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Telephone Channel Compensation in Speaker Verification
Using a Polynomial Approximation in the

Log-Filter-Bank Energy Domain

Claudio Garreton and Nestor Becerra Yoma

Abstract—This correspondence presents a novel feature-space channel
compensation technique that models the convolutional distortion in the log-
energy mel-filter domain by means of a polynomial approximation. The
proposed parametric distortion model generates appropriate constraints in
the spectral domain that help to improve the channel cancelling estimation
with limited data. In a text-dependent speaker verification task, the poly-
nomial-based channel estimation scheme can lead to reductions in equal
error rate (EER) as great as 22% and 8% when compared with the baseline
system and with the standard cepstral bias removal approach, respectively,
with no significant increase in computational load.

Index Terms—Channel robustness, speaker recognition, text-dependent
speaker verification.

I. INTRODUCTION

In commercial applications on the telephone, two main restrictions
are imposed on speaker verification (SV) technology: the amount of
data for training and testing procedures is limited due to operating and
usability restrictions; and speech signals are distorted by the communi-
cation channel that is composed of the telephone line and microphone
handset. Limited data leads to poorly trained models or to inaccurate
estimation of convolutional noise, and a consequent inaccurate com-
pensation in testing, which in turn leaves SV systems extremely vul-
nerable to channel mismatch conditions.

Previous attempts to resolve the channel mismatch problem have had
the goal of reaching the error rate that is observed in matched con-
ditions while minimizing the requirements of estimation data. They
can be clustered in two main areas [1]: feature compensation [1]–[5];
and model adaptation [6]–[8]. In both cases the most widely accepted
model for channel distortion corresponds to a cepstral or log-spectral
bias that results from the following hypotheses: H1) the channel re-
sponse is signal independent; and H2) the channel can be modeled as a
linear time-invariant filter. Based on those hypotheses, state of the art
feature compensation or model adaptation methods consider channel
distortion as a bias in the Mel frequency cepstral coefficient (MFCC)
or log filter-bank energy (LFBE) domains. If ����, ���� and ���� rep-
resent, respectively, the clean speech signal, additive noise, and the im-
pulse response of the linear time-invariant filter that models the channel
distortion [5], [9], the observed distorted signal ���� is modeled as

���� � ����� � ����������� (1)

This correspondence is focused on channel distortion only and ���� is
discarded to simplify the analysis that follows. If the signals are pro-
cessed by discrete Fourier transform (DFT) band-pass Mel filters and
inside each filter the energy of ���� and the frequency response of ����
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are considered to be constant, the log-energy of the noisy signal at the
output of filter � in frame � can be modeled as [3], [5], [9]

��	 ����� � ��	 ����� � ��	 	��
�� (2)

where ����� and ����� are the energy of the clean and distorted speech
signals at the output of filter � in frame �, respectively, 	�
�� is the
frequency response of filter ���� that models channel distortion, 
 �
� � � and � is the number of mel filters; and 
� is the discrete
central frequency of mel filter�. As a result, the observed signal in the
MFCC domain can be modeled as [3], [5], [9]

�
�
��� � 

�
��� �	

�
� (3)

where �
��� and � �

��� denote, respectively, static cepstral coefficient �
in frame � of ���� and ����, 
 � � � � , where � is the number
of static cepstral coefficients, and 	�

� is the cepstral bias associated
with the channel distortion at feature �. Surprisingly, despite the facts
that the model in (2) and (3) has widely been employed by many au-
thors and that the channel is modeled as a linear time-invariant filter,
the continuity of the frequency response 	�
� has not been explored

exhaustively. In other words, the additive components ��	 	��
��

in (2) are usually treated and estimated without considering that	�
��
corresponds to samples of a continuous curve 	�
�.

