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We construct solutions of the Liouville equation

�u + ε2eu = 0 in Ω

with Ω a smooth bounded domain in R
2, with Robin boundary

condition

∂u

∂ν
+ λu = 0 on ∂Ω.

The solutions constructed exhibit concentration as ε → 0 and
simultaneously as λ → +∞, at points that get close to the
boundary, and shows that in general the set of solutions of
this problems exhibits a richer structure than the problem with
Dirichlet boundary conditions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ R
2 be a bounded domain with smooth boundary. In this paper we construct solutions to

the Liouville equation with Robin boundary condition:⎧⎨⎩ �u + ε2eu = 0, in Ω,

∂u

∂ν
+ λu = 0, on ∂Ω,

(1.1)

where ε > 0 is small and λ > 0 is large.
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The Robin boundary condition has been considered in nonlinear equations in biological models,
see [11]. Concentration phenomena for the least energy solution of equations of Ni–Takagi type with
Robin boundary condition has been studied in [2]. Later on we shall compare our results to [2].

Intuitively, as λ → ∞ the boundary condition in (1.1) tends to the homogeneous Dirichlet boundary
condition u|∂Ω = 0 and (1.1) becomes{

�u + ε2eu = 0, in Ω,

u = 0, on ∂Ω.
(1.2)

It is known, after the works [3,15,16,21], that if (uε) is an unbounded family of solutions of (1.2)
and ε2

∫
Ω

euε remains bounded as ε → 0 then after passing to a subsequence there exists an integer
m � 1 such that uε blows up at m points in Ω . More precisely, there exist points ξε

1 , . . . , ξε
m in Ω that

stay uniformly separated from each other and from the boundary, such that for any δ > 0, uε stays
bounded on Ω \ ⋃m

j=1 B(ξε
j , δ), and

sup
B(ξε

j ,δ)

uε → ∞ as ε → 0.

Moreover,

ε2euε ⇀ 8π

m∑
i=1

δξi as ε → 0

in the weak sense of measures and uε → ∑m
i=1 G∞(x, ξi) where G∞ is the Green function with Dirich-

let boundary condition {
−�xG∞(x, y) = 8πδy, in Ω,

G∞(·, y) = 0, on ∂Ω

(the subscript ∞ means it is associated to λ = ∞). Additionally, the vector (ξ1, . . . , ξm) of concentra-
tion points must be a critical point of the function

ϕm,∞(ξ1, . . . , ξm) = −
m∑

j=1

H∞(ξ j, ξ j) −
∑
i �= j

G∞(ξi, ξ j)

where H∞ is the regular part of G∞:

H∞(x, y) = G∞(x, y) − 4 log
1

|x − y| .

The construction of solutions to (1.2) has been addressed in [22,1,9,12]. In [1] the authors showed
that if (ξ1, . . . , ξm) is a non-degenerate critical point of ϕm,∞ then for ε > 0 small enough there is a
solution concentrating at ξ1, . . . , ξm . Then, in [12] and [9] the authors proved that if the domain is
not simply connected, then for any integer k � 1 there are solutions concentrating at k points. In the
case of a single point of concentration, it must be a critical point of R∞(x) = H∞(x, x). In a convex
domain R∞ has a single critical point, see [4,5]. In particular, if solutions develop a single point of
concentration, that point is uniquely determined in a convex domain. Under some assumptions on
the domain, solutions to (1.2) can develop only a single point of concentration. This is the case for
a domain which is convex and symmetric in each variable, and also small perturbations of them,
see [14,20]. In [23] the authors studied an inhomogeneous Liouville equation.
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In contrast, we will see that for any bounded smooth domain, when λ < ∞ is large, the set of
solutions of (1.1) is much richer.

For problem (1.1) the Green function also plays a fundamental role. Given λ > 0, let Gλ denote the
Green function ⎧⎨⎩

−�xGλ(·, y) = 8πδy, in Ω,

∂Gλ

∂ν
(·, y) + λGλ(·, y) = 0, on ∂Ω

(1.3)

and Hλ its regular part:

Hλ(x, y) = Gλ(x, y) − 4 log
1

|x − y| . (1.4)

As for the case of Dirichlet boundary condition, to understand the critical points of the Robin function
Rλ(x) = Hλ(x, x) is crucial to analyze solutions with a single blow up. In [8] the authors found that
in any smooth domain Ω ⊆ R

2, for x ∈ Ω satisfying a/λ � dist(x, ∂Ω) � b/λ for some constants 0 <

a < b, for large λ > 0 one has the expansion

Rλ(x) = hλ

(
λd(x)

) + λ−1κ(x̂)v
(
λd(x)

) + O
(
λ−1−α

)
(1.5)

where 0 < α < 1, κ(x̂) is the mean curvature of ∂Ω at x̂, which is the point in ∂Ω closest to x,
and hλ , v are explicitly given by

hλ(θ) = − log λ − log(2θ) + 4θ

∞∫
0

e−2θt log(1 + t)dt, (1.6)

v(θ) = −θ

2
− θ

∞∫
0

e−2θ s 1

(1 + s)2
ds. (1.7)

The function hλ : (0,+∞) → R has a unique minimum θ0 ∈ (0,+∞), which is non-degenerate
(see [8]). Therefore, formula (1.5) suggests that there exist solutions of (1.1) with a concentration point
located at distance O (1/λ) from ∂Ω . For a fixed large λ this can be proved using the same approach
as in [1,9,12]. Our interest here is to analyze whether this solution persists as ε → 0 and λ → +∞.

Let

S∗ =
{

x ∈ Ω: dist(x, ∂Ω) = θ0

λ

}
, (1.8)

where θ0 is the minimum of hλ .

Theorem 1.1. There exist λ0 > 0 and ε0 > 0 such that for λ � λ0 and ε > 0 satisfying 0 < ε
√

λ � ε0 , problem
(1.1) has at least 2 different solutions, ui , i = 1,2, concentrating at a point ξi,λ,ε ∈ Ω such that

dist
(
ξi,λ,ε, S∗) = O

(
λ−3/2)

, i = 1,2 as λ → ∞.

Actually there is a third solution u3 concentrating a point ξ3,λ,ε with distance to the boundary not
approaching zero, and with no restriction on the growth of λ. We will not address the construction
of this solution, as it is very similar to previous work, [1,9,12].

We can generalize Theorem 1.1 and find solutions with multiple points of concentration near the
boundary, at the expense of requiring a smaller growth of λ.
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Theorem 1.2. Let m � 1 be an integer. There exist λ0 > 0 and ε0 > 0 such that for λ � λ0 and ε > 0 satisfying
0 < ε2λ2 log(λ) � ε0 , problem (1.1) has 2 solutions ui , i = 1,2. The solution ui concentrates at points ξi, j,λ,ε

for j = 1, . . . ,m in Ω such that

dist
(
ξi, j,,λ,ε, S∗) = O

(
λ−3/2)

as λ → ∞.

Let κ denote the curvature of ∂Ω .

Theorem 1.3. Suppose x0 ∈ ∂Ω is a non-degenerate critical point of κ . Set α ∈ (0, 1
2 ). There exist λ0 > 0 and

ε0 > 0 such that for λ � λ0 and ε > 0 satisfying

εαλ � ε0

problem (1.1) has a solution u that concentrates at a point xε located at distance O (1/λ) from x0 .

Let us explain the restrictions on the growth of λ as ε → 0. The results are proved using a
Lyapunov–Schmidt reduction, based on the family of solutions

wμ(r) = log
8μ2

(μ2 + r2)2
, with r = |x|, x ∈ R

2, (1.9)

where μ > 0, of the Liouville equation:

�u + eu = 0 in R
2. (1.10)

To construct a solution with concentration at ξ ∈ Ω , it is natural to consider a first approximation of
the form wμ(x − ξ) − 2 logε with μ → 0. For x far from ξ , evaluation of this function at x suggests
that μ should be taken of order ε , and therefore it is more convenient to write this approximation as
wμε(x − ξ) − 2 logε for a new parameter μ > 0. Nevertheless, this function still requires a large cor-
rection and it is convenient to take as initial approximation u(x) = wμε(x − ξ)− 2 log ε + H(x), where
H is harmonic in Ω and such that the appropriate boundary condition is satisfied. A computation will
then show that at main order H(x) ∼ − log(8μ2) − Hλ(x, ξ). Then u becomes a good approximation
of a solution if H(ξ) = 0 which yields 8μ2 = eHλ(ξ,ξ) . In the case of Robin boundary condition, from
(1.5) and (1.6), this gives μ = O (λ−1/2), and we are led to consider wμελ−1/2(x − ξ) − 2 logε + H(x)

for a new parameter μ = O (1). We observe that wμελ−1/2(r) = log(8μ2ε2λ−1) − 2 log(μ2ε2λ−1 + r2).
If ξ is at distance 1/λ from the boundary and x is on the boundary, to be able to expand this quan-
tity we need ε2λ � 1. This indicates that the reduction in Theorem 1.1 can be carried out if ελ1/2 is
sufficiently small, and this gives the growth restriction for λ in this result.

In Theorems 1.2 and 1.3 more precise estimates of the energy of the ansatz are required and this
leads to a stronger growth assumption on λ. One consideration that helps us to improve the estimates,
is to work with concentration points close to the set S∗ . A first calculation using (1.5) implies that if
x ∈ Ω is such that |λdist(x, ∂Ω) − θ0| = O (λ−1/2), then we have∣∣∇x Rλ(x)

∣∣ = O (
√

λ ). (1.11)

This estimate plays a key role, as it can be seen in the following section.
Let us compare Theorem 1.1 with the results of [2], where the following equation was studied⎧⎨⎩ ε2�u + up − u = 0, u > 0 in Ω,

∂u + λu = 0, on ∂Ω,
(1.12)
∂ν
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where ε,λ > 0, Ω is a domain in R
N , N � 2 and 1 < p < N+2

N−2 . This equation with boundary condition
∂u/∂ν = 0 on Ω was analyzed in [17,18] and in [19] with Dirichlet boundary condition, proving
that for Neumann condition least energy solution concentrates at a point in the boundary, while for
Dirichlet concentration takes place at a point that maximizes distance to the boundary, see also [10].
The results of [2] roughly speaking assert that the minimal energy solution of (1.12) will behave like
in the case of Neumann boundary condition if λ < λ̄/ε and like in the Dirichlet boundary condition if
λ > λ̄/ε , where λ̄ > 0 is a parameter associated to an auxiliary problem. Therefore λ ∼ 1/ε represents
a drastic change in behavior. Our results suggest that for least energy solutions of (1.1) the critical
range for λ is λ ∼ 1/ε2.

In Section 2 we provide the first approximation, and in Section 3 we analyze the linearization
around this initial approximation. Then in Section 4 we solve a projected version of the nonlinear
equation. We show in Section 5 that the projected problem reduces to the original one if (ξ1, . . . , ξm)

is a critical point of a functional close to the energy ansatz. Then Section 6 contains the expansion
of the energy of the ansatz. With the aid of these expansion we prove Theorems 1.1, 1.2 and 1.3 in
Section 7. Finally, in Appendix A we prove some estimates that were necessary in the expansion of
the energy.

2. Initial approximation

In this section we describe the initial approximation used in the Lyapunov–Schmidt reduction.
Given m ∈ N, {ξ j}m

j=1 ⊂ Ω and μ j > 0 for j = 1, . . . ,m, we define:

u j(x) = wμ j

(√
λ

ε
|x − ξ j|

)
− 4 logε + log λ, (2.1)

where wμ is defined in (1.9), which satisfies

�u j + ε2eu j = 0 in R
2.

Let δ0 > 0 be fixed suitably small. We will assume for the rest of the article the following separa-
tion conditions:

|ξi − ξ j| � δ0 for all i �= j, (2.2)

d j := dist(ξ j, ∂Ω) � δ0

λ
for all j = 1, . . . ,m, (2.3)

dist
(
ξi, S∗)

� λ−3/2 for all i = 1, . . . ,m, (2.4)

where S∗ is defined in (1.8).
For each j = 1, . . . ,m let

⎧⎨⎩
�H j = 0, in Ω,

∂ H j

∂ν
+ λH j = −

(
∂u j

∂ν
+ λu j

)
, on ∂Ω.

(2.5)

We will take as a first approximation to a solution of (1.1) the function

U (x) =
m∑

j=1

(
u j(x) + H j(x)

)
. (2.6)
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We will define ρ := ε/
√

λ. For many of the calculations it is convenient to work in expanded
variables in terms of ρ . Given x ∈ Ω , consider y = 1

ρ x, and denote Ωρ = 1
ρ Ω . Let u be a function

defined in Ω and let

v(y) = u(ρ y) + 4 logε − logλ for y ∈ Ωρ.

Then u solves (1.1) if and only if v is a solution of⎧⎨⎩
�v + ev = 0, in Ωρ,

∂v

∂ν
+ ρλv = ρλ(4 logε − logλ), on ∂Ωρ.

(2.7)

We also define ξ ′
j = 1

ρ ξ j and write the initial approximation of the solution in expanded variables
as V (y) = U (ρ y) + 4 logε − logλ. We look for a solution v of the problem (2.7) with the form

v = V + φ,

with φ small in an adequate norm. Problem (2.7) can be viewed in terms of φ as the nonlinear
problem ⎧⎨⎩ L(φ) = −(

R + N(φ)
)
, in Ωρ,

∂φ

∂ν
+ ρλφ = 0, on ∂Ωρ,

(2.8)

where

L(φ) = �φ + W φ, with W = eV , (2.9)

N(φ) = W
[
eφ − 1 − φ

]
,

and

R = �V + eV .

Next we estimate the size of R .

Lemma 2.1. If μ j are given by

log
(
8μ j

2) = Hλ(ξ j, ξ j) +
∑
i �= j

Gλ(ξi, ξ j) + logλ, (2.10)

we have:

∣∣R(y)
∣∣ � Cε

m∑
j=1

1

1 + |y − ξ ′
j|3

for all y ∈ Ωρ. (2.11)

In the proof of Lemma 2.1 we need an a priori estimate which is essentially a version of the
maximum principle with Robin boundary condition. For a proof see [8].
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Lemma 2.2. Let b : ∂Ω → R be a smooth such that b > 0, F : ∂Ω → R be a smooth function and u be the
solution to ⎧⎨⎩

�u = 0, in Ω,

∂u

∂ν
+ λb(x)u = F , on ∂Ω ,

where λ > 0. Then

‖u‖L∞(Ω) + ∥∥dist(·, ∂Ω)∇u
∥∥

L∞(Ω)
� C(N,b)

λ
‖F‖L∞(∂Ω).

Remark 2.3. We note that by (1.5) and (1.6), Hλ(ξ j, ξ j)+ log λ remains bounded as λ → +∞. It follows
that for some constant C > 1

1

C
� μ j � C, ∀ j = 1, . . . ,m. (2.12)

The reason to introduce the initial approximation with the form (2.1) is so that μ j satisfies (2.12).

