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Abstract Chargaff’s second parity rule (CSPR) asserts that the frequencies of short polynu-
cleotide chains are the same as those of the complementary reversed chains. Up to now, this
hypothesis has only been observed empirically and there is currently no explanation for its
presence in DNA strands. Here we argue that CSPR is a probabilistic consequence of the
reverse complementarity between paired strands, because the Gibbs distribution associated
with the chemical energy between the bonds satisfies CSPR. We develop a statistical test to
study the validity of CSPR under the Gibbsian assumption and we apply it to a large set of
bacterial genomes taken from the GenBank repository.

Keywords Reverse complementary relation · Chargaff’s parity rules · Gibbs measure ·
Central Limit Theorem

1 Introduction

Double helical DNA is made up of two complementary polynucleotide chains, the primary
and the secondary strands, each having opposing polarities. Chargaff’s first parity rule is that
“the numbers of A’s and T ’s and the numbers of C’s and G’s match exactly in every DNA
duplex” [4]. Chargaff’s second parity rule (CSPR) states that this is valid when looking at a
single strand, see [13], and that this happens not only for mononucleotides but also for short
polynucleotide chains. Chargaff’s first parity rule is a simple consequence of the double-
stranded organization of genomic sequences and the chemistry of nucleic acids which only
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permits A to bond with T and C to bond with G. In this work we argue that the reverse
complementary relationship between nucleic acids on opposing strands can also explain
Chargaff’s second parity rule provided that the distribution of nucleotides throughout the
genome is governed by a Gibbs distribution.

CSPR was first observed experimentally in Bacillus subtilis [13] and was subsequently
confirmed in sufficiently long sequences available in GenBank for small polymer chains of
3 to 6 bases [12]. More recent empirical studies assessing its validity can be found in [1, 10]
and [7]. In addition, the empirical study of various symmetries carried out in [8] shows that
CSPR is prevalent in complex patterns found in genomic sequences.

A number of possible mechanisms explaining strand symmetry have been proposed, for
example, no strand biases for mutation and selection [9, 14] and selection of step-loop struc-
tures [6]. Further discussion of various mechanisms that could support the origins of this
intrastrand symmetry are discussed in [15] and references therein. In [2] and [11], a number
of mechanisms causing violation of CSPR in short polymers are described.

Here we propose that CSPR arises directly from the effect that reverse complementarity
has on the Gibbs distribution. In Sect. 2 we give the framework. There, the empirical poly-
mer frequencies are replaced by polymer occurrence probabilities on a translation invariant
probability distribution. We then express CSPR using this notion and prove that CSPR writ-
ten in this way follows from the fact that energy symmetry is preserved for the Gibbsian
distribution. This is done in Theorem 1. In Sect. 3 we give a characterization of CSPR for
dinucleotides, we prove an extension of the Central Limit Theorem for Gibbs measures
to vector-valued random variables and we derive an explicit expression for the asymptotic
covariance matrix. In Sect. 4 we supply a statistical test for the validity of CSPR for dinu-
cleotides under the hypothesis that the nucleotides of the strand are distributed as a stationary
Gibbsian process. We have applied the test extensively to bacterial genomes available from
GenBank. The hypothesis of CSPR in the Gibbsian setting is confirmed for a large number
of genomes. Further analysis would be necessary in order to determine whether genomes
rejected by the test were because they fail to comply with CSPR, because they are not Gibb-
sian, or both.

2 Chargaff’s Second Parity Rule

2.1 Preliminaries

Let A be a finite set (alphabet) endowed with an involution � : A → A: � is one-to-one
and �−1 = �. In the genomic setting A = {A,C,G,T } and � is an involution given by the
complementary function �(A) = T and �(C) = G.

Let x = (xj : j = 0, . . . , n − 1) ∈ An be the sequence of nucleotides on a strand of the
genome (for bacterial DNA n ≈ 106). The sequence x complies with CSPR whenever the
frequencies of all short polymers agree with the frequencies of their reverse complements.
In other words, for all k small (order of 10) and all polymers (a0, . . . , ak−1) ∈ Ak :

#
{
j ≤ n − k : xj = a0, . . . , xj+k−1 = ak−1

}

= #
{
j ≤ n − k : xj = �(ak−1), . . . , xj+k−1 = �(a0)

}
. (1)

(Here #B denotes the cardinality of the set B .) Observe that the frequency is computed by
moving a window of length k along the strand.
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2.2 CSPR as a Symmetric Probability Relation

We shall use a theoretical framework in which the strands are modeled by bi-infinite se-
quences and the frequencies of a word are the probabilities that they appear at an arbitrary
place. We restrict ourselves to translation invariant probability distributions that are Gibbs
measures with respect to the chemical energy.