The feature compensation techniques that make use of the model
described in (2) or (3) can be classified as utterance-based or model-
based. Utterance-based approaches such as CMN [10], CMVN [11],
RASTA [12], MVA [13], and further techniques [14], [15] can dramat-
ically reduce the error rate in channel mismatch conditions, but per-
formance degrades when the amount of testing data is limited [16].
On the other hand, model-based feature compensation methods attempt
to estimate the channel bias component shown in (3) with a reference
acoustic model by employing maximum-likelihood (ML) or maximum
a posteriori (MAP) criteria. The most widely adopted model-based ap-
proach corresponds to the Gaussian mixture model (GMM) built from
reference speech data [1]–[7], where the feature-space correction can
be estimated with the expectation–maximization (EM) algorithm. The
EM algorithm can lead to significant amelioration of the impact of tele-
phone-channel mismatch conditions but it is computationally costly.
Feature-space bias compensation parameters can also be estimated by
maximizing the likelihood of testing utterances with a nearest neighbor
search, where each observed frame is associated only with its most
likely acoustic model unit. The nearest neighbor search can be per-
formed by using two strategies [5]: 1) the most likely Gaussian within
a GMM is associated with each frame; and 2) a forced-Viterbi-align-
ment-based scheme, where each frame is associated with the optimal
acoustic Gaussian, state and model in an HMM. Despite the fact that the
EM-based methods generally provide higher improvements, the com-
putational load required by nearest neighbor search based estimation
with GMM and Viterbi algorithm is substantially lower.

Other approaches such as joint factor analysis (JFA) [17] and nui-
sance attribute projection (NAP) [18] have been proposed in the con-
text of GMM and/or SVM-based text-independent speaker verification
(TI-SV) systems. In those cases, the addressed task considers scenarios
where training and testing data correspond to 300 seconds or more of
speech samples (e.g., NIST evaluations). As a result, those techniques
can hardly be applicable to Viterbi-based text-dependent speaker veri-
fication systems with limited data.

In conventional bias removal schemes based on hypotheses H1 and
H2 the bias correction components in (2) or (3) are usually estimated
independently in each feature dimension. In this context, a relevant
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issue is the number of parameters that are needed to model convolu-
tional noise: the higher the number of model parameters, the greater
the amount of required estimation data. Conventional channel feature-
space compensation techniques estimate as many parameters as the
number of static feature coefficients according to (3). If the number of
parameters in the channel distortion model were reduced, a greater im-
provement in accuracy could be achieved with limited estimation data.

This correspondence proposes a method to improve the accuracy of
nearest neighbor-based estimation of channel distortion in text-depen-
dent SV with limited data without increasing the computational load
significantly. Given this scenario the most straightforward strategy is
to reduce the number of parameters in the channel distortion model.
To do so the technique described here models the additive bias in the
LFBE domain according to (2) as a polynomial function of �. This is
accomplished by imposing the condition that ��� ������ are sam-

ples of a continuous curve ��� ����� , which in turn could be rep-
resented as a polynomial function of �. As mentioned above �� is
the central frequency of Mel filter � and ��� ������ could also be
modeled as a polynomial function of � instead of ��. Consequently,
the additive channel distortion in (2) is fit to a � th-order polynomial
function where� �� and� is the number of Mel filters. As a result,
channel distortion is also modeled as an additive component in the cep-
stral domain but, in contrast to (3), the bias component is estimated as a
weighted average of the polynomial coefficients. If � � � , where �
is the number of static cepstral coefficients, the number of parameters
to estimate is reduced when compared to the ordinary bias-component
model as described in (3). As shown here, the polynomial function that
models ��� ������ in the LFBE domain leads to a linear function in
the MFCC domain. Polynomial functions have been successfully em-
ployed in acoustic modeling and noise robustness techniques in ASR
and SV fields because of their simple form, flexibility of shaping and
low computational load [4], [19].

In this correspondence, the proposed polynomial model of channel
distortion in the LFBE domain is employed in combination with
nearest neighbor search-based estimation with GMM and forced
Viterbi alignment. Experiments with telephone speech in limited-data
scenarios and channel-mismatch conditions suggest that the presented
method can lead to reductions in equal error rate (EER) as great
as 22% and 8% when compared with the baseline system and the
standard cepstral bias removal approach, respectively. Finally, the
polynomial-based channel-distortion cancelation scheme increases
the computational load of the verification attempts by just 4.2% when
compared with the conventional cepstral bias removal strategy.