Proof of Lemma 2.1. Let us analyze the behavior of the function H j(x). Note that since H j(x) satisfies
Eq. (2.5), if we define H̃ j = H j + log(8μ2

j ) − log λ, then H̃ j satisfies

⎧⎪⎨⎪⎩
−�H̃ j(x) = 0, in Ω,

∂ H̃ j

∂ν
+ λH̃ j = 4

(x − ξ j)ν

μ j
2ρ2 + |x − ξ j|2 − λ log

(
1

(μ j
2ρ2 + |x − ξ j|2)2

)
, on ∂Ω.

The regular part of the Green function for homogeneous Robin boundary condition H(x, ξ j) satis-
fies the equation⎧⎪⎨⎪⎩

−�Hλ(x, ξ j) = 0, in Ω,

∂ Hλ(x, ξ j)

∂ν
+ λHλ(x, ξ j) = 4

(x − ξ j)ν

|x − ξ j|2 − λ log

(
1

|x − ξ j|4
)

, on ∂Ω.

Using the maximum principle applied to Hλ(x, ξ j) − H̃ j(x) for the problem with Robin boundary
condition (Lemma 2.2), we conclude that

H j(x) = Hλ(x, ξ j) − log
(
8μ2

j

) + logλ + O

(
μ2

jρ
2

λd3
j

)
+ O

(
μ2

jρ
2

d2
j

)
(2.13)

where the term O is uniform in Ω and also in the C2 sense for compact subsets of Ω .
Observe that, away from the points ξ j we can expand the expression given in (2.1) and obtain

u j(x) = log
(
8μ2

j

) + 4 log
1

|x − ξ j| − logλ + O

(
μ2

jρ
2

|x − ξ j|2
)

.

Using this and the expression given in (2.13) we get the following estimate
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u j(x) + H j(x) = Gλ(x, ξ j) + μ2
jρ

2 O

(
1

λd j
3

+ 1

|x − ξ j|2
)

, (2.14)

where the term O is in the C2 sense on compact sets of Ω \ {ξ j}.
Let δ > 0 be fixed, small compared with δ0. Note that eV (y) = ρ2ε2eU (x) , where x = ρ y. Then,

we have

eV (y) = O
(
ρ2ε2)

, if
∣∣y − ξ j

′∣∣ >
δ

ρ
, ∀ j = 1, . . . ,m. (2.15)

Also, thanks to �V (y) = ε2�U (x) and (2.14) we get

�V (y) = O
(
ε4)

, if
∣∣y − ξ j

′∣∣ >
δ

ρ
, ∀ j = 1, . . . ,m.

Now we consider |y − ξ ′
j | < δ

ρ for some j. We will center our system of coordinates at ξ ′
j writing

y = ξ ′
j + z. Then

eV (y) = 8μ j
2

(μ j
2 + |z|2)2

× exp

{
H j(ξ j + ρz) +

∑
l �= j

(
ul(ξ j + ρz) + Hl(ξ j + ρz)

)}
.

Using the asymptotic relations (2.13), (2.14), (1.11) and the definition of the numbers μ j given
in (2.10), we obtain

eV (y) = 8μ j
2

(μ j
2 + |y − ξ j

′|2)2

[
1 + O (εz) + O

(
μ2

jρ
2

λd3
j

)]

for |y − ξ j
′| < δ

ρ .
In the same region, we have

�y V (y) = ρ2
m∑

l=1

�xul(ρ y) = − 8μ2
j

(μ2
j + |y − ξ ′

j|2)2
+ O

(
ρ4)

. (2.16)

Then, using (2.15)–(2.16) we deduce (2.11). �
3. The linearized operator around V

As before, we are considering here ρ = ε/
√

λ.
We assume that the function W : Ωρ → R has the form

W (y) =
m∑

j=1

8μ2
j

(μ2
j + |y − ξ ′

j|2)2

(
1 + θε(y)

)
(3.1)

where ξ ′
j = ξ j/ρ ∈ Ωρ = Ω/ρ and ξ1, . . . , ξm ∈ Ω are different points. We assume that

∣∣θε(y)
∣∣ � Cε

m∑
j=1

(∣∣y − ξ ′
j

∣∣ + 1
)
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and

1

C
� μ j � C, ∀ j = 1, . . . ,m,

where C is independent of ε and λ.
Note that for each j = 1, . . . ,m, if we center the coordinate system around ξ ′

j by setting z = y − ξ ′
j ,

then formally the operator L(φ) has the form as ρ → 0,

�φ + 8μ2
j

(μ2
j + |z|2)2

φ,

which is the linearization of Eq. (1.10) around the function wμ j (|z|) given by (1.9). The kernel of this
operator is given by the family of functions

zi j(z) = ∂

∂ζi

(
wμ j

(|z + ζ |))∣∣
ζ=0, i = 1,2.

z0 j(z) = ∂

∂s

(
wμ j

(|sz|) + 2 log(s)
)∣∣

s=0.

In this section we study the invertibility of the operator L defined in (2.9). For this, given h ∈
C0,α(Ωρ) we consider the linear problem of finding φ : Ωρ → R and ci j ∈ R, i = 1,2, j = 1, . . . ,m,
such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�φ + W (y)φ = h +
2∑

i=1

m∑
j=1

ci jχ j Zi j, in Ωρ,

∂φ

∂ν
+ ρλφ = 0, on ∂Ωρ,∫

Ωλ

χ j Zi jφ = 0, ∀i = 1,2, j = 1, . . . ,m,

(3.2)

where are defined as Zij(y) = zi j(|y − ξ ′
j |) for j = 1, . . . ,m and i = 1,2. The functions χ j appearing

in (3.2) are defined by χ j(y) = χ(|y − ξ ′
j |) with χ a nonnegative smooth function on R such that

χ(r) = 1 if r � R0 and χ(r) = 0 if r � R0 + 1 (3.3)

where R0 is a positive constant.
We will prove that (3.2) is solvable and find an estimate for the solution in L∞(Ωρ) in terms of

the following weighted norm for h:

‖h‖∗ = sup
y∈Ωρ

(
m∑

j=1

(
1 + ∣∣y − ξ ′

j

∣∣)−2−σ + ρ2

)−1∣∣h(y)
∣∣,

where σ > 0 is fixed and small.
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Proposition 3.1. There exist ε0 > 0 and C > 0 such that for any ε > 0, λ � 1 such that

λρ � ε0

any set of points that verify (2.2) and (2.3) and h ∈ L∞(Ωρ) there is a unique solution φ ∈ L∞(Ωρ), ci j ∈ R,
i = 1,2, j = 1, . . . ,m, to (3.2). Moreover, one has

‖φ‖∞ � C
∣∣log(λρ)

∣∣‖h‖∗. (3.4)

Remark that the hypothesis λρ small means that ε
√

λ has to be small, which is the same assump-
tion of Theorem 1.1.

The first step is to find a priori bounds for the solution of the following problem:

�φ + W (y)φ = h, in Ωρ, (3.5)

∂φ

∂ν
+ ρλφ = g, on ∂Ωρ, (3.6)∫

Ωρ

χ j Zi jφ = 0, ∀i = 0,1,2, j = 1, . . . ,m, (3.7)

which includes orthogonality conditions with respect to all functions χ j Zi j and a right-hand side for
the boundary condition (3.6).

Lemma 3.2. There exist ε0 > 0 and C > 0 such that for any 0 < ε < ε0 , λ � 1 such that

λρ � ε0

any set of points which verify (2.2) and (2.3) and any solution φ of (3.5)–(3.7) one has

‖φ‖∞ � C

(
‖h‖∗ + 1

λρ
‖g‖L∞(∂Ωρ)

)
.

Proof. We first prove that there exists a fixed number R > 0 so that

‖φ‖L∞(Ωρ) � C

(
max

j=1,...,m
sup

B(ξ ′
j ,R)

|φ| + ‖h‖∗ + 1

λρ
‖g‖L∞(∂Ωρ)

)
(3.8)

where C does not depend on ε and λ.
To prove (3.8) we first show the � + W satisfies the following maximum principle in the region

Ω̃ρ = Ωρ \ ⋃m
j=1 B(ξ ′

j, R): if v satisfies

�v + W v � 0 in Ω̃ρ,

v � 0 on
m⋃

j=1

∂ B
(
ξ ′

j, R
)

and
∂v

∂ν
+ λρv � 0 on ∂Ωρ,

then v � 0 in Ω̃ρ . To prove this, it is sufficient to exhibit a positive C2 function Z on Ω̃ρ such that
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�Z + W Z < 0 in Ω̃ρ, (3.9)

Z > 0 on
m⋃

j=1

∂ B
(
ξ ′

j, R
)

and
∂ Z

∂ν
+ λρ Z > 0 on ∂Ωρ. (3.10)

Let z0 = r−1
r+1 , r = |x|, x ∈ R

2 \ {(0,0)}, which satisfies

�z0 + 2

r(r + 1)2
z0 = 0 in R

2 \ {
(0,0)

}
.

Define

Z(y) =
m∑

j=1

z0
(
a
∣∣y − ξ ′

j

∣∣), y ∈ Ωρ,

where a > 0. Then

−�Z =
m∑

j=1

2a(a|y − ξ ′
j| − 1)

|y − ξ ′
j|(1 + a|y − ξ ′

j|)3

If a|y − ξ ′
j | � 3 then

a|y−ξ ′
j |−1

a|y−ξ ′
j |+1 � 1/2 and then

−�Z �
m∑

j=1

a−1

|y − ξ ′
j|3

.

In the same region

W Z � C
m∑

j=1

1

|y − ξ ′
j|4

(
1 + ε

∣∣y − ξ ′
j

∣∣)
for some fixed constant C . Hence, tanking a > 0 small but fixed, we conclude that (3.9) holds. Besides,
we have

Z � 1

2
on ∂ B

(
ξ ′

j, R
)
, ∀ j = 1, . . . ,m and on ∂Ωρ

taking R larger if it is necessary. With fixed a we have

|∇ Z | � C
m∑

j=1

1

|y − ξ ′
j|2

.

Using this and (2.3) we have on ∂Ωρ ,

∂ Z

∂ν
+ λρ Z � O

(
m∑

j=1

dist
(
ξ ′

j, ∂Ωρ

)−2

)
+ λρ

2
= O

(
λ2ρ2) + λρ

2
� 0

if we choose ε0 > 0 small. Therefore Z satisfies (3.10) too.
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Let M > 0 be large so that Ωρ ⊂ B(ξ ′
j,

M
2ρ ) for all j = 1, . . . ,m. Let ψ j be the solution to the

following problem:

−�ψ j = 2

|y − ξ ′
j|3

+ 2ρ2, R <
∣∣y − ξ ′

j

∣∣ <
M

ρ
,

ψ j(y) = 0, for
∣∣y − ξ ′

j

∣∣ = R,
∣∣y − ξ ′

j

∣∣ = M

ρ
,

which can be explicitly written:

ψ j(r) = 2

(
1

R
− 1

r

)
− ρ2

2

(
r2 − R2) −

[
M2

2
− 2

R
− ρ2

(
R2

2
− 2

ρM

)]
log( r

R )

log(
ρR
M )

.

Then maxR�|y−ξ ′
j |�M/ρ ψ j remains uniformly bounded as ρ → 0, always assuming 1 � R � M

2ρ . More-
over

ψ j > 0, in R <
∣∣y − ξ ′

j

∣∣ <
M

ρ
.

Since

|∇ψ j| = O

(∣∣y − ξ ′
j

∣∣−2 + ρ2
∣∣y − ξ ′

j

∣∣ + 1

|y − ξ ′
j|| log(ρ)|

)
we also have

|∇ψ j| = O

(
λ2ρ2 + ρ

λ
+ λρ

| log(ρ)|
)

on ∂Ωρ.

Furthermore

�ψ j + W ψ j = − 2

|y − ξ ′
j|3

− 2ρ2 + O
(∣∣y − ξ ′

j

∣∣−4(
1 + ε

∣∣y − ξ ′
j

∣∣))
� − 1

|y − ξ ′
j|3

− ρ2

on R < |y − ξ ′
j | < M

ρ , by fixing R larger if necessary. Let

ψ = C0 Z +
m∑

j=1

ψ j.

Then

�ψ + W ψ � −
m∑

j=1

1

|y − ξ ′
j|3

− ρ2 in Ω̃ρ,

ψ � 1

2
on ∂ B

(
ξ ′

j, R
)
, ∀ j = 1, . . . ,m and on ∂Ωρ

choosing C0 large enough, and then
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∂ψ

∂ν
+ λρψ � O

(
λ2ρ2 + ρ

λ
+ λρ

| log(ρ)|
)

+ C0λρ

2
� C0λρ

4
on ∂Ωρ

if we choose ε0 small. Set

φ̄ = Cψ

(
max

j=1,...,m
sup

B(ξ ′
j,R)

|φ| + ‖h‖∗ + 1

λρ
‖g‖L∞(∂Ω)

)
,

where C = max(2,4/C0). Then Φ = φ̄ − φ satisfies

�Φ + W Φ � 0 in Ω̃ρ,

∂Φ

∂ν
+ λρΦ � 0 on ∂Ωρ,

Φ � 0 on ∂ B
(
ξ ′

j, R
)
, ∀ j = 1, . . . ,m.

Since the maximum principle is valid in Ω̃ρ for this problem we conclude that Φ � 0 in Ω̃ρ and
therefore φ � φ̄ in Ω̃ρ . In a similar way, −φ � φ̄ in Ω̃ρ . This proves (3.8).

