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Abstract

Starting from explicit expressions for the subdifferential of the conjugate function, we
establish in the Banach space setting some integration results for the so-called epi-pointed
functions. These results use the ε-subdifferential and the Legendre-Fenchel subdifferential
of an appropriate weak lower semicontinuous (lsc) envelope of the initial function. We apply
these integration results to the construction of the lsc convex envelope either in terms of the
ε-subdifferential of the nominal function or of the subdifferential of its weak lsc envelope.
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1 Introduction

Determining a function from its first-order variations is a fundamental principle in nonlinear
analysis. This question becomes more involved when the nominal function fails to be differ-
entiable, so that the first problem to deal with concerns the choice of a convenient concept to
quantify the variations of this function. The integration theory for lower semicontinuous (lsc, for
short) convex proper functions in the Banach space setting was completely solved in the sixties
[19, 20] by using the so-called Legendre-Fenchel subdifferential operator:

∂f(x) ⊂ ∂g(x) for all x ∈ X ⇐⇒ f = g + constant. (1)

This concept of generalized differentiation has been shown to be very useful in the framework of
convex analysis so that many classical results of differential calculus and linear operator theory
are beneficially extended; see, e.g., [17, 18]. Beside this powerful property, this subdifferential
operator behaves very badly outside the convex framework; just think of the (Lipschitz con-
tinuous) function f(x) = − |x| defined on the real-line, which has an empty subdifferential at
each point. This fact has led to the introduction of many tools of nonsmooth analysis which
realize useful integration properties, like the Clarke, the Fréchet, the Ioffe, the Michel-Penot, the
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Mordukhovich subdifferentials, among many others; we refer to the book [16] and the references
therein.
Nevertheless, the Legendre-Fenchel subdifferential can also be useful for many purposes even

when dealing with non-necessarily convex functions, namely, those verifying some kind of coerciv-
ity as the condition (5) below. In what concerns this paper, we provide some integration results
by using the concept of ε-subdifferential. These results ensure, for a large class of non-necessarily
convex functions defined on a Banach space, the coincidence up to an additive constant of the
lsc convex envelopes rather than the functions themselves:

∂εf(x) ⊂ ∂εg(x) for all x ∈ X and ε > 0 small enough =⇒ cof = cog + constant. (2)

It is clear that both criteria in (1) and (2) are equivalent for proper lsc convex functions. In the
setting of locally convex spaces, the above integration formula was established in [15] for proper
lsc convex functions. Moreover, a criterion using only the exact subdifferential (ε = 0) will be
given by means of an appropriate concept of weak lsc envelope:

∂f̄w
∗∗

(x) ⊂ ∂ḡw
∗∗

(x) for all x ∈ X =⇒ cof = cog + constant.

Hence, in the line of [20] we construct the lsc convex envelope of a function by means of its
ε-subdifferential, or, equivalently, in terms of the exact subdifferential of its weak lsc envelope.
Since this approach easily breaks down for general functions we will limit ourselves to the useful
and quite large family of epi-pointed functions; i.e., those whose conjugate functions are finite
and continuous at some point.
To obtain the above results, we follow a natural idea which consists of passing through the

conjugate function, which is by construction a (weak*) lsc proper convex function, and the
classical integration formula of [20]. This explains why the first part of this work is dedicated
to expressing the subdifferential of the conjugate function in terms of the subdifferential of the
nominal function, when the dual space X∗ is endowed with its norm topology. First results
giving such expressions, dealing with the conjugate function, have been recently established in
[11, 12, 14] for the general setting of two real locally convex Hausdorff topological vector spaces
paired in duality.

1.1 Problem formulation and notation

Let us first fix some notations that are needed in the problem formulation below and throughout
the paper; other ones will be given progressively. We work on a Banach space (X, ‖·‖) whose dual
and bidual spaces are denoted by X∗ and X∗∗, respectively. We use σ(X,X∗), σ(X∗, X) and
σ(X∗∗, X∗) to refer to the weak, the weak* and the weak** topologies, respectively. We shall
identify X to a subset of X∗∗, by the canonical embedding, and, unless otherwise expressed,
endow X∗∗ with the weak** topology σ(X∗∗, X∗) which makes (X∗∗)∗ isomorphic to X∗. A
subset U ⊂ X (or X∗) is said to be a θ-neighborhood if it is a convex symmetric neighborhood
of the zero vector θ. If f : X → R ∪ {+∞} is a given function and ε ≥ 0, the ε-subdifferential of
f at a point x ∈ X is the (possibly empty) subset of X∗ given by

∂εf(x) := {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f(y)− f(x) + ε for all y ∈ X},

where 〈·, ·〉 denotes the duality product of X and X∗; we will omit referring to ε when it equals
0. We use dom f to denote the (effective) domain of f, dom f := {x ∈ X | f(x) < +∞}. We say
that f is proper if dom f 6= ∅ and f > −∞.We denote Γ0(X) the family of the lsc convex proper
functions defined on X; Γ0(X

∗) and Γ0(X
∗∗) are defined similarly. The conjugate of f : X → R
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is the function f∗ : X∗ → R given by

f∗(x∗) := sup
X

(x∗ − f).

Similarly, the conjugate of f∗ is the function f∗∗ : X∗∗ → R given by

f∗∗(x∗∗) = sup
X∗

(x∗∗ − f∗).

In particular, provided that f∗ is proper, the restriction of f∗∗ on X coincides with the lsc convex
envelope of f , cof : X −→ R defined by

cof(x) := sup{g(x) | g ∈ Γ0(X), g ≤ f}.

Equivalently, the ε-subdifferential mapping ∂εf∗ : X∗ ⇒ X∗∗ is written as

∂εf
∗(x∗) = {x∗∗ ∈ X∗∗ | f∗∗(x∗∗) + f∗(x∗) ≤ 〈x∗∗, x∗〉+ ε},

where 〈·, ·〉 is also used to denote the duality product of X∗ and X∗∗. Then, the ε-subdifferential
mapping ∂εf∗∗ : X∗∗ ⇒ X∗ is written as

∂εf
∗∗(x∗∗) = {x∗ ∈ X∗ | f∗∗(x∗∗) + f∗(x∗) ≤ 〈x∗∗, x∗〉+ ε}.

The indicator and the support functions of a subset A (⊂ X,X∗) are, respectively,

IA(x) := 0 if x ∈ A; +∞ if x 6∈ A, σA := I∗A.

The inf-convolution of two functions f, g : X → R is f�g := infx∈X{f(x) + g(· − x)}. If
M : Y ⇒ Z is a set-valued operator, for two sets Y, Z, we denote M−1(z) := {y ∈ Y | z ∈My},
ImM := {My | y ∈ Y } and domM := {y ∈ Y | My 6= ∅}. We shall write (y, z) ∈ M when
z ∈My.

Problem formulation. The classical integration formula [20] states that two lsc convex
proper functions f, g : X → R ∪ {+∞} satisfying

∂f(x) ⊂ ∂g(x) for all x ∈ X, (3)

coincide up to an additive constant c,
f = g + c.