The strands are modeled by sequences in AZ. Thus, x = (xj : j ∈ Z) represents the pri-
mary strand in the sense 5′ to 3′ while y = (yj : j ∈ Z) represents the complementary strand
in the sense 3′ to 5′. They are related by reverse complementarity: yj = �(x−j ) for j ∈ Z.
Let us write this rule in another way. Let I : AZ → AZ be the space reversal involution given
by (I(x))j = x−j and let � : AZ → AZ be such that (�(x))j = �(xj ), for x ∈ AZ, j ∈ Z.
Then, the rule of reverse complementarity may be written as y = � ◦ I(x).

A genome duplex is the pair (x, y) and we denote by �̃(x, y) its chemical energy, which
results from the interactions between the nucleotides on both strands. Since the interactions
between the nucleotides are symmetric we assert that

�̃(x, y) = �̃(y, x). (2)

Insight into this equality may be obtained from the discussion of energy on finite pieces
which appears in [3]. Let �l(x[−l, l];y[−l, l]) be the energy in the portion [−l, l] =
{−l, . . . , l} of the duplex. In analogy with [3], Page 5, this energy can be assumed to be
given by

�l(x[−l, l];y[−l, l]) =
∑

−l≤j≤k≤l

ψs(k − j ;xk, xj ) +
∑

−l≤j≤k≤l

ψs(k − j ;y−j , y−k)

+ 1

2

∑

−l≤j,k≤l

ψo(|k − j |;xk, y−j ). (3)

The first two summations are due to the interactions between sites on the same strand
while the last one expresses the interactions between sites on opposite strands. The quantity
ψs(r;a, b) is the interaction between the nucleotides a, b at distance r on the same strand
and ψo(r;a, b) is the interaction between the nucleotides a, b in opposite strands such that
the distance from the site containing one to the site in front of the other is r (recall that y−j

is in front of xj , so the distance from site k containing xk to the site j , which is in front of
the site containing y−j , is |k − j |). The expression (3) is clearly symmetric in x and y.

Let us express the symmetry relation (2) in another way. Since y = � ◦ I(x), the en-
ergy can be simply expressed as �(x) = �̃(x,� ◦ I(x)) and the symmetric dependence
�̃(x, y) = �̃(y, x) between the strands implies that � satisfies the invariance property

∀x ∈ AZ: �(x) = �(� ◦ I(x)); or equivalently � = � ◦ � ◦ I.

Next, the set AZ is endowed with the product σ -algebra and let T : AZ → AZ be the
translation operator given by (T (x))j = xj+1 for all j ∈ Z. Let P be a translation invariant
distribution on AZ, that is

P(T −1B) = P(B), ∀ measurable B ⊆ AZ.

In the spirit of (1), we say that P satisfies CSPR if

∀x ∈ AZ, ∀k ≥ 1, ∀ (a0, . . . , ak−1) ∈ Ak:
P(x0 = a0, . . . , xk−1 = ak−1) = P(x0 = �(ak−1), . . . , xk−1 = �(a0)). (4)
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We claim that if P is a translation invariant distribution on AZ, then property (4) is equiv-
alent to P being � ◦ I -invariant, that is, it satisfies P((� ◦ I)−1B) = P(B) for all measurable
subsets B of AZ. Indeed, from the equality

� ◦ I −1{x : xj = aj , . . . , xk = ak} = {x : x−k = �(ak), . . . , x−j = �(aj )} (5)

taken together with the translation invariance property, one can show that if P is � ◦ I -
invariant then (4) holds. Conversely, the same translation invariance property combined with
equality (5) may be used to prove that (4) implies P�((� ◦ I)−1B) = P(B) for all cylin-
ders B . Carathéodory’s extension theorem then shows that this holds for all measurable sets
B and the claim follows.

In the next section, we use the symmetry of energy to imply that all genomes comply
with CSPR (4) under a Gibbsian hypothesis.

2.3 Gibbs Measures and CSPR

We will derive CSPR from the complementary relation in the thermodynamical formalism.
We begin by introducing some basic notions in this formalism.

Let A be a finite alphabet and � = (�(a, b) : a, b ∈ A) be an aperiodic 0 − 1-valued ma-
trix. The shift of finite type defined by � is the set X� = {x ∈ AZ : �(xj , xj+1) = 1 ∀j ∈ Z}
endowed with the metric �θ(x, z) = θK(x,z), where K(x, z) = sup{k ≥ 0 : xi = zi ∀|i| ≤ k}
and θ ∈ (0,1) is an arbitrary but fixed value. This metric induces the product topology.