II. POLYNOMIAL MODEL OF CHANNEL DISTORTION IN THE LOG

FILTER-BANK ENERGY DOMAIN

As mentioned above, the major innovation of the proposed model is
to take into consideration the fact that the additive bias components of
channel distortion in the LFBE domain according to (2) are samples
of a continuous frequency response curve in �. If an analog telephone
line is composed basically of twisted-pair cables and hand-set micro-
phones, it is reasonable to model the telephone channel with a low-pass
RC filter that provides a continuous frequency response curve. Clearly,
the channel effect on a given spectral component is not independent of
the gain introduced in another frequency. Consequently, convolutional
distortion could be modeled with a parametric function along the spec-
trum to reduce the number of parameters to estimate. By doing so, the

additive bias in (2) or (3) should be estimated more reliably in limited
data scenarios. In order to simplify the formulae ���� � ��� ����� ,

	��� � ��� 
���� and�� � ��� ������ . In this correspondence
�� is modeled as a polynomial function of �

�� �

�

���

�� ��
� (4)

where �� is the th the polynomial coefficient, � is the polynomial
order and � � ����

�
���. By employing the discrete cosine transform

(DCT) and (2), the �th distorted cepstral feature at frame �, � �
���, is

expressed as

� �
��� �

�

���

���� � 	�

� � �

�
� ��� ����

�

�

���

�	��� ��� � 	�

� � �

�
� ��� ���� � (5)

By replacing �� with the polynomial approximation in (4), � �
��	

can be rewritten as

� �
��� �

�

���

	��� � 	�

� � �

�
� ��� ����



�

���
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�
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�� � 	�

� � �

�
� ��� ���� � (6)

In a real application � �
��� is the observed �th cepstral feature at frame

�. By defining

���� �

�

���

�� � 	�

� � �

�
� ��� ���� � (7)

� �
��� in (6) can be expressed as

� �
��� � 	�

��� 

�

���

�� ������ (8)

Notice that ���� depends only on � �  � � and DCT constants
	�
�� � ��� � �� � �����. According to (8) the additive bias in the
MFCC domain, ��

� ��� � �

��� �� �����, is a linear combination
of the polynomial coefficients �� weighted by ����.

III. NEAREST NEIGHBOR-BASED ESTIMATION OF CHANNEL

DISTORTION MODELED AS A POLYNOMIAL FUNCTION

As explained above, the proposed polynomial channel distortion
model is used in combination with nearest neighbor-based algorithms.
Consider the observed feature vector sequence, � � � �� �

� �
����� ,
where � �

� � �� �
����

���
��� corresponds to the frame at instant � and

� is the number of frames. Frame � �
� is associated with one of

the acoustic units �� that belongs to a reference acoustic model �,
where � � � � � and � is the number of acoustics units in �.
Consequently, in the case of the GMM-based computation, � and ��
represent a Gaussian mixture and Gaussian component �, respectively.
In estimation based on forced Viterbi alignment, � and �� may repre-
sent, respectively, a sequence of context-dependent phoneme HMMs,
and a Gaussian in a state within this composed HMM. Finally, both
GMM and forced-Viterbi-based estimation provide an output denoted
by � � �������


��
��� that is aligned to feature vector sequence � � ,
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where ����� denotes the acoustic unit associated with frame � �
� . The

presented approach involves three main steps.
Step 1) Given a feature vector sequence � � , � is obtained em-

ploying a nearest neighbor search by means of nn-GMM
or forced Viterbi alignment.

Step 2) The feature-space correction is computed by employing the
polynomial approximation model according to (4). As a
result, the polynomial parameter vector � is estimated.