This result readily breaks down outside the convex framework; for instance, the function f(x) =
− |x| recalled above satisfies (3) independently of the choice of the function g. Nevertheless, the
convexity assumption on the second function g is not necessary and can be easily overcome by
using the lsc convex envelope of g. Indeed, by observing that the inclusion ∂g(x) ⊂ ∂(cog)(x)
always holds, (3) implies that ∂f(x) ⊂ ∂(cog)(x) for all x ∈ X. Therefore, provided that f is
proper, lsc and convex, by the integration formula for convex functions we get

f = cog + c,

which obviously covers (3). The question is then to what extent do formulas similar to this last
one hold? In this paper, we will be interested in criteria like (3) which imply the validity of the
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following expression
cof = cog + c. (4)

But, what kind of assumption would one introduce towards this aim? In view of the example
of f(x) = − |x| cited above, it follows that the worst situation occurs when ∂f is often empty-
valued. So, a reasonable condition to guaranty (4) for non necessarily convex functions would be
that ∂f(x) is nonempty “for many points”; for instance, the conjugate function f∗ satisfies

int(dom f∗) 6= ∅. (5)

The functions f satisfying this dual condition, very recurrent in the literature [17, 21], are
referred to as the (asymptotically) epi-pointed functions in [7] (see, also, [22] for an extension
of this property). This condition (5) is also related to the behaviour at infinity of the initial
function and, due to the current Banach space setting, it is equivalent to f∗ being finite and
continuous on int(dom f∗). It is also worth recalling that, from a primal point of view, (5) reflects
the strong coercivity of a linear translation of the initial function f ; that is (see, e.g., [6]), there
exists x∗ ∈ X∗ such that

lim inf
‖x‖→+∞

f(x)− 〈x∗, x〉
‖x‖ > 0;

hence, θ ∈ int(dom f∗) if and only if f is strongly coercive.
We shall prove in this paper (Section 3) that under a slight modification of (3), namely

∂εf(x) ⊂ ∂εg(x) for all x ∈ X and all ε > 0 small enough, (6)

the following variant of (4) holds

cof = (cog)�σdom f∗ + c; (7)

hence, one can deduce (4) in many practical cases. Another criterion using the exact subdiffer-
ential will be given by means of the weak** lsc envelopes f̄w

∗∗
and ḡw

∗∗
(Definition1), namely

∂f̄w
∗∗

(x) ⊂ ∂ḡw
∗∗

(x) for all x ∈ X∗∗. (8)

Conditions (6) and (8), together with (7), are somewhat natural since they are implicitly included
in the integration statement given in the convex framework; see Remark 3.
We shall apply the previous results in the construction of the lsc convex envelope of epi-

pointed functions. Namely, we show in Section 4 that for any function f the lsc convex envelope
of f , cof, is obtained in the following way, for any given x0 ∈ dom(∂f),

cof(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉
}
,

where the supremum is taken over n ∈ N, (xi, x
∗
i ) ∈ ∂f̄w

∗∗
, i = 1, · · ·n, and x∗0 ∈ ∂f(x0).

Equivalently, we obtain a relaxed formula which uses the ε-subdifferential, for any given x0 ∈
dom(∂f) and δ > 0,

cof(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉 −
n∑
i=1

εi

}
,

where the supremum is taken over n ∈ N, εi ∈ (0, δ), (xi, x
∗
i ) ∈ ∂εif, i = 1, · · ·n, and x∗0 ∈ ∂f(x0).
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When the space X has the Radon-Nikodym property [18, §5], the last two formulas above are
written by only calling to the pairs of ∂f , giving a different proof of a similar result given in [6].

Our main tools are formulas for expressing the subdifferential of the conjugate function with
respect to the pair (X∗, X∗∗); i.e., ∂f∗(x∗) is seen as a subset of X∗∗ and, so, may contain
points that are not in X (with the abuse of language). Thus, we will have to adapt to our
current setting, when X∗ is endowed with its norm topology, some similar formulas established
in [11, 12, 14] for the duality pair (X∗, X).

The summary of the remainder of the paper is as follows. In Section 2, we gather the main
tools of our analysis. Namely, we provide formulas for the subdifferential of the conjugate function
with respect to the pair (X∗, X∗∗) : Proposition 3 uses an enlargement of the Legendre-Fenchel
subdifferential; Proposition 4 uses the ε-subdifferential of the initial function; Proposition 5
concerns positively homogeneous functions; and Proposition 6 investigates the case when the
conjugate is Fréchet-differentiable at the nominal point. In Section 3, the main integration
formula is presented in Theorem 9 using the weak** lsc envelope of the associated functions. A
version of this result using the ε-subdifferential is given in Corollary 10. Finally, in Section 4 we
provide the construction of the lsc convex envelope either by means of the weak** lsc envelope
(Theorem 14) or by the ε-subdifferential (Theorem 13).

2 Subdifferential of the conjugate function

In this section, we express the subdifferential set of the conjugate function in the Banach space
X, ∂f∗ : X∗ ⇒ X∗∗. In our setting, the recent results of [11] (and [14]) cannot be immediately
applied unless the dual space X∗ is associated with a topology which is compatible with the
duality pair (X∗, X); for instance, the weak* topology σ(X∗, X). Nevertheless, our analysis
makes use of these results to overcome the current diffi culty which occurs outside of reflexive
spaces.
Here, and hereafter, we use the notation

F(f) := {L ⊂ X∗ closed and convex | f∗|ri(L∩dom f∗) is finite and continuous}, (9)

where ri denotes the (topological) relative interior (i.e., the interior relative to the affi ne envelope
when it is closed, and the empty set otherwise ([25])), and f∗|ri(L∩dom f∗) denotes the restriction
of f∗ on ri(L ∩ dom f∗). If x∗ ∈ X∗, then we set

F(f, x∗) := {L ∈ F(f) | x∗ ∈ L}. (10)

We first introduce the following enlargement of the subdifferential, given and studied in [11] (see,
also, [12]).

Definition 1 Given a function f : X → R and a subset L ⊂ X∗, a vector x∗ ∈ L is said to
be a relative subgradient of f at x ∈ X with respect to L, if f∗(x∗) ∈ R and there exists a net
(xα) ⊂ X such that

lim〈xα − x, y∗〉 = 0 ∀y∗ ∈ aff (L ∩ dom f∗ − x∗) , and

lim(f(xα)− 〈xα, x∗〉) = −f∗(x∗).

The set of such relative subgradients, denoted by ∂rLf(x), is called the relative subdifferential of
f at x with respect to L. If dom f∗ ⊂ L, we omit the reference to L and simply write ∂rf(x) :=
∂rLf(x).
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For given A, B ⊂ X (or X∗), we shall write

A+B := {a+ b | a ∈ A, b ∈ B}, A+ ∅ = ∅+A := ∅.