Now we prove the lemma, arguing by contradiction. Assume that there exist sequences (ρn), (λn),
(ξ

(n)
j ), (hn), (gn), (φn), which solve (3.5)–(3.7), such that the conditions (2.2), (2.3) hold,

λnεn → 0 (3.11)

and such that

‖φn‖∞ = 1, ‖hn‖∗ → 0,
1

λnρn
‖g‖L∞(∂Ωρn ) → 0 as n → ∞. (3.12)

Thanks to (3.8), (3.12) we can find c > 0 and a fixed index j ∈ {1, . . . ,m} such that by passing to a
subsequence

sup
B(ξ ′

j ,R)

|φn| � c for all n. (3.13)

Define φ̂n(z) = φn(ξn
j + z). By (3.11) and (2.3) we see that

1

ρn
min

j=1,...,m
dist

(
ξn

j , ∂Ω
) → +∞

and this implies that the domain of definition of φ̂n approaches R
2 as n → ∞. Since φ̂n is uniformly

bounded, by standard elliptic regularity theory, by passing to another subsequence φ̂n → φ̂ uniformly
on compact sets of R

2 where φ̂ is a bounded solution of

�φ̂ + 8μ2
j

(μ2
j + |z|2)2

φ̂ = 0. (3.14)

The orthogonality conditions (3.7) become∫
2

χ j Zi jφ̂ = 0, ∀i = 0,1,2. (3.15)
R
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We know that the only bounded solutions of (3.14) are linear combinations of zi j , i = 0,1,2. This
together with (3.15) implies that φ̂ ≡ 0. But this is not possible by (3.13). �

We now obtain an a priori estimate for the solution assuming that it satisfies orthogonality condi-
tions only with respect to Zij with i = 1,2 and j = 1, . . . ,m, that is, solutions to

�φ + W (y)φ = h, in Ωρ, (3.16)

∂φ

∂ν
+ λρφ = 0, on ∂Ωρ, (3.17)∫

Ωρ

χ j Zi jφ = 0, ∀i = 1,2, j = 1, . . . ,m. (3.18)

Lemma 3.3. There exist ε0 > 0 and C > 0 such that for any ε > 0, λ � 1 such that

λρ � ε0

any set of points which verify (2.2) and (2.3) and any solution φ of (3.16)–(3.18) one has

‖φ‖∞ � C
∣∣log(λρ)

∣∣‖h‖∗.

Proof. Recall that ξ j ∈ Ω and d j = dist(ξ j, ∂Ω) satisfies (2.3).
Given a solution φ to (3.2) we modify it so that it satisfies the orthogonality condition with respect

to Z0 j by letting

φ̃ = φ +
m∑

j=1

b j z̃0 j

where z̃0 j are suitable functions that we will construct next and we choose b j such that

b j

∫
Ωρ

χ j|Z0 j|2 +
∫

Ωρ

χ j Z0 jφ = 0. (3.19)

Let us construct z̃0 j in the case d j � δ/10. Later on we give the construction when d j � δ/10.
We write ξ̂ j the point on ∂Ω closest to ξ j . By taking δ > 0 small, ξ̂ j is uniquely determined and
depends smoothly on ξ j .

We need the Green function for the Robin boundary condition in a half space. Let

Γ (x) = − log |x|
so that −�Γ = 2πδ0 in R

2. Let H = {(x1, x2) ∈ R
2 | x2 > 0} be the half-space. We recall (see [13,

p. 121]) that if y ∈ H and a > 0 the Green function for the Robin problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�Ga(x, y) = 2πδy, in H,

−∂Ga

∂xN
+ aGa = 0, on ∂ H,

lim|x|→+∞ Ga(x, y) = 0
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is given by

Ga(x, y) = Γ (x − y) − Γ
(
x − y∗) − 2

∞∫
0

e−as ∂

∂xN
Γ

(
x − y∗ + e2s

)
ds, (3.20)

where y∗ is the reflection of y = (y1, y2) across ∂ H , that is y∗ = (y1,−y2), and e2 = (0,1).
We take a smooth conformal change of variables F j : Ω ∩ B(ξ̂ j, δ) → H whose image is a neigh-

borhood of 0 in H such that F (ξ̂ j) = 0, F ′(ξ̂ j) is a rotation. We also let

F j,ρ(x) = F j(ρx)/ρ, x ∈ Ωρ ∩ B(ξ̂ j/ρ, δ/ρ). (3.21)

We define

ẑ0 j(x) = 1

log(d j/ρ)
z0 j(x)Gλρ

(
F j,ρ(x), F j,ρ

(
ξ ′

j

))
.

Now we take R > R0 + 1 (cf. (3.3)). Let η1 : R → R be a smooth function such that

η1(r) = 1 for r � R, η1(r) = 0 for r � R + 1,
∣∣η′

1(r)
∣∣ � 2,

∣∣η′′
1(r)

∣∣ � C

and define

η1 j(y) = η1
(∣∣y − ξ ′

j

∣∣).
We need also smooth functions η2 j : R

2 → R such that

η2 j(y) = 1 for
∣∣y − ξ ′

j

∣∣ � δ

4ρ
, η2 j(y) = 0 for r �

∣∣y − ξ ′
j

∣∣ � δ

3ρ
,

|∇η2 j| � Cρ, |�η2 j| � Cρ2,

∂η2 j

∂ν
= 0 on ∂Ωρ,

which can be constructed as composition of a cut-off function and a change of variables in Ω that
flattens its boundary.

In the case d j � δ/10, set

z̃0 j = η1 j Z0 j + (1 − η1 j)η2 j ẑ0 j . (3.22)

If d j � δ/10 the construction of z̃0 j is the same as in [9]. Namely, we take the same formula as in
(3.22) with new functions ẑ0 j and η2 j . The new function ẑ0 j is given by the solution to the problem

�ẑ0 j + 8μ2
j

(μ2
j + |x − ξ ′

j|2)2
ẑ0 j = 0 in R <

∣∣x − ξ ′
j

∣∣ <
δ

30ρ
,

ẑ0 j(x) = 0 for
∣∣x − ξ ′

j

∣∣ = R, ẑ0 j = 0 for
∣∣x − ξ ′

j

∣∣ = δ

30ρ
.

The new function η2 j : R
2 → R is such that
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η2 j(y) = 1 for
∣∣y − ξ ′

j

∣∣ � δ

40ρ
, η2 j(y) = 0 for r �

∣∣y − ξ ′
j

∣∣ � δ

30ρ
,

|∇η2 j| � Cρ, |�η2 j| � Cρ2.

Now suppose that φ is a solution to (3.2). Define

φ̃ = φ +
m∑

j=1

b j z̃0 j

where we choose b j as in (3.19). We observe that φ̃ satisfies

(� + W )φ̃ = h +
m∑

j=1

b j(� + W )z̃0 j in Ωρ,

(
∂

∂ν
+ λρ

)
φ̃ =

m∑
j=1

b j

(
∂

∂ν
+ λρ

)
z̃0 j on ∂Ωρ (3.23)

and the orthogonality conditions∫
Ωρ

χ j Zi jφ̃ = 0, ∀i = 0,1,2, j = 1, . . . ,m.

By Lemma 3.2 we deduce the estimate

‖φ̃‖∞ � C

(
‖h‖∗ +

m∑
j=1

|b j|
∥∥(� + W )z̃0 j

∥∥∗ + 1

λρ

m∑
j=1

|b j|
∥∥∥∥(

∂

∂ν
+ λρ

)
z̃0 j

∥∥∥∥
L∞(∂Ωρ)

)
. (3.24)

We claim that the following inequalities hold:

∥∥(� + W )z̃0 j
∥∥∗ � C

| log(λρ)| for all j = 1, . . . ,m, (3.25)∥∥∥∥(
∂

∂ν
+ λρ

)
z̃0 j

∥∥∥∥
L∞(∂Ωρ)

� Cλρ

| log(λρ)| for all j = 1, . . . ,m, (3.26)

|b j| � C
∣∣log(λρ)

∣∣‖h‖∗ for all j = 1, . . . ,m. (3.27)

Using that φ̃ = φ + ∑m
j=1 b j z̃0 j and the estimates (3.24), (3.25), (3.26) and (3.27) we obtain the

conclusion of the lemma.
In the sequel we will give the proof of estimates (3.25)–(3.27) in the case d j � δ/10. For points

such that d j � δ/10 the proofs of (3.25) and (3.27) are contained in the proof of Lemma 3.2 in [9],
while (3.26) is trivial.

Proof of (3.25). We will need a more accurate estimate than (3.25), namely, we will prove that

∥∥(� + W )z̃0 j
∥∥∗ � C

log(d /ρ)
(3.28)
j
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where d j = dist(ξ j, ∂Ω). Then this inequality and d j � 1
Cλ

for all j = 1, . . . ,m (i.e. condition (2.3))
yield (3.25).

By (3.1),

�z̃0 j + W z̃0 j = �z̃0 j + 8μ2
j

(μ2
j + |y − ξ ′

j|2)2
z̃0 j + O

(
ε

1 + |y − ξ ′
j|3

)
.

We compute

�z̃0 j + 8μ2
j

(μ2
j + |y − ξ ′

j|2)2
z̃0 j

= �η1(z0 j − ẑ0 j) + 2∇η1∇(z0 j − ẑ0 j)

+ �η2 ẑ0 j + 2∇η2∇ ẑ0 j + (1 − η1)η2

(
�ẑ0 j + 8μ2

j

(μ2
j + |y − ξ ′

j|2)2
ẑ0 j

)
.

For x ∈ Ωρ with R � |x − ξ ′
j | � R + 1 and y = F j,ρ(x), η′

j = F j,ρ(ξ ′
j) we have

z0 j(x) − ẑ0 j(x) = z0 j(x)

(
1 − 1

log(d j/ρ)
Gλρ

(
y, η′

j

))
= O

(
1

log(d j/ρ)

)
.

Indeed, for such points

Gλρ

(
y, η′

j

) = − log
∣∣y − η′

j

∣∣ + log
∣∣y − η′

j
∗∣∣ + 2

∞∫
0

e−λρt
x2 + η′

j,2 + t

(y2 + η′
j,2 + t)2 + y2

1

ds

= log(d j/ρ) + O (1)

where O (1) contains the first term − log(R), the integral, and part of the second term, and y =
(y1, y2), η′

j = (η′
j,1, η

′
j,2).

A similar estimate for its derivative implies

∥∥�η1(z0 j − ẑ0 j) + 2∇η1∇(z0 j − ẑ0 j)
∥∥∗ � C

log(d j/ρ)
.

Similarly

‖�η2 ẑ0 j + 2∇η2∇ ẑ0 j‖∗ � C

log(d j/ρ)
.

The last term is

�ẑ0 j + 8μ2
j

(μ2
j + |y − ξ ′

j|2)2
ẑ0 j = 2

log(d j/ρ)
∇z0 j∇

(
Gλρ

(
F j,ρ(·), F j,ρ

(
ξ ′

j

)))
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away from ξ ′
j , and this implies

∥∥∥∥�ẑ0 j + 8μ2
j

(μ2
j + |y − ξ ′

j|2)2
ẑ0 j

∥∥∥∥∗
� C

log(d j/ρ)
. �

Proof of (3.26). We will derive the estimate∥∥∥∥(
∂

∂ν
+ λρ

)
z̃0 j

∥∥∥∥
L∞(∂Ωρ)

� Cλρ

log(d j/ρ)
for all j = 1, . . . ,m

from which (3.26) follows. On ∂Ωρ we have η1 = 0 and hence z̃0 j = η2 j ẑ0 j . Therefore,(
∂

∂ν
+ λρ

)
z̃0 j = η2 j

(
∂ ẑ0 j

∂ν
+ λρ ẑ0 j

)
+ λρ

∂η2 j

∂ν
ẑ0 j . (3.29)

We compute

∂ ẑ0 j

∂ν
+ λρ ẑ0 j = 1

log(d j/ρ)

∂z0 j

∂ν
Gλρ

(
F j,ρ(·), F j,ρ

(
ξ ′

j

))
+ 1

log(d j/ρ)
z0 j

(
∂

∂ν
+ λρ

)
Gλρ

(
F j,ρ(·), F j,ρ

(
ξ ′

j

))
.

Since ∇z0 j(x) = O (|x − ξ ′
j |−3) and Gλρ(F j,ρ(x), F j,ρ(ξ ′

j)) is bounded for |x − ξ ′
j | � d j/ρ we have

∥∥∥∥η2 j
1

log(d j/ρ)

∂z0 j

∂ν
Gλρ

(
F j,ρ(·), F j,ρ

(
ξ ′

j

))∥∥∥∥
L∞(∂Ωρ)

� Cρ3

d3
j log(d j/ρ)

� Cλρ

log(d j/ρ)
.

Since F j is conformal and smooth in the original domain Ω ∩ B(ξ̂ j, δ), we can write

∂

∂ν
Gλρ

(
F j,ρ(x), F j,ρ

(
ξ ′

j

)) = − ∂

∂ y2
Gλρ

(
y, η′

j

)
θ j,ρ(y)

where y = F j,ρ(x), η′
j = F j,ρ(ξ ′

j) and θ j,ρ(y) is the conformal factor of F j,ρ , which has an expansion
of the form θ j,ρ(y) = 1 + O (ρ|y|). Then(

∂

∂ν
+ λρ

)
Gλρ

(
F j,ρ(·), F j,ρ

(
ξ ′

j

)) = (
1 − θ j,ρ(y)

)
λρGλρ

(
y, η′

j

)
.

Since Gλρ is bounded in the considered region we obtain∥∥∥∥ 1

log(d j/ρ)
η2 j z0 j

(
∂

∂ν
+ λρ

)
Gλρ

(
F j,ρ(·), F j,ρ

(
ξ ′

j

))∥∥∥∥
L∞(∂Ωρ)

� Cλρ

log(d j/ρ)
.

Finally we also have |ẑ0 j | � C/ log(d j/ρ) for points in ∂Ωρ and hence∥∥∥∥λρ
∂η2 j

∂ν
ẑ0 j

∥∥∥∥
L∞(∂Ω )

� Cλρ2

log(d j/ρ)
� Cλρ

log(d j/ρ)
. � (3.30)
ρ



2666 J. Dávila, E. Topp / J. Differential Equations 252 (2012) 2648–2697
Proof of (3.27). We multiply (3.23) by z̃0k and integrate in Ωρ :

∫
Ωρ

φ̃(�z̃0k + W z̃0k) −
∫

∂Ωρ

φ̃

(
∂ z̃0k

∂ν
+ λρ z̃0k

)
+ bk

∫
∂Ωρ

(
∂ z̃0k

∂ν
+ λρ z̃0k

)
z̃0k

=
∫

Ωρ

hz̃0k + bk

∫
Ωρ

(�z̃0k + W z̃0k)z̃0k. (3.31)

Using (3.28) we find∣∣∣∣ ∫
Ωρ

φ̃(�z̃0k + W z̃0k)

∣∣∣∣ � ‖φ̃‖L∞(Ωρ)‖�z̃0k + W z̃0k‖∗ � C

log(dk/ρ)
‖φ̃‖L∞(Ωρ). (3.32)

We estimate ∣∣∣∣ ∫
∂Ωρ

φ̃

(
∂ z̃0k

∂ν
+ λρ z̃0k

)∣∣∣∣ � ‖φ̃‖L∞(Ωρ)

∫
∂Ωρ

∣∣∣∣∂ z̃0k

∂ν
+ λρ z̃0k

∣∣∣∣.
By estimates as in (3.29)–(3.30) we have

∫
∂Ωρ

∣∣∣∣∂ z̃0k

∂ν
+ λε z̃0k

∣∣∣∣ � C

log(dk/ρ)
. (3.33)

Analogously, we have

∫
∂Ωρ

∣∣∣∣(∂ z̃0k

∂ν
+ λε z̃0k

)
z̃0k

∣∣∣∣ � C

log2(dk/ρ)
. (3.34)

From (3.31)–(3.34)

bk

∫
Ωε

(�z̃0k + W z̃0k)z̃0k � C‖h‖∗ + Cbk

log2(dk/ρ)
+ C

log(dk/ρ)
‖φ̃‖L∞(Ωρ).

