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this problems exhibits a richer structure than the problem with
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1. Introduction

Let 2 C R? be a bounded domain with smooth boundary. In this paper we construct solutions to
the Liouville equation with Robin boundary condition:

Au+€e2e! =0, inS,

au (11)
— +Au=0, on 052,
av

where € > 0 is small and A > 0 is large.
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The Robin boundary condition has been considered in nonlinear equations in biological models,
see [11]. Concentration phenomena for the least energy solution of equations of Ni-Takagi type with
Robin boundary condition has been studied in [2]. Later on we shall compare our results to [2].

Intuitively, as A — oo the boundary condition in (1.1) tends to the homogeneous Dirichlet boundary
condition u|y =0 and (1.1) becomes

Au+€?e' =0, ing,
{ + (12)

u=0, onads.
It is known, after the works [3,15,16,21], that if (u¢) is an unbounded family of solutions of (1.2)
and €2 fQ e!¢ remains bounded as € — 0 then after passing to a subsequence there exists an integer
m > 1 such that ue blows up at m points in £2. More precisely, there exist points &5, ..., &5 in £ that

stay uniformly separated from each other and from the boundary, such that for any § > 0, u. stays
bounded on 2\ UL, B(£S, ), and

sup ue > 00 ase — 0.
B(&.6)

Moreover,
m
2 Ue
€“e ASJTZS&. ase€e — 0
i=1

in the weak sense of measures and ue — Y 1t ; Goo(X, &) Where Go is the Green function with Dirich-
let boundary condition

—AxGoo(x,y) =878y, ing2,
Geo(+, ¥) =0, on a2

(the subscript co means it is associated to A = oo). Additionally, the vector (&1, ...,&n) of concentra-
tion points must be a critical point of the function

Pmaco (€1 Em) = — 3 Hool€. ) — 3 Gool&i, &)

j=1 i#]

where H, is the regular part of Go:

1
Hoo(X,¥) = Goo(x, y) — 4log .
|x — y]

The construction of solutions to (1.2) has been addressed in [22,1,9,12]. In [1] the authors showed
that if (1,...,&n) is a non-degenerate critical point of ¢m ~ then for € > 0 small enough there is a
solution concentrating at &, ..., &y,. Then, in [12] and [9] the authors proved that if the domain is
not simply connected, then for any integer k > 1 there are solutions concentrating at k points. In the
case of a single point of concentration, it must be a critical point of R (X) = Heo(X, X). In a convex
domain R, has a single critical point, see [4,5]. In particular, if solutions develop a single point of
concentration, that point is uniquely determined in a convex domain. Under some assumptions on
the domain, solutions to (1.2) can develop only a single point of concentration. This is the case for
a domain which is convex and symmetric in each variable, and also small perturbations of them,
see [14,20]. In [23] the authors studied an inhomogeneous Liouville equation.
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In contrast, we will see that for any bounded smooth domain, when A < oo is large, the set of
solutions of (1.1) is much richer.

For problem (1.1) the Green function also plays a fundamental role. Given A > 0, let G, denote the
Green function

—AxG (-, y) = 8T8y, in 2,
3G, (13)
a—v(-,y)-i-kcx(-,y):o, on a2
and H, its regular part:
1
Hy(x,y) = Ga(x,y) —4log . (14)

|x — y|

As for the case of Dirichlet boundary condition, to understand the critical points of the Robin function
R, (x) = H, (x,x) is crucial to analyze solutions with a single blow up. In [8] the authors found that
in any smooth domain 2 C R2, for x € 2 satisfying a/A < dist(x, 92) < b/A for some constants 0 <
a < b, for large A > 0 one has the expansion

Ri(x) = h;, (M) + 27k ®)v(Ad(x)) + 0 (A1) (1.5)

where 0 < @ < 1, k(%) is the mean curvature of 9£2 at X, which is the point in 3£ closest to x,
and h,, v are explicitly given by

o0
h;.(9) = —log  — log(20) + 46 f e 2 og(1 + t)dt, (1.6)
0
0 r 1
__ 2 —20s__ ~
v(0) = 5 G/e T ds. (1.7)
0

The function h; : (0,+00) — R has a unique minimum 6y € (0, +00), which is non-degenerate

(see [8]). Therefore, formula (1.5) suggests that there exist solutions of (1.1) with a concentration point

located at distance O(1/)) from 9£2. For a fixed large A this can be proved using the same approach

as in [1,9,12]. Our interest here is to analyze whether this solution persists as € — 0 and A — +oc.
Let

9
S* = {x € 2: dist(x, 982) = 70 } (1.8)

where 6 is the minimum of h;,_.

Theorem 1.1. There exist Ag > 0 and €g > 0 such that for . > Ag and € > 0 satisfying 0 < €+/A < €g, problem
(1.1) has at least 2 different solutions, u;, i = 1, 2, concentrating at a point &; , ¢ € §2 such that

dist(&i5.¢,5*) = 0(27%?), i=1,2as1— oo.

Actually there is a third solution u3 concentrating a point &3,  with distance to the boundary not
approaching zero, and with no restriction on the growth of A. We will not address the construction
of this solution, as it is very similar to previous work, [1,9,12].

We can generalize Theorem 1.1 and find solutions with multiple points of concentration near the
boundary, at the expense of requiring a smaller growth of A.
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Theorem 1.2. Let m > 1 be an integer. There exist Ao > 0 and €g > 0 such that for ». > Ag and € > 0 satisfying
0 < €222 1og()) < €q, problem (1.1) has 2 solutions u;, i = 1, 2. The solution u; concentrates at points Eijne
for j=1,...,min §2 such that

dist(&;j, s.e, S*) = 0(A/2) asr— oo.
Let k denote the curvature of 952.

Theorem 1.3. Suppose xo € 352 is a non-degenerate critical point of k. Set o € (0, %). There exist Ao > 0 and
€0 > 0 such that for A > A and € > 0 satisfying

€*L <€
problem (1.1) has a solution u that concentrates at a point X located at distance O (1/1) from xg.

Let us explain the restrictions on the growth of A as € — 0. The results are proved using a
Lyapunov-Schmidt reduction, based on the family of solutions

2
_ w : _ 2
WIL(r)_logm, withr = |x|, x e R*, (1.9)
where p > 0, of the Liouville equation:
Au+e'=0 inR>. (1.10)

To construct a solution with concentration at & € £2, it is natural to consider a first approximation of
the form w, (x — &) — 2loge with u — 0. For x far from &, evaluation of this function at x suggests
that w should be taken of order €, and therefore it is more convenient to write this approximation as
Wye(x —&) —2loge for a new parameter p > 0. Nevertheless, this function still requires a large cor-
rection and it is convenient to take as initial approximation u(x) = wy(x — &) — 2loge + H(x), where
H is harmonic in §£2 and such that the appropriate boundary condition is satisfied. A computation will
then show that at main order H(x) ~ —log(8t2) — Hy(x, £). Then u becomes a good approximation
of a solution if H(¢) =0 which yields 8u? = ef*&-&_n the case of Robin boundary condition, from
(15) and (1.6), this gives = 0(A~'/?), and we are led to consider w,,;-1/2(x — &) — 2loge + H(x)
for a new parameter s = O (1). We observe that w,c;-1/2(r) = log(8u2€?~1) — 2log(u?€?A~" +1?).
If £ is at distance 1/ from the boundary and x is on the boundary, to be able to expand this quan-
tity we need €2) « 1. This indicates that the reduction in Theorem 1.1 can be carried out if ex!/2 is
sufficiently small, and this gives the growth restriction for A in this result.

In Theorems 1.2 and 1.3 more precise estimates of the energy of the ansatz are required and this
leads to a stronger growth assumption on A. One consideration that helps us to improve the estimates,
is to work with concentration points close to the set S*. A first calculation using (1.5) implies that if
x € §2 is such that |A dist(x, 3§2) — 6p| = O (A~1/2), then we have

|VeRi.(0)| = 0 (V). (111)

This estimate plays a key role, as it can be seen in the following section.
Let us compare Theorem 1.1 with the results of [2], where the following equation was studied

Au+uP —u=0 u>0 ing,

0 (112)
—u+Au=0, onds2,
av
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where €, A > 0, £2 is a domainin RN, N>2and 1 <p < % This equation with boundary condition
du/o0v =0 on £2 was analyzed in [17,18] and in [19] with Dirichlet boundary condition, proving
that for Neumann condition least energy solution concentrates at a point in the boundary, while for
Dirichlet concentration takes place at a point that maximizes distance to the boundary, see also [10].
The results of [2] roughly speaking assert that the minimal energy solution of (1.12) will behave like
in the case of Neumann boundary condition if A < X/€ and like in the Dirichlet boundary condition if
A > X/€, where & > 0 is a parameter associated to an auxiliary problem. Therefore A ~ 1/€¢ represents
a drastic change in behavior. Our results suggest that for least energy solutions of (1.1) the critical
range for A is A ~ 1/€2.

In Section 2 we provide the first approximation, and in Section 3 we analyze the linearization
around this initial approximation. Then in Section 4 we solve a projected version of the nonlinear
equation. We show in Section 5 that the projected problem reduces to the original one if (&1, ..., &n)
is a critical point of a functional close to the energy ansatz. Then Section 6 contains the expansion
of the energy of the ansatz. With the aid of these expansion we prove Theorems 1.1, 1.2 and 1.3 in
Section 7. Finally, in Appendix A we prove some estimates that were necessary in the expansion of
the energy.

2. Initial approximation

In this section we describe the initial approximation used in the Lyapunov-Schmidt reduction.

Given m e N, {Ej}T:l C$2 and pj>0for j=1,...,m, we define:

VA
uj(x):w#j(?|x—éj|>—410ge+10gk, (2.1)
where w,, is defined in (1.9), which satisfies
Auj+e%e'i =0 inR%

Let 3o > 0 be fixed suitably small. We will assume for the rest of the article the following separa-
tion conditions:

& —&jl >80 foralli# j, (2.2)
1
d; = dist (&, 082) > 70 forall j=1,...,m, (23)
dist(£;, S*) <A?? foralli=1,...,m, (2.4)
where S* is defined in (1.8).
For each j=1,...,m let
AH;=0, in £2,
M b= (24 4 a;), onag (2:3)
v SR ) '
We will take as a first approximation to a solution of (1.1) the function
m
U =Y (uj® +Hjx). (2.6)

j=1
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We will define p :=e/+/A. For many of the calculations it is convenient to work in expanded
variables in terms of p. Given x € £2, consider y = %x, and denote 2, = %52. Let u be a function
defined in £2 and let

v(y) =u(py)+4loge —logr forye 2,.
Then u solves (1.1) if and only if v is a solution of

Av+eV =0, in £2,,

v (2.7)
P + pAv = pAi(4loge —logh), onds2,.