To denote the normal cone to A at x we use

NA(x) := {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ 0 ∀y ∈ A} if x ∈ A; ∅ if x ∈ X \A.

By coA we denote the convex envelope of A. We use τ -intA and clτ A (or, indistinctly, A
τ
)

to respectively denote the interior and the closure of A with respect to a given topology τ ;
hence, coτA := clτ (coA). For example, cow

∗∗
(A) stands for the weak** closed convex envelope

of A. Unless otherwise expressed, when τ is the norm topology on X or X∗ then we omit the
superscript τ for convenience.
The following result allows the characterization of X ∩ ∂f∗(x∗) which is generally a proper

subset of ∂f∗(x∗) (⊂ X∗∗). The characterization of the whole set ∂f∗(x∗) will be given in
Propositions 3 and 4 below. We use the notation f̄w : X → R to denote the weak lsc envelope
of f given by

f̄w(x) := lim inf
y
w−→x

f(y),

where w−→ refers to the convergence in the weak topology σ(X,X∗) on X.

Proposition 1 [11, Theorem 4] We endow X∗ with a locally convex topology τ compatible with
the duality pair (X,X∗). Given a function f : X → R, for every x∗ ∈ X∗ we have that

X ∩ ∂f∗(x∗) =
⋂

L∈Fτ (f,x∗)

co
{

(∂rLf)−1(x∗) + NL∩dom f∗(x∗)
}
,

where Fτ (f, x∗) is defined as in (9)-(10) but with τ instead of the norm topology. In particular,
if τ -int(dom f∗) is nonempty and f∗ is τ -continuous on τ -int(dom f∗), then

X ∩ ∂f∗(x∗) = Ndom f∗(x∗) + co
{

(∂f
w

)−1(x∗)
}
.

We shall need the following definition.

Definition 2 Given a function f : X → R, we call extension of f to X∗∗ the function f̂ : X∗∗ →
R defined by

f̂(x∗∗) := f(x∗∗), if x∗∗ ∈ X; +∞, otherwise.

We denote by f̄w
∗∗

: X∗∗ → R the weak** lsc envelope of f̂ ; that is,

f̄w
∗∗

(x∗∗) = lim inf
x
w∗∗−→x∗∗
x∈X

f(x),

where x w∗∗−→
x∈X

x∗∗ refers to the convergence of x (∈ X) to x∗∗ in the weak** topology σ(X∗∗, X∗)

on X∗∗ .

The following lemma provides some simple properties of the functions f̂ and f̄w
∗∗
defined

above.

Lemma 2 We endow X∗∗ with the weak** topology σ(X∗∗, X∗). For a given function f : X →
R, the following statements hold :
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(i) f̄w
∗∗
is weak** lsc.

(ii) f̄w
∗∗

= f∗∗ provided that f ∈ Γ0(X).

(iii) f∗ = (f̄w
∗∗

)∗ = (f̂)∗.

(iv) ∂εf̂ = ∂εf for every ε > 0.

(v) The subdifferential operator of f̄w
∗∗
, ∂f̄w

∗∗
: X∗∗ ⇒ X∗, is characterized by

∂f̄w
∗∗

(x∗∗) =
⋂
ε>0
U∈N

⋃
y∈x∗∗+U

∂εf(y),

where N denotes the collection of the θ-neighborhoods in (X∗∗, σ(X∗∗, X∗)).

(vi) For every x∗ ∈ X∗,
(
∂f̄w

∗∗)−1
(x∗) =

⋂
ε>0

(∂εf)
−1

(x∗)
w∗∗

.

Proof. The statements (i), (iii) and (iv) are immediate, while (ii) is asserted in the proof of [20,
Proposition 1], and (vi) follows by inverting the formula in (v). Finally, (v) comes from Corollary
2.3 and Remark 2.4 in [24], applied to the function f̂ ; that is,

∂f̄w
∗∗

(x∗∗) =
⋂
ε>0
U∈N

⋃
y∈x∗∗+U

∂εf̂(y).

Thus, (v) follows in view of (iv).
The following result gives the subdifferential of f∗ with respect to the pair (X∗, X∗∗). We

recall that F(f, x∗) is defined in (9) and (10), and the extension f̂ is introduced in Definition 2.

Proposition 3 Let X be a Banach space. Given a function f : X → R, for every x∗ ∈ X∗ we
have the formula

∂f∗(x∗) =
⋂

L∈F(f,x∗)

cow
∗∗
{

(∂rLf̂)−1(x∗) + NL∩dom f∗(x∗)
}
.

In particular, if int(dom f∗) 6= ∅, then

∂f∗(x∗) = Ndom f∗(x∗) + cow
∗∗
{

(∂f̄w
∗∗

)−1(x∗)
}
.

Proof. We endow X∗∗ with the weak** topology, σ(X∗∗, X∗), and X∗ with its norm topology
so that the pair (X∗∗, X∗) becomes a dual topological pair. Then, by applying Proposition 1 to
the extension function of f introduced in Definition 2, f̂ : X∗∗ → R, we get that

∂(f̂)∗(x∗) =
⋂

L∈F(f̂ ,x∗)

cow
∗∗
{

(∂rLf̂)−1(x∗) + NL∩dom(f̂)∗(x∗)
}
.

Therefore, the first desired formula follows from Lemma 2(iii)-(iv) and the straightforward fact
that F(f̂ , x∗) = F(f, x∗). Similarly, the second formula follows from the second part of Propo-
sition 1, by taking into account that f̄w

∗∗
is the weak** lsc envelope of f̂ .
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The following proposition expresses the subdifferential of the conjugate function by means
of the ε-subdifferential. It is interesting to observe that the formulas given here use the initial
function f rather than its extension f̂ .

Proposition 4 With the notation of Proposition 3, for every x∗ ∈ X∗ we have the formula

∂f∗(x∗) =
⋂
ε>0

L∈F(f,x∗)

cow
∗∗ {

NL∩dom f∗(x∗) + (∂εf)−1(x∗)
}
.

Moreover, provided that int(dom f∗) 6= ∅ the formula above reduces to

∂f∗(x∗) = Ndom f∗(x∗) +
⋂
ε>0

cow
∗∗ {

(∂εf)−1(x∗)
}
,

or, equivalently,

∂f∗(x∗) = Ndom f∗(x∗) + cow
∗∗

{⋂
ε>0

(∂εf)−1(x∗)
w∗∗
}
.

Proof. As in the proof of Proposition 3, we consider the dual pair (X∗∗, X∗) where X∗∗ is
endowed with the weak** topology σ(X∗∗, X∗) and X∗ with its norm topology. According to
[14, Corollary 4.9], applied to the extension function of f to X∗∗, f̂ (see Definition 2), we have
that

∂(f̂)∗(x∗) =
⋂
ε>0

L∈F(f̂ ,x∗)

cow
∗∗
{

NL∩dom(f̂)∗(x∗) + (∂εf̂)−1(x∗)
}
.