Using (3.24), (3.25) and (3.26) we see that

‖φ̃‖L∞(Ωρ) � C ‖h‖∗ + C
m∑

j=1

|b j|
log(d j/ρ)

.

Therefore

bk

∫
Ωρ

(�z̃0k + W z̃0k)z̃0k � ‖h‖∗ + Cbk

log2(dk/ρ)
+ C

log(dk/ρ)

m∑
j=1

|b j|
log(d j/ρ)

. (3.35)
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We claim that ∣∣∣∣ ∫
Ωρ

(�z̃0k + W z̃0k)z̃0k

∣∣∣∣ � c

log(dk/ρ)
(3.36)

for some c > 0 independent of λ and ε .
Indeed, first we note that ∫

|x−ξ ′
j |�R

(�z̃0 j + W z̃0 j)z̃0 j = O

(
ε

R

)
.

Next we compute in the region R � |x − ξ ′
j | � R + 1. Here we have

z̃0 j = η1 j z0 j + (1 − η1)ẑ0 j (3.37)

and therefore

�z̃0 j + W z̃0 j = �η1 j(z0 j − ẑ0 j) + 2∇η1 j∇(z0 j − ẑ0 j) + η1 j(�z0 j + W z0 j)

+ (1 − η1 j)(�ẑ0 j + W ẑ0 j).

We obtain ∫
R�|x−ξ ′

j |�R+1

(�z̃0 j + W z̃0 j)z̃0 j = I1 + I2 + I3

where

I1 =
∫

R�|x−ξ ′
j |�R+1

�η1 j(z0 j − ẑ0 j)z̃0 j + 2∇η1 j∇(z0 j − ẑ0 j)z̃0 j,

I2 =
∫

R�|x−ξ ′
j |�R+1

η1 j(�z0 j + W z0 j)z̃0 j,

I3 =
∫

R�|x−ξ ′
j |�R+1

(1 − η1 j)(�ẑ0 j + W ẑ0 j)z̃0 j .

Integrating by parts

I1 =
∫

R�|x−ξ ′
j |�R+1

∇η1 j∇(z0 j − ẑ0 j)z̃0 j −
∫

R�|x−ξ ′
j |�R+1

∇η1 j∇ z̃0 j(z0 j − ẑ0 j)

= −
∫

|x−ξ ′
j |=R

η1 j z̃0 j∇(z0 j − ẑ0 j) · ν
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−
∫

R�|x−ξ ′
j |�R+1

η1 j
(
�(z0 j − ẑ0 j)z̃0 j + ∇(z0 j − ẑ0 j)∇ z̃0 j

)

−
∫

R�|x−ξ ′
j |�R+1

∇η1 j∇ z̃0 j(z0 j − ẑ0 j)

= A + B + C .

We compute

A = −
∫

|x−ξ ′
j |=R

z̃0 j∇(z0 j − ẑ0 j) · ν

= −
∫

|x−ξ ′
j |=R

z0 j

(
1 − Gλρ(F j,ρ)

log(d j/ρ)

)
∇z0 j · ν +

∫
|x−ξ ′

j |=R

z2
0 j

∇(Gλρ(F j,ρ))

log(d j/ρ)
· ν

= A1 + A2,

where we have omitted the second argument in Gλ,ρ , which is F j,ρ(ξ ′
j). For A1 note that |∇z0| =

O (1/R3) and (1 − Gλρ (F j,ρ )

log(d j/ρ)
) = O ( 1

log(d j/ρ)
) in the considered region. Therefore

A1 = O

(
1

R2 log(d j/ρ)

)
.

For points x ∈ Ωρ such that |x − ξ ′
j | = R , thanks to (3.21), we may expand F j,ρ(x) = F j,ρ(ξ ′

j) + x +
O (ρd j R) + O (ρ2 R2) and D F j,ρ(x) = I + O (d j).

Using this information and the definition of Gλρ , (3.20), we find

A2 = 1

log(d j/ρ)

[
2π + O

(
1

R2

)
+ O (d j) + O (ρR) + O

(
ρ2 R2

d2

)]
.

Using similar arguments we obtain

B = 1

log(d j/ρ)

(
O

(
1

log(d j/ρ)

)
+ O

(
1

R3

))
and

C = 1

log(d j/ρ)

(
O

(
R

log(d j/ρ)

)
+ O

(
1

R2

))
.

Hence

I1 = 1

log(d j/ρ)

[
2π + O

(
1

R2

)
+ O (d j) + O (εR) + O

(
ε2 R2

d2

)
+ O

(
R

log(d j/ρ)

)]
.
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Similar estimates show that

I2 = O

(
ε

R2

)
and

I3 = O

(
ε

R2

)
+ O

(
1

R3 log(d j/ρ)

)
so that ∫

R�|x−ξ ′
j |�R+1

(�z̃0 j + W z̃0 j)z̃0 j

= 1

log(d j/ρ)

[
2π + O

(
1

R2

)
+ O (d j) + O (ρR) + O

(
ρ2 R2

d2

)
+ O

(
R

log(d j/ρ)

)
+ O

(
ε log(d j/ρ)

R2

)]
. (3.38)

We can also estimate ∫
R+1�|x−ξ ′

j |�δ/(4ρ)

(�z̃0 j + W z̃0 j)z̃0 j = O

(
ε

R2

)
+ O

(
1

R3 log(d j/ρ)

)
(3.39)

and ∫
δ/(4ρ)�|x−ξ ′

j |�δ/(3ρ)

(�z̃0 j + W z̃0 j)z̃0 j = O

(
1

log(d j/ρ)2

)
. (3.40)

In view of the estimates (3.37)–(3.40) we can select R > 0 large, δ > 0 small, so that for λρ
sufficiently small (3.36) holds. Using then (3.35) and (3.36) we deduce the validity of (3.27). �
Proof of Proposition 3.1. First we prove that if φ ∈ L∞(Ωρ), ci j ∈ R, i = 1,2, j = 1, . . . ,m, solve (3.2),
then the estimate (3.4) holds. Indeed, by Lemma 3.3 we have

‖φ‖L∞(Ωρ) � C
∣∣log(λρ)

∣∣[‖h‖∗ +
m∑

i=1

m∑
j=1

|ci j|
]
. (3.41)

Let η3 j : R
2 → R be smooth cut-off functions with the properties

η3 j(y) = 1 for
∣∣y − ξ ′

j

∣∣ � 1

2Cλρ
, η3 j(y) = 0 for

∣∣y − ξ ′
j

∣∣ � 1

Cλρ
,

|∇η3 j| � Cλρ, |�η3 j| � C(λρ)2,

where C is the constant that appears in the separation condition (2.3). Multiplying the equation
in (3.2) by Zijη3 j we find
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∫
Ωρ

φ
[
�(η3 j Zi j) + W η3 j Zi j

]
dx =

∫
Ωρ

hη3 j Zi j + ci j

∫
Ωρ

χ j Z 2
i j.

Since Zij = O (1/(1 + r)), ∇ Zij = O (1/(1 + r2)) where r = |y − ξ ′
j | we get

�(η3 j Zi j) + W η3 j Zi j = O
(
(λρ)3) + O

(
ε

(1 + r)3

)
.

Therefore

|ci j| � C
(‖h‖∗ + ε‖φ‖L∞(Ωρ)

)
.

Using this and (3.41) we deduce that if λε is small enough, then

|φ|L∞(Ωρ) � C
∣∣log(λρ)

∣∣‖h‖∗,

and therefore (3.4) holds.
To prove the existence of solutions, consider the Hilbert space H of functions u ∈ H1(Ωρ) such

that
∫
Ωρ

χ j Zi ju = 0, for all i = 1,2, j = 1, . . . ,m, with the inner product

〈u, v〉 =
∫

Ωρ

∇u∇v + λρ

∫
∂Ωε

uv.

Then we weak formulation of (3.2) is to find φ ∈ H such that

〈φ,ψ〉 =
∫

Ωρ

(W φ − h)ψ, ∀ψ ∈ H .

Using the Riesz representation theorem, we can write this problem as follows: find φ ∈ H such that
φ = Kφ + h̃ where K is a compact operator in H and h̃ ∈ H . By the Fredholm alternative, we obtain
existence of a solution if the corresponding homogeneous problem φ = Kφ has no non-trivial solution.
This is guaranteed by the estimate (3.4). The solution constructed in this way belongs to H1(Ωρ), but
by standard elliptic regularity it is also bounded. Therefore it satisfies the estimate (3.4). �

Let L∗ denote the space of bounded functions h : Ωρ → R with norm ‖ ‖∗ . Let T : L∗ → L∞(Ωρ)

be the operator constructed in Proposition 3.1, that to a function h ∈ L∗ assigns the solution φ ∈
L∞(Ωρ) to (3.2). This operator depends on the points ξ1, . . . , ξm ∈ Ω satisfying (2.2), (2.3), or the
corresponding dilated variables ξ ′

j = ξ j/ρ . We claim that (ξ ′
1, . . . , ξ

′
m) �→ T is C1 in the region defined

by (2.2), (2.3) and that

∥∥∂ξ ′
j
T (h)

∥∥
L∞(Ωρ)

� C
∣∣log(λρ)

∣∣2‖h‖∗ (3.42)

provided λ � 1 and λρ is sufficiently small. The proof of this statement is analogous to the corre-
sponding one in [9].
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4. The nonlinear problem

We return to the nonlinear problem (2.8), but through the associated problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(φ) = −[
R + N(φ)

] +
2∑

i=1

m∑
j=1

ci jχ j Zi j, in Ωρ,

∂φ

∂ν
+ λρφ = 0, on ∂Ωρ,∫

Ωρ

χ j Zi jφ = 0, ∀i = 1,2; j = 1, . . . ,m.

(4.1)

This intermediate formulation gives us a framework to use the previous results. We have:

Lemma 4.1. Under the separation conditions (2.2) and (2.3) on the points ξ j , there exist constants C, ε0,

λ0 > 0 such that for all λ > λ0 , ε > 0 with λρ � ε0 , problem (4.1) has a unique solution φ satisfying

‖φ‖∞ � Cλρ
∣∣log(λρ)

∣∣. (4.2)

Moreover the map ξ ′
1, . . . , ξ

′
m ∈ Ωρ �→ φ ∈ L∞(Ωρ) is C1 and we have the estimate

‖∂ξ ′
kj
φ‖∞ � Cλρ

∣∣log(λρ)
∣∣2

. (4.3)

Proof. Let

A(φ) := T
(−(

N(φ) + R
))

,

where T is the continuous linear map such defined on the set of all h ∈ L∞(Ωρ) satisfying ‖h‖∗ <

+∞, so that φ = T (h) corresponds to the unique solution of the problem (3.2). With this, problem
(4.1) can be regarded as a fixed point problem

φ = A(φ).

For γ > 0, define the set

Fγ = {
φ ∈ C(Ω): ‖φ‖∞ � γ λρ

∣∣log(λρ)
∣∣}.

Using the definition of the operator A and Proposition (3.2), we have∥∥A(φ)
∥∥∞ � C

∣∣log(λρ)
∣∣(∥∥N(φ)

∥∥∗ + ‖R‖∗
)
.

It can be proved that ‖N(φ)‖∗ � C‖φ‖2∞ and ‖R‖∗ � Cε , so we can conclude that A(Fγ ) ⊂ Fγ and
A is a contraction, provided γ small. The fixed point theorem assures the existence of a unique fixed
point of A in Fγ .

Using the Implicit Function Theorem, one can justify the differentiability of the solution φ of the
problem (4.1) as a function of the points ξ ′

j ∈ Ωρ . Formally, differentiating we have

∂ξ ′ φ = (∂ξ ′ T )
(−(

N(φ) + R
)) − T

(
∂ξ ′

(
N(φ) + R

))
.

kj kj kj
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So, by (3.42), the estimates for ‖N(φ)‖∗,‖R‖∗ given above and

∥∥∂ξ ′
kj

N(φ)
∥∥∗ � C

(
λρ

∣∣log(λρ)
∣∣ + ‖∂ξ ′

kj
φ‖∞

)
λρ

∣∣log(λρ)
∣∣,

we conclude the estimate (4.3). �
5. The reduced problem

In the past section, we proved existence of a solution of the nonlinear projected problem (4.1). The
idea is to find a condition on the points ξ1, . . . , ξm that implies ci j(ξ

′) = 0, for all i, j.
Eq. (1.1) is the Euler–Lagrange equation of the functional Jε,λ : H1(Ω) → R defined by

Jε,λ(u) = 1

2

∫
Ω

|∇u|2 dx − ε2
∫
Ω

eu dx + λ

2

∫
∂Ω

u2 dσ(x). (5.1)

Let

F (ξ) = Jε,λ(U + φ̃) (5.2)

where U is the ansatz defined in (2.6) and φ̃ = φ̃(x, ξ) = φ( x
ρ , ξ ′), with φ the solution of the nonlinear

problem (4.1) given in the last section. The following lemma characterizes the condition ci j(ξ
′) = 0,

for all i, j in (4.1).

Lemma 5.1. The functional F (ξ) is of class C1 in the region determined by (2.2)–(2.4). Moreover, for λρ
sufficiently small, Dξ F (ξ) = 0 implies that ξ satisfies

ci j
(
ξ ′) = 0, ∀i, j.

Proof. Recall ξ ′ = ξ/ρ . We will work in the expanded variables and write the energy associated
functional as

Iε,λ(v) = 1

2

∫
Ωρ

|∇v|2 dy −
∫

Ωρ

ev dy + λρ

2

∫
∂Ωρ

(
v − log

(
ε4/λ

))2
dσ(y).

Note that F (ξ) = Jε(U + φ̃) = Iε(V + φ). The smoothness in terms of ξ of the function F is inherited
by the solution φ of the nonlinear problem and the definition of the approximation V . Hence

∂ξkl F (ξ) = ρ−1 D Iε,λ(V + φ)
[
∂ξ ′

kl
(V + φ)

]
= ρ−1

( ∫
Ωρ

〈∇(V + φ),∇∂ξ ′
kl
(V + φ)

〉
dy −

∫
Ωρ

eV +φ∂ξ ′
kl
(V + φ)dy

+ λρ

∫
∂Ωρ

(
V + φ − log

(
ε4/λ

))
∂ξ ′

kl
(V + φ)dσ(y)

)

using the equation satisfied by V + φ, we can conclude that
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∂ξkl F (ξ) = −ρ−1
2∑

i=1

m∑
j=1

∫
Ωρ

ci jχ j Zi j[∂ξ ′
kl

V + ∂ξ ′
kl
φ].