Let θ ∈ (0,1) be fixed. Consider the set of Hölder (continuous) functions in (X�,�θ),

Fθ = {g ∈ C(X�) : |g|θ < ∞} where |g|θ = sup

{ |g(x) − g(z)|
�θ(x, z)

: x, y ∈ X�,x �= z

}
.

(6)

The linear set Fθ is a Banach space when it is endowed with the norm ‖g‖θ = ‖g‖∞ + |g|θ .
Each Gibbs measure on X� is defined by an energy function � ∈ Fθ . The value �(x)

represents the energy of the system in state x ∈ X�. In the thermodynamic formalism of
shifts of finite type, it has been shown (see Theorem 1.2 in [3], Pages 5–6) that there exists
a unique translation invariant probability measure P� that satisfies

∃0 < c1 < c2 < ∞,p ∈ R, ∀z ∈ X�,∀k ≥ 0: c1 ≤ P�(x : x0 = z0, . . . , xk = zk)

e−pk+∑k−1
i=0 �(T i z)

≤ c2.

(7)

A detailed proof of this result as well as a complete exposition of this topic is given in [3],
Pages 3–16. In this reference, it is also proven that the constant p = p(�) is the pressure
of � and that the probability measure P� is the unique translation invariant probability
measure satisfying the variational principle p(�) = hP�

(T ) + ∫
�dP� , where hP�

(T ) is
the entropy of T for the translation invariant distribution P� .

Theorem 1 Assume that the aperiodic matrix � satisfies

∀a, b ∈ A: �(a,b) = �(�(b),�(a)) . (8)

Let � ∈ Fθ . Assume that � is � ◦ I -invariant: �(x) = �(� ◦ I(x)) for all x ∈ X�. Then
the unique translation invariant Gibbs probability measure P� is � ◦ I -invariant and hence
complies with CSPR:

∀k ≥ 0, (z0, . . . , zk) ∈ Ak+1:
P� (x : x0 = z0, . . . , xk = zk) = P� (x : x0 = �(zk), . . . , xk = �(z0)) .
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Proof To begin, let P = P� denote the unique T -invariant probability measure on X� that
satisfies (7). Define the probability measure P̃ as P̃(B) = P((� ◦ I)−1B) for all measurable
sets B in X�.

Claim 1 P̃ is translation invariant. This can be proved as follows. Note that I −1 = I and

�
−1 = �, while � commutes with I , T and T −1. So (� ◦ I)−1 = (� ◦ I). We also have

I ◦ T −1 = T ◦ I and hence

(� ◦ I)−1 ◦ T −1 = T ◦ � ◦ I.

Since P is T -invariant, it is also T −1-invariant, so

P̃(T −1(B)) = P((� ◦ I)−1 ◦ T −1(B)) = P(T ◦ � ◦ I(B)) = P(� ◦ I(B))

= P((� ◦ I)−1(B)) = P̃(B),

which yields the claim.

Claim 2 P̃ satisfies

∃0 < c̃1 < c̃2 < ∞, ∀z ∈ X�, ∀k ≥ 0: c̃1 ≤ P̃(x : x0 = z0, . . . , xk = zk)

e−pk+∑k−1
i=0 �(T i z)

≤ c̃2.

Note that once this claim has been shown, the result will immediately follow because
uniqueness of P̃ implies P = P̃, and so P is � ◦ I -invariant. To prove the claim, first observe
that since �−1 = � and P is T -invariant,

P̃ (x : x0 = z0, . . . , xk = zk)

= P
(
x : (�(I(x)))0 = z0, . . . , (�(I(x)))k = zk

)

= P (x : �(x0) = z0, . . . ,�(x−k) = zk) = P (x : x0 = �(z0), . . . , x−k = �(zk))

= P (x : x0 = �(zk), . . . , xk = �(z0)) = P
(
x : x0 = (� ◦ I(z))−k, . . . , xk = (� ◦ I(z))0

)

= P
(
x : x0 = (T −k(� ◦ I(z)))0, . . . , xk = (T −k(� ◦ I(z)))k

)
.

On the other hand, from the equality T i−k(� ◦ I(z)) = � ◦ I(T k−i (z)) and using the fact
that � is � ◦ I -invariant, we obtain

k−1∑

i=0

�(T iT −k(� ◦ I(T −1z))) =
k−1∑

i=0

�(� ◦ I(T k−i−1z))

=
k−1∑

i=0

�(T k−i−1z) =
k−1∑

i=0

�(T i(z)).