Thus, the first formula easily follows from Lemma 2(iii)-(iv). In the same manner, we prove the
second formula by applying the result of [12, Proposition 7] to f̂ ,

∂(f̂)∗(x∗) = Ndom(f̂)∗(x∗) +
⋂
ε>0

L∈F(f̂ ,x∗)

cow
∗∗
{

(∂εf̂)−1(x∗)
}
.

Hence, the conclusion holds since, by Lemma 2(iii)-(iv), f∗ = (f̂)∗, F(f̂ , x∗) = F(f, x∗) and
∂εf̂ = ∂εf. The last formula follows by combining Proposition 3 and Lemma 2(vi).

The previous formulas simplify considerably for positively homogeneous functions: we recall
that f : X → R is said to be positively homogeneous, if f(λx) = λf(x) for all λ ≥ 0 and all
x ∈ X such that f(x) ∈ R.

Proposition 5 With the notation of Proposition 3, if f : X → R is positively homogeneous and
satisfies int(dom f∗) 6= ∅, then for every x∗ ∈ X∗

∂f∗(x∗) = cow
∗∗
{

(∂f̄w
∗∗

)−1(x∗)
}

=
⋂
ε>0

cow
∗∗ {

(∂εf)−1(x∗)
}

= cow
∗∗

{⋂
ε>0

(∂εf)−1(x∗)
w∗∗
}
.

Proof. We fix x∗ ∈ X∗. As in the proof of Proposition 3 we consider the extension function of f,
f̂ : X∗∗ → R given in Definition 2. We also consider the dual pair (X∗∗, X∗) endowed with the
topology σ(X∗∗, X∗)× ‖·‖∗ , with ‖·‖∗ being the norm of X∗. Then, according to [12, Theorem
6 and Proposition 7], with respect to the dual pair (X∗∗, X∗) the subdifferential of (f̂)∗ at x∗ is
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given by

∂(f̂)∗(x∗) = cow
∗∗
{

(∂f̄w
∗∗

)−1(x∗)
}

=
⋂
ε>0

cow
∗∗
{

(∂εf̂)−1(x∗)
}
.

Thus, the first two desired equalities follow from Lemma 2(iii)-(iv) as in the proof of Proposition
3. Moreover, the remainder equality holds by invoking Lemma 2(vi).

The previous formulas are written in a very explicit way when the conjugate function is
Fréchet-differentiable as shown in the following proposition, which is indeed a simple consequence
of [8, Proposition 2.2] (see, also, [13]). Here, we give a slightly different proof which uses the
general formula given in Proposition 3.

Proposition 6 With the notation of Proposition 3, we assume that the conjugate function is
Fréchet-differentiable at x∗ ∈ X∗. If f is lsc, then

∂f∗(x∗) = (∂f)−1(x∗).

Proof. First, we observe that f∗ is continuous at x∗ so that x∗ ∈ int(dom f∗), Ndom f∗(x∗) = {θ}
and ∂f∗(x∗) = {∇f∗(x∗)} ⊂ X (see [25, Corollary 3.3.4]). Then, according to Proposition 3 we
obtain

∂f∗(x∗) = cow
∗∗
{

(∂f̄w
∗∗

)−1(x∗)
}

= (∂f̄w
∗∗

)−1(x∗) = {∇f∗(x∗)} ⊂ X. (11)

Now, we fix x ∈ X ∩ (∂f̄w
∗∗

)−1(x∗). If U is an arbitrary neighborhood of θ in (X,σ(X,X∗))
then, by Lemma 2(vi), for every n > 0 there exists xn ∈ X such that

xn ∈ x+ U and xn ∈ (∂n−1f)
−1

(x∗) ⊂ ∂n−1f∗(x∗).

Consequently, by [25, Theorem 3.3.2] (see, also, [8, Theorem 1.2]), the differentiability assumption
on f∗ implies that the sequence (xn)n (norm-)converges to ∇f∗(x∗) in X. So, since U was
arbitrarily chosen, we deduce that x = ∇f∗(x∗), entailing that (xn)n also (norm-)converges to x.
Moreover, by using the lsc of f we get f̄w

∗∗
(x) = −f∗(x∗) + 〈x, x∗〉 = limn−f∗(x∗) + 〈xn, x∗〉 ≥

lim infn f(xn)−n−1 ≥ f(x) so that f̄w
∗∗

(x) = f(x) = −f∗(x∗) + 〈x, x∗〉; hence, x ∈ (∂f)
−1

(x∗).

This shows that (∂f̄w
∗∗

)−1(x∗) ⊂ {∇f∗(x∗)} ∩ (∂f)
−1

(x∗) which by convexification gives us
cow

∗∗ {
(∂f̄w

∗∗
)−1(x∗)

}
⊂ {∇f∗(x∗)} ∩ (∂f)

−1
(x∗) (this last set being a singleton). Finally,

since the opposite inclusion (∂f)
−1

(x∗) ⊂ (∂f̄w
∗∗

)−1(x∗) holds trivially we conclude in view of
(11).

Remark 1 (i) It is worth observing that the lsc of f in Proposition 6 is only needed to hold at
the point ∇f∗(x∗), which was shown to belong to X.
(ii) The conclusion of Proposition 6 also reads, provided that f∗ is Fréchet-differentiable at

x∗ and f is lsc at ∇f∗(x∗),

∂f∗(x∗) =
{

(∂f)−1(x∗)
}

=
{

(∂f̄w)−1(x∗)
}

=
{

(∂f̄w
∗∗

)−1(x∗)
}

= {∇f∗(x∗)},

where f̄w and f̄w
∗∗
respectively denote the weak lsc and the weak** lsc envelopes of f.Moreover,

these equalities also hold if in the definition of f̄w
∗∗
(Definition 2) one takes sequences instead

of nets.
(iii) The differentiability properties of the conjugate function are related to the stability

properties of the optimization problems infX(f − x∗), x∗ ∈ X∗; see, e.g., [2], [13], [25, Theorem
3.9.1].

Some consequences of Proposition 3 are in order, showing that the epi-pointed functions (those
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satisfying int(dom f∗) 6= ∅) share many useful properties with the convex ones. Let us recall for
this aim the following facts which can be found in [18, §5]; some of them will be used in the next
sections. The Banach space X is said to have the Radon-Nikodym property (RNP, for short)
if every nonempty closed convex bounded subset can be written as the closed convex envelope
of its strongly exposed points (see, e.g., [18, Theorem 5.21]). Moreover, by Collier’s Theorem
([9]), if X has the RNP, then the dual space X∗ is weak*-Asplund ([1]); that is, every weak* lsc
convex continuous function defined on an open bounded convex set is Fréchet-differentiable in a
Gδ dense subset of this set.

Corollary 7 Let X be a Banach space, and let f : X → R be such that int(dom f∗) 6= ∅. Then,

dom ∂f∗ = Im ∂f̄w
∗∗
and dom f∗ = Im ∂f̄w∗∗ .