Let us assume that Dξ F (ξ) = 0. Then

2∑
i=1

m∑
j=1

∫
Ωρ

ci jχ j Zi j[∂ξ ′
kl

V + ∂ξ ′
kl
φ] = 0, k = 1,2; l = 1, . . . ,m. (5.3)

As we saw at the end of the last section, we have ‖Dξ ′
kl
φ‖∞ � Cλρ| log(λρ)|2.

On the other hand,

∂ξ ′
kl

V = −Zkl(y) + ∂ξ ′
kl

H j(y) = −Zkl(y) + O (λρ)

where the term O (λρ) is uniformly in Ω . Indeed, to estimate ∂ξ ′
kl

H j = ε√
λ
∂ξkl H j note that g = ∂ξkl H j

satisfies

�g = 0 in Ω,
∂ g

∂ν
+ λg = O

(
λ2)

on ∂Ω,

since dist(ξ j, ∂Ω) � δ/λ and we are assume ρ > 0 small, i.e., ε2λ small. By Lemma 2.2 we obtain
‖g‖L∞(Ω) � Cλ. Hence |∂ξ ′

kl
H j | � Cε

√
λ = Cρλ in Ω .

Then, we can rewrite the system (5.3) as

2∑
i=1

m∑
j=1

∫
Ωρ

ci jχ j Zi j
[

Zkl + O (1)
] = 0, k = 1,2; l = 1, . . . ,m.

For λρ sufficiently small, this 2m × 2m system is diagonal dominant. Hence, its unique solution is
ci j(ξ

′) = 0, for all i, j. �
We finish this section with an expansion of the function F as a perturbation of the energy of the

ansatz.

Lemma 5.2. Under the assumptions on the points ξ j given by (2.2)–(2.4), the following expansion holds:

F (ξ) = Jε,λ(U ) + θε,λ(ξ),

where the term |θε,λ(ξ)| + |∇θε,λ(ξ)| → 0 uniformly as λρ → 0 in the region described by (2.2)–(2.4).

Proof. Working in expanded variables, by definitions (5.1) and (5.2) we have F (ξ) = Iε,λ(V +φ). Since
V + φ is a solution of Eq. (2.7), the weak formulation of the problem give us D Iε,λ(V + φ)[φ] = 0.
Then

θε,λ(ξ) = Iε,λ(V + φ) − Iε,λ(V )

=
1∫
t D2 Iε,λ(V + tφ)φ2 dt
0
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=
1∫

0

( ∫
Ωρ

(|∇φ|2 − eV +tφφ2)
dy + λρ

∫
∂Ωρ

φ2 dσ(y)

)
t dt

=
1∫

0

( ∫
Ωρ

− [
N(φ) + R

]
φdy +

∫
Ωρ

eV (
etφ − 1

)
φ2 dy

)
t dt, (5.4)

after an integration by parts and the use of the equation satisfied by φ. Using the estimate ‖φ‖∞ �
Cλρ| log(λρ)| found in the previous section, we get

Iε,λ(V + ε) − Iε,λ(V ) = C
((

λρ
∣∣log(λρ)

∣∣)3 + ελρ
∣∣log(λρ)

∣∣).
The continuity in ξ ′ of the all these expressions is inherited from that of φ in the L∞ norm.

Note that ∇ξ θε,λ(ξ) = ρ−1∇ξ ′θε,λ(ρξ ′). Differentiating with respect to ξ ′
kl under the integral sign

in (5.4), we obtain

∂ξ ′
kl

[
Iε,λ(V + φ) − Iε,λ(V )

]
=

1∫
0

( ∫
Ωρ

− ∂ξ ′
kl

[(
N(φ) + R

)
φ

]
dy +

∫
Ωρ

∂ξ ′
kl

[
eV (

etφ − 1
)
φ2]

dy

)
t dt,

and using the estimates for N(φ), R and W and its derivatives with respect to ξ ′
kl given in the previous

section, we get

∂ξkl θε,λ(ξ) = ρ−1∂ξ ′
kl

[
Iε,λ(V + φ) − Iε,λ(V )

]
= ε

(∣∣log(λρ)
∣∣ + (λρ)2

∣∣log(λρ)
∣∣4) → 0 (5.5)

as λρ → 0. �
6. An expression for the energy of the ansatz

Given the asymptotic expansion of the functional F in terms of the energy of the ansatz Jε(U ),
we are interested in the form of this energy in order to find the critical points of F . The following
result gives us an expression which will be useful for this purpose.

Define

d = min
{

dist(ξ j, ∂Ω): j = 1, . . . ,m
}
.

Proposition 6.1. Let U be the function defined in (2.6). There exists ε0 > 0, such that for all 0 < ε < ε0 we
have

Jε(U ) = −16mπ − 16mπ log(ε) + 8mπ log(8) − 4πϕm(ξ) + Θ(ε,λ,d)

where the function ϕm is defined as

ϕm(ξ1, . . . , ξm) =
m∑

j=1

Hλ(ξ j, ξ j) +
∑
i �= j

Gλ(ξi, ξ j) (6.1)
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with Gλ and Hλ the Green function for the Laplacian in Ω with Robin boundary condition and its regular
part (cf. (1.3), (1.4)). The term Θ has an order O (ε2λ log(λ)) and O (ε2λ3) for its derivative, when the points
ξ1, . . . , ξm are such that |ξi − ξ j | > δ for each i �= j and dist(ξ j, S∗) � cλ−3/2 for some constant c > 0.

Proof. We will divide the analysis looking each term appearing in the development of Jε(U ) individ-
ually.

Gradient squared. This term is given by

1

2

∫
Ω

|∇U |2 dx = 1

2

{
m∑

j=1

∫
Ω

|∇U j|2 dx +
∑
i �= j

∫
Ω

∇Ui∇U j dx

}
(6.2)

where U j = u j + H j .
We have

1

2

∫
Ω

|∇U j |2 dx = 1

2

∫
Ω

|∇u j|2 dx +
∫
Ω

〈∇u j,∇H j〉dx + 1

2

∫
Ω

|∇H j|2 dx. (6.3)

Taking the last two terms in this expansion, using integration by parts and the definition of U j we
obtain

∫
Ω

〈∇u j,∇H j〉dx + 1

2

∫
Ω

|∇H j|2 dx =
∫

∂Ω

U j
∂ H j

∂ν
dσ − 1

2

∫
∂Ω

H j
∂ H j

∂ν
dσ (6.4)

where ν represents the unit normal exterior of ∂Ω .
Recall that d j denotes the distance of the point ξ j to ∂Ω . For the first term on the right-hand side

of (6.3), we will use the explicit expression of u j given in (2.1):

∫
Ω

|∇u j|2 dx =
∫

B(ξ j ,
d j
2 )

∣∣∣∣∇wμ j

(√
λ|x − ξ j|

ε

)∣∣∣∣2

dx

+
∫

Ω\B(ξ j ,
d j
2 )

∣∣∣∣∇wμ j

(√
λ|x − ξ j|

ε

)∣∣∣∣2

dx. (6.5)

For the first term in (6.5) we have by explicit calculation

∫
B(ξ j,

d j
2 )

∣∣∣∣∇wμ j

(√
λ|x − ξ j|

ε

)∣∣∣∣2

dx

= 16π

[
log

(
ε2μ2

j

λ
+

(
d j

2

)2)
− 2 log

(
εμ j√

λ

)
+ (ε2μ2

j )/λ

(ε2μ2
j )/λ + (

d j
2 )2

− 1

]
. (6.6)
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Using the definition of wμ j∫
Ω\B(ξ j ,

d j
2 )

∣∣∣∣∇wμ j

(√
λ|x − ξ j|

ε

)∣∣∣∣2

dx

= 16
∫

Ω\B(ξ j ,
d j
2 )

1

|x − ξ j|2 dx − 32
μ2

jε
2

λ

∫
Ω\B(ξ j,

d j
2 )

|x − ξ j|2
(τ + |x − ξ j|2)3

dx (6.7)

with τ ∈ [0, (μ2
j ε

2)/λ]. Denote θ11 the second term in the RHS of the last equality. We estimate θ11

in the following way

|θ11| � 32
μ2

jε
2

λ

∫
Ω\B(ξ j ,

d j
2 )

1

|x − ξ j|4 dx

= 16
μ2

jε
2

λ

( ∫
∂Ω

∂|x − ξ j|
∂ν

|x − ξ j|−3 +
∫

∂ B(ξ j ,d j/2)

1

|x − ξ j|3
)

and conclude that θ11 has order O (
μ2

j ε
2

λd2
j

). For ∂ξ θ11 we have

∂ξ θ11 = O
(
(ελ)2) + μ2

jε
2

λ

( ∫
∂ B(0,d j/2)

2|z|(τ − 2|z|2)
(τ + |z|2)4

νk(z)dz

+ νk(ξ̂ j)

2

∫
∂ B(ξ j ,d j/2)

|x − ξ j|2
(τ + |x − ξ j|2)3

dx

−
∫

Ω\B(ξ j ,d j/2)

2|x − ξ j|(τ − 2|x − ξ j|2 − 3|x − ξ j|∂τ )

(τ + |x − ξ j|2)4

)

= O
(
(ελ)2) + O

(
(ελ)4) + O

(
ε2λ3) + O

(
(ελ)2)

.

On the other hand, note that |∇Γ (x, ξ j)|2 = 16
|x−ξ j |2 , where Γ (x, y) = 4 log( 1

|x−y| ) is the fundamen-

tal solution of the Laplacian in R
2. Hence

16
∫

Ω\B(ξ j,
d j
2 )

1

|x − ξ j|2 dx =
∫

∂(Ω\B(ξ j,
d j
2 ))

Γ (x, ξ j)
∂Γ (x, ξ j)

∂ν
dσ

=
∫

∂Ω

Γ (x, ξ j)
∂Γ (x, ξ j)

∂ν
dσ +

∫
∂ B(ξ j ,

d j
2 )

Γ (x, ξ j)
∂Γ (x, ξ j)

∂ν
dσ

=
∫

G(x, ξ j)
∂Γ

∂ν
−

∫
H(x, ξ j)

∂Γ

∂ν
dσ + 32π log

1
d j
2

(6.8)
∂Ω ∂Ω
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where we have used that Hλ(x, ξ j) = Gλ(x, ξ j) − Γ (x, ξ j). Then, combining (6.7) and (6.8) we have

∫
Ω\B(ξ j,

d j
2 )

|∇u j|2 dx =
∫

∂Ω

Gλ(x, ξ j)
∂Γ

∂ν
−

∫
∂Ω

Hλ(x, ξ j)
∂Γ

∂ν
dσ + 32π log

1
d j
2

+ θ11

= −
∫

∂Ω

Γ (x, ξ j)
∂ H

∂ν
dσ −

∫
Ω

�Γ (x, ξ j)Hλ(x, ξ j)dx

+
∫

∂Ω

G(x, ξ j)
∂Γ

∂ν
dσ + 32π log

1
d j
2

+ θ11

= 8π H(ξ j, ξ j) −
∫

∂Ω

Γ
∂ H

∂ν
dσ +

∫
∂Ω

Gλ(x, ξ j)
∂Γ

∂ν
dσ

+ 32π log
1
d j
2

+ θ11. (6.9)

Finally, using (6.9) and (6.6) we have

1

2

∫
Ω

|∇u j|2 dx = −8π − 16π log

(
εμ j√

λ

)
− 1

2

∫
∂Ω

Γ (x, ξ j)
∂ H

∂ν
dσ

+ 1

2

∫
∂Ω

G(x, ξ j)
∂Γ

∂ν
dσ + 4π Hλ(ξ j, ξ j) + θ̃1 (6.10)

where θ̃1 = θ11 + θ12 and θ12 is the error term associated to (6.6). We can estimate θ12 noting that

θ12 = −32π log(d j/2) + 16π

[
log

(
ε2μ2

j

λ
+

(
d j

2

)2)
+ (ε2μ2

j )/λ

(ε2μ2
j )/λ + (

d j
2 )2

]

= 5 × 16π
1

d j

μ2
jε

2

λ
− 16π

μ4
jε

4

λ2

16

d4
j

= O
(
ε2λ

) + O
(
ε4λ2)

.

Meanwhile, if we denote ρ2 = ε2/λ, we can estimate ∂ξ θ12 using that

∂ξ j θ12 = 16π

[
− 2

d j
∂d j + ρ2∂μ2 + d j/2∂d j

ρ2μ2
j + (d j/2)2

+ ρ2∂μ2

ρ2μ2
j + (d j/2)2

− ρ2μ2
j (ρ

2∂μ2 + d j/2∂d j)

(ρ2μ2
j + (d j/2)2)2

]
= O

(
(ελ)2)

.

Then, we conclude that θ̃1 has order O (ε2λ) and O (ε2λ3) for its derivative.
We will need the following lemma to complete the estimate of (6.3). The proof of this estimate is

given in Appendix A.
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Lemma 6.2. In virtue of the relation between H j(x) and Hλ(x, ξ j) we have

∫
∂Ω

H j
∂ H j

∂ν
dσ =

∫
∂Ω

Hλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν
dσ + O

(
λε2)

. (6.11)

And the derivative of the error term has an order O ((ελ)2 log(λ)).

Continuing with the proof of Proposition 6.1, we see that thanks to (6.4), (6.10) and (6.11), we
have

1

2

∫
Ω

|∇U j|2 dx = −8π − 16π log(μ jε) + 4π Hλ(ξ j, ξ j)

+
∫

∂Ω

U j
∂ H j

∂ν
dσ − 1

2

∫
∂Ω

Hλ(x, ξ j)
∂ H(x, ξ j)

∂ν
dσ

+ 1

2

∫
∂Ω

Gλ(x, ξ j)
∂Γ

∂ν
dσ − 1

2

∫
∂Ω

Γ
∂ Hλ(x, ξ j)

∂ν
dσ + θ1(ε,λ,d j) (6.12)

where θ1(ε, λ,d j) includes all the error terms seen so far and has an order O (ε2λ), and derivative of
order O (ε2λ3).