Hence

P̃(x : x0 = z0, . . . , xk = zk)

e−pk+∑k−1
i=0 �(T i z)

= P(x : x0 = (T −k(� ◦ I(z)))0, . . . , xk = (T −k(� ◦ I(z)))k)

e−pk+∑k−1
i=0 �(T iT −k(�◦I(T −1z)))

. (9)

We note that
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∀z ∈ X�, ∀k ≥ 0: c̃1 ≤ e−pk+∑k−1
i=0 �(T iT −1(z))

e−pk+∑k−1
i=0 �(T i (z))

≤ c̃2,

with c̃1 = emin�−max� and c̃2 = emax�−min� . Then,

c̃1 ≤ e−pk+∑k−1
i=0 �(T iT −k(�◦I(T −1z)))

e−pk+∑k−1
i=0 �(T iT −k(�◦I(z)))

≤ c̃2. (10)

Hence from (9), (7) and (10), we deduce that Claim 2 holds,

∀z ∈ X�, ∀k ≥ 0: c1c̃1 ≤ P̃(x : x0 = z0, . . . , xk = zk)

e−pk+∑k−1
i=0 �(T i z)

≤ c2c̃2 .

Hence, P̃ = P and the proof is complete. �

Remark 2 We note that in the genomic framework, A = {A,C,G,T } and �(a,b) = 1 for
all a, b ∈ A. Hence, � always satisfies condition (8) and the Theorem 1 may be directly
applied to genome sequences.

3 CSPR for Dinucleotides

3.1 A 5-Dimensional Characterization of CSPR

Henceforth, we shall focus on the dinucleotide distributions under CSPR. Let P be a trans-
lation invariant distribution on AZ. As stated, CSPR means that for all R ≥ 1, we have

∀ (a0, . . . , aR−1) ∈ AR:
P(x : x0 = a0, . . . , xR−1 = aR−1) = P(x : x0 = �(aR−1), . . . , xR−1 = �(a0)). (11)

If the set of equalities (11) holds for some R = R0, we say that CSPR holds for R0. In
this case, by taking appropriate marginals, the equalities also hold for all positive integers
R ≤ R0.

Now, for discussing CSPR for R = 2, it is convenient to introduce the following nota-
tion. Let [ab]k be the event {x : xk = a, xk+1 = b}. Since P is translation invariant, we have
P([ab]k) = P([ab]0) for all k ∈ Z and a, b ∈ A. Therefore, CSPR for R = 2 reduces to

∀a, b ∈ A: P([ab]0) = P([�(b)�(a)]0). (12)

This equality implies CSPR for R = 1: P([a]0) = P([�(a)]0) for a ∈ A, where [a]0 = {x :
x0 = a}.

We want to test the hypothesis H0: CSPR holds for R = 2. In order to construct such a
test, it is useful to introduce the following quantities:

f = (f (a, b) : (a, b) ∈ A2) where f (a, b) := P([ab]0) − P([�(b)�(a)]0). (13)

From (12), CSPR for R = 2 is satisfied if and only if f = 0.
We remark that 4 of the above 16 quantities f (a, b) vanish. More precisely, whenever

(a, b) = (c,�(c)) for some c ∈ A, we see that f (a, b) = 0. Moreover, among the remain-
ing 12 terms, only 5 are meaningful since f (a, b) = −f (�(b),�(a)) for any a, b ∈ A,
and

∑
c∈A f (a, c) = ∑

c∈A f (c, a) for all a ∈ A. In the following, we fix an index set
K = {(A,A), (A,C), (A,G), (C,A), (C,C)} for 5 of these values and gather them together
into a vector f K := (f (a, b) : (a, b) ∈ K). Using this alternative representation, the null
hypothesis H0 is satisfied if and only if f K = 0.
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3.2 Covariances and the Central Limit Theorem

Here, we present some results that are essential for developing an asymptotic test for the
hypothesis H0: CSPR holds for R = 2, in the setting of Gibbs distributions.

Let P = P� be Gibbsian for some � ∈ Fθ , with θ ∈ (0,1) fixed. We begin by giving
a simple computation. Let E = E� denote the expectation operator associated with P� .
A function g ∈ Fθ is said to be of zero mean if E(g) = 0.

In this section we assume ϕ1, . . . , ϕl are zero mean functions in Fθ and set ϕ =
(ϕ1, . . . , ϕl). We shall consider Xk

i := ϕk ◦ T i for i ≥ 0 and k = 1, . . . , l, and define for
n ≥ 1,

Sk
n := 1√

n

n−1∑

i=0

Xk
i . (14)

Proposition 3 The limits


ϕ(k, j) = lim
n→∞ E�(Sk

n Sj
n) exist for all k, j ∈ {1, . . . , l} and


ϕ(k, j) = E�

(
Xk

0 X
j

0

)
+

∞∑

i=1

E�

(
Xk

0 X
j

i

)
+

∞∑

i=1

E�

(
X

j

0 Xk
i

)
.