In particular, the following statements hold :

(i) if X has the Radon-Nikodym property and f is lsc, then

dom f∗ = Im ∂f .

(ii) if X is reflexive and f is weakly lsc, then

dom ∂f∗ = Im ∂f .

Proof. If x∗ ∈ dom ∂f∗ then, in view of Proposition 3, (∂f̄w
∗∗

)−1(x∗) is nonempty and, so, x∗ ∈
Im ∂f̄w

∗∗
, showing that dom ∂f∗ ⊂ Im ∂f̄w

∗∗
. Thus, since the converse inclusion is immediate

from Lemma 2(iii), the first equality in the main statement of the corollary follows; the other
equality holds by invoking Brøndsted-Rockafellar Theorem (see, e.g., [25]).
To show (i) we only need to check that dom f∗ ⊂ Im ∂f ; the other inclusion being straight-

forward. Indeed, since X∗ is weak*-Asplund (by [9]), and f∗ is weak* lsc, convex and contin-
uous on int(dom f∗) (6= ∅, by assumption), there exists a subset D ⊂ int(dom f∗) such that
D = int(dom f∗) = dom f∗ and f∗ is Fréchet-differentiable on D. So, given x∗ ∈ dom f∗, we
find a sequence (x∗k) ⊂ D such that ‖x∗k − x∗‖∗ → 0 and f∗ is Fréchet-differentiable at each x∗k.
Consequently, by Proposition 6, we obtain

∂f∗(x∗k) = {(∂f)−1(x∗k)} for all k.

In other words, since ∂f∗(x∗k) = {∇f∗(x∗k)} (∈ X) we deduce that x∗k ∈ Im ∂f . Hence, by taking
the limit on k it follows that x∗ ∈ Im ∂f , as we wanted to prove.

To finish the proof of the corollary we observe that the last conclusion (ii) follows from the
main conclusion, since in the reflexive case both the weak** and the weak lsc envelopes of f
coincide.
The following corollary furnishes a simple and useful extension of similar results established

in [11, 12] (dealing with (X∗, X) as a dual topological pair). We recall that for a given function
f : X → R, the notation ε-argmin f refers to the set of the global ε-minima of f ; that is,

ε- argmin f := {x ∈ X | f(x) ≤ inf f + ε};

if ε = 0, we simply write argmin f.

10



Corollary 8 Let X be a Banach space, and let f : X → R be such that int(dom f∗) 6= ∅. Then,

argmin(cof) = X
⋂(

Ndom f∗(θ) + cow
∗∗
{

argmin f̄w
∗∗
})

= X
⋂(

Ndom f∗(θ) + cow
∗∗

{⋂
ε>o

(ε- argmin f)
w∗∗
})

= X
⋂(

Ndom f∗(θ) +
⋂
ε>o

cow
∗∗
{ε- argmin f}

)
;

Moreover, if f is positively homogeneous then

argmin(cof) = X
⋂

co
{

argmin f̄w
∗∗
}

= X
⋂

co

{⋂
ε>o

(ε- argmin f)
w∗∗
}

= X
⋂⋂

ε>o

cow
∗∗
{ε- argmin f} .

In particular, the following statements hold :

(i) If f∗ is Fréchet-differentiable at θ and f is lsc at ∇f∗(θ), then

argmin(cof) = argmin f = {∇f∗(θ)}.

(ii) If X has the RNP, f is lsc and θ ∈ dom f∗, then for every ε > 0 there exists x∗ ∈
int(dom f∗) such that ‖x∗‖∗ ≤ ε, f∗ is Fréchet-differentiable at x∗ and

argmin((cof)− x∗) = argmin(f − x∗) = {∇f∗(x∗)}.

Proof. We may suppose without loss of generality that θ ∈ dom f∗. So, the main statement
follows from Propositions 3 and 4, in view of the relationship argmin(cof) = X ∩ ∂f∗(θ) which
holds under the current epi-pointedness property. Similarly, the statement concerning the posi-
tively homogeneous case holds by invoking Proposition 5. Since the assertion (i) directly follows
from Proposition 6, it suffi ces to prove (ii). We fix ε > 0. By the RNP assumption, as θ ∈ dom f∗

there exists x∗ ∈ int(dom f∗) such that ‖x∗‖∗ ≤ ε and the Fréchet derivative ∇f∗(x∗) of f∗ at
x∗ exists. Hence, by invoking Proposition 6 once again we write

argmin((cof)− x∗) = argmin (co(f − x∗)) = ∂f∗(x∗) = {∇f∗(x∗)}
= (∂f)−1(x∗)

= (∂(f − x∗))−1(θ) = argmin(f − x∗),

as we wanted to prove.
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3 Integration formulas using the Legendre-Fenchel subdif-
ferential

In this section, we apply the results of the previous section to establish the desired integration
formulas using the Legendre-Fenchel subdifferential of non necessarily convex functions, defined
on the Banach space X.
We recall that the bidual space X∗∗ is endowed with the weak** topology σ(X∗∗, X∗) so that

(X∗∗)∗ is isomorphic to X∗; hence, we write ∂f̄w
∗∗

: X∗∗ ⇒ X∗ for the subdifferential of the
weak** lsc envelope of f ; that is, the function f̄w

∗∗
given in Definition 2.

Theorem 9 Let X be a Banach space, and f, g : X → R be given functions. We assume that
int(dom f∗) 6= ∅. If for every x ∈ X∗∗ we have that

∂f̄w
∗∗

(x) ⊂ ∂ḡw
∗∗

(x),

then there exists a constant c ∈ R such that

cof = (cog)�σdom f∗ + c.

If, moreover, one of the following conditions (i)—(iii) holds, then cof and cog coincide up to an
additive constant,

(i) g ≤ f ;

(ii) int(dom g∗) ⊂ dom f∗;

(iii) f is positively homogeneous.

Proof. Let us first observe that in view of the relationship ∂ḡw
∗∗ ⊂ ∂g∗∗, together with the

epi-pointedness property of f (int(dom f∗) 6= ∅), we may assume without loss of generality that
ḡw

∗∗ ∈ Γ0(X
∗∗). Moreover, taking into account Lemmas 2(iii) and Corollary 7, together with

the current assumption (∂f̄w
∗∗ ⊂ ∂ḡw∗∗), we get

int(dom f∗) ⊂ dom ∂f∗ ⊂ Im ∂f̄w
∗∗
⊂ Im ∂ḡw

∗∗
⊂ dom g∗,

which leads us to
∅ 6= int(dom f∗) ⊂ int(dom g∗), (12)

showing that g is also an epi-pointed function. On the other hand, using again Lemma 2(iii),
since Im ∂f̄w

∗∗ ⊂ dom(f̄w
∗∗

)∗ = dom f∗ the current assumption implies that

∂f̄w
∗∗

(x) ⊂ ∂ḡw
∗∗

(x) ∩ dom f∗ for every x ∈ X∗∗. (13)