We also define é,—‘]f = %Ej and write the initial approximation of the solution in expanded variables
as V(y) =U(py) +4loge — log . We look for a solution v of the problem (2.7) with the form

v=V+4¢,

with ¢ small in an adequate norm. Problem (2.7) can be viewed in terms of ¢ as the nonlinear
problem

L(¢p)=—(R+N(¢)), in$2p,

p (2.8)
— M) =0, on d452,,
" + prd 0
where
Lip)=A¢p+W¢, with W=e", (2.9)
N(@g)=W[e? —1-4¢],.
and
R=AV +e".
Next we estimate the size of R.
Lemma 2.1. If u j are given by
log(8u;?) = Ha(§j. &) + Y Ga(&.&)) +logh, (210)
i#]
we have:
“ 1
R < Ce ——— forally € £2,. 211
IR()| ;1+|y—5}|3 forally € 2, (2.11)

In the proof of Lemma 2.1 we need an a priori estimate which is essentially a version of the
maximum principle with Robin boundary condition. For a proof see [8].
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Lemma 2.2. Let b : 32 — R be a smooth such that b > 0, F : 3§2 — R be a smooth function and u be the
solution to

Au=0, in 2,

3
M bu=F, onag,
v

where A > 0. Then

. C(N,b)
llullpoo () + ||dist(-, BQ)VUHLOQ(_Q) < THFHLOC@Q).

Remark 2.3. We note that by (1.5) and (1.6), Hy (&}, £;) +log A remains bounded as A — +oo. It follows
that for some constant C > 1

<uj<C Vi=1,...m. (212)

The reason to introduce the initial approximation with the form (2.1) is so that p; satisfies (2.12).

Proof of Lemma 2.1. Let us analyze the behavior of the function H;(x). Note that since H;(x) satisfies
Eq. (2.5), if we define H; = H; + log(814%) — log A, then H;j satisfies

—AHj(x) =0, in £2,

x—§&pv 1
ﬁ_“g 5 73 | onos2.
wizp? + |x — &jl (Lj*p* +Ix = &1

aHj+AH<—4
) I

The regular part of the Green function for homogeneous Robin boundary condition H(x,£;) satis-
fies the equation

—AH,(x, ) =0, in 2,

OH; (%)) U oy ). onam
D) |x—(§j|2 |X_5j|4 ' .

Using the maximum principle applied to H; (x, &) — I:Ij(x) for the problem with Robin boundary
condition (Lemma 2.2), we conclude that

+)»H)\(X,Ej):4

5 13 p? 5 p?
Hj(x) = Hy.(x, &) — log(847) +log 2 + O Ve +0 7 (213)
i i

where the term O is uniform in £2 and also in the C? sense for compact subsets of £2.
Observe that, away from the points &; we can expand the expression given in (2.1) and obtain

w?p?
—log)»—i—O(i] )
Ix — &2

uj(x) = log(S,u?) +4log El
i

Using this and the expression given in (2.13) we get the following estimate
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1 1
uj(%) + Hj(x) = G,.(x, &) + p5p*0 <W + m) (214)

where the term O is in the C2 sense on compact sets of §2 \ &}

Let & > 0 be fixed, small compared with §y. Note that e¥®) = p2e2eU® where x = py. Then,
we have

8
e’V =0(p%?), ifly—¢|> E Vji=1,...,m. (2.15)
Also, thanks to AV (y) = €2AU(x) and (2.14) we get
4 : / 3 .
AV (y)=0(e?), 1f|y—‘§j|>;,‘v’]=1,...,m.

Now we consider |y — f;‘}| < % for some j. We will center our system of coordinates at éj/. writing
y= EJ/. + z. Then

8 2
V) — (Mziﬁ x exp{Hj(sj + p2) + Z(ul(gj +p2z) + Hi(g + pz))}.
J 1]

Using the asymptotic relations (2.13), (2.14), (1.11) and the definition of the numbers w; given
in (2.10), we obtain

811> 13 p0°
UL/ ] [1 + O(ez)—i—O(—] . )}
(W= +1y =§i'19 A
for |y —&j'| < %.
In the same region, we have
AyV(y) = p? i Axt(pY) e 0(p") (2:16)
y = X l = . .
= (13 +1y —£j%)?
Then, using (2.15)-(2.16) we deduce (2.11). O
3. The linearized operator around V
As before, we are considering here p = €/+/A.
We assume that the function W : £2, — R has the form
Wy =) ! (1+6(») (31)

2 _£712)2
Sy -EP

where Ejf =&j/pefR,=02/p and &, ...,&y € 2 are different points. We assume that
m

6e(n)| <CeY (ly—&|+1)

j=1
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and

where C is independent of € and A.
Note that for each j=1,...,m, if we center the coordinate system around sj’. by setting z=y —s},
then formally the operator L(¢) has the form as p — O,

8;4?

Ap+ —5———
(W5 +1212)?

which is the linearization of Eq. (1.10) around the function wy;(1z]) given by (1.9). The kernel of this
operator is given by the family of functions

0 .
oz W2+, 1=1.2.

zij(z) = Py

0
20j(2) = g(wmﬂm) +210g(9)) -

In this section we study the invertibility of the operator L defined in (2.9). For this, given h €

CO’O‘(SZP) we consider the linear problem of finding ¢: 2, - Rand ¢;;jeR,i=1,2, j=1,...,m
such that:
2 m
Ap+We=h+Y > cijxjZj. ing,,
i=1 j=1
d
% + pr¢ =0, on 32, (3.2)
av
/XjZij¢=0, Vi=1,2, j=1,...,m
2

where are defined as Z;;(y) = z;;(ly — Ej/.|) for j=1,...,m and i =1, 2. The functions y; appearing
in (3.2) are defined by x;(y) = x(ly — §]’.|) with x a nonnegative smooth function on R such that

x(mM =1 ifr<Ry and x()=0 ifr>Rp+1 (3.3)

where Ry is a positive constant.
We will prove that (3.2) is solvable and find an estimate for the solution in L°°(£2,) in terms of
the following weighted norm for h:

-1
m
||h||*—sup<2 (1+]y—&j)” “+p2>

ye P ]:]

where o > 0 is fixed and small.
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Proposition 3.1. There exist €g > 0 and C > 0 such that for any € > 0, > > 1 such that

AP < €

any set of points that verify (2.2) and (2.3) and h € L*°(£2,) there is a unique solution ¢ € L°°(£2,), cij € R,
i=1,2,j=1,...,m,to(3.2). Moreover, one has

Iplloo < C[log(rp)|llhlls. (34)

Remark that the hypothesis Ap small means that €+/A has to be small, which is the same assump-
tion of Theorem 1.1.
The first step is to find a priori bounds for the solution of the following problem:

Ap+W(y)p=h, ins2,, (3.5)
9
8—f+pk¢=g, on as2y, (3.6)
/ijuqb:O, Vi=0,1,2, j=1,...,m, (3.7)
‘Qﬂ

which includes orthogonality conditions with respect to all functions x;Z;; and a right-hand side for
the boundary condition (3.6).

Lemma 3.2. There exist €g > 0 and C > 0 such that for any 0 < € < €g, A > 1 such that

AP < €

any set of points which verify (2.2) and (2.3) and any solution ¢ of (3.5)-(3.7) one has

1
[Plloc < C<||h||* + i ||g||L°0<a:2p)>-

Proof. We first prove that there exists a fixed number R > 0 so that

1
Pl (2, < C( ~max  sup [¢|+ [lh]l«+ —||g||L°°(a.(z,,)> (3.8)
J=Tem per R) AP

where C does not depend on € and A.
_ To prove (3.8) we first show the A + W satisfies the following maximum principle in the region
2p =2, \UjL, B(&}, R): if v satisfies

AV+Wv=0 ing2,,

m
av
’
v<0 on U]BB(gj,R) and a—v+)»,0v<0 onds2,,
J:

then v <0 in [}p. To prove this, it is sufficient to exhibit a positive C? function Z on pr such that
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AZ+WZ <0 in$2,

m
9z
Z>0 on| JaB(¢.R) and o, HAPZ>0 onde,.

j=1
Let zo = ;Jr;} r = |x|, x € R\ {(0, 0)}, which satisfies
Azg + ;zo =0 inR*\{(0,0)}.
r(r+1)>2
Define

Z(y) =) z(aly &), ye,.
j=1

where a > 0. Then

g i 2a(aly — £} - 1)
T Ly =gl +aly —&])?

j=1

aly—j|-1

/

>1/2 and then

m -1

a
—AZ> —_—.
j:Z] =g

In the same region

m
1
WZ<C) (1 +ely =)
j=1 |y_é;:j|

(3.9)

(3.10)

for some fixed constant C. Hence, tanking a > 0 small but fixed, we conclude that (3.9) holds. Besides,

we have

1 , .
Zz5 ondB(£/,R), Vj=1,...,m andond,
taking R larger if it is necessary. With fixed a we have

1

Vz|<C .
ly — ]2

m

1

-,

Using this and (2.3) we have on 0£2,,

a—Z+ApZ>O idisr(gﬁ 082,)” +’\—p—o(xzp2)+x—p
v “\5 poEEp 2 2

if we choose €g > 0 small. Therefore Z satisfies (3.10) too.
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Let M > 0 be large so that £2, C 3(5}7 %) for all j=1,...,m. Let v; be the solution to the
following problem:

2 5 LM
J

, M
Yj(y)=0, for|y—&i|=R, |y_§j|=;7

which can be explicitly written:

neafl_1 _p_zz_z_[M_z_g_ Z(R_z_i)]log%)
wj(r)_z<R r) ) [5G ) e

. . . M
Then maxK‘y,gﬂgm/p ¥; remains uniformly bounded as o — 0, always assuming 1 < R < 25" More-
over

. , M
¥ >0, 1r1R<|y—?,—‘j| < —.
o)
Since

vii=0(ly ~g 4 2y g1+ o)
! Ty —gjlllog(p)

we also have

P Ap
\% -|=o<x2 2454 > on 452,.
Vi P T Tog(o)] ,

Furthermore

1 2

AYj+ Wi =— -0
! ! ly —€j1°

2 —
— 2021 0(ly & (1 +ely-£)) <
|y_‘§:j|

on R<l|y—§jl< M by fixing R larger if necessary. Let

m
V=CoZ+) v
j=1
Then
= 1
AYy+Wy <= ————p? ing2,
zw—s’ﬁ P
j=1 J
1 , .
1//25 onaB(éj,R), Vj=1,...,m andonds2,

choosing Co large enough, and then
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oy 22, P Ap Corp _ Corp