(15)

The matrix 
ϕ = (
ϕ(k, j) : k, j ∈ {1, . . . , l}) is symmetric and semi-positive definite.
Moreover the convergence of the two summations on the right-hand side of (15) occurs

at a geometric rate, more precisely,

∃ δ̄ < ∞, ξ ∈ (0,1), ∀k, j = 1, . . . , l, ∀i ≥ 1:
∣∣∣E�(Xk

0X
j

i )

∣∣∣ ≤ δ̄ξ i . (16)

Proof By expanding the terms in the sum and using the translation invariance property
E(Xk

i X
j
r ) = E(Xk

0 X
j

r−i ) for all k, j ∈ {1, . . . , l} and i < r , we get

E(Sk
nS

j
n) = 1

n

n−1∑

i=0

E

(
Xk

i X
j

i

)
+ 1

n

n−1∑

i=1

i−1∑

r=0

E
(
Xk

i Xj
r

) + 1

n

n−1∑

i=1

i−1∑

r=0

E

(
X

j

i Xk
r

)

= E

(
Xk

0 X
j

0

)
+ 1

n

n−1∑

i=1

(n − i)E
(
Xk

0 X
j

i

)
+ 1

n

n−1∑

i=1

(n − i)E
(
X

j

0 Xk
i

)
.

Since ϕk ∈ Fθ for each k, the exponential cluster property of Gibbs measures (see Prop-
erty 1.26 on Page 23 in [3]) guarantees the existence of δ < ∞, and ξ ∈ (0,1) only depend-
ing on θ and � , such that for all k, j ∈ {1, . . . , l},

∣∣∣E(Xk
0 X

j

i )

∣∣∣ = ∣∣E
(
ϕk · (ϕj ◦ T i)

)∣∣ ≤ δ‖ϕk‖θ‖ϕj‖θ ξ
i .

As a consequence, (16) is satisfied. Hence all the series are absolutely convergent. Moreover,
since

∑∞
i=0 iE(Xk

0X
j

i ) is finite, the Cesàro mean of iE(Xk
0X

j

i ) converges to zero and we
obtain the formula

lim
n→∞ E(Sk

n Sj
n) = E

(
Xk

0 X
j

0

)
+

∞∑

i=1

E

(
Xk

0 X
j

i

)
+

∞∑

i=1

E

(
X

j

0 Xk
i

)
= 


ϕ

kj .

Finally, we see from this explicit expression that the matrix 
ϕ is symmetric and semi-
positive definite because each matrix (E(Sk

nS
j
n) : k, j ∈ {1, . . . , l}) is a covariance matrix.

Hence, its limit 
ϕ is also semi-positive definite. �
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Next, we show a Central Limit Theorem for random vectors in the Gibbs framework,
which is a corollary of the Central Limit Theorem given in [5].

Proposition 4 If 
ϕ = (
ϕ(k, j) : k, j = 1, . . . , l) given by (15) is positive definite then the
vector process Zn := (S1

n, . . . , S
l
n) (where Sk

n is given in (14)) converges in distribution to the
multivariate normal vector N (0,
ϕ).

Proof We recall that the Central Limit Theorem shown in [5] says that if a function g ∈ Fθ

is of zero mean and

σ(g)2 �= 0 where σ(g)2 := lim
n→∞

1

n
E

((
n−1∑

i=0

g ◦ T i

)2)

,

then

1√
n

(
n−1∑

i=0

g ◦ T i

)
d−→

n→∞ N (0, σ (g)2). (17)

Since Fθ is Banach, for all α = (α1, . . . , αl) the function ϕα = ∑l

k=1 αkϕ
k is in Fθ . Since

ϕα has zero mean and
∑n−1

i=0 (ϕα ◦ T i)/
√

n = α′Zn, where a′ denotes the transpose of a
vector a, the Central Limit Theorem (17) gives

α′Zn

d−→
n→∞ N (0, σ 2

α ), (18)

where

σ 2
α = lim

n→∞
1

n
E

((
n−1∑

i=0

ϕα ◦ T i

)2)

,

provided that σ 2
α �= 0. Now, σ 2

α �= 0 will be obtained as a consequence of the fact that

σ 2
α = α′
ϕα =

l∑

k=1

l∑

j=1

αkαj

ϕ(k, j). (19)

This together with the assumption that 
ϕ is positive definite allows us to determine that
σ 2