Moreover, by observing that (see, e.g., [25, Corollary 2.4.7, p. 89]), whenever ∂f̄w
∗∗

(x)∩dom f∗ 6=
∅,

∂f̄w
∗∗

(x) ∩ dom f∗ ⊂ ∂ḡw
∗∗

(x) ∩ dom f∗ = ∂ḡw
∗∗

(x) ∩ ∂σdom f∗(θ) = ∂(ḡw
∗∗�σdom f∗)(x), (14)

the condition (13) reads

∂f̄w
∗∗

(x) ⊂ ∂(ḡw
∗∗�σdom f∗)(x) for every x ∈ X∗∗.
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Now, we denote h := ḡw
∗∗�σdom f∗ . Then, since the functions ḡw

∗∗
and σdom f∗ are proper

we write
h∗ = g∗ + Idom f∗ , domh∗ = dom g∗ ∩ dom f∗ ⊂ dom f∗, and (15)

int(dom f∗) ⊂ int(dom g∗ ∩ dom f∗) = int(domh∗), (16)

where in (16) we used (12); that is, h is an epi-pointed function too. Hence, invoking (12) and
the current assumption (ḡw

∗∗ ∈ Γ0(X
∗∗)), it follows that

h∗∗ = g∗∗�σdom f∗ = ḡw
∗∗�σdom f∗ = h,

showing that h ∈ Γ0(X
∗∗). In particular, h is a weak** lower semicontinuous convex proper

function on X∗∗ so that (14), together with (13), reads

∂f̄w
∗∗

(x) ⊂ ∂h(x) = ∂h̄w
∗∗

(x) for every x ∈ X∗∗.

But, by (15) we have that

Ndom f∗(x∗) ⊂ Ndomh∗(x∗) for all x∗ ∈ dom f∗ ∩ domh∗

and so, by applying Proposition 3,

∂f∗(x∗) ⊂ ∂h∗(x∗) for all x∗ ∈ dom f∗ ∩ domh∗.

In other words, since f∗ is continuous on the nonempty set int(dom f∗) (⊂ int(domh∗), by (16)),
using successively the classical chain rule for the sum of lsc convex functions (see, e.g., [25]) we
obtain, for all x∗ ∈ X∗,

∂(f∗ + h∗)(x∗) = ∂f∗(x∗) + h∗(x∗) ⊂ ∂h∗(x∗) + ∂h∗(x∗) = ∂(2h∗)(x∗) = 2∂h∗(x∗).

Now, by invoking the classical (convex) integration formula [20] we find a constant c ∈ R such
that

f∗(x∗) + h∗(x∗) = 2h∗(x∗) + c for all x∗ ∈ domh∗,

or, equivalently (as domh∗ = dom g∗ ∩ dom f∗),

f∗(x∗) = g∗(x∗) + Idom f∗(x∗) + c for all x∗ ∈ dom g∗ ∩ dom f∗. (17)

Moreover, this last equality also holds on dom g∗ ∩ dom f∗. Indeed, we pick x∗0 ∈ int(dom f∗)
(⊂ int(dom g∗), by (12)). Then, given x∗ ∈ dom g∗ ∩ dom f∗ we find a sequence (x∗k)k≥1 which
belongs to the segment (x∗0, x

∗) (⊂ int(dom f∗) ∩ int(dom g∗), by the accessibility lemma) such
that g∗(x∗k) and f∗(x∗k) converge to g∗(x∗) and f∗(x∗), respectively. Then, for each k ≥ 1, by
(17) we write

f∗(x∗k) = g∗(x∗k) + Idom f∗(x∗k) + c = g∗(x∗k) + c

and, so, by taking the limit on k we get the desired equality; that is,

f∗(x∗) = g∗(x∗) + Idom f∗(x∗) + c for all x∗ ∈ dom g∗ ∩ dom f∗.

Moreover, since this last equality obviously holds when x∗ 6∈ dom f∗, by using again the fact
that dom f∗ ⊂ dom g∗ (by (16)) we get that

f∗(x∗) = g∗(x∗) + Idom f∗(x∗) + c for all x∗ ∈ X∗. (18)
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Finally, by taking the conjugate on both sides, and observing that the qualification condition
holds (by (16)), we obtain the first conclusion.
Now, we will prove the second part of the theorem: (i) if g ≤ f, then f∗ ≤ g∗ and, so,

dom g∗ ⊂ dom f∗. Hence, by the first part of the proof we find a constant c ∈ R such that

cof = (cog)�σdom f∗ + c ≥ (cog)�σdom g∗ + c = cog + c. (19)

Thus, we are done because the other inequality cof = (cog)�σdom f∗ ≤ cog always holds.
(ii) From (12), we deduce that dom f∗ = dom g∗. Thus, we conclude as in (19).
(iii) This last statement follows just by using Proposition 5 together with the classical inte-

gration formula of convex functions [20].

Remark 2 (i) The main point in the proof of Theorem 9 was to check that

∂f∗(x∗) ⊂ ∂h∗(x∗) for all x∗ ∈ X∗, (20)

by using the formulas given in Propositions 3. Indeed, it was suffi cient to establish that

X ∩ ∂f∗(x∗) ⊂ X ∩ ∂h∗(x∗) for all x∗ ∈ X∗,

since this last criterion is equivalent to (20), as it can be easily deduced from [20, Proposition
1]. However, this last condition is nothing else but the comparison between the subdifferentials
of the conjugate functions f∗ and h∗, with respect to the dual pair (X∗, X). So, an alternative
for the proof of Theorem 9 would be to directly use the main formula in Proposition 1, but
not the simplified one which appears there. This is because the epi-pointedness condition used
in Proposition 1 is given with respect to a topology on X∗ compatible with the duality pair
(X∗, X). Hence, the use of Proposition 1 instead of Proposition 3 would cause more technical
diffi culties.
(ii) It would also be suffi cient in the proof of Theorem 9 to show that (20) holds on a dense

subset of int(dom f∗). Moreover, inside int(dom f∗) the formulas of the subdifferential of the
conjugate function are considerably simplified; for instance, there, the normal cone to dom f∗

reduces to θ. However, this observation would not have a notable change in the proof.
(iii) It follows from the proof of Theorem 9 (see (18)) that the conclusion of that theorem

can be presented in the following equivalent form,

f∗∗ = g∗∗�σdom f∗ + c,

giving an inequality in X∗∗.

In the following remark we make a comparison between Theorem 9 and the classical integra-
tion formula of the convex framework [20]. This is to explain the presence of the extra terms
within the statement of Theorem 9; i.e., the support function of dom f∗ and the weak** lsc
envelopes f̄w

∗∗
and ḡw

∗∗
.