— 4+ A A > on 052
gy e >0+ £ i) 4 525 5 ’

if we choose €y small. Set

q?:Cxﬂ( max

jmax . sup o1+ NIhll 4+ — ||g||L°0(arz)>

»M B(§},R)

where C =max(2,4/Co). Then & = ¢ — ¢ satisfies

A® + WP <0 ing,,

0P
W +Ap® >0 onads2,,

®>0 ondB(5;,R), Vj=1,....m

Since the maximum principle is valid in (}p for this problem we conclude that @ >0 in £2, and
therefore ¢ < ¢ in S~2p. In a similar way,

—¢ < in 2,. This proves (3.8).
Now we prove the lemma, arguing by contradiction. Assume that there exist sequences (0n), (Ay)
(E;")), (hn), (gn), (¢n), which solve (3.5)-(3.7), such that the conditions (

2.2), (2.3) hold,

An€n — 0 (311)
and such that

l¢nllc =1, llhalls — 0,

IgllL*(@g,,) — 0 asn— oco. (3.12)
AnPn

Thanks to (3.8), (3.12) we can find ¢ > 0 and a fixed index j € {1
subsequence

.,m} such that by passing to a

sup |¢n| =c foralln. (313)
B(E}.R)

Define J)n(z) = ¢n(5}? +2). By (3.11) and (2.3) we see that

1
— min dlst( j” 382) > +o0
Pn j=1

.....

and this implies that the domain of definition of ¢n approaches R? as n — oo. Since ¢n is uniformly

bounded, by standard elliptic regularity theory, by passing to another subsequence qbn — ¢ uniformly
on compact sets of R? where ¢ is a bounded solution of

. 83
27’22 =0. (3.14)
(M]‘ + 12]%)
The orthogonality conditions (3.7) become

/ijijq‘szo, Vi=0,1,2. (3.15)
RZ
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We know that the only bounded solutions of (3.14) are linear combinations of z;, i =0, 1, 2. This
together with (3.15) implies that ¢ = 0. But this is not possible by (3.13). O

We now obtain an a priori estimate for the solution assuming that it satisfies orthogonality condi-

tions only with respect to Z;; with i=1,2 and j=1,...,m, that is, solutions to
Ap+W(y)p=h, in, (3.16)
d¢
o, TP =0, ond2y, (317)
fXjZ,’jd):O, Vi:],z, j:l,...,m. (3.18)
2p

Lemma 3.3. There exist €g > 0 and C > 0 such that for any € > 0, A > 1 such that

Ap < €

any set of points which verify (2.2) and (2.3) and any solution ¢ of (3.16)-(3.18) one has

¢l < C|log(p)|llh]ls

Proof. Recall that & € £2 and d; =dist(&;, 9§2) satisfies (2.3).
Given a solution ¢ to (3.2) we modify it so that it satisfies the orthogonality condition with respect
to Zo;j by letting

¢=¢+> bjZoj

j=1

where Zg; are suitable functions that we will construct next and we choose b; such that

bi/Xj|ZOj|2+/XjZOj¢=O- (3.19)
2 2

Let us construct Zg; in the case d; < §/10. Later on we give the construction when d; > §/10.

We write §j the point on 9£2 closest to &;. By taking § > 0 small, éj is uniquely determined and
depends smoothly on &;.
We need the Green function for the Robin boundary condition in a half space. Let

I (x) = —log |x|

so that —AT" =278y in R%, Let H = {(x,X2) € R? | x; > 0} be the half-space. We recall (see [13,
p. 121]) that if y € H and a > 0 the Green function for the Robin problem

—AGq(X,y) =2mdy, inH,
Gy
B 0XN
lim Gg(x,y)=0
|X|—+00

+aGq =0, on dH,
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is given by
T
Gax,y))=T'(x—y)—T'(x—y*)— Z/e_“syl“(x —y* +ezs)ds, (3.20)
N
0

where y* is the reflection of y = (y1, y2) across 9H, that is y* = (y1, —y2), and e = (0, 1).
We take a smooth conformal change of variables F;: £ N B(§;,6) — H whose image is a neigh-

borhood of 0 in H such that F(éj) =0, F’(éj) is a rotation. We also let

Fip()=Fj(px)/p. x€2,NBE/p.58/p). (3.21)

We define

20j(x) = 20j(X)Gp(Fj.p (), Fj p(§]))-

1
log(d;/p)
Now we take R > Rg + 1 (cf. (3.3)). Let 1 : R — R be a smooth function such that

m@ =1 forr<R, m@)=0 forr>R+1, |nj][<2, [nfO]<C
and define
mi=m(ly- E”)

We need also smooth functions 7;; :R2 — R such that

f , ) f , )
n2j(y) =1 OF’y—§j|<%s mj(y)=0 forr>|y—&j[<o—,

3p
IVl <Cp,  |Anjl < Cp?,
a .
7’72; =0 ona.Qp,
v

which can be constructed as composition of a cut-off function and a change of variables in §2 that
flattens its boundary.
In the case d; < §/10, set

2oj = mjZoj + (1 — n1j)n2jZoj- (3.22)

If dj > 8/10 the construction of Zp; is the same as in [9]. Namely, we take the same formula as in
(3.22) with new functions Zo; and 7,j. The new function Zy; is given by the solution to the problem

Mot 5o inR<|x—&| <>

T =g 1300
o . 1)
Z0j(x) =0 for|x—<§jf|=R, 20j=0 f0r|x—§}|=@'

The new function 75; : R? — R is such that
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n2j(y) =1 for!}/—s’-|<i m2j(y) =0 forr>|y—é§’-|<i
J s 40,0 s J = jl= 30p )
IVmajl <Cp, 1Al <Cp?.
Now suppose that ¢ is a solution to (3.2). Define
m
¢=¢+) bjZo;
j=1
where we choose b; as in (3.19). We observe that $ satisfies

m
(A+W)g=h+> bj(A+W)z; ing,,
j=1

(a +A,0) Zb( +,\p)zo, on 92, (3.23)

and the orthogonality conditions

/ijiﬂz”;:o, Vi=0,1,2, j=1,...,m
$2p

By Lemma 3.2 we deduce the estimate

d -
— a4 ;
(5520 o

B m ~ _l m
lplloo < C ||h||*+Z|bj|H(A+W)ZOjH*+_Z|bj| . (3.24)
Ap = L°°(382))

j=1

We claim that the following inequalities hold:

(A + W)z ——— forallj=1,...,m, (3.25)
” oill < |log(xp)| !
CA
H( —H»,o)zo] < M0 forallj=1,...,m, (3.26)
=@, |108(0)l
Ibj| < C|log(Ap)|lIhll« forall j=1,...,m. (3.27)

Using that ¢ = ¢ + 2721 bjzpj and the estimates (3.24), (3.25), (3.26) and (3.27) we obtain the
conclusion of the lemma.

In the sequel we will give the proof of estimates (3.25)-(3.27) in the case d;j < §/10. For points
such that d; > §/10 the proofs of (3.25) and (3.27) are contained in the proof of Lemma 3.2 in [9],
while (3.26) is trivial.

Proof of (3.25). We will need a more accurate estimate than (3.25), namely, we will prove that

C
A+ W)z —_ 3.28
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where dj = dist(§j, 3§2). Then this inequality and d; > % for all j=1,...,m (i.e. condition (2.3))
yield (3.25).
By (3.1),

8,11?

~ ~ ~ ~ €
AZpyi Wzyi = AZpi ——————20j o ———— ).
o5 0 = AT G Ty g <1+|y—s;|3)

We compute

~ 83 ~

AZgj + ———I——— 7
ad ey -2

= An1(20j — 20j) + 2V 01V (20j — 20j)

S,u?

+ Am22oj +2V1n2VZ05 + (1 — n)m2 (Afoj + —201)
(U5 +1y = §j1%)?

For x € 2, with R < |x—§]/.| <R+1and y=Fj,(x), n3. = Fj,p(éj/.) we have

. 1 A\ 1

Indeed, for such points

o0

x2+70,,+t
Gap(y.n) = —logly — nj| + log|y — ;| +2/e_’\/’f E:
0

(y2 + 1, +02+y7

=log(dj/p) + 0(1)

where O (1) contains the first term —log(R), the integral, and part of the second term, and y =

(1. y2), 0=} 1.7] 5)-
A similar estimate for its derivative implies

R . C
”Anl (z0j — 20j) +2V N1V (20j — Zoj) ”* S log(di/p)’
J
Similarly
I1AN2Z0; + 2V N2V Zgill4 < —C
220j 2V40jllx X :
J = logd;/ p)

The last term is

81 .

+ 20i
(ud+1y -2

) 2 :
AZoj " log(d;/p) VeV (Gao (Fip - Fio (€1)))
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away from 51’., and this implies

83 R

—7
(U5 + 1y = §j1%)?

C

AZoj + | <=
H ! |, " logd;j/p)

Proof of (3.26). We will derive the estimate

(G

from which (3.26) follows. On 852, we have 11 =0 and hence Z; = 122¢;. Therefore,

CAp

<—— forallj=1,...,m
L®(382)) log(d;/p)

0 - 320]' o 7}2]A
<5 + k,o)zoj = 7}2]'(W +)»/OZ()]'> '0—1)20] (3.29)
We compute

3201' . 1 320]

— 4+ A = ————0 G F

™" +Ap2Zpj = log(d;/p) v Ap( ip () JP(E]))

k <8+Ap>G (Fio(). Fip(€D).
" logd; /i NIRRT

Since Vzpj(x) = O(|x—§j/.|‘3) and G, (Fj p(x), Fj,p(Ej/-)) is bounded for |x—§](| >dj/p we have

Since F; is conformal and smooth in the original domain 2N B(éj, §), we can write

1 320

Cp3 Cip
nzfilog(d]/p) 5 LGap(Fjp(©), Fjo(€])) <

< < :
1°(382,) d?log(dj/,o) log(d;/p)

9
——Gip(¥.1})0j.p(¥)

0 /
gy o (Fip(- Fip(§)) = =5

av

where y = Fj , (%), r;;. = F]-,p(sj/.) and 0; ,(y) is the conformal factor of F; ,, which has an expansion
of the form 0; ,(y) =1+ 0(p|yl|). Then

0
(5 +Ap> Gop(Fip(). Fjp(€])) = (1= 0j,0(1)2pGip(y. ).
Since G;,, is bounded in the considered region we obtain

Crp
L°(382)) = IOg(dj/p).

log(d;/p) " °]<av '0) wo(Fip©)- Fi.p(&)))

Finally we also have |Zgj| < C/log(d;/p) for points in 852, and hence

Crp? Cip

LI < < .
L°°(382)) log(dj/p) " log(dj/p)

H“—ﬂ’f

(3.30)
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Proof of (3.27). We multiply (3.23) by Zgx and integrate in £2,:

- - - (2o, - dZok = )=
¢ (Azog + Wzoy) — ¢ v + ApZoi | + by v + ApZok | Zok
2p

2 92

= /hZOk + by /(AzOk + W Zgi) Zok. (3.31)
2, 2,

Using (3.28) we find

<Nl (@2, I AZok + W Zgills < pllo2,.  (3.32)