For the crossed terms of (6.2), using the Robin boundary condition we have

∫
Ω

∇Ui∇U j dx =
∫

∂Ω

U j
∂Ui

∂ν
−

∫
Ω

U j�Ui

= −λ

∫
∂Ω

U j Ui −
∫
Ω

U j�Ui . (6.13)

Using the definition of the functions U j and centering the coordinate system on ξ ′
i , the second integral

of the last expression can be separated as follows

−
∫
Ω

U j�Ui dx = ε−2λ

∫
Ω

8μ2
i

(μ2
i + λ|x−ξi |2

ε2 )2

{
w j

(√
λ|x − ξ j|

ε

)
+ log

1

ε4
+ log(λ) + H j(x)

}
dx

=
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2

{
log

1

(μ2
jρ

2 + |ξi − ξ j + εμi√
λ

y|2)2
+ log

(
8μ2

j

) − log(λ)

}
dy

+
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2
H j

(
ξi + εμi√

λ
y

)
dy

= I1 + I2 + I3 + I4, (6.14)

where
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I1 =
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2

(
log

1

(μ2
jρ

2 + |ξi − ξ j + εμi√
λ

y|2)2
− 4 log

1

|ξi − ξ j|
)

dy,

I2 =
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2

(
H j

(
ξi + εμi√

λ
y

)
− H j(ξi)

)
dy,

I3 =
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2

(
H j(ξi) − H(ξi, ξ j) + log

(
8μ2

j

) − log(λ)
)
,

I4 =
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2

(
H(ξi, ξ j) + 4 log

1

|ξi − ξ j|
)

dy.

We need to estimate each of the last four integrals. Since the points ξi, ξ j are uniformly separated
each other, we have I1 and I2 of order O (ε/

√
λ ) with the same order for its derivatives with respect

to ξ j . The asymptotic estimate (2.13) implies I3 = O (
μ2

j ρ
2

λd3
j

) and O (
μ2

j ρ
2

λdid
3
j
) for its derivative. Finally,

for I4 we have

I4 =
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2

(
H(ξi, ξ j) + 4 log

1

|ξi − ξ j|
)

dy

=
∫

√
λ

μiε
(Ω−ξi)

8

(1 + |y|2)2
G(ξi, ξ j)dy

= 8G(ξi, ξ j)

∫
√

λ
μiε

(Ω−ξi)

1

(1 + |y|2)2
dy

= 8πG(ξi, ξ j) + O
(
λε2)

,

and derivative with respect to ξ j for the last error term of the same order.
Hence, the second term on the right-hand side of (6.13) can be estimated as

−
∫
Ω

U j�Ui = 8πG(ξi, ξ j) + θ2(ε,λ,d) (6.15)

where θ2 is O (λε2) and order O ((λε)2) for its derivative.
For the first term in the right-hand side of (6.13), using the asymptotic relation (2.14) we have

−λ

∫
∂Ω

U j Ui = −λ

∫
∂Ω

Gλ(x, ξi)Gλ(x, ξ j) + O

(
μ2

i ρ
2

λd3
i

)
+ O

(
μ2

jρ
2

λd3
j

)
(6.16)

where the derivative of the error term has an order O (
μ2

i ρ
2

4 ).

λd
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Finally, with the estimates (6.12), (6.15) and (6.16), the expression for the term with the gradient
squared in (6.2) can be written as follows

1

2

∫
Ω

|∇U |2 dx = 4π

(
m∑

j=1

Hλ(ξ j, ξ j) +
∑
i �= j

Gλ(ξi, ξ j)

)
− 8mπ − 16π

m∑
j=1

log(μ jε)

+
m∑

j=1

∫
∂Ω

U j
∂ H j

∂ν
− 1

2

∫
∂Ω

Hλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν

+ 1

2

∫
∂Ω

Gλ(x, ξ j)
∂Γ (x, ξ j)

∂ν
− 1

2

∫
∂Ω

Γ
∂ Hλ(x, ξ j)

∂ν

− λ

2

∑
i �= j

∫
∂Ω

Gλ(x, ξi)Gλ(x, ξ j) + Θ1(ε,λ,d) (6.17)

where Θ1(ε, λ,d) includes all the error terms considered in the previous analysis and is O (λε2) with
derivative of order O (ε2λ3).

Exponential term. Now we will consider the exponential part of the energy. We can divide it in the
following way

ε2
∫
Ω

eU dx = ε2
m∑

j=1

∫
B(ξ j ,

d j
2 )

eU dx + ε2
∫

Ω\⋃m
j=1 B(ξ j,

d j
2 )

eU dx. (6.18)

For the first term on the right-hand side of (6.18) for each j we have

ε2
∫

B(ξ j,
d j
2 )

eU dx = ε2
∫

B(ξ j,
d j
2 )

eU j e
∑

i �= j Ui dx

= ε2
∫

B(ξ j,
d j
2 )

1

((μ jε/
√

λ )2 + |x − ξ j|2)2
exp

(
log

(
8μ2

j

) − log(λ) + H j(x)
)

× exp

( ∑
i �= j

(
log

8μ2
i

(μ2
i ε

2 + λ|x − ξi|2)2
+ log(λ) + Hi(x)

))
dx

= λ

μ2
j

∫
B(0,

√
λd j

2εμ j
)

1

(1 + |y|2)2
exp

[
Hλ(ξ j, ξ j + μ jε/

√
λy) + O

(
μ2

jρ
2

λd3
j

)]

× exp

[ ∑
i �= j

(
Gλ(ξi, ξ j + μ jε/

√
λy) − 4

μ jε y√
λ|ξi − ξ j|

+ O

(
μ2

i ρ
2

λd3
i

))]

× exp

(
−2

μ2
i ε

2

λ|ξ j − ξi + μ jε/
√

λy|
)

dy.
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Using the definition of the numbers μi , we can conclude

ε2
m∑

j=1

∫
B(ξ j ,

d j
2 )

eU dx = 8mπ + O (ε), (6.19)

where we have used (1.11). The derivative of the error has an order O (λε).
Using the estimates given above, it is easy to see that the second part in the right-hand side

of (6.18) becomes

ε2
∫

Ω\⋃m
j=1 B(ξ j,

d j
2 )

eU dx = O

(
ε2

d

)
(6.20)

with O ((λε)2) for the derivative of the error.
Finally, with (6.19) and (6.20) we can write

ε2
∫
Ω

eU dx = 8mπ + Θ2(ε,λ,d) (6.21)

where Θ2(ε,d) has an order O (ε) and O (λε) for its derivative.

Boundary term. For the boundary term of the energy, we use the asymptotic expansion (2.14) and
the Robin boundary condition of the Green function to obtain

λ

2

∫
∂Ω

U 2 dσ = λ

2

∫
∂Ω

(
m∑

j=1

(
Gλ(x, ξ j) + O

(
ρ2μ2

j

λd3
j

)))2

dσ

= λ

2

m∑
j=1

∫
∂Ω

G2
λ(x, ξ j) + λ

2

∑
i �= j

∫
∂Ω

Gλ(x, ξi)Gλ(x, ξ j)dσ + Θ3(ε,λ,d) (6.22)

where Θ3(ε, λ,d) has an order O (λε2) and order O ((ελ)2 log(λ)) for its derivative.
Taking into account the final expressions (6.17), (6.21) and (6.22) for each part of the energy, we

can conclude that

Jε(U ) = 4π

(
m∑

j=1

Hλ(ξ j, ξ j) +
∑
i �= j

Gλ(ξi, ξ j)

)
− 16mπ − 16π

m∑
j=1

log(μ jε)

+
m∑

j=1

∫
∂Ω

U j
∂ H j

∂ν
− 1

2

∫
∂Ω

Hλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν
+ 1

2

∫
∂Ω

Gλ(x, ξ j)
∂Γ (x, ξ j)

∂ν

− 1

2

∫
∂Ω

Γ
∂ Hλ(x, ξ j)

∂ν
+ λ

2

m∑
j=1

∫
∂Ω

G2
λ(x, ξ j) + Θ̃(ε,λ,d) (6.23)

where the error term Θ̃ is O (ε) and O (ε2λ3) for its derivative. This term includes all the error terms
Θi , i = 1,2,3. Using the definition of the regular part of the Green function and the Robin boundary
condition, we can write
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Jε(U ) = 4π

(
m∑

j=1

Hλ(ξ j, ξ j) +
∑
i �= j

Gλ(ξi, ξ j)

)
− 16mπ − 16π

m∑
j=1

log(μ jε)

+
m∑

j=1

∫
∂Ω

U j
∂ H j

∂ν
−

∫
∂Ω

Gλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν
+ Θ̃(ε,λ,d).

To give the correct bound for the error term, we will need the following:

Lemma 6.3. Under the assumptions (2.2) and (2.3), for each j = 1, . . . ,m we have∫
∂Ω

U j
∂ H j

∂ν
−

∫
∂Ω

Gλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν
= O

(
ε2λ log(λ)

)
(6.24)

and order O ((ελ)2 log(λ)) for its derivative.

The proof of this lemma is postponed to Appendix A. Using (6.24), we have

Jε(U ) = 4π

(
m∑

j=1

Hλ(ξ j, ξ j) +
∑
i �= j

Gλ(ξi, ξ j)

)
− 16mπ − 16π

m∑
j=1

log(μ jε) + Θ(ε,λ,d)

with Θ(ε,λ,d) = O (ε2λ log(λ)) and O (ε2λ3) for its derivative.
The definition of the numbers μ j given in (2.10) allows us to conclude the following expression

for the energy of the ansatz:

Jε(U ) = −16mπ − 16mπ log(ε) + 8mπ log(8) − 4πϕm(ξ1, . . . , ξm) + Θ(ε,λ,d)

where ϕm(ξ1, . . . , ξm) is the function given by (6.1). �
7. Proof of the theorems

To prove the main theorems in this paper it is useful to recall here a few properties of the Green
function Gλ , and its regular part Hλ (cf. (1.3), (1.4)). The proof of these estimates can be found in [8].

We have the following expression for Hλ(ξ, ξ),

Hλ(ξ, ξ) = hλ

(
λd(ξ)

) + O

(
1

λ

)
as λ → +∞ (7.1)

where ξ ∈ Ω has to satisfy λd(ξ) ∈ (M1, M2), and the function hλ(θ) has the explicit representation

hλ(θ) = − log(λ) − log(2θ) + 2

∞∫
0

e−t log(2θ + t)dt.

This implies that the function hλ(θ) has the following properties:

hλ(θ) = − log(θ) + O (1) as θ → 0,

hλ(θ) = log(θ) + O (1) as θ → +∞.
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Moreover, it is known that hλ(θ) has a unique non-degenerate minimum θ0 ∈ (0,+∞) and we have
hλ(θ0) = − log(λ)+ O (1). It can be seen from the formula for hλ(θ) that the location of the minimum
does not depend on λ.

Proof of Theorem 1.1. For the case m = 1, we look for critical points ξ ∈ Ω of the function

F (ξ) = −4π Hλ(ξ, ξ) + 8π log(8) − 16π − 16π log(ε) + Θ(ε,λ,d), (7.2)

with Θ(ε,λ,d) = O ( ε2

λd3 ) and d = dist(ξ, ∂Ω). Finding critical points of F is equivalent to finding
critical points of

F̃ (ξ) = Hλ(ξ, ξ) + Θ̃(ε,λ,d),

where Θ̃ = − 1
4π Θ . Under the assumption λε � ε0 we see that the error Θ̃ can be made arbitrarily

small by taking ε0 > 0 small, since Θ = O (ε2λ log(λ)) uniformly in Ω .
Let

S∗ =
{
ξ∗ ∈ U : d

(
ξ∗) = θ0

λ

}
and for 0 < M to be fixed, consider the set

U =
{
ξ ∈ Ω: −Mλ−3/2 < d(ξ) − θ0

λ
< Mλ−3/2

}
.

Recall that for each ξ ∈ Ω sufficiently close to ∂Ω , we define ξ̂ the unique point in ∂Ω such that
|ξ − ξ̂ | = d(ξ). We can take M so that for each x ∈ ∂Ω there exists ξ∗

x ∈ U such that ξ̂∗
x = x and

λd(ξ∗
x ) = θ0.

Using that θ0 is a non-degenerate critical point of hλ , it is possible to take 0 < M large such that

inf
∂U

hλ

(
λd(ξ)

)
> sup

S∗
hλ

(
λd(ξ)

) = hλ(θ0).

Using the separation condition (2.3) and (7.1), taking λ0 large enough and ε0 sufficiently small we
have

inf
∂U

F̃ > sup
S∗

F̃ , (7.3)

for λ � λ0, ε > 0 satisfying λε � ε0. This implies that the function F̃ has a minimum ξ1 ∈ U which
corresponds to a first critical point to F .

We now argue that F̃ has a second critical point in U . For each x ∈ ∂Ω consider the set

Q x = {ξ ∈ U : ξ̂ = x}.

If for all x ∈ ∂Ω ,

inf
ξ∈Q

F̃ (ξ) = min
U

F̃

x
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then actually F̃ has infinitely many critical points in U , and we are done. So assume that there is
x ∈ ∂Ω such that

inf
ξ∈Q x

F̃ (ξ) > min
U

F̃ . (7.4)

Let ∂ Q x denote the relative boundary of Q x . By (7.3) we have

inf
∂ Q x

F̃ > sup
S∗

F̃ .

But S∗ and ∂ Q x link in U , so, if we define the set

P = {
p ∈ C0(Q x; U ): p|∂ Q x = Id∂ Q x

}
,

then, the real number

β = sup
p∈P

inf
ξ∈Q x

F̃ (ξ)

is a critical value of F̃ which is different from F̃ (ξ1) in virtue of (7.4). This implies the existence of a
second critical point ξ2 in U of F which is different from ξ1. �

To prove Theorem 1.2 will need the following definitions and computations.
Given M > 0 and δ > 0 define

Ω0 = {
(ξ1, . . . , ξm) ∈ Ωm: λd(ξi) ∈ (

θ0 − Mλ−1/2, θ0 + Mλ−1/2)
, i = 1, . . . ,m;

|ξi − ξ j| > δ0, i �= j
}
.

We will sometimes write Ω0(M, δ) to make the dependence of this definition on M, δ explicit.
Then Ω0 is a smooth manifold with boundary ∂Ω0.

Lemma 7.1. There is c0 > 0, δ0 > 0, M0 > 0, λ0 such that for 0 < δ � δ0 , M � M0 one has

inf
∂Ω0

ϕm(ξ) � mhλ(θ0) + c0

λ
min

(
M2,1/δ

)
for all λ � λ0 .

Proof. If ξ = (ξ1, . . . , ξm) ∈ ∂Ω0 then either λd(ξi) = θ0 − Mλ−1/2, or λd(ξi) = θ0 + Mλ−1/2 for some i,
or |ξi − ξ j | = δ for some i �= j. If λd(ξi) = θ0 − Mλ−1/2, then by (7.1)

ϕm(ξ) =
m∑

l=1

Hλ(ξl, ξl) +
∑
l �= j

Gλ(ξl, ξ j)

� hλ

(
θ0 − Mλ−1/2) + (m − 1)hλ(θ0)

� mhλ(θ0) + cM2λ−1

where we have used the positivity of the Green function. This implies, choosing M > 0 large
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ϕm(ξ) � mhλ(θ0) + c0M2

λ

(for some fixed value of c0 > 0). We get a similar conclusion if λd(ξi) = θ0 + Mλ−1/2.
So let us consider the case |ξi − ξ j | = δ for some i �= j. Using expansion (7.1) we obtain in this case

ϕm(ξ) =
m∑

i=1

Hλ(ξi, ξi) +
∑
i �= j

Gλ(ξi, ξ j)

� mhλ(θ0) + O

(
1

λ

)
+

∑
i �= j

G(ξi, ξ j).