α = α′
ϕα > 0 for all α �= 0. Furthermore, (18) and (19) yield

∀s ∈ R: lim
n→∞ E(eisα′Zn) = e− 1

2 s2σ 2
α = e− 1

2 s2α′
ϕα,

which is the characteristic function of an N (0, α′
ϕα) random vector. Convergence of Zn

in distribution to an N (0,
ϕ) random vector then follows from Lévy’s continuity theorem.
It only remains to prove (19). Notice that

n−1∑

i=0

ϕα ◦ T i =
l∑

k=1

αk

n−1∑

i=0

ϕk ◦ T i =
l∑

k=1

αk

n−1∑

i=0

Xk
n = √

n

l∑

k=1

αkS
k
n

which implies that

σ 2
α = lim

n→∞ E

((
l∑

k=1

αkS
k
n

)2)

=
l∑

k=1

l∑

j=1

αkαj lim
n→∞ E(Sk

nS
j
n).

Finally, Proposition 3 asserts that limn→∞ E(Sk
nS

j
n) = 
ϕ(k, j) and hence the result fol-

lows. �
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4 Testing Under the Gibbsian Assumption

4.1 A Statistical Test

Recall that the hypothesis H0: CSPR for R = 2, is equivalent to f = 0, where f was defined
in (13). Let us introduce estimators of the various quantities involved in testing this. For any
finite observed sequence X = (X0, . . . ,Xn−1), let

f̂n(a, b) := Nn(a, b)

n
− Nn(�(b),�(a))

n
,

where

Nn(a, b) := #{k ∈ {0, . . . , n − 1} : (Xk,Xk+1) = (a, b)}
counts the number of occurrences of the pattern ab in the sequence. Note that we treat the
sequence X as though it were circular with Xn−1 connected to X0, so that Xn ≡ X0.

We shall show that one appropriate statistic for assessing this test is

η̂n = n f̂ K
n

′ V̂ −1
n f̂ K

n ,

where f̂ K
n = (f̂n(a, b) : (a, b) ∈ K) is a consistent unbiased estimator of f K and V̂n is a

consistent biased estimator of the asymptotic covariance matrix V of
√

nf̂ K
n which we shall

define shortly. Furthermore, we shall prove that η̂n converges asymptotically in distribution
to a χ2

5 random variable. Then, sufficiently large values of η̂n will identify sequences that
fail to comply with CSPR for R = 2.

More precisely, the test is set up as follows:

Reject H0 if η̂n ≥ s,

where s is some threshold to be chosen. If α is the type I error desired for the test (for
instance α = 0.05 or 0.01), then we require that

PH0(reject H0) = PH0 (̂ηn ≥ s) ≤ α,

either exactly or asymptotically. Doing this exactly is not feasible in the current setting,

but η̂n

d−→
n→∞χ2

5 , where
d−→

n→∞ denotes convergence in distribution. Thus the threshold s can be

fixed asymptotically by appealing to the χ2 distribution on 5 degrees of freedom. We merely
have to set s to the 1 − α quantile χ2

5,1−α of the χ2
5 distribution.

4.2 Asymptotics of the Test Statistic

In order to construct this asymptotic test, we make the further assumption that the distribu-
tion P = P� is Gibbsian for some energy � ∈ Fθ , where θ ∈ (0,1). Recall that P is ergodic.
Let E denote the mean expected value operator associated with P.

Firstly,

E(f̂ K
n ) = E

(
Nn(a, b)

n
− Nn(�(b),�(a))

n

)

= 1

n
(nP([ab]0) − nP([�(b)�(a)]0)) = f (a, b).

From ergodicity the law of large numbers holds and so
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lim
n→∞

Nn(a, b)

n
= P([ab]0) P-a.e. and hence lim

n→∞ f̂ K
n = f K

P-a.e.

Therefore f̂ K
n is a consistent, unbiased estimator of f K .

Next define

ϕ = (ϕa,b : (a, b) ∈ A2) where ϕa,b := 1[ab]0 − P([ab]0),

where, as usual, 1B is the characteristic function of the set B . Observe that for all (a, b) ∈ A2

we have ϕa,b ∈ Fθ . For i ≥ 0 and n ≥ 1, define

∀ (a, b) ∈ A2: X
a,b
i = ϕa,b ◦ T i and Sa,b

n = 1√
n

n−1∑

i=0

X
a,b
i .

A simple calculation that takes advantage of the T -invariance of P gives

X
a,b
i = (1[ab]i − P([ab]0)) and Sa,b

n = 1√
n

(Nn(a, b) − nP([ab]0)) .

A straight forward application of Proposition 3 can be used to show existence of the matrix

ϕ = (
ϕ(a, b; c, d) : (a, b), (c, d) ∈ A2), whose elements are defined by


ϕ(a, b; c, d) := lim
n→∞ E(Sa,b

n Sc,d
n ).