‘/&(AZOk + WZo)

2p

_c
log(dk/p)

We estimate

- 0Zok -
< @llee(s2,) 5 T APZok |-

P

(93 i
‘ f ¢<a—gk +Ap2m<>
082,

By estimates as in (3.29)-(3.30) we have

0Z ()k - C
Zok| < ———. (3.33)
' log(dy/p)
a2,
Analogously, we have
9z C
/ ’(—0" +A620k)20k S 2o (3.34)
)
92, g~ (di/p)
From (3.31)-(3.34)
- Y~ Cby, C ~
b/(Az + WZoi)Zok < Cllh|l« + + o0 .
kQ Ok ok)Zzok < ClIhll og?(dy/p) " 108(di/p) Pl
Using (3.24), (3.25) and (3.26) we see that
- Ibjl
Il < Cllhll+C Y ——L—.
e ' ; log(d;/ )
Therefore
Cb; C = bl
(AZok + WZo) Zor < (IRl + <+ L (3.35)
/ ok Wo0zoe S W+ oz Gepy T+ Togtdi/p) ; log(dj/p)

2
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We claim that

3 L c
A w > — 3.36
‘/( Zok + W Zok) Zok log(de/p) (3.36)

2y

for some ¢ > 0 independent of A and e.
Indeed, first we note that

- o €
[ (AZoj—‘rWZoj)Zoj:O(E).
Ix—&;I<R
Next we compute in the region R < |x — sj/.| < R + 1. Here we have

Z0j = M jzoj + (1 —n1)20; (3.37)

and therefore

AZoj+ WZoj = An1j(20j — 20j) + 2V N1V (20 — Z0j) + 01j(Azoj + Wzo))
+ (1 —mj)(AZj + WZg)).

We obtain
(AZoj +WZojZoj =11+ 12+ 13
R<p—&]| <R+
where
L= [ A j(zoj — 201)Z0j +2VN1V (20j — 20j)Z0js
R &I <R+
I = / n1j(Azoj + Wzoj)Zoj,
R< ]| <R+1
I3= / (1 = m1j)(AZgj + W2gj)Zo;.

R |x—]|<R+1

Integrating by parts

L= / Vn1jV(z0j — 20j)Z0j — / Vn1jVZoj(z0; — Z0;)
<R+1 R<|x—&]|<R+1
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- / mj(A(zoj — 20j)Zoj + V(20 — 20j) VZoj)
RIx—6]|<R+1

- / V11jVZj(z0; — Zoj)

R|x—£}I<R+1

=A+B+C.
We compute
A=— / EOjV(ZOj_QOj)-U
Ix—&7|=R
Gap(Fj V(Gyp(F;
== f 20j ]_M VZOJ‘-])—i— Z%-M.y
log(d;/p) 7 log(dj/p)
Ix=8j1=R x—£/I=R
= A1 + A,

where we have omitted the second argument in G, ,, which is Fj,p(éj/,). For A1 note that |Vzy| =

Gy, (Fjp)
0(1/R3) and (1 — mAg'}aj};)

)= O(log(;j/p)) in the considered region. Therefore

1
A1=0 ——— ).
! <R210g(dj/p))

For points x € £2,, such that |x — EJ/.| =R, thanks to (3.21), we may expand F; ,(x) = F,»,p(gj/.) +x+

0(pd;jR) + 0(p*R?) and DFj ,(x) =+ 0(dj).
Using this information and the definition of G, (3.20), we find

A —;[MJFO(L +0(di)+ 0(pR +o<p2R2>}
= ogdTF) R2> )+ 0(pR) )

Using similar arguments we obtain

1 1 1

B = 0 o —=
log<dj/p>< (logmj/p))+ <R3>>
= iy (e ) 0 (52))
~ log(dj/p) log(d;/p) R2))

and

Hence

I —;[ZN—FO(i)—G—O(d‘)—i-O(ER)—FO(ﬁ)+O<L)i|
1_log(dj//O) R? ! d? log(dj/p)/) |
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Similar estimates show that

and
L=o(<)+o0 L
TR R%log(d;/p)
so that

(AZ()]' + WZ()]')Z()J'

R<Ix—§]|<R+1

! [2n+0<1>+0(d')+0( R)~|—O('02R2>+O< R >
~ log(d;/p) R? proe 2 log(d;/p)
€ log(d;/p)
0 (T . (3.38)
We can also estimate
(AZoj + Wiop)z0;=0( = ) + 0 ! (3.39)
0j 0j)40j = R2 R3 lOg(d]/p) .
R+1<\X*$]’~I<5/(4p)
and
/ (AZgi + WZi)Zp; =0 ! > (3.40)
0j 0j)40j = lOg(d]/,O)z . .

8/(4p)<Ix—§;1<8/Bp)

In view of the estimates (3.37)-(3.40) we can select R > 0 large, § > 0 small, so that for Ap
sufficiently small (3.36) holds. Using then (3.35) and (3.36) we deduce the validity of (3.27). O

Proof of Proposition 3.1. First we prove that if ¢ € L*(£2)), ¢;jeR,i=1,2, j=1,...,m, solve (3.2),
then the estimate (3.4) holds. Indeed, by Lemma 3.3 we have

Iplli=(2,) < Cllog(hp)| |:||h||* +> 3 |Cij|:|~ (3.41)

i=1 j=1

Let n3; :R? — R be smooth cut-off functions with the properties

)

13j(y) =0 for |y —&j[ >

1
2CAp° Crp

IVisjl <Chp,  |AnNsj| < C(ap)?,

m3jy) =1 for |y —&j| <

where C is the constant that appears in the separation condition (2.3). Multiplying the equation
in (3.2) by Z;jn3; we find
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/¢[A(n312ij)+W773]Zij]dx=/hﬂ3jzij+6ij/XjZi2j-
2y 2p 2

Since Zijj=0(1/(1+1)), VZ;j=0(1/(1 +1%)) where r=|y — S}l we get

€
A3jZip) + W3, Zij = 0((2p)’) + 0 ((1 +1)3 >
Therefore

jcijl < C(Ihl +€llpllie(a,).

Using this and (3.41) we deduce that if A€ is small enough, then

Iplia,) < C|log(p)| Ikl

and therefore (3.4) holds.
To prove the existence of solutions, consider the Hilbert space H of functions u € H 1(9,,) such
that fﬂp XxjZiju=0, forali=1,2, j=1,...,m, with the inner product

(u,v):/Vqu—i—kp f uv

2, 992

Then we weak formulation of (3.2) is to find ¢ € H such that

<¢,1//>=/(W¢—h)w, Yy e H.

25

Using the Riesz representation theorem, we can write this problem as follows: find ¢ € H such that
¢=Ko¢p+ h where K is a compact operator in H and heH. By the Fredholm alternative, we obtain
existence of a solution if the corresponding homogeneous problem ¢ = K¢ has no non-trivial solution.
This is guaranteed by the estimate (3.4). The solution constructed in this way belongs to H' (£2)), but
by standard elliptic regularity it is also bounded. Therefore it satisfies the estimate (3.4). O

Let L, denote the space of bounded functions h: 2, — R with norm || ||4. Let T : L, — L*°(£2))
be the operator constructed in Proposition 3.1, that to a function h € L, assigns the solution ¢ €
L*°(£2,) to (3.2). This operator depends on the points &1,...,&n € 2 satisfying (2.2), (2.3), or the
corresponding dilated variables SJ’. =£;/p. We claim that (¢],...,&)— T is C! in the region defined
by (2.2), (2.3) and that

9 T g, < Cllogro) AL (3.42)

provided A > 1 and Ap is sufficiently small. The proof of this statement is analogous to the corre-
sponding one in [9].
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4. The nonlinear problem

We return to the nonlinear problem (2.8), but through the associated problem

L(¢)=—[R+N@)]+ CiixiZij, in£2,,
i=1 j=1
3
o +1p¢ =0, on 982, (41)
av
/XjZ,'j(ﬁ:O, Vi=1,2; j=1,...,m.
2

This intermediate formulation gives us a framework to use the previous results. We have:

Lemma 4.1. Under the separation conditions (2.2) and (2.3) on the points &j, there exist constants C, €o,
Ao > 0 such that for all > > Ao, € > 0 with Ap < €g, problem (4.1) has a unique solution ¢ satisfying

¢l < Crp|log(rp)|. (42)
Moreover themap &1, ..., &y, € 2p > ¢ € L®(2)) is €1 and we have the estimate
2
g, @lloc < Crp|log(rp)]|". (43)

Proof. Let

A(¢) :==T(—(N(¢) + R)),
where T is the continuous linear map such defined on the set of all h € L*°(£2,) satisfying ||kl <

400, so that ¢ = T(h) corresponds to the unique solution of the problem (3.2). With this, problem
(4.1) can be regarded as a fixed point problem

¢ =A(9).
For y > 0, define the set
Fy ={6 €C2): [$llc < y1p|logp)]}.
Using the definition of the operator A and Proposition (3.2), we have
|A@)], <Cllogp)|(|N@)], + IIRIl:)-

It can be proved that ||[N(¢)|l« < C||</>||gO and |R|l« < Ce, so we can conclude that A(F,) C F, and
A is a contraction, provided y small. The fixed point theorem assures the existence of a unique fixed
point of A in F.

Using the Implicit Function Theorem, one can justify the differentiability of the solution ¢ of the
problem (4.1) as a function of the points §j/. € 2. Formally, differentiating we have

0g; & = (a%_T)(—(N(qS) +R)) — T(a% (N(¢) + R)).
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So, by (3.42), the estimates for ||[N(¢)||«, |R||« given above and

|8, N@) |, < C(1p[log(hp)| + 119, @ lloc) 2. |log(hp)

we conclude the estimate (4.3). O

5. The reduced problem

In the past section, we proved existence of a solution of the nonlinear projected problem (4.1). The
idea is to find a condition on the points &1,..., &y that implies ¢;j(§) =0, for all i, j.
Eq. (1.1) is the Euler-Lagrange equation of the functional J.; : H!(£2) — R defined by

]E,)\(u)z%/|Vu|2dx—€2/e”dx+%/uzda(x). (5.1)
2 2 082
Let
F&) = Je,(U+¢) (5.2)

where U is the ansatz defined in (2.6) and ¢ = ¢(x, &) = ¢ (£, &), with ¢ the solution of the nonlinear
problem (4.1) given in the last section. The following lemma characterizes the condition c;j(§") =0,
for all i, j in (4.1).

Lemma 5.1. The functional F (&) is of class C! in the region determined by (2.2)-(2.4). Moreover, for Ap
sufficiently small, D¢ F (§) = 0 implies that £ satisfies

Cij(fl) =0, Vi,j.