Remark 3 The statement of Theorem 9 is somewhat natural. Indeed, if the functions f and g
are taken in Γ0(X), then the standard condition of the integration formula,

∂f(x) ⊂ ∂g(x) for all x ∈ X, (21)

implies both the assumption and the conclusion of Theorem 9. To see this, we easily observe
that (21) gives rise to

∂f(x) ⊂ ∂g(x) ⊂ ∂g�σdom f∗(x) for all x ∈ X,
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which in turns yields, by [20],
f = g + c = g�σdom f∗ + c,

for some constant c ∈ R. In other words, the assertion of Theorem 9 follows. On the other hand,
(21) is equivalent to

X ∩ ∂f∗(x∗) ⊂ X ∩ ∂g∗(x∗) for all x∗ ∈ X∗,

which, invoking once again [20, Proposition 1], implies that

∂f∗(x∗) ⊂ ∂g∗(x∗) for all x∗ ∈ X∗,

or, equivalently, using Lemma 2(ii) (we recall thatX∗∗ is endowed with the σ(X∗∗, X∗) topology),

∂f̄w
∗∗

(x) = ∂f∗∗(x) ⊂ ∂g∗∗(x) = ∂ḡw
∗∗

(x) for all x ∈ X∗∗,

which is nothing else but the assumption of Theorem 9.

The use of the ε-subdifferential instead of the subdifferential allows overcoming the require-
ment to the weak** lsc envelopes in Theorem 9, as we show in the following corollary. It is
the place here to mention that integration criteria invoking the ε-subdifferential have been used
by many authors; for instance, [15, 23] deal with convex functions. See, also, [3, 10] for other
purposes dealing with approximate mean value theorems.

Corollary 10 With the notation of Theorem 9, we assume that int(dom f∗) 6= ∅. If there exists
α > 0 such that

∂εf(x) ⊂ ∂εg(x) for every x ∈ X and 0 < ε ≤ α,

then
cof = (cog)�σdom f∗ + c,

for some constant c. Moreover, the functions cof and cog coincide up to an additive constant
provided that one of the conditions (i)—(iii) in Theorem 9 hold.

Proof. Taking into account Lemma 2(vi), by the current assumption we write, for every x∗ ∈ X∗,(
∂f̄w

∗∗
)−1

(x∗) =
⋂
ε>0

(∂εf)
−1

(x∗)
w∗∗

=
⋂
α≥ε

(∂εf)
−1

(x∗)
w∗∗

⊂
⋂
α≥ε

(∂εg)
−1

(x∗)
w∗∗

=
(
∂ḡw

∗∗
)−1

(x∗).

Therefore, the conclusion immediately follows from Theorem 9.
The following simple example shows that, in general, cof and cog do not coincide up to an

additive constant under only the main condition of Theorem 9.

Example 1 We consider the function f : R→ R given by

f(x) := e−x, if x ≥ 1; x, if 0 ≤ x < 1; +∞, if x < 0.

Then, we easily check that dom f∗ = R− and, so, f∗ is epi-pointed (int(dom f∗) 6= ∅). Moreover,
direct calculus gives us

∂f(x) = ∅, if x 6= 0; R−, if x = 0.

Then, the function
g(x) := x, if x ≥ 0; +∞, if x < 0,
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satisfies ∂f(x) ⊂ ∂g(x) for all x ∈ R, but cof and cog never coincide up to an additive constant.

In the next proposition, we shall use the following lemma which is a recurrent argument in
the theory of maximal monotone operators. For the reader’s convenience, we give a proof in the
particular case dealing with the subdifferential of lsc convex proper functions.

Lemma 11 Given f, g ∈ Γ0(X) and a nonempty open subset V ⊂ dom ∂f , if D is a dense
subset of V such that ∂f(x) ⊂ ∂g(x), for all x ∈ D, then

∂f(x) ⊂ ∂g(x) for all x ∈ V.

Proof. We fix x ∈ V . Proceeding by contradiction we assume that there exists w∗ ∈ ∂f(x) \
∂g(x). Then, using a separation argument in (X∗, σ(X∗, X)), there exist z ∈ X \ {θ} and α ∈ R
such that

〈w∗, z〉 < α < 〈x∗, z〉 for all x∗ ∈ ∂g(x). (22)

We denote W := {x∗ ∈ X∗ : 〈x∗, z〉 > α}. Then, W is open in (X∗, σ(X∗, X)) and obviously
satisfies ∂g(x) ⊂W. So, by the ‖·‖×σ(X∗, X)-upper semicontinuity of the operator ∂g : X ⇒ X∗,
from (22) we infer the existence of ε > 0 such that

∂g(y) ⊂W for all y ∈ Bε(x), (23)

where Bε(x) denotes the ball of radius ε centred at x; moreover, since V is open we may suppose
that Bε(x) ⊂ V. We let δ > 0 be small enough such that y := x− δz ∈ Bε(x) (⊂ V ) and, by the
density of D in V, let {yn} ⊂ D be such that yn → y.Without loss of generality on n and δ, there

exist a sequence (y∗n)n ⊂ X∗ and y∗ ∈ X∗ such that y∗n
w∗−→ y∗ and y∗n ∈ ∂f(yn) for all n. Hence,

by the current assumption we also have that y∗n ∈ ∂g(yn) for all n. Consequently, invoking once
again the ‖·‖×σ(X∗, X) upper semicontinuity of ∂f and ∂g, we deduce that y∗ ∈ ∂f(y)

⋂
∂g(y)

(⊂ ∂f(y)
⋂
W, by (23)). Thus, (22) leads us to

〈w∗ − y∗, x− y〉 = δ〈w∗ − y∗, z〉 < 0,

which is a contradiction with the monotonicity of the operator ∂f . This finishes the proof.
The following result gives an integration result in the setting of Banach spaces with the

Radon-Nikodym property (RNP); for the definition, we refer to the paragraph prior to Corollary
7. The condition we use here is slightly different from those of [6, Theorem 9], although both
lead to a common property given next in Corollary 15.

Proposition 12 Let X be a Banach space with the RNP, and f, g : X → R be given functions.
We assume that f satisfies int(dom f∗) 6= ∅. If for every x ∈ X we have that

∂f(x) ⊂ ∂g(x),

then
cof = (cog)�σdom f∗ + c,

for some constant c ∈ R. Moreover, the functions cof and cog coincide up to an additive constant
provided that one of the conditions (i)—(iii) in Theorem 9 hold.

Proof. By the RNP assumption the dual space X∗ is a weak*-Asplund space and, so, the
weak* lsc convex continuous (on int(dom f∗)) function f∗ is Fréchet-differentiable on a dense
subset D of int(dom f∗); that is, D ⊂ int(dom f∗) ⊂ int(dom ∂f∗) ⊂ int(dom ∂f∗). Let us
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denote h := g�σdom f∗ . Then, as in the proof of Theorem 9, by invoking Proposition 6 instead
of Proposition 3, we obtain

∂f∗(x∗) ⊂ ∂h∗(x∗) for all x∗ ∈ D.

Since D is dense in int(dom f∗), by Lemma 11 we deduce that

∂f∗(x∗) ⊂ ∂h∗(x∗) for all x∗ ∈ int(dom f∗).

