1}(t) \rightarrow 0 \quad \text { as } t \rightarrow T_{0}
$$

Therefore $T_{\max } \leq T_{0}<\infty$.
In a similar way we obtain the following result.
Theorem 6 (Finite Time of Existence for n). Suppose that the initial data n_{0} and $p_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ and

$$
p(r, 0) \geq n(r, 0)
$$

If

$$
\begin{equation*}
\frac{\theta_{2}}{2 \pi}\left(8 \pi-\theta_{2}\right)+C m_{2}(0)<0 \tag{16}
\end{equation*}
$$

where

$$
\theta_{1}=\int_{\mathbb{R}^{2}} n_{0} d x \quad \theta_{2}=\int_{\mathbb{R}^{2}} p_{0} d x
$$

is fulfilled, then we have $T_{\max }<\infty$, where $T_{\max }$ is the maximum time of existence of solution p.
Theorems 5 and 6 show that if θ_{1} and θ_{2} are arbitrary positive parameters satisfying

$$
\theta_{1}>8 \pi \quad \text { or } \quad \theta_{2}>8 \pi
$$

then we can construct initial data n_{0} and p_{0} such that

$$
\theta_{1}=\int_{\mathbb{R}^{2}} n_{0} d x, \quad \theta_{2}=\int_{\mathbb{R}^{2}} p_{0} d x
$$

and system (1) blows up. For example, take n_{0}, p_{0} satisfying (6) with $\theta_{1}=\int_{\mathbb{R}^{2}} n_{0} d x>8 \pi$ together with an initial moment $m_{1}(0)$ small enough such that inequality (13) holds, then Theorem 5 implies blow-up for system (1). Consequently, the optimal blow-up region should be the square found by Kurokiba et al. in [2].

References

[1] M. Kurokiba, T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differ. Integral Eqns. 4 (2003) 427-452.
[2] M. Kurokiba, T. Nagai, T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system, Commun. Pure Appl. Anal. 5 (2006) 97-106.
[3] E. Espejo, A. Stevens, J.J.L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model, Differ. Integral Eqns. 23 (2010) $451-462$.
[4] C. Conca, E. Espejo, K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in \mathbb{R}^{2}, European J. Appl. Math. (2011) doi:10.1017/S0956792511000258. Available on CJO 2011.
[5] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasilinear Equations of the Parabolic Type, Nauka, Moscow, 1967.
[6] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ. 44 (2006) 1-32.
[7] P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998) 715-743.
[8] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995) 581-601.

[^0]: * The authors acknowledge the Chilean \& French Governments through a ConiCYT-InRIA Grant.
 * Corresponding author. Tel.: +56 5717815690.

 E-mail addresses: cconca@dim.uchile.cl (C. Conca), spiegel12@gmail.com, eespejo@ing.uchile.cl (E. Espejo).