In this case, we use the following claim: For points ξi, ξ j satisfy |ξi − ξ j | = δ and the separation
condition (2.3), then there exists c0 > 0 such that

G(ξi, ξ j) � c0

δλ

for some δ fixed small and all λ sufficiently large. This claim concludes the proof.
To prove the claim, we consider after a rotation and translation ξ j = (0,d(ξ j)), the projection of ξ j

to ∂Ω is the origin and the outer normal vector to the boundary at the origin is (0,−1).
Denote by Ĝλ the Green function in the half-space {(x, y): y > 0} associated to the Robin boundary

condition. Fix δ̄ > 0 small. It is proven in [8] that

‖Gλ − Ĝλ‖L∞(B(ξ j,δ̄)∩Ω) � C δ̄

1

λ
.

We recall that

Ĝλ(ξi, ξ j) = Γ
(|ξi − ξ j|

) − Γ
(|ξi + ξ j|

) − 2

0∫
−∞

eλs ∂Γ

∂x2
(ξi + ξ j − e2s)ds.

By a computation we get

−
0∫

−∞
eλs ∂Γ

∂x2
(ξi + ξ j − e2s)ds � c

δλ

for some c > 0. Also, for |ξi − ξ j | = δ and dist(ξi, ∂Ω) = O (1/λ), since ξi − ξ j is almost perpendicular
to 2ξ j , we get

∣∣Γ (|ξi − ξ j|
) − Γ

(|ξi + ξ j|
)∣∣ � C

λ
.

Therefore

Gλ(ξi, ξ j) � C
1

δλ

where C > 0 is a universal constant. Choosing 0 < δ < δ̄ small independent of λ we have the conclu-
sion of the claim for λ large enough. �
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We will apply the Ljusternik–Schnirelmann theory, see [6], to estimate the number of critical
points of the functional F̃ on Ω0. Let us recall that the Ljusternik–Schnirelmann category of a closed
subset A of Ω0 relative to Ω0, which we write as catΩ0(A), is the smallest integer � such that A can
be covered by � closed contractible sets.

It is easy to see that catΩ0 (Ω0) is at least 2, which is equivalent to say that Ω0 is not contractible.
For completeness, we give a short proof. It is sufficient to construct continuous functions

f : S1 → Ω0, P : Ω0 → S1

such that P ◦ f : S1 → S1 has nonzero winding number. Let Γ denote a connected component of ∂Ω

and γ : S1 → Γ be a parametrization Γ , i.e., a smooth diffeomorphism. Set

g(x) = x − θ0

λ
ν(x), x ∈ Γ,

where ν is the exterior unit normal vector of ∂Ω . We represent S1 = {z ∈ C: |z| = 1}. Let f : S1 → Ω0
be the continuous function defined by

f (z) = (
g
(
γ (z)

)
, g

(
γ

(
zei2π 1

m
))

, . . . , g
(
γ

(
zei2π m−1

m
)))

, z ∈ S1. (7.5)

Next we define P as follows. For ξ ∈ Ω close to ∂Ω there is a unique closest point ξ̂ ∈ ∂Ω . In
particular, for (ξ1, . . . , ξm) ∈ Ω0, (ξ̂1, . . . , ξ̂m) ∈ Γ m . Let

P (ξ1, . . . , ξm) =
m∏

j=1

γ −1(ξ̂ j) ∈ S1.

Note that P : Ω0 → S1 is continuous and

P ◦ f (z) = zmeπ i(m−1), z ∈ S1,

so P ◦ f has nonzero winding number.

Lemma 7.2. Let M > 0 and δ > 0 small. There is a closed subset A ⊂ Ω0 with catΩ0(A) � 2 such that

sup
ξ∈A

ϕm(ξ) � mhλ(θ0) + C

λ

for some constant C independent of λ.

Proof. Let f be defined as in (7.5) and let

A = {
f (z): z ∈ S1}

.

The same argument showing that catΩ0 (Ω0) � 2 gives that catΩ0(A) � 2. By construction of f , if
ξ = (ξ1, . . . , ξm) ∈ A then the m coordinates of ξ are uniformly separated, independently of δ and λ.
This implies that

ϕm(ξ) � mhλ(θ0) + C

λ

for C > 0, independent of δ and λ. �
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Proof of Theorem 1.2. We take Ω0 with an initial choice of δ > 0 small and M > 0 large so that Ω0
is not empty.

To prove the theorem we need to show the existence of critical points of F (ξ) where ξ =
(ξ1, . . . , ξm) ∈ Ωm with ξi satisfying (2.2), (2.3). Finding critical points of F is equivalent to finding
critical points of

F̃ (ξ) = − 1

4π

(
F (ξ) + 16mπ + 16mπ log(ε) − 8mπ log(8)

) + m log(λ).

By Lemma 5.2 and Proposition 6.1

F̃ (ξ) = ϕm(ξ) + m log(λ) + Θε,λ(ξ),

where Θε,λ satisfies |Θε,λ(ξ)| � Cδ,Mε2λ log(λ) for ξ ∈ Ω0.
Define

Ak = {
A ⊂ Ω0: A is closed and catΩ0(A) � k

}
, k ∈ N,

and

ck = inf
A∈Ak

sup
ξ∈A

F̃ (ξ).

Since Ak+1 ⊂ Ak , is immediate that ck � ck+1, for all k. Moreover, we have

c1 = inf
ξ∈Ω0

F̃ (ξ)

and c1 � c2 < +∞. Note that

c1 � inf
{

F̃ (ξ): ξ = (ξ1, . . . , ξm), ξi ∈ S∗, |ξi − ξ j| � δ0
}

� mhλ(θ0) + C

λ
+ Cε2λ logλ

where δ0 > is fixed small and C es independent of M and δ.
Now choose M̃ > M and 0 < δ̃ < δ and set Ω̃0 = Ω0(M̃, δ̃). Using Lemma 7.1 we can achieve

inf
∂Ω̃0

F̃ > c1

for λ � λ0 and ε2λ log λ � ε0. Define now

c̃1 = inf
ξ∈Ω̃0

F̃ (ξ),

c̃2 = inf
A∈Ã2

sup
ξ∈A

F̃ (ξ)

where

Ã2 = {
A ⊂ Ω̃0: is closed and catΩ0(A) � 2

}
.
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Observe that Ω0 ⊂ Ω̃0 and therefore c̃1 = c1 and c̃2 � c2. Taking M̃ larger and δ̃ smaller if neces-
sary, using Lemma 7.1 we have

sup
A

F̃ < inf
∂Ω̃0

F̃

where the set A is the set found in Lemma 7.2. This implies the values of F̃ on ∂Ω̃0 are strictly
larger than c̃2, and using Ljusternik–Schnirelmann theory we deduce that c̃2 is a critical value of F̃ .
If c̃2 > c̃1, then we obtain immediately 2 different critical points of F̃ corresponding to 2 different
solutions. If c̃2 = c̃1, then the set of critical points of F̃ with value c̃2 = c̃1 has category at least 2. In
this case we conclude that there are infinitely many critical points for F̃ in Ω̃0. Since there is a finite
number of permutations, we obtain the existence of infinitely different solutions in this situation. �
Remark 7.3. We believe that the assumption on ε and λ in Theorem 1.2 can be sharpened to λε small.
This slight improvement can be accomplished by estimating more carefully the error in Lemma 6.3,
where it seems possible to improve the error to ε2λ.

Proof of Theorem 1.3. As in the proof of Theorem 1.1, to find critical points of the function F we use
the expansion (7.2), recalling the error term Θ̃(ε,λ,d) satisfies

∣∣θ(ε,λ,d)
∣∣ � Cε2λ log(λ),

∣∣∇Θ(ε,λ,d)
∣∣ � Cε2λ3.

Let x0 ∈ ∂Ω a non-degenerate critical point of the mean curvature κ . For γ ∈ (0,1), we have the
following expressions for the derivative of the function Rλ(ξ) := Hλ(ξ, ξ), see [8]:

∇T Rλ(x) = λ−1∇κ(x̂)v
(
λd(x)

) + O
(
λ−(1+γ )

)
, (7.6)〈∇Rλ(x), ν(x̂)

〉 = −λh′
λ

(
λd(x)

) − κ(x̂)v
(
λd(x)

) + O
(
λ−γ

)
, (7.7)

which hold uniformly for m � λd(x) � M , for some constants m, M > 0. Here, x̂ is the (unique) pro-
jection of the point x over ∂Ω , ∇T is the tangential derivative and v : (0,+∞) → R is the function
given in (1.7).

Since x0 is a non-degenerate critical point of κ , then there exists σ , c > 0 such that

∣∣∇κ(x̂)
∣∣ � c|x̂ − x0|, ∀|x̂ − x0| � σ . (7.8)

On the other hand, the function hλ(θ) has a unique critical point θ0 > 0 which is non-degenerate.
Taking c, σ smaller if it is necessary, we have

∣∣h′
λ(θ)

∣∣ � c|θ − θ0|, ∀|θ − θ0| � σ . (7.9)

It is known that the function v is continuous and strictly negative, so we can consider σ such that

inf
θ∈[θ0−σ ,θ0+σ ]

∣∣v(θ)
∣∣ > 0. (7.10)

We assume σ < θ0 since θ0 > 0. Consider 0 < β < γ and define the compact set

Kλ := {
x ∈ Ω:

∣∣λd(x) − θ0
∣∣ � σλ−1/2, |x̂ − x0| � λ−β

}
.
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Define the function

R0
λ(x) = hλ

(
λd(x)

) + λ−1κ(x̂)v
(
λd(x)

)
.

Note that this function has a critical point in the interior of Kλ . Defining the function

R̃λ(x) = Rλ(x) + Θ(ε,λ,d)

we can see that the function

Rt
λ(x) = t R̃λ(x) + (1 − t)R0

λ(x), t ∈ [0,1]

is a homotopy between R̃λ and R0
λ . Since

∣∣∇Rt
λ(x)

∣∣2 = ∣∣∇T Rt
λ(x)

∣∣2 + 〈∇Rt
λ(x), ν(x̂)

〉2
then, if |λd(x) − θ0| = σλ−1/2, using (7.7) and (7.9) and taking λ large enough we conclude

∣∣〈∇Rt
λ(x), ν(x̂)

〉∣∣ � c′λ1/2 + O
(
ε2λ3)

. (7.11)

If |x̂ − x0| = λ−β , then using (7.6), (7.8) and (7.10), taking λ large enough we conclude

∣∣∇Rt
λ(x)

∣∣ � c′λ−(1+β) + O
(
ε2λ3)

(7.12)

with 0 < β < γ . This implies that if we set λ < ε−α with α < 1
2 , then we can choose 0 < β suit-

ably small (for example, β < 2−4α
α ) we conclude that the term |∇Rt

λ(x)| in (7.12) remains uniformly
positive if ελ−α < ε0 for ε0 is sufficiently small and λ > λ0, with λ0 large enough.

Finally, (7.11) and (7.12) imply that we can use degree theory to conclude the existence of a critical
point of R̃λ under the conditions over ε and λ given above. �
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Appendix A. Proof of Lemmas 6.2 and 6.3

Let H+ = {(x1, x2) ∈ R
2: x2 > 0} and ∂ H+ = {(x1,0): x1 ∈ R}. For g : R → R, consider v solution

of the problem ⎧⎨⎩
−�v = 0, in H+,

∂v

∂ν
+ av = g, on ∂ H+,

for a > 0 fixed. If g has some decay at infinity, the solution of this problem is given by

v(x1, x2) =
+∞∫

ka(x1 − y, x2)g(y)dy, ∀(x1, x2) ∈ H+, (A.1)
−∞
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where

ka(x1, x2) = 1

π

+∞∫
0

e−at(x2 + t)

x2
1 + (x2 + t)2

dt, ∀(x1, x2) ∈ H+,

see [13,8,7].
Consider j ∈ {1, . . . ,m} fixed. After a rotation and translation we can suppose that ξ j = (0,d j)

whose projection on ∂Ω is the origin. For later purposes, we denote ξ∗
j = (0,−d j) the reflection of ξ j

across ∂ H+ . Let δ > 0 be fixed and U be a neighborhood of the origin. Consider a conformal mapping

F : B(0, δ) ∩ Ω → U ∩ H+. (A.2)

The function F can be taken so that F (0) = 0 and F ′(0) is the identity.
In addition, consider a smooth cut-off function⎧⎪⎪⎨⎪⎪⎩

η : R
2 → R,

η(x) = 1 if |x − ξ j| � δ

2
,

η(x) = 0 if |x − ξ j| > δ.

(A.3)

Particular properties for this cut-off function will be stated later in each case.
Recall ρ = ε/

√
λ. Let h j = H̃ j(x) − Hλ(x, ξ j), which solves the equation⎧⎪⎨⎪⎩

−�h j = 0, in Ω,

∂h j

∂ν
+ λh j = O

(
ρ2

|x − ξ j|3
)

+ O

(
λρ2

|x − ξ j|2
)

, on ∂Ω.
(A.4)

For the proof of Lemma 6.2 we will need the following lemma.

Lemma A.1. With the definition of F and η given in (A.2) and (A.3) respectively, we have

∣∣h j(x)
∣∣ � C1λρ2 + C2λ

2ρ2η(x)

(
1 + λ(F (x))2

1 + λ2((F (x))1)2

)
. (A.5)

Proof. We change variables, considering the set λΩ and writing y ∈ λΩ as y = λx with x ∈ Ω . Define
h̃ j(y) = h j(y/λ) for y in λΩ , which satisfies⎧⎪⎨⎪⎩

−�h̃ j = 0, in λΩ,

∂h̃ j

∂ν
+ h̃ j = O

(
λ2ρ2

|y − λξ j|3
)

+ O

(
λ2ρ2

|y − λξ j|2
)

, on ∂(λΩ).
(A.6)

Consider v1 a solution to ⎧⎪⎨⎪⎩
−�v1 = 0, in H+,

∂v1

∂ν
+ v1 = λ2ρ2

1 + y2
1

, on ∂ H+.

Using the explicit expression (A.1) for this case, it is possible to get the following bound for v1,
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∣∣v1(y1, y2)
∣∣ � Cλ2ρ2

⎧⎨⎩
1

1+y2
if |y1| < y2,

1
1+|y1|2 + 1+y2

(1+|y1|)2 if |y1| � y2.