Step 3) Finally, the compensated frame sequence ��� � � ���
� �

���
���

is obtained according to

���
��� � � �

��� �

�

���

�� ������ (9)

In Step 2, the polynomial function parameter vector� can be estimated
by using the ML criterion

�� � ������
	

�	�� � �
� ���	� (10)

where �� � �����
�
��� is the optimal parameter vector that defines the

polynomial function of (4). The probability density function (pdf) of
the acoustic unit �� is modeled by a Gaussian function with mean
vector �� � ������


��
��� and diagonal covariance matrix 
� , and

� � ����
�	. The diagonal components of 
� are denoted by ��� �

�����

��

���
. In this case, the likelihood 	�� �

� ������ �	 is defined as

	 � �
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�

���	
���
��������

��
���� � �  �� �� ��

� (11)

where ���� � �������
����	 denotes the set of Gaussian parameters
associated with component ����� allocated to frame � �

� . The optimal
polynomial coefficient vector �� can be estimated by maximizing the
log-likelihood of the following target function:

�� � ������
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� ���	��
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�� 	 � �
� ������ � � (12)

By replacing (11) in (12), the optimization can be rewritten as
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(13)

where �
��� �� ���	
���
�����

���
��

does not depend on �

and is discarded. As a result, �� is estimated by computing the partial
derivates of (13) with respect to �� , where � � � � � , and setting
then to zero. Then, the optimization in (13) leads to a linear system of
� � � equations and � � � unknown variables:
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If ���� � �
���



��� ����� �����	��

�
������ and �� �

�
���



��� ������

�
������ � � �

��� � ������� , the linear system in
(14) can be expressed as

�

���

��� � ���� � ��� (15)

Let � � ����
�
��� and � � �����������������. Consequently, the

solution for the system in (15) can be easily rewritten as

�� � ��� � �� (16)

The parameters � and � are estimated for all frames of the utterance
as indicated above.

IV. EXPERIMENTS

The polynomial-based channel distortion compensation scheme pro-
posed in this correspondence was tested with a TD-SV system using a
telephone database. The results were obtained with a telephone version
of the YOHO database [20], which supports the development, training,
and testing of SV systems. The vocabulary is composed of two-digit
numbers spoken continuously in sets of three (e.g., “62–31–53”). The
database is divided into “enrollment” and “verification” segments; each
segment contains data from 138 speakers. In this correspondence a
subset of 70 speakers (40 males and 30 females) was employed. The
speakers were divided as follows: 40 speakers (20 males and 20 fe-
males) to train the speaker-independent (SI) HMM used in the score
normalization; and, 30 testing speakers (20 males and 10 females) for
verification attempts. For each speaker, one 24-utterance enrollment
session was considered. Four verification sessions per testing speaker
were employed, with four utterances per session. Each utterance was
recorded on a real landline telephone call by employing a speaker/tele-
phone handset acoustic coupling. Seven handsets were used (hset1,
hset2,…, hset7). Signals were sampled at 8 kHz and 16 bits per sample.
Handset hset1 was labeled as the reference or “matched” channel, and
clients’ models and SI HMM were generated using the enrollment ut-
terances recorded with hset1. The verification attempts were performed
by employing testing utterances recorded with every handset. Conse-
quently, false rejection curves were estimated with 7 handsets � 30
speakers/per handset � 16 verification signals per ����� � ���� ut-
terances. False acceptance curves were obtained with 7 handsets �
30 speakers � 29 impostors/per handset � 6 verification signals/per
�������� � ����� experiments. Observe that, as suggested by some
authors, the ratio between client and impostor attempts is approxi-
mately equal to 1 to 10. Speech signals were divided into 25-ms frames
with 50% overlap. The band from 300 to 3400 Hz was covered by
14 Mel DFT filters, and at the output of each channel the logarithm
of the energy was computed. The final feature vector at frame �, ��,
is composed of the frame energy plus ten static cepstral coefficients,
along with their first and second time derivatives. The HMMs were
trained with the Viterbi algorithm. Each triphone was modeled with
a three-state left-to-right HMM topology without skip-state transition,
with one and eight multivariate Gaussian densities per state in speaker-
dependent (SD) and SI models, respectively. The verification score,
or the normalized log-likelihood of the feature vector sequence � �
����

�
���, �����	, is defined as [10]