Proof. Recall &' = &/p. We will work in the expanded variables and write the energy associated
functional as

1 A
Ie,k(v)=§/|Vv|2dy—/e"dy+7p /(v—log(e4/k))2da(y).
2, 2, 832,

Note that F(§) = J¢(U + @) = I¢(V + ¢). The smoothness in terms of & of the function F is inherited
by the solution ¢ of the nonlinear problem and the definition of the approximation V. Hence

35, F(§) = p ' Dl (V +)[3g (V + )]

=p! ( /(V(V +¢), Vo (V +¢))dy — / "9, (V + ¢)dy

2 2

+1p / (V + ¢ —log(e?/1)) g, (V + ¢)d0(y)>

982,

using the equation satisfied by V + ¢, we can conclude that
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m

g, F (&) = _'07] Z /CinjZ"j[aglizv + 85’&([)].
2

i=1 j=1 -
Let us assume that D¢ F(£) = 0. Then
m
> /c,-jsz,-j[aglélv+a%¢]=o, k=1,2;1=1,....,m. (5.3)
i=1 j=17

P

As we saw at the end of the last section, we have ||D5é’q>||<>o < Capllog(rp) 2.
On the other hand,

I, V = —=Zu(y) + g Hj(y) = =Zu(y) + 0(%p)

where the term O(Ap) is uniformly in £2. Indeed, to estimate agk/lHj = %8&«!”1 note that g = OgyH;
satisfies

)
Ag=0 in, £+Ag=o(xz) on a2,

since dist(§j,352) > §/1 and we are assume p > 0 small, ie., €2 small. By Lemma 2.2 we obtain
gl (@) < CA. Hence |8€,§,Hf| < Cea = CpA in £2.
Then, we can rewrite the system (5.3) as

/c,-jszij[zkl+0(1)]=0, k=1,2;1=1,...,m.
i=1 j=1g

For Ap sufficiently small, this 2m x 2m system is diagonal dominant. Hence, its unique solution is
cij(§N =0, foralli,j. O

We finish this section with an expansion of the function F as a perturbation of the energy of the
ansatz.

Lemma 5.2. Under the assumptions on the points &; given by (2.2)-(2.4), the following expansion holds:

F(&) = Jea(U) +0c,.(8),
where the term |0¢ 3 (§)| + |VOe,1(§)] — O uniformly as L p — 0 in the region described by (2.2)-(2.4).

Proof. Working in expanded variables, by definitions (5.1) and (5.2) we have F(§) = I¢ ;(V +¢). Since
V + ¢ is a solution of Eq. (2.7), the weak formulation of the problem give us DIy (V + ¢)[¢] =0.
Then

Oen(§) =Iep(V + ) —Ien(V)
1

= /tDzlm(V +tp)g? dt

0
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1

/(/(|v¢>|2 —eVt¢?)dy + 1p / ¢2da(y)>tdt

0 2 a2,

1

/(/ - [N(¢)+R]¢dy+fe"(ef¢ —1)¢2dy)tdt, (5.4)

0 2 2p

after an integration by parts and the use of the equation satisfied by ¢. Using the estimate ||@|co <
Cipllog(rp)| found in the previous section, we get

3
lep(V +€) = I (V) = C((2p[log(1p)|)” + €rpllogrp)).
The continuity in & of the all these expressions is inherited from that of ¢ in the L> norm.

Note that Ve, (§) = p—lvglee,k(ps’). Differentiating with respect to &, under the integral sign
in (5.4), we obtain

0g [Tea(V + ) = 1e (V)]
1

:/(/ — 3 [(N(@) +R)¢]dy + /agél[ev(ew - 1)¢2]dy>tdt,

0 2 2

and using the estimates for N(¢), R and W and its derivatives with respect to &, given in the previous
section, we get

Dgy0e.1(&) = p~"0g [Te s (V + ) — e 1 (V)]
2 4
= €([log(rp)| + (xp)*|log(rp)|") — 0 (5.5)
asAp—0. O
6. An expression for the energy of the ansatz
Given the asymptotic expansion of the functional F in terms of the energy of the ansatz J.(U),
we are interested in the form of this energy in order to find the critical points of F. The following

result gives us an expression which will be useful for this purpose.
Define

d = min{dist(§;,92): j=1,...,m}.

Proposition 6.1. Let U be the function defined in (2.6). There exists €y > 0, such that for all 0 < € < €g we
have

Je(U) = —16mm — 16mz log(e) + 8mar log(8) — 4w pm(§) + O (€, A, d)

where the function ¢p, is defined as

PmEr, .. En) =Y Hi(j, )+ Y Gu(&i &) (61)

j=1 i#]
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with G, and H, the Green function for the Laplacian in §2 with Robin boundary condition and its regular
part (cf. (1.3), (1.4)). The term @ has an order O (€21 log())) and O (€%13) for its derivative, when the points
&1,....Em are such that & — &j| > & for each i # j and dist(£}, S*) < cA~3/2 for some constant ¢ > 0.

Proof. We will divide the analysis looking each term appearing in the development of J.(U) individ-
ually.

Gradient squared. This term is given by
1 2 1 2
5 | IVUPdx=2 > IvuPdx+) " | vUiVU; dx (6.2)
Q =1g i#j o

where Uj=u;+ Hj.
We have

1 1 1
E/WUjlzdx:5/|Vuj|2dx+/(Vuj,VHj)dx+E/IVHHZCIX. (6.3)
2 2 2 2

Taking the last two terms in this expansion, using integration by parts and the definition of U; we
obtain

1 5 oH; 1 oH;
2 2 82 082

where v represents the unit normal exterior of 952.
Recall that d; denotes the distance of the point &; to 9£2. For the first term on the right-hand side
of (6.3), we will use the explicit expression of u; given in (2.1):

VA — |
fropae | (20
2

d.
B(j. )

o] o2

d.
2\BGj. )

2
dx

2
dx. (6.5)

For the first term in (6.5) we have by explicit calculation

J (B2

d4
B(j.4)

2
dx

2,2

. N2 . 2042y /a
:1671[10g<‘E ad +(d—1> ) —210g<%>+%—1]. (6.6)
o2 Vi) @+ (3
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Using the definition of Wy

Vax—gj1\ [

[ fpm(EH)

d .
2\BEj, )

2
1 uie

=16 / — —dx—32—2

g A d
2\B,9) 2\B&, )

2

X — &2
/ =527 ™ (67)

with 7 € [0, (u?ez)/k]. Denote 611 the second term in the RHS of the last equality. We estimate 611
in the following way

262

I 1
|611] < 32— — ——— dx
A |x — &;l

d:
2\BGj,4)

2.2

23S dlx —&j| _3 / 1
=161 'y -

5 (/ E |x— &7~ + |X_5j|3

R 0B(£.d;/2)

2 2
and conclude that 611 has order O( ’ ) For 9:011 we have

2.2

n5€ 2|zl(t = 2|z|?
=)+ ==( | HEmawen
GB(O,dj/Z)
ve(€j) / |x — &2
+ LA LS
2 (T +1x—§j1>)3

0B(&j.d;j/2)

B / 2|X—éjl(f—2|X—$j|2—3lx—€jlaf))
(T +Ix = &[H*

2\B(;,dj/2)

= 0((€1)?) + 0((eM)*) + 0(€%2%) + 0 ((en)?).

On the other hand, note that |VI'(x, (§])|2 P where I'(x, y) = 4log(|xl—y‘) is the fundamen-

[x— E
tal solution of the Laplacian in R2. Hence

16 / édx= / F(x,éj)%v’gj)do

Ix — &j|2
d; d;
2\B(&.4) 9(2\B(£j.4))
ar'(x, &) ar'(x, &)
= | rxep=—25g rxe)—=—21¢
/ (%,&5) v o+ / (%, &) v o
o6 aB(&ﬁ)
or
=/G(x,§j)8 /H(x Ej)— do+32n log 4 (6.8)

a2 2 2
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where we have used that Hj (x,&;) = G, (x,&;) — I'(x, &;). Then, combining (6.7) and (6.8) we have

or
/ |Vuj|2dx=/G/\(Xv§j)a /Hk(x .f,-‘j) da +327rlogd + 011
2\BE;, D) e e

oH
——/F(x,éj)a—vda—/AF(X,Sj)H,\(X,Sj)dX

a2 2

1
/G(x 51)—do+327110gd + 611
Y]

=8mH(EjE; FaHd G ‘8Fd
=oT (s]s‘%—])_/ 5 U+f )n(x5$])5 o

82 02

1

+ 327 logT + 611. (6.9)
aj
2

Finally, using (6.9) and (6.6) we have

1 JoH
/|Vu]| dx_—87r—16nlog(j_])—E/F(x,éj)a—vdo

+ ; /G(x 51) do + 4 Hy (5}, &) + 61 (6.10)
a0

where 67 =611 + 612 and 613 is the error term associated to (6.6). We can estimate 612 noting that

eui  rdp\? (€u/n
012 = =327 log(d;/2) + 167 | log( — + (5 ) |+ —— "7~
A 2 €ud) /n+ ($)?
1 nie? nie 16
=5x 167 — — 167 —
di A a o d

= 0(e?1) + 0(e*2?).

Meanwhile, if we denote p? = €2 /A, we can estimate 367, using that

} dj : 'OZM? + (dj/2)2 )0211? + (dj/2)2 (,Oz,l,L? + (dj/z)z)z
= 0((en)?).
Then, we conclude that 6; has order 0(e2%) and 0 (€%3) for its derivative.

We will need the following lemma to complete the estimate of (6.3). The proof of this estimate is
given in Appendix A.
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Lemma 6.2. In virtue of the relation between H j(x) and H; (x, £j) we have

OH ; OH,.(x,&;

ij Jd(;:/H)\(X’%-j)Ls])dg_Fo()‘gz), (6.11)
) av

082 082

And the derivative of the error term has an order O ((€ )% log(1)).