In particular, we have |v1(y1,0)| � C λ2ρ2

1+y2
1

. Moreover, we have

∣∣∇v1(y1, y2)
∣∣ � Cλ2ρ2

⎧⎨⎩
1

y2(1+y2)
if |y1| < y2,

(
1+y2

(1+|y1|)3 + 1
1+y2

1
)1{y2>1} + (

1+y2

1+y2
1
)1{y2<1} if |y1| � y2

so

∇v1 = O

(
λ2ρ2

|(y1, y2)|2
)

if
∣∣(y1, y2)

∣∣ > 1. (A.7)

Let Fλ(y) = λF (
y
λ
), with F as in (A.2). This function Fλ is defined on B(0, λδ) ∩ λΩ . Denote by μλ(y)

the conformal factor of Fλ in y, which has an expansion given by μλ(y) = 1 + O (| y
λ
|). Consider Ỹ the

solution to ⎧⎪⎪⎨⎪⎪⎩
−�Ỹ = ρ2

λ
, in λΩ,

∂ Ỹ

∂ν
+ Ỹ = λρ2, in ∂(λΩ)

and η̃(y) = η(
y
λ
) for y ∈ λΩ , η as in (A.3). Then we set

w̃ = C1 Ỹ + C2η̃v1
(

Fλ(y)
)
, (A.8)

where C1 > 0 and C2 > 0 are constants to be fixed later on. We have for y ∈ ∂(λΩ),

∂ w̃

∂ν
+ w̃ = C1λρ2 + C2

[
η̃

(∇v1
(

Fλ(y)
)
μλ(y) · ν + v1

(
Fλ(y)

)) + ∂η̃

∂ν
v1

(
Fλ(y)

)]
= C1λρ2 + C2

[
η̃

(
− ∂v1

∂ y2

(
Fλ(y)

) + v1
(

Fλ(y)
))

+ η̃

∣∣∣∣∂v1

∂ y2

(
Fλ(y)

)∣∣∣∣O

( |y|
λ

)
+ O

(
ρ2

λ

)]
.

Using the estimates for v1, we can conclude

∂ w̃

∂ν
+ w̃ � ∂h̃ j

∂ν
+ h̃ j on ∂(λΩ)

if we take C1, C2 large. On the other hand

−�w̃ = C1
ρ2

λ
− C2

(
�η̃(y)v1

(
Fλ(y)

) + 2∇η̃(y)∇v1
(

Fλ(y)
) · F ′

(
y

λ

))
, y ∈ λΩ.
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But |Fλ(y)| = O (|y|) and F ′( y
λ
) is bounded in B(0, λδ)∩λΩ , so, using (A.7), we have −�w̃ � 0 in λΩ .

This implies that h̃ j � w̃ in λΩ . A similar argument tells us that −w̃ � h̃ j in λΩ . Then, we get for
y ∈ λΩ ,

∣∣h̃ j(y)
∣∣ � C1λρ2 + C2λ

2ρ2η̃(y)

(
1 + (Fλ(y))2

1 + ((Fλ(y))1)2
+ 1

1 + ((Fλ(y))1)2

)
. (A.9)

Returning to the x variables we have the statement of the lemma. �
Proof of Lemma 6.2. By definition of h j ,∫

∂Ω

H j(x)
∂ H j(x)

∂ν
dσ(x) =

∫
∂Ω

Hλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν
dσ(x)

+ 2
∫

∂Ω

Hλ(x, ξ j)
∂h j(x)

∂ν
dσ(x) + O

(
(λρ)4)

.

We will need to estimate the middle term of the right-hand side of the last equation. For δ small, we
have the following expansion of Hλ(x, ξ j) for x ∈ Ω ∩ B(0, δ), see [8]

Hλ(x, ξ j) = O

(
1

λ

)
+ Γ

(
x − ξ∗

j

) − 2λ

0∫
−∞

eλsΓ
(
x − (

ξ∗
j + se2

))
ds,

where the O ( 1
λ
) term in the last equation is in the uniform sense in Ω ∩ B(0, δ). Using this estimate

for H(x, ξ j) lead us to get∫
∂Ω

Hλ(x, ξ j)
∂h j(x)

∂ν
dx

= O
(
λρ2) +

∫
∂Ω∩B(0,δ)

(
Γ

(
x − ξ∗

j

) − 2λ

0∫
−∞

eλsΓ
(
x − (

ξ∗
j + se2

))
ds

)
∂h j

∂ν
dx

= O
(
λρ2) −

∫
∂Ω∩B(0,δ)

Γ
(
x − ξ∗

j

)∂h j

∂ν
dx

+ 2
∫

∂Ω∩B(0,δ)

( 0∫
−∞

et
(

Γ
(
x − ξ∗

j

) − Γ

(
x −

(
ξ∗

j + t

λ
e2

)))
dt

)
∂h j

∂ν
dx

� O
(
λρ2) + O

(
λ3ρ2) δ∫

−δ

log((λx1)
2 + 1)

1 + (λx1)2
dx1 + O

(
λ3ρ2) δ∫

−δ

1

1 + (λx1)2
dx1,

where, in the last inequality we have used the boundary condition satisfied by h j , the estimate (A.9)
and the properties of the function F . So, the estimate for the desired term is∫

Hλ(x, ξ j)
∂h j(x)

∂ν
dσ(x) = O

(
(λρ)2)

.

∂Ω
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Now we will see the estimate for the derivative of this error term. Differentiating with respect to ξ j
the error term (for simplicity, here ∂ξ denote the derivative with respect to ξ jk , with k = 1 or 2):

∂ξ

( ∫
∂Ω

H̃ j
∂ H̃ j

∂ν
− Hλ

∂ Hλ

∂ν

)
=

∫
∂Ω

∂ξ Hλ

∂h j

∂ν
+ ∂ξ h j

∂ Hλ

∂ν
+ ∂ξ h j

∂h j

∂ν
+ Hλ

∂(∂ξ h j)

∂ν

+ h j
∂(∂ξ Hλ)

∂ν
+ h j

∂(∂ξ h j)

∂ν
.

Using the equation satisfied by Hλ , we can conclude⎧⎪⎨⎪⎩
−�∂ξ Hλ(x, ξ j) = 0, x ∈ Ω,

∂∂ξ Hλ(x, ξ j)

∂ν
+ λ∂ξ Hλ(x, ξ j) = O

(
1

|x − ξ j|2
)

+ λO

(
1

|x − ξ j|
)

, y ∈ ∂Ω.

We put Z j = ∂ξ Hλ . Expanding the domain in λ, we can get

⎧⎪⎨⎪⎩
−�Z j = 0, y ∈ λΩ,

∂ Z j

∂ν
+ Z j = O

(
λ

|y − ξ ′
j|2

)
+ O

(
λ

|y − ξ ′
j|

)
, y ∈ ∂(λΩ).

We use the same method applied in Lemma A.1 on this function Z j , but now considering Ỹ solution
of the problem ⎧⎪⎪⎨⎪⎪⎩

−�Ỹ = 1

λ
, y ∈ λΩ,

∂ Ỹ

∂ν
+ Ỹ = 1, y ∈ ∂(λΩ),

and v1 solution of the problem

⎧⎪⎨⎪⎩
−�v1 = 0, in H+,

∂v1

∂ν
+ v1 = λ√

1 + y2
1

, on ∂ H+.

In this case, the function v1 has the following bounds

∣∣v2(y1, y2)
∣∣ � Cλ

⎧⎨⎩
1

1+|y1| + (1+y2) max(1,log(|y1|))
(1+|y1|)2 if |y1| � y2,

1
1+|y2| if |y1| � y2.

Using elliptic estimates we have |∇v1| � C 1
y2

|v1| in the set y2 > |y1| and |∇v1| � O (1) in the

set y2 � |y1|, y2 � 1
10 . We will take η as before, but with the extra property that in the set {y ∈

λΩ: d(y, ∂(λΩ)) < 1
10 }, (∇Nη)(

y
λ
) = 0, where ∇N is the derivative in the normal direction relative to

the boundary. This can be done due to the regularity of the boundary and taking λ large enough if it
is necessary.
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Then, using maximum principle as in Lemma A.1 we have the function

w(y) = C1 Ỹ (y) + C2η

(
y

λ

)
v1

(
λF

(
y

λ

))
is a supersolution to Z j in λΩ and −w is a subsolution to Z j in λΩ , with F as in (A.2) and η as
in (A.3), provided C1, C2 > 0 fixed appropriately.

In the same way, we will estimate ∂ξ h j noting that this function satisfies the equation⎧⎪⎨⎪⎩
−�(∂ξ h j) = 0, in Ω,

∂(∂ξ h j)

∂ν
+ λ(∂ξ h j) = O

(
μ2

jρ
2

λ2|x − ξ j|4
)

+ O

(
μ2

jρ
2

λ|x − ξ j|3
)

, on ∂Ω.

Using the same method as before, we conclude

∂ξ h j � λh j.

With this, we can estimate at main order∫
∂Ω

∂ξ Hλ

∂h j

∂ν
�

∫
∂Ω

(
λ + λ

1√
1 + (λx1)2

)(
O

(
λρ2

|x − ξ j|2
)

+ λ2ρ2 + λ3ρ2 1

1 + ((Fλ(y))1)2

)
� O

(
(ελ)2)

,∫
∂Ω

∂ξ h j
∂ Hλ

∂ν
�

∫
∂Ω

(
λ2ρ2 + λ3ρ2

(
1

1 + ((Fλ(y))2)2

))(
Hλ + 1

|x − ξ j| + λ log(|x − ξ j|)
)

� (λε)2 + (λε)2
∫

∂Ω∩B(ξ j ,δ/2)

(
Γ

(
x − ξ∗

j

) − 2λ

0∫
−∞

eλsΓ
(
x − (

ξ∗
j + se2

))
ds

)

= O
(
(ελ)2 log(λ)

)
,∫

∂Ω

Hλ

∂(∂ξ h j)

∂ν
� O

(
(ελ)2 log(λ)

)
,

∫
∂Ω

h j
∂(∂ξ Hλ)

∂ν
� O

(
(ελ)2 log(λ)

)
.

This implies that the derivative of the error has an order O ((ελ)2 log(λ)). �
Proof of Lemma 6.3. Let

I =
∫

∂Ω

U j
∂ H j

∂ν
−

∫
∂Ω

Gλ(x, ξ j)
∂ Hλ(x, ξ j)

∂ν
.

Using that U j = u j + H j and Gλ = Γ + Hλ we have

I =
∫

u j
∂ H j

∂ν
−

∫
Γ

∂ Hλ(x, ξ j)

∂ν
+ O

(
λε2)

.

∂Ω ∂Ω



J. Dávila, E. Topp / J. Differential Equations 252 (2012) 2648–2697 2695
Using the definition of u j :∫
∂Ω

u j
∂ H j

∂ν
−

∫
∂Ω

Γ
∂ Hλ(x, ξ j)

∂ν

=
∫

∂Ω

(
log

(
8μ2

j

) − 2 log
(
μ2

jρ
2 + |x − ξ j|2

) − log(λ)
)∂ H j

∂ν
−

∫
∂Ω

Γ
∂ Hλ

∂ν

=
∫

∂Ω

O

(
μ2

jρ
2

|x − ξ j|2
)

∂ H j

∂ν
+

∫
∂Ω

Γ

(
∂ H j

∂ν
− ∂ Hλ

∂ν

)

=
∫

∂Ω

O

(
μ2

jρ
2

|x − ξ j|2
)

∂ H j

∂ν
+

∫
∂Ω

Γ
∂h j

∂ν

=
∫

∂Ω

O

(
μ2

jρ
2

|x − ξ j|2
)

∂ H j

∂ν
+ O

(
(λρ)2)

where, for the last equality, we have used the boundary condition satisfied by h j and its bounds
found in (A.9). We continue the estimation noting that

∫
∂Ω

μ2
jρ

2

|x − ξ j|2
∂ H j

∂ν
=

∫
∂Ω

μ2
jρ

2

|x − ξ j|2
(

∂ Hλ(x, ξ j)

∂ν
+ ∂h j

∂ν

)

=
∫

∂Ω∩B(ξ j ,
δ
2 )

μ2
jρ

2

|x − ξ j|2
∂ Hλ(x, ξ j)

∂ν
+ O

(
λ2ε4) := K + O

(
λ2ε4)

. (A.10)

To prove the estimate (6.24) we will need a more accurate bound for
∂ Hλ(x,ξ j)

∂ν at least at points
x ∈ ∂Ω near ξ j . We will use expanded variables y = λx ∈ λΩ , where x ∈ Ω . In these expanded vari-
ables, Hλ satisfies⎧⎪⎨⎪⎩

−�Hλ = 0, y ∈ λΩ,

∂ Hλ

∂ν
+ Hλ = 4

(y − ξ ′
j)ν

|y − ξ ′
j|2

+ 4 log
∣∣y − ξ ′

j

∣∣ − 4 log(λ), y ∈ ∂(λΩ).

We use the method of Lemma A.1 with Ỹ satisfying⎧⎪⎪⎨⎪⎪⎩
−�Ỹ (y) = log(λ)

λ2
, y ∈ λΩ,

∂ Ỹ (y)

∂ν
+ Ỹ (y) = 1, y ∈ ∂(λΩ),

and v1 satisfying ⎧⎨⎩
−�v1(y) = 0, y ∈ H+,

∂v1(y) + v1(y) = 2 log
(
1 + y2

1

) − 4 log(λ), y ∈ ∂ H+,

∂ν
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and using the explicit expression (A.1), we conclude

∣∣v1(y1, y2)
∣∣ � C

{
1 + log(1 + y2) + log

(
1 + |y1|

) − log(λ) if |y1| � y2,

1 + log(1 + y2) − log(λ) if |y1| < y2.

Here we will consider F as in (A.2) and η as in (A.3). We use the same method as in Lemma A.1
to conclude that the function w̃ defined as

w̃(y) = C1 Ỹ (y) + C2η

(
y

λ

)
v1

(
λF

(
y

λ

))
is a supersolution to Hλ in λΩ and −w̃ is a subsolution to Hλ in λΩ , provided C1, C2 > 0 fixed
adequately. This implies

∣∣Hλ(y, ξ j)
∣∣ � C1 log(λ) + C2η

(
y

λ

)
v1

(
λF

(
y

λ

))
.

Using the boundary condition of Hλ and returning to the original variables, we have∣∣∣∣∂ Hλ(x, ξ j)

∂ν

∣∣∣∣ � C1λ log(λ) + C2λv1
(
λF (x)

) + (x − ξ j)ν

|x − ξ j|2 + 4λ
∣∣log

(|x − ξ j|
)∣∣.

We use this to estimate the integral term K defined in (A.10), which, in main order is estimated as

K = O
(
ε2λ log(λ)

)
.

As in the proof of Lemma 6.2, differentiating with respect to ξ the error term it is possible to conclude
the order O ((λε)2 log(λ)) for the derivative of the error. This concludes the lemma. �
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