�����	 � ������
��	� ������
�		 (17)

where ������
��	 is the log-likelihood of the client hypothesis
and 
�� is the SD model associated with the claimed identity,
and ������
�		 is the log-likelihood of the SI model 
�	. In
matched-channel conditions (hset1) the equal error rate (EER) given
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Fig. 1. The curves at the top corresponds to a graphical representation of the
log filter-bank energy (LFBE) feature vector of speech frame � recorded with:
reference channel hset1 �—�; hset2 �- - -�; and hset3 �� � ��. The curves at the
bottom are the difference in the LFBE domain between: hset2 and reference
channel hse1 �� � � ��; and, hset 3 and reference channel hset1 �- � -�.

TABLE I
EER(%) OBTAINED WITH THE BASELINE SYSTEM, RASTA,

CMN, AND CMVN

by the baseline system is equal to 3.3%. When the whole testing
database is used (seven handsets) the baseline EER is equal to 5.77%.

The polynomial model proposed in this correspondence is used in
combination with nearest-neighbor GMM estimations and estima-
tions based on forced Viterbi alignment, denoted by nn-GMM-Poly
and Viterbi-Poly, respectively. The reference GMM used in nearest
neighbor GMM-based estimations was composed of 256 Gaussian
mixtures and was generated with the same data employed to train
SI HMM ��� as explained above. In the case of the forced Viterbi
alignment, the optimal state alignment is estimated employing ���

as the reference model. In this case the most likely Gaussian �����
is chosen from a set composed of the eight Gaussians in the state
from ��� allocated to � �

� plus the Gaussian in the corresponding
state within ��� . The polynomial-model-based channel distortion
estimation is compared with a signal bias removal (SBR) strategy
[5] that makes use of the ordinary cepstral bias model in (2) and (3).
SBR is also employed in combination with nearest-neighbor GMM
and forced-Viterbi-alignment-based estimations, nn-GMM-SBR and
Viterbi-SBR, respectively.

V. DISCUSSION

Fig. 1 depicts the LFBE feature vector of a given frame recorded
with telephone channels hset1 (reference channel), hset2, and hset3.
Fig. 1 strongly suggests that the channel distortion, i.e., the difference
between LFBE feature vectors, is a continuous curve that can easily be
modeled with a polynomial function. Table I shows these results along
with RASTA, CMN, and CMVN for comparison purposes. When com-
pared with the baseline system, the reductions in relative EER provided
by RASTA and CMN are equal to 4.0% and 4.5%, respectively. Also,
Table I shows that the use of CMVN increases the relative error rate
by 3.5% when compared with the baseline system. This must be due
to inaccurate estimation of the cepstral variance when limited data are
available in training and testing, which can lead to inaccurate channel

Fig. 2. EER (%) versus polynomial order � as defined in (8): (a) nn-GMM-
Poly �- � -�, baseline system �� � ��, and nn-GMM-SBR �—�; and, (b) Viterbi-
Poly �- � -�, baseline system �� � �� and Viterbi-SBR �—�.

distortion cancellation and a consequent increase of the error rate. Ac-
cording to Fig. 2, the nn-GMM-SBR and Viterbi-SBR procedures pro-
vide reductions in relative EER as high as 5.7% and 15.5%, respec-
tively, when compared with the baseline system. The greater improve-
ment provided by Viterbi-SBR when compared with nn-GMM-SBR
must be due to the fact that Viterbi-SBR includes temporal information
about the sequence of acoustic units and nn-GMM-SBR does not. Also
in Fig. 2, Viterbi-Poly provides a reduction in EER as high as 22.7%
and 8.4% when compared with the baseline system and Viterbi-SBR,
respectively, with � � �. Significance analysis with the McNamar’s
test [21] shows that these improvements are statistically significant
�� � ������. In addition, nn-GMM-Poly leads to improvements in
EER equal to 11.5% and 6.3% when compared with the baseline system
and nn-GMM-SBR, respectively, also with � � �. These results are
also statistically significant �� � ���	�. It is interesting to highlight
that the polynomial-based channel distortion model leads to higher re-
ductions in EER than the ordinary SBR scheme when � � � � �. No-
tice that the ordinary SBR model requires estimating as many channel
distortion components as there are static cepstral coefficients (e.g., ten
static MFCC features in this correspondence). Consequently, a reduc-
tion in the number of parameters to estimate is clearly achieved.