Hence, using the integration formula of [20] we infer that f∗ and h∗ coincide up to an additive
constant on int(dom f∗). Moreover, taking into account the accessibility lemma [25], by the
epi-pointedness assumption (int(dom f∗) 6= ∅) it follows that this coincidence property of f∗ and
h∗ holds on the whole set dom f∗. The remainder of the proof follows the same arguments as
Theorem 9.

4 Application to the construction of the lsc convex enve-
lope

In this section, we apply the results of Section 3 to give explicit constructive formulas for the lsc
convex envelope of functions defined on the Banach space X.
We begin by the following theorem which provides a formula by means of the ε-subdifferential

of the initial function.

Theorem 13 Let X be a Banach space, f : X → R be a given function, and x0 ∈ dom(∂f).
We assume that int(dom f∗) 6= ∅. Then, for every δ > 0 we have that

cof(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉 −
n∑
i=1

εi

}
,

where the supremum is taken over n ∈ N, εi ∈ (0, δ), (xi, x
∗
i ) ∈ ∂εif, i = 1, · · ·n, and x∗0 ∈ ∂f(x0)

(with the convention that
∑−1
i=0 =

∑0
i=1 = 0).

Proof. We fix δ > 0 and denote the function in the right-hand side by fδ, which by construc-
tion belongs to Γ0(X). Let us first observe by the definition of the ε-subdifferential that fδ is
dominated by f ; that is, fδ ≤ f and, so, fδ ≤ cof . Thus, in view of Corollary 10, it suffi ces to
establish the following inclusion for every given x ∈ X and ε ∈ (0, δ),

∂εf(x) ⊂ ∂εfδ(x). (24)

Indeed, we pick x∗ ∈ ∂εf(x) so that −∞ < fδ(x) ≤ f(x) < +∞ (since fδ ≤ f and fδ ∈ Γ0(X)).
Then, if α is an arbitrary real number such that fδ(x) > α, by the definition of fδ there exist
n ∈ N, (εi, xi, x

∗
i ) ∈ R×X ×X∗ with x∗i ∈ ∂εif(xi), for i = 1, · · · , n, and x∗0 ∈ ∂f(x0) such that

f(x0) +

n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉 −
n∑
i=1

εi > α. (25)

Now, we fix y ∈ X. Since (xn+1, x
∗
n+1) := (x, x∗) ∈ ∂εf, by taking εn+1 := ε we deduce from the
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definition of fδ that

fδ(y) ≥ f(x0) +

n∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗, y − x〉 −
n+1∑
i=1

εi

and, so, by (25),
fδ(y) > α+ 〈x∗, y − x〉 − ε.

Hence, as α approaches fδ(x) we obtain

fδ(y) ≥ fδ(x) + 〈x∗, y − x〉 − ε.

Therefore, by the arbitrariness of y ∈ X we deduce that x∗ ∈ ∂εfδ(x). Thus, (24) holds and, so,
by Corollary 10 there exists a constant c ∈ R such that

cof = fδ + c.

Finally, the desired conclusion follows by the obvious fact that c = cof(x0)− fδ(x0) = 0.
The following result gives the counterpart of Theorem 13 when the exact subdifferential is

used instead of the ε-subdifferential in the construction of the lsc convex envelope. The proof
is very similar to the one of Theorem 13 with only small details changing; for the reader’s
convenience we give a sketch of it.

Theorem 14 With the notation of Theorem 13, we assume that int(dom f∗) 6= ∅. Then, we
have that, for every x ∈ X∗∗,

f∗∗(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉
}
,

where the supremum is taken over n ∈ N, (xi, x
∗
i ) ∈ ∂f̄w

∗∗
, i = 1, · · ·n, and x∗0 ∈ ∂f(x0) (with

the convention that
∑−1
i=0 = 0). Consequently, for every x ∈ X,

cof(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉
}
,

where the supremum is taken over the same parameters as in the formula of f∗∗ above.

Proof. It suffi ces to establish the first formula expressing f∗∗. For this aim we denote by g the
function of the right-hand side. Then, g is weak** lsc convex proper function on X∗∗ and, so, it
can be easily checked that g ≤ f∗∗ ≤ f̄w

∗∗
and dom g∗ ⊂ dom f∗ (using Lemma 2(iii)). Then,

the proof consists of showing that, for every x ∈ X∗∗,

∂f̄w
∗∗

(x) ⊂ ∂g(x). (26)

For this aim, we fix x ∈ X∗∗ and take x∗ ∈ ∂f̄w∗∗(x). So, from the inequality g ≤ f∗∗, together
with the fact that g ∈ Γ0(X

∗∗), we deduce that g(x) ∈ R. Now, we fix y ∈ X∗∗ and let α be
such that g(x) > α. Then, there exist n ∈ N, (xi, x

∗
i ) ∈ X∗∗ × X∗ with x∗i ∈ ∂f̄w

∗∗
(xi), for

i = 1, · · · , n, and x∗0 ∈ ∂f(x0) such that

f(x0) +

n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉 > α.

18



Hence, denoting (xn+1, x
∗
n+1) := (x, x∗) ∈ ∂f̄w∗∗ , we deduce that

g(y) ≥ f(x0) +

n∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗, y − x〉 > α+ 〈x∗, y − x〉,

which, as α→ g(x), in view of the arbitrariness of y ∈ X∗∗ establishes that x∗ ∈ ∂g(x). Therefore,
(26) holds and, so, by Theorem 9, together with Remark 2(iii), there exists a constant c ∈ R
such that

f∗∗ = g∗∗�σdom f∗ + c = g�σdom f∗ + c.

Thus, arguing as in the proof of Theorem 13 we show that c = 0 and g�σdom f∗ = g. This finishes
the proof of the theorem.

We close this paper with the following result which has already been established in [6, Corol-
lary 17]; see, also, [4, 5] for the finite-dimensional case. Here, we use a different approach based
on the analysis of the subdifferential of the conjugate function.

Corollary 15 Let X be a Banach space with the Radon-Nikodym property, f : X → R be a
given function, and x0 ∈ dom(∂f). We assume that int(dom f∗) 6= ∅. Then, we have that

cof(x) = f(x0) + sup

{
n−1∑
i=0

〈x∗i , xi+1 − xi〉+ 〈x∗n, x− xn〉
}
,

where the supremum is taken over n ∈ N, (xi, x
∗
i ) ∈ ∂f, i = 1, · · · , n, and x∗0 ∈ ∂f(x0).

Proof. If g denotes the right-hand side, then as in Theorems 13 we easily show that g ∈ Γ0(X),
g ≤ f and ∂f ⊂ ∂g. Then, the conclusion follows by Proposition 12 by taking into account that
dom g∗ ⊂ dom f∗ and, so, cof = g�σdom g∗ = g.
Acknowledgement. We would like to thank the referee for the suggested improvements.
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[25] ZĂlinescu, C. Convex analysis in general vector spaces. World Scientific Publishing Co.,
Inc., River Edge, NJ, 2002.

20