(Note that for simplicity we write 
ϕ(a, b; c, d) rather than 
ϕ((a, b), (c, d)).) Further-
more, using (15) from the same lemma, we can see that


ϕ(a, b; c, d) = E

(
X

a,b
0 X

c,d
0

)
+

∞∑

i=1

E

(
X

a,b
0 X

c,d
i

)
+

∞∑

i=1

E

(
X

c,d
0 X

a,b
i

)
,

and that 
ϕ is symmetric and semi-positive definite.
Further simple computations enable us to write the elements of 
ϕ explicitly as


ϕ(a, b; c, d) = P([ab]0 ∩ [cd]0) − P([ab]0)P([cd]0)

+
∞∑

k=1

[P([ab]0 ∩ [cd]k) − P([ab]0)P([cd]0)]

+
∞∑

k=1

[P([cd]0 ∩ [ab]k) − P([ab]0)P([cd]0)] .

As a corollary to Proposition 4, we obtain:

Proposition 5 Assume 
ϕ is positive definite. Then, the joint distribution of the counts
Nn(a, b) asymptotically satisfy

(
Nn(a, b) − nP([ab]0)√

n
: (a, b) ∈ A2

)
d−→

n→∞ N (0,
ϕ).

The following is then obtained by taking appropriate marginals in the preceding result.

Corollary 6 Assume 
ϕ is positive definite. We have

√
n(f̂ K

n − f K)
d−→

n→∞ N (0,V ),
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where the covariance matrix V = (V (a, b; c, d) : (a, b), (c, d) ∈ K) is given by

V (a, b; c, d) = 
ϕ(a, b; c, d) + 
ϕ(�(b),�(a);�(d),�(c))

− 
ϕ(�(b),�(a); c, d) − 
ϕ(a, b;�(d),�(c)).

From this result we conclude under the hypothesis H0 : f K = 0 that

√
n f̂n

K d−→
n→∞ N (0,V ).

As a consequence, nf̂ K ′
n V −1f̂n

K converges in distribution to a χ2 distribution on 5 degrees
of freedom, provided that V is positive definite.

Observe that f̂ K
n = 1

n
λNn, where Nn = (Nn(a, b) : (a, b) ∈ A2) and � = (�(a, b; c, d) :

(a, b) ∈ K, (c, d) ∈ A2) is the 5 × 16 matrix given by

�(a,b; c, d) :=

⎧
⎪⎨

⎪⎩

1, if (a, b) = (c, d),

−1, if (a, b) = (�(d),�(c)),

0, otherwise.

The covariance matrix V may then be written as V = �
ϕ�′. Since � is of full rank, V is
positive definite whenever 
ϕ is positive definite.

Proposition 7 Assume that 
ϕ is positive definite. Then, there exists a consistent estimator
V̂n of V such that η̂n := nf̂ K

n
′V̂ −1

n f̂ K
n converges in distribution to a χ2

5 random variable.

The proof of this proposition will be a consequence of the following constructions and
intermediate results.

In order to define the estimator V̂n of the covariance matrix V , we first require an estima-
tor of 
ϕ . Let 
̂n,m = (
̂n,m(a, b; c, d) : (a, b), (c, d) ∈ A2), where


̂n,m(a, b; c, d) := N(0)
n (a, b; c, d)

n
− Nn(a, b)

n
· Nn(c, d)

n

+
m∑

i=1

(
N(i)

n (a, b; c, d)

n
− Nn(a, b)

n
· Nn(c, d)

n

)

+
m∑

i=1

(
N(i)

n (c, d;a, b)

n
− Nn(a, b)

n
· Nn(c, d)

n

)
(20)

and

N(i)
n (a, b; c, d) := #{j ∈ {0, . . . , n − 1} : (Xj ,Xj+1,Xj+i ,Xj+i+1) = (a, b, c, d)}.

Recall that we treat genome sequences as circular, so that Xn+i = Xi for i = 0, . . . , n − 1.
Now, from the law of large numbers for Gibbs measures,

lim
n→∞

N(i)
n (a, b; c, d)

n
= P([ab]0 ∩ [cd]i ) P-a.e.

and so

lim
n→∞ 
̂n,m(a, b; c, d) = 


ϕ

(m)(a, b; c, d) P-a.e.

where
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ϕ

(m)(a, b; c, d) = P([ab]0 ∩ [cd]0) − P([ab]0)P([cd]0)

+
m∑

i=1

[P([ab]0 ∩ [cd]i ) − P([ab]0)P([cd]0)]

+
m∑

i=1

[P([cd]0 ∩ [ab]i ) − P([ab]0)P([cd]0)] . (21)