Continuing with the proof of Proposition 6.1, we see that thanks to (6.4), (6.10) and (6.11), we
have

1
Eflvujlzdx:—Sn—16n10g(uje)+4nH,\(§j,$j)
2

dH; 1 dH(x, &)
U—ldo—=- [ H N———21 ¢
+/ igy 4o 2/ A (X, &5) 7 o
082 082

1 or 1 OH (X, &j) '
+§/‘Gx(x,§]) 37 do 2/1“ 3 do +01(€,1,dj) (612)
a2 a2

where 61 (€, A, dj) includes all the error terms seen so far and has an order 0(€22), and derivative of
order 0(e213).
For the crossed terms of (6.2), using the Robin boundary condition we have

aU;
VUiVUjdX: UjW— UjAUi

2 982 2

=—k/UjUi—/UjAUi. (6.13)

082 2

Using the definition of the functions U; and centering the coordinate system on &/, the second integral
of the last expression can be separated as follows

8u? Ax — &;
_/UjAUidx:e*Z)\/. Hi {WJ.(«/_Ix é;l)+1og€1—4+log(x)+1-1,-(x)}dx
2

2 | Mx=&?
o (M,‘ +€—2)2 €

= f 8 {log ! +log(8uz)—log(k)}dy
A+ U7 2 + 16 — & + Ly )2 !
L2-e)
i€ 1
8 €L )

+ ———=Hi|&+—=y]d

f/ (s ) o

e (2-6)
=11+ 1+ 13+ 4, (6.14)

where
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| Ay o2+l — &+ Zoy2? T lE =gl
M—er(ﬁ—&)
I, = / L(H(é—_}_% )—H-(é‘-))d
* A+1yP2 U\ ﬁy iGi) | dy,
A (2-6)
8
Is= / W(Hj@i) —H(, )+ log(SM?) — log(k)),
A (2-6)
la= / ° <H(§' &) +4log 1 )dy
- A+ s & —&1)"
A (2-8)

We need to estimate each of the last four integrals. Since the points &;, &; are uniformly separated
each other, we have I; and I, of order O(e/+/A) with the same order for its derivatives with respect

2,2 2,2
l"jp lep . . . .
'@ ) and O( v d?) for its derivative. Finally,

to &;. The asymptotic estimate (2.13) implies I3 = O(

for I4 we have

8 1
la= % (H@. &) +4log—— )d
4 / <1+|y|2>2< -5)) °g|si—s,-|> y
L)

8
- | arpmcesy
M (2—g)

i€
1

=sot) [ i

AL (2-)

Li€

=871G (&, &) + 0(re?),

and derivative with respect to &; for the last error term of the same order.
Hence, the second term on the right-hand side of (6.13) can be estimated as

_/UjAUi =8 G(&i,§j) +02(€, 1, d) (6.15)
2

where 6, is 0(Ae?) and order O((1€)?) for its derivative.
For the first term in the right-hand side of (6.13), using the asymptotic relation (2.14) we have

2.2 2 52
nip nip
—)\/UjUiz—A/Gx(x,éi)Gx(x,Sj)JrO( A’d? >+O< Ve ) (6.16)
a0 AR J

u2p?
ad4 )-

where the derivative of the error term has an order O(
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Finally, with the estimates (6.12), (6.15) and (6.16), the expression for the term with the gradient
squared in (6.2) can be written as follows

/|VU| dx—4n<ZHA(‘§] é,)—i—ZGx(é,,E] ) — 8mm —167[210g(,u16)

j=1 i#]j j=1
oH dH,(x,§))
+Z/ —f——fo(x,sj)Tf
=ye bYe)

1 AIrx&) 1 [ 3H.(x§)
+2fGA( §j)- I Z/F

av
082 Yo
A
_EZ/G;\(X,Ei)G)L(X,Sj)+@1(6,)\,d) (6.17)
i#ige

where ©1 (e, X, d) includes all the error terms considered in the previous analysis and is O (1€2) with
derivative of order 0 (e213).

Exponential term. Now we will consider the exponential part of the energy. We can divide it in the
following way

/e dx—ezz / eV dx + €2 / eV dx. (6.18)
U, 4 UL, BE, 5

For the first term on the right-hand side of (6.18) for each j we have

€? / eVdx=e? / eVieXizi Vi dx

B(&;, Y BE;, Y
1
=2 / PN exp(log(S,u,?)—lOg()»)—i—Hj(X))
J J
B, 9)
8u?
x exp<z<l i +log(h) + H,'(x)>> dx
l;ﬁj (H’, 624_)"|X gl' )2
A 1 szz
= — — H O J
"5 l +1yP2 ™ p[ eyt e+ (Adj >]
B(0, 2551)
i€y uip?
X exp Gu(&i Ej +Li€/vVAy) —4 +O< ))}
[2( eI VAT 23

xexp(—z 'u‘ >
MEj — & + pje/Vryl
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Using the definition of the numbers w, we can conclude

m

ey / eV dx =8mm + 0(e), (6.19)
j=1 d:

B(j.+4)

where we have used (1.11). The derivative of the error has an order O (\e€).
Using the estimates given above, it is easy to see that the second part in the right-hand side

of (6.18) becomes
€?
€2 / eVdx= o<3> (6.20)
AU BE. D)

with 0((%€)?) for the derivative of the error.
Finally, with (6.19) and (6.20) we can write

ezfeudx:8mn+@2(e,k,d) (6.21)
2

where ®;(€,d) has an order O(€) and O (A¢€) for its derivative.

Boundary term. For the boundary term of the energy, we use the asymptotic expansion (2.14) and
the Robin boundary condition of the Green function to obtain

m

A py P22\
5/”2‘1“:5/(2(“("’5”*0( Mg’))) @
082

3 j=1

PR A
=5 / GLE)+5 ) / Gy (%, &)G(x, ) do + O3(€, 1,d)  (6.22)
=150 i#j 50
where ©@3(e, A, d) has an order O (Ae2) and order O((eA)%log())) for its derivative.

Taking into account the final expressions (6.17), (6.21) and (6.22) for each part of the energy, we
can conclude that

Je(U) =4m <ZH/\(§j, E)+ ZGA(&,S]‘)) —16mm — 167 ) _log(jsj€)

= 7 j=1
m
oH; 1 IH;.(x, &) 1/ I (x. £)
Uj—— =5 [ Ha§p——"0 4 o | Gl ) ——==
+Z/ ) 2/ A%, &5) P + > 2(X, 6 o
g is 992
1 IH,(X. &) A 5 ~
T A T e 2
2/ v +ZZ/GA(X»§])+O(6,k,d) (6.23)
92 =y0

where the error term @ is O(¢€) and O (e2A3) for its derivative. This term includes all the error terms
®;, i=1,2,3. Using the definition of the regular part of the Green function and the Robin boundary
condition, we can write
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Je(U) =4 (ZHA@J-,EJ-) + Zcua,sp) — 16mx — 167 ) _ log(s je)

j=1 i#] j=1
dH; OHy(x, &) | ~
+Z/U; /Gx(x,éj)T+(~)(e,,\,d).
=le FYe)

To give the correct bound for the error term, we will need the following:

Lemma 6.3. Under the assumptions (2.2) and (2.3), for each j =1, ..., m we have
0H; oH, (x, &)
/ Uj5t / G (x, 51)7’ 0(€*rlog(1)) (6.24)
882 352

and order O ((e)? log(x)) for its derivative.
The proof of this lemma is postponed to Appendix A. Using (6.24), we have
m m
Je(U) =4m (Z Hy(E. 8D+ Y GalEi, sp) —16mx — 167 ) _log(j€) + O (€, 1, d)
Jj=1 i#] Jj=1
with @ (e, 1, d) = 0(e2xlog(r)) and 0(e223) for its derivative.

The definition of the numbers w; given in (2.10) allows us to conclude the following expression
for the energy of the ansatz:

Je(U) =—16mm — 16mm log(e) + 8mm log(8) — 4w pm (&1, ..., Em) + O (€, 1, d)
where ¢ (&1, ..., &n) is the function given by (6.1). O
7. Proof of the theorems
To prove the main theorems in this paper it is useful to recall here a few properties of the Green

function G;, and its regular part H; (cf. (1.3), (1.4)). The proof of these estimates can be found in [8].
We have the following expression for H, (&, &),

HA(S,E):h,\()\d(g))—i-O(%) as A — +o0 (7.1)

where & € £2 has to satisfy Ad(¢) € (M1, M3), and the function h, (9) has the explicit representation

o0
hy.(0) = —log(x) — log(260) + 2 / e tlog(26 +t) dt.
0

This implies that the function h; (6) has the following properties:

hy(0) = —log(®) + 0(1) as® — 0,
hy.(0) = log(d) + 0(1) as O — +oo.
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Moreover, it is known that h; (6) has a unique non-degenerate minimum 6y € (0, +00) and we have
h;.(6p) = —log(1) + O (1). It can be seen from the formula for h; (9) that the location of the minimum
does not depend on A.

Proof of Theorem 1.1. For the case m =1, we look for critical points & € £2 of the function
F(¢§) = —4mH, (§,&) + 8m log(8) — 16 — 167 log(€) + O (€, A, d), (7.2)

with @ (e, 1, d) = O( 3) and d = dist(&, 952). Finding critical points of F is equivalent to finding
critical points of

F(&) =H,(6,6) + O(€, A, d),

where @ = ——O Under the assumption Ae < €y we see that the error @ can be made arbitrarily
small by takmg €0 > 0 small, since ® = 0(e2xlog())) uniformly in £2.
Let

o
{g cu: dg) =" }
and for 0 < M to be fixed, consider the set
[
U= {g €2: —MA 2 <dE) — 7‘) < MA_3/2}.

Recall that for each & € £2 sufficiently close to 952, we define 5 the unique point in 942 such that
& — Sl =d(§). We can take M so that for each x € 352 there exists £ € U such that 5,( =x and
)"d(gx ) = 6o.

Using that 6p is a non-degenerate critical point of h;, it is possible to take 0 < M large such that

infhy (d(&)) > suphi (1d(©)) = G0

Using the separation condition (2.3) and (7.1), taking Ao large enough and €q sufficiently small we
have

mfF >supF, (7.3)
S*

for A > Ag, € > 0 satisfying A€ < €o. This implies that the function F has a minimum & € I which
corresponds to a first critical point to F.
We now argue that F has a second critical point in ¢{. For each x € 352 consider the set

Qu={seU: E=x).

If for all x € 952,

inf F(£)=minF
A ) i
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then actually F has infinitely many critical points in I/, and we are done. So assume that there is
X € 082 such that

inf F & min F. 7.4
£eQy ) > u ( )
Let dQy denote the relative boundary of Qy. By (7.3) we have

inf F > supF.
3Qx P

But S* and 9Qy link in ¢, so, if we define the set
P=1{peC®Qui): plag, = Idsq,}.

then, the real number

=sup inf F
p=sup inf F&)

is a critical value of F which is different from F(&;) in virtue of (7.4). This implies the existence of a
second critical point & in U/ of F which is different from &;. O

To prove Theorem 1.2 will need the following definitions and computations.
Given M > 0 and 8 > 0 define

R0={(1,....6n) € 2™ Ad(E) € (6o — MATV2, 00+ MATI2), i=1,...,m;
& — &j| > o, i # j}.

We will sometimes write £29(M, §) to make the dependence of this definition on M, § explicit.
Then 2y is a smooth manifold with boundary 9.