Figs. 3 and 4 present DET curves provided by the baseline system,
the ordinary signal bias model denoted with SBR and the proposed
polynomial-based channel distortion model. As can be seen in Figs. 3
and 4, nn-GMM-Poly �� � �� and Viterbi-Poly �� � �� give a re-
duction in the area below the DET curve higher than nn-GMM-SBR
and Viterbi-SBR, respectively. This fact shows that both methods re-
duce EER in the proximity of TEER (threshold of equal error rate)
and provide higher discrimination ability. It is worth highlighting that,
due to the fact that the polynomial-based channel distortion model is
employed with nearest neighbor strategies, the increase in computa-
tional load of nn-GMM-Poly and Viterbi-Poly when compared with
nn-GMM-SBR and Viterbi-SBR, respectively, in negligible. For in-
stance, the estimation of polynomial parameter vector � requires an
average processing time just 18.8% higher than the needed to estimate
cepstral bias 	� defined in the ordinary channel distortion model in
(3), which in turn represents 22.2% of the total processing time required
by the TD-SV engine for one verification attempt. Consequently, the
proposed polynomial based compensation scheme increases the pro-
cessing time required by one verification attempt by just 4.2% when
compared with the standard cepstral bias removal approach.



340 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 1, JANUARY 2012

Fig. 3. DET curves obtained with the baseline system �� � ��, nn-GMM-SBR
�—� and nn-GMM-Poly, with � defined in (8) equal to ��- � -�.

Fig. 4. DET curves obtained with the baseline system �� � ��, Viterbi-SBR �—�
and Viterbi-Poly, with � defined in (8) equal to ��- � -�.

It is worth noting that the greatest improvement takes place with
� � � and � � � with nn-GMM and forced-Viterbi-alignment-based
estimations, respectively. Despite the fact that the effectiveness of the
approach depends on polynomial order � , a significant reduction in
EER is achieved when � � � � � with both nn-GMM and forced
Viterbi alignment. For instance, although not shown here, Viterbi-Poly
with each individual handset in mismatch conditions (hset2, hset3,…,
hset7) leads to the lowest EER in four out of six telephone channels
when � � � � �. In the other two cases, the EER achieved in the
interval � � � � � is just 0.7% and 0.3% higher than the lowest EER
in the intervals � � � � � or � � � � ��

Table II shows results with Viterbi-Poly 	� � � � �
 in combi-
nation with RASTA, CMN, and CMVN. As can be seen in Table II,
Viterbi-Poly reduces the ERR achieved with RASTA, CMN, and
CMVN in 15.2%, 12.9% and 4.2%, respectively. However, the lowest
EER is obtained when Viterbi-Poly is applied by itself. This result
must be due to the fact that RASTA, CMN, and CMVN tend to lose
effectiveness with limited data.

TABLE II
EER(%) OBTAINED WITH VITERBI-POLY WITH � � ��� �� �� WHEN APPLIED

IN ISOLATION AND IN COMBINATION WITH RASTA, CMN, AND CMVN

VI. CONCLUSION

A novel polynomial-based feature-space channel compensation
method is proposed in this correspondence. The presented technique
models channel distortion by employing a polynomial function in
the log filter bank energy domain. The method described models the
continuity of the channel frequency response and reduces the number
of parameters that need to be estimated by imposing appropriate
constraints on the channel distortion. Results show that the proposed
model can lead to relative reductions in EER as great as 22% and
8%, respectively, when compared with the baseline system and an
ordinary cepstral bias removal strategy with limited data. The com-
putational load is kept low by making use of nearest-neighbor GMM
and forced-Viterbi-alignment-based estimations, and the polyno-
mial-based scheme increases the processing time by just 4.2% of the
whole verification attempt. The application of this technique to other
tasks such as speech recognition can be the object of future research.
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