Lemma 7.1. There is cg > 0, 8o > 0, Mg > 0, Ao such that for 0 < § < 8o, M > My one has
. C .
inf om(€) = mh;.(6o) + — min(M?,1/8)
9820 A
forall A > Ao.
Proof. If £ = (&1,...,&n) € 529 then either Ad(&;) = 6o — MA~1/2, or Ad(&;) = 6y + MA~1/2 for some i,

or |& — &;| = § for some i # j. If Ad(&) = 6p — MA~1/2, then by (7.1)

om(E) =) HuE &)+ ) Gi(a. &)
1=1 1]

> hy (60 — MA™'/?) + (m — 1)h;. (6)
> mh; (60) + M7

where we have used the positivity of the Green function. This implies, choosing M > 0 large



J. Davila, E. Topp / ]. Differential Equations 252 (2012) 2648-2697 2685

C()IVI2
A

®m(&) = mh;.(60) +

(for some fixed value of cq > 0). We get a similar conclusion if Ad(&;) = 6y + MA~1/2.
So let us consider the case |£; —&;| =6 for some i # j. Using expansion (7.1) we obtain in this case

PmE) =) HuE &)+ ) G &)
i=1 i#j
1
> mh; (60) + O <X> +) G &),
i#]

In this case, we use the following claim: For points &;,&; satisfy |& — &;| =& and the separation
condition (2.3), then there exists co > 0 such that

C
G, &) > ﬁ

for some § fixed small and all A sufficiently large. This claim concludes the proof.

To prove the claim, we consider after a rotation and translation &; = (0, d(&;)), the projection of &;
to 982 is the origin and the outer normal vector to the boundary at the origin is (0, —1).

Denote by G; the Green function in the half-space {(x, y): y > 0} associated to the Robin boundary
condition. Fix § > 0 small. It is proven in [8] that

A 1
IGr — G)»”LOO(B(gj’S)ﬂQ) < ng.

We recall that

0
n or
Ga6 &) = I (16 — &) — T(1& + &) — 2 / O 6 € — exs) .

—0o0

By a computation we get

0
oI c
AS
— (& - ds > —
/e axz(éﬁréj ezs)ds M

—00

for some ¢ > 0. Also, for |& —&;| =6 and dist(§;, 0§2) = O(1/1), since & — &; is almost perpendicular
to 2&;, we get

>0

|r(1& — &) — T (1& +&j1)| <

Therefore

1
GrGi &) = Cﬁ

where C > 0 is a universal constant. Choosing 0 < § < § small independent of A we have the conclu-
sion of the claim for A large enough. O
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We will apply the Ljusternik-Schnirelmann theory, see [6], to estimate the number of critical
points of the functional F on £2o. Let us recall that the Ljusternik-Schnirelmann category of a closed
subset A of £2¢ relative to £2g9, which we write as cato,(A), is the smallest integer £ such that A can
be covered by ¢ closed contractible sets.

It is easy to see that catgo,(£20) is at least 2, which is equivalent to say that 2o is not contractible.
For completeness, we give a short proof. It is sufficient to construct continuous functions

f:S'> 29, P:£29— S!

such that Po f:S' — S! has nonzero winding number. Let I" denote a connected component of 952
and y : S — I' be a parametrization I, i.e., a smooth diffeomorphism. Set

6o
gx) =x— TU(X)’ xel,

where v is the exterior unit normal vector of 3£2. We represent S ={ze C: |z|=1}. Let f:S! — £
be the continuous function defined by

f@=(g(y®@), g(y(zea”%)), .8y (zeiz”mT_l))), ze st (7.5)

Next we define P as follows. For & € 22 close to 9£2 there is a unique closest point £cdf2. In
particular, for (&1,...,&m) € R0, (51,....&m) € I'™. Let

m
P&, ....&n) =[]y "Epes.
j=1
Note that P : £2p — S! is continuous and
Pof(z)=2"" ™MD zes,
so P o f has nonzero winding number.

Lemma 7.2. Let M > 0 and § > 0 small. There is a closed subset A C §29 with catg,(A) > 2 such that

C
sup g, (&) <mh, (6p) + —
£cA A

for some constant C independent of A.
Proof. Let f be defined as in (7.5) and let
A={f(@): zeS}.
The same argument showing that catg,(§29) > 2 gives that catg,(A) > 2. By construction of f, if

&E=(&,...,&m) € A then the m coordinates of & are uniformly separated, independently of § and A.
This implies that

C
Ym(&) <mh; (6) + <

for C > 0, independent of § and A. O
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Proof of Theorem 1.2. We take §2¢ with an initial choice of § > 0 small and M > 0 large so that £2
is not empty.

To prove the theorem we need to show the existence of critical points of F(§) where & =
(&1,...,&n) € 2™ with & satisfying (2.2), (2.3). Finding critical points of F is equivalent to finding
critical points of

- 1
F&) = _E(F(S) +16mx + 16m log(€) — 8mm log(8)) +mlog(1).
By Lemma 5.2 and Proposition 6.1

F(&) = gm() +mlog(h) + Oc 1 (&),

where O satisfies |O¢ 1 (§)]| < C,;,Mez)»log()n) for & € 2.
Define

A ={A C 2: Aisclosed and catg,(A) >k}, keN,

and

¢ = inf supF(§).
k= inf SEE )

Since Ayy1 C Ay, is immediate that ¢, < ¢k 1, for all k. Moreover, we have
c;= inf F
1= nf )
and c1 < ¢ < 400. Note that

c1 <Inf{F(§): & = (&1,....&m). & €S*, |& — & = 8o}

C
<mhs (60) + - + Ce?log

where §o > is fixed small and C es independent of M and 3.
Now choose M > M and 0 < § < § and set 29 = £29(M, §). Using Lemma 7.1 we can achieve

inf F > ¢
920
for A > Ap and ezklogk < €g. Define now
¢ = inf F(§),
§efo

¢y = inf supF(¢)
Ac A, £€A

where

Ay ={A C 2: isclosed and catg,(A) > 2}.
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Observe that £29 C £29 and therefore &; = ¢ and ¢ < c,. Taking M larger and § smaller if neces-
sary, using Lemma 7.1 we have

supF < inf F
A 9520

where the set A is the set found in Lemma 7.2. This implies the values of F on 98£2¢ are strictly
larger than &, and using Ljusternik-Schnirelmann theory we deduce that &, is a critical value of F.
If & > ¢, then we obtain immediately 2 different critical points of F corresponding to 2 different
solutions. If & = &4, then the set of critical points of F with value ¢, =& has category at least 2. In
this case we conclude that there are infinitely many critical points for F in £2g. Since there is a finite
number of permutations, we obtain the existence of infinitely different solutions in this situation. O

Remark 7.3. We believe that the assumption on € and X in Theorem 1.2 can be sharpened to Ae small.
This slight improvement can be accomplished by estimating more carefully the error in Lemma 6.3,
where it seems possible to improve the error to €%1.

Proof of Theorem 1.3. As in the proof of Theorem 1.1, to find critical points of the function F we use
the expansion (7.2), recalling the error term © (¢, A, d) satisfies

|6(e, 1, d)| < Ce®rlog(h),  |VO(e, . d)| < Ce®a®.

Let xo € 0§2 a non-degenerate critical point of the mean curvature «. For y € (0, 1), we have the
following expressions for the derivative of the function R, (¢) := H, (&, &), see [8]:

ViRL(0) =27 'V ®)v(rd(x) + 0 (A~17), (7.6)
(VRL(x), v(®)) = —ah}, (Ad(x)) — k R)v(rd(x)) + O (A7), (7.7)

which hold uniformly for m < Ad(x) < M, for some constants m, M > 0. Here, X is the (unique) pro-
jection of the point x over 352, Vr is the tangential derivative and v : (0, +00) — R is the function
given in (1.7).

Since xp is a non-degenerate critical point of «, then there exists o, ¢ > 0 such that

|Vk(®)| > clk—xol, VIk—x0|<o. (7.8)

On the other hand, the function h, (9) has a unique critical point 6y > 0 which is non-degenerate.
Taking c, o smaller if it is necessary, we have

|, )] > cl6 — 6ol V16— 6ol <o (7.9)

It is known that the function v is continuous and strictly negative, so we can consider o such that

inf 0 0. 710
95[0012,00+a]|V( )‘ = ( )

We assume o < 6 since 6p > 0. Consider 0 < 8 < y and define the compact set

Ky = {xe€2: [adx) — 6| <or™2 R —xol <A 7P}
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Define the function

RY(x) = hy (Ad(x)) + A~k R)v(Ad(x)).

Note that this function has a critical point in the interior of ;. Defining the function

Ry(x) = Ry.(x) + O(e, 1, d)

we can see that the function

RL(X) =tRy () + (1 —)RO(x), te[0,1]

is a homotopy between R, and Rg. Since
IVRL)|* = |V R )| + (VRL (0, v®))
then, if |Ad(x) — 6| = 0 A~ 1/2, using (7.7) and (7.9) and taking A large enough we conclude
(VRS %), v®)| = /a2 + 0(e223). (7.11)
If |X — xo| = A7, then using (7.6), (7.8) and (7.10), taking A large enough we conclude
|VR, (0| = /270 + 0(e223) (712)

with 0 < 8 < y. This implies that if we set A < e~ with « < % then we can choose 0 < § suit-

ably small (for example, g < %) we conclude that the term |VRf\(x)| in (7.12) remains uniformly
positive if eA™% < €q for € is sufficiently small and A > Ag, with A large enough.

Finally, (7.11) and (7.12) imply that we can use degree theory to conclude the existence of a critical
point of R, under the conditions over € and A given above. O
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Appendix A. Proof of Lemmas 6.2 and 6.3

Let HY = {(x1,x2) € R2: xy > 0} and dH' ={(x1,0): x; e R}. For g:R — R, consider v solution
of the problem

—Av =0, in Hy,

ov +av = ondH
v =& +

for a > 0 fixed. If g has some decay at infinity, the solution of this problem is given by

+o00
V(X1,X2)=/ka(M—y,Xz)g(Y)d% V(x1,x) € HY, (A1)

—o0
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where
1 +00 at
e " (xa+t
ka(x1,%2) = — / L 2HD g v x) e HY
b4 J X3+ (x2 + )2
see [13,8,7].
Consider j € {1,...,m} fixed. After a rotation and translation we can suppose that &; = (0,d;)

whose projection on 952 is the origin. For later purposes, we denote SJ?“ = (0, —d;) the reflection of &;
across dHy. Let § > 0 be fixed and U/ be a neighborhood of the origin. Consider a conformal mapping

F:B0,)N2 —UNH,. (A.2)

The function F can be taken so that F(0) =0 and F’(0) is the identity.
In addition, consider a smooth cut-off function
n:R?> > R,
. 8
nx) =1 1f|x—§j|<§, (A3)
nx) =0 if|x—£&j|>é.
Particular properties for this cut-off function will be stated later in each case.
Recall p =€/+/A. Let hj=H;(x) — H,(x, &j), which solves the equation

—Ahj:O, in £2,

dh; ( 0> ) ( 102 ) (A4)
—=4+Ah;i=0 +0 , onos2.
Ay ! Ix— & Ix — &j|2

For the proof of Lemma 6.2 we will need the following lemma.

Lemma A.1. With the definition of F and n given in (A.2) and (A.3) respectively, we have

(A5)

\hj(X)!<C1kp2+CzAszn(X)< 14 2P0, )

1+ 22((F®)1)?

Proof. We change variables, considering the set 12 and writing y € A£2 as y = Ax with x € £2. Define
hj(y) =hj(y/x) for y in 1£2, which satisfies

—Ahj=0, in 192,

oh; - < 22 p2 ) < 22 p2 ) (A6)
— +hj=0( ———= )+ 0 ——= ), onda(r).

v ly — g3 |y — Agj|2

Consider v; a solution to

—Av1 =0, inH,
1202

W14y = on oH

Using the explicit expression (A.1) for this case, it is possible to get the following bound for v1,
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1

FEr if [y1] <2,
T+y
[vi(y1, y2)| < CA%p? 12 Ly, g <
T L A £
In particular, we have |vq(y1,0)| < C]i‘; Moreover, we have
1
1 .
IS if [y1] < y2,
Y2(1+y2)
|Vvi(y1. y2)| < CA%p? 14 1 1+ )
((]+|yyf‘)3 + m)l{yz>l} + (ﬁ)hyzd} if [y1l>y2
SO
222 .
Vv1::0<4444447> if [(y1,y2)| > 1. (A7)
[(y1, y2)l

Let F(y) =AF (%), with F as in (A.2). This function F; is defined on B(0, 18) N1£2. Denote by 11, (y)

the conformal factor of F, in y, which has an expansion given by w, (y) =1+ O(|%|). Consider Y the
solution to

—AY =

2
Y '0—, inAs$2,
A

3Y+?—A2 in (A 82)
v =AM

and 7(y) = n(%) for y € A2, n as in (A.3). Then we set

W =C1Y + Civi (Fi(y)), (A.8)
where C; > 0 and C, > 0 are constants to be fixed later on. We have for y € 9(1£2),

oW - . on
T W= Cip? + Co AV (F)ia) - v+ v (Fav)) + B—Zvl(mw)]

. 0 _lo
= Ciap?+ G n(—a—;;(my)) +vl(my))) +n‘i(my))'0<

1
0y2
e -
P
o{— ) |.
+ <A>_

Using the estimates for v{, we can conclude

1yl
A

N—

Zhws S 4h ona()
if we take Cq, C, large. On the other hand

2
—-Aw=C % -G (Aﬁ(y)w (Fr(¥)) +2Vii(y)Vvi(Fr(») - F’(%)) yEAR.
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But |F,(¥)| = 0(]y|) and F/(%) is bounded in B(0, A§) NA$2, so, using (A.7), we have —AWw >0 in A£2.

This implies that Ej < W in A£2. A similar argument tells us that —w < flj in A£2. Then, we get for
y €AS2,

(A9)

|%wﬂ<cmﬂ+6ﬁﬂﬂmw<l**“””z ! )

T+ (B 1+ (F(y))?

Returning to the x variables we have the statement of the lemma. O

Proof of Lemma 6.2. By definition of hj,

oH; oH; (x, &;
/mw ﬁ”wmzfmwm—%ﬁﬁww
082 082

+2/ H; (x,&))

082

dhj(x)
ov

do (x) + 0 ((Ap)?).

We will need to estimate the middle term of the right-hand side of the last equation. For § small, we
have the following expansion of H; (x, £;) for x € 2 N B(0, §), see [8]

0
Hy(x, &) = oG) +I(x—£f)—2x / eI (x— (& +sez))ds,

where the O(%) term in the last equation is in the uniform sense in £2 N B(0, 8). Using this estimate
for H(x, &;) lead us to get

ah;
/Hk(x, £)) allgx) dx

02
0 oh
:O(Apz)—l— / (F(X—S;‘)—Z)»/elsr(x—(éf‘ksez))dS)a—v]dx
d§2NB(0,5) —00
2 * ahf
=0(xp%) — / F(x—éj)ﬁdx
352NB(0,8)

0
t oh;

+2 < et(l“(x—s]’»‘)—l“<x—<§f+—e2>>)dt)—1dx
a.rmB/(o,s) [o g v

) )
log((Ax1)* +1) 1
<0(rp? OA32[7d ox“/id,
(:0%) +0(°0%) | = @+ 0P | g

where, in the last inequality we have used the boundary condition satisfied by hj, the estimate (A.9)
and the properties of the function F. So, the estimate for the desired term is

oh;
/mma>ﬂmwm=ommﬂ

av
02
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Now we will see the estimate for the derivative of this error term. Differentiating with respect to &;
the error term (for simplicity, here d; denote the derivative with respect to &;,, with k=1 or 2):

- 3H; dH;, dh; dH; dh; d(dgh;)

av av
Y] EY?)
0(0: Hy) 0(dghj)
h; hi .
th av th av
Using the equation satisfied by H;, we can conclude
—Ad:Hy(x, &) =0, xe 2,

00:Hy (%, &) ( 1 ) ( 1 )
—— 4+ 2eH, %, ) =0 —— | +A0| —— |, 052.
av 3 )\(X E]) |X—r‘;"]|2 |X_%_j| ye

We put Z; = d; H,. Expanding the domain in A, we can get

—AZj=0, y e,
0Z;j

A A
—+Zi=0—= )|+0| — |, a(A82).
T <|y—s;|2> (|y—s,’-|> VoD

We use the same method applied in Lemma A.1 on this function Z;, but now considering Y solution
of the problem

1
—AY =—, € As2,
Y y

Y -~
—+Y=1, yed(r),
av
and v solution of the problem
—Av1 =0, inHy,
V1 A
3_ +Vvi=——=, onodH,.
v Y1+
In this case, the function v{ has the following bounds
1 (+y) max(1,log(ly1)
+ if [y1] > y2,
1 2
[va(y1, y2)| < CA +ly1| (+ly1D ]
THy51 if [y11 < y2.

Using elliptic estimates we have |[Vvq| < Cy]—2|v1| in the set y» > |y1] and |Vvq| < 0(1) in the
set y2 < |y1l, Y2 = 11—0. We will take n as before, but with the extra property that in the set {y €

A2 d(y,0(A2)) < 11—0}, (VN n)(%) =0, where Vy is the derivative in the normal direction relative to

the boundary. This can be done due to the regularity of the boundary and taking A large enough if it
is necessary.
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Then, using maximum principle as in Lemma A.1 we have the function

w=cin=cn()o(2)

is a supersolution to Z; in A£2 and —w is a subsolution to Z; in A£2, with F as in (A.2) and 7 as
in (A.3), provided C1, Cy > 0 fixed appropriately.
In the same way, we will estimate d:h; noting that this function satisfies the equation

—A(dhj) =0, in,

2 .2 2 .2

8(3chy) i2p 12
A(0sh; —_ o ——~ |, 0s2.

gv TR = <A2|x—sj|4 TOm—gr) "

Using the same method as before, we conclude
dghj < Ahj.

With this, we can estimate at main order

[ (oo )
av i 14+ (x1)2 Ix — &j|2 14+ (Fr(y)1)?

082
0((ex)?),
<[ (0 20 () ) (o ~6)
/85'” ov \/(k PR\ T B ) )\ T T sl =aD
92 982
0
< (M) + (he)? f (F(x—&f)—Zk/e“]‘(x—(é}"—i—sez))ds)
dRNB(&},8/2) —00
= 0((en)log(h)),
0(0gh
[ 1.2 < o (e togen).
82
0(0eH
/ h j% < 0((en)?log(n)).
02

This implies that the derivative of the error has an order 0 ((e1)2log(})). O

Proof of Lemma 6.3. Let

L L AL
v

av
2 2
Using that U; =uj+ H;j and G, =I" 4 H; we have
oH; oH; (x, &
1=/uj—f—/rﬁ+o(xez).

ov ov
2 02
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Using the definition of uj:

8Hj BHA(X,SJ-)
/ UGy ‘/ =

82 a2

oH
=/(10g(8M§)—Zlog(uﬁszrIX—sﬂz) — log(3) 5L —/1"
982 90

—/o 143 p? aHj+/F OH;  0H,
N Ix—¢&;12) av £ v
a2 a2
—/o 143 p? aHj+/Fahj
B Ix—&j12) v v
a2 a2

2,2

Hip 0H; 2
:/O<|x—s‘|2>W+O(W’))
082 J

where, for the last equality, we have used the boundary condition satisfied by h; and its bounds
found in (A.9). We continue the estimation noting that

oH,,
ov

W5P* 9H; [ M5PP (9Hu(x.&) | oh;
=g ov ) x—gR\ dv ov

b 082
~ / H50% 9H; (x. &)

|x — &2 v

+0(2%€%) ;=K + 0(r%e?). (A10)
A2NB(;.$)

To prove the estimate (6.24) we will need a more accurate bound for W at least at points

X € 082 near £;. We will use expanded variables y = Ax € 1§2, where x € £2. In these expanded vari-
ables, H; satisfies

—AH; =0, y e,
dH; (y—§&jv ,

—— +Hy=4-——= +4log|y — &}| —4log(1), ye€I(2).
v ly =&l

We use the method of Lemma A.1 with Y satisfying

log()

—AY(y) = 2 Y€ A82,
ay .
WD L yy=1. yesne).
av
and v satisfying
—Avi(y) =0, y€eH,,

ovi(y)

5y Vi) =2log(1+y7) —4log(h), y €dH,
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and using the explicit expression (A.1), we conclude

1+41log(1+ y2) +log(1+ [y1]) —log(n) if [y1] = y2,

vi(y1, y2)| <C .
| | 14 log(1+ y2) —log(») if [y1] < y2.

Here we will consider F as in (A.2) and 7 as in (A.3). We use the same method as in Lemma A.1
to conclude that the function w defined as

wy) =Y y) + CZ’I(%)W <“:<%>>

is a supersolution to H, in A2 and —w is a subsolution to H, in A$2, provided Ci,C; > 0 fixed

adequately. This implies
y y
|H,.(y.&))| < C1log(A) + Can =i AFLS) )

Using the boundary condition of H; and returning to the original variables, we have

< Ciialog(h) + Coavy (AF (%) + a1 204 + 41 |log(Ix — &;1)|.

x — &l

‘3HA(X,§J')
av

We use this to estimate the integral term K defined in (A.10), which, in main order is estimated as

K = 0(e*xlog(x)).

As in the proof of Lemma 6.2, differentiating with respect to & the error term it is possible to conclude
the order O ((r€)2log(r)) for the derivative of the error. This concludes the lemma. O
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