However,


ϕ(a, b; c, d) = lim
m→∞ 


ϕ

(m)(a, b; c, d). (22)

Now, we claim that there exists a sequence (m(n) : n ≥ 1) which monotonically increases
to ∞ such that


̂n,m(n)(a, b; c, d)
P−→

n→∞
ϕ(a, b; c, d),

where
P−→

n→∞ is used to denote convergence in probability. To show this, first recall that con-

vergence in probability is metrizable by some metric D, for instance, D(g,h) = E((|g −
h|)/(1 + |g − h|)). Since limn→∞ D(
̂n,m(a, b; c, d),


ϕ

(m)(a, b; c, d)) = 0, we deduce that
for all m ≥ 1, there exists a positive integer N(m) satisfying

∀n ≥ N(m),∀k ∈ {1, . . . ,m}: D(
̂n,k(a, b; c, d),

ϕ

(k)(a, b; c, d)) ≤ 1/m.

The sequence (N(m) : m ≥ 1) is increasing. Now for all n < N(1), we set m(n) = 1 and, for
n ≥ N(1), we define m(n) = sup{m : N(m) ≤ n}. By construction m(n) increases with n.
On the other hand, since m(n) ≥ m for all n ≥ N(m), we have limn→∞ m(n) = ∞. By
construction we have

∀n ≥ N(1): D(
̂n,m(n)(a, b; c, d),

ϕ

(m(n))(a, b; c, d)) ≤ 1/m(n),

and the claim follows by letting m → ∞ and taking account of (22).
Let V̂n,m = (V̂n,m(a, b; c, d) : (a, b), (c, d) ∈ K), where

V̂n,m(a, b; c, d) := 
̂n,m(a, b; c, d) + 
̂n,m(�(b),�(a);�(d),�(c))

− 
̂n,m(�(b),�(a); c, d) − 
̂n,m(a, b;�(d),�(c)).

Since 
̂n,m(n) converges in probability to 
ϕ , it follows that V̂n := V̂n,m(n) must converge
in probability to V . Furthermore, V̂ −1

n will also converge to V −1 in probability, provided
that V is positive definite. To summarize, we have shown that f̂ K

n is a consistent (unbiased)
estimator of f K while V̂n constitutes a consistent (but biased) estimator of V .

Next, we prove the asymptotic behavior of η̂n claimed in Proposition 7. Recall that V

is positive definite since 
ϕ is positive definite. We have shown that
√

nf̂ K
n converges in

distribution to N (0,V ) and V̂ −1
n converges in probability to V −1. This implies that

nf̂ K′
n V̂ −1

n f̂ K
n − nf̂ K

n
′V −1f̂ K

n = nf̂ K
n

′ (V̂ −1
n − V −1

)
f̂ K

n

P−→
n→∞ 0.

Combining this with the aforementioned fact that nf̂ K
n

′V −1f̂ K
n converges in distribution to

a χ2
5 random variable, we see that η̂n converges in distribution to a χ2

5 distribution as n → ∞
and hence Proposition 7 has been proved.



420 A. Hart et al.

4.3 Practical Considerations

When computing the statistic η̂n for a real genomic sequence, the parameter n is dictated
by the length (in bases) of the genome under study. However, it is necessary to choose
an appropriate value for the parameter m and this is not so straight forward. The regime
(m(n)) derived in the previous subsection is not unique. In fact, the convergence results in
the preceding subsection remain valid for any sequence that converges to ∞ more slowly
than (m(n)). Consequently, any value m(n) � n should satisfy the consistency criterion.
On the other hand, the exponential cluster property of Gibbs measures implies that terms of
the series in (21) should tend geometrically toward zero and the same should also be true
for terms of the series in (20) when n is large. Eventually, there should come a point after
which the terms of (20) will constitute noise of the estimators and these should be ignored.
Consistency of the estimator 
̂n,m, together with the exponentially fast convergence of 


ϕ

(m)

to 
ϕ , means that satisfactory results should be obtainable by setting m(n) small relative
to n when computing η̂n.

In our implementation of this test of CSPR for dinucleotides, we chose m(n) to be the
smallest value of i such that

∣∣∣∣∣
N(i)

n (a, b, a, b)

n
−

(
Nn(a, b)

n

)2
∣∣∣∣∣
≤ 0.01

(
Nn(a, b)

n
−

(
Nn(a, b)

n

)2
)

= 0.01 V̂ar([ab]0) ∀(a, b) ∈ A2.

Here, V̂ar([ab]0) denotes a consistent estimator of the variance of the frequency of the din-
ucleotide ab in a genome sequence. Since |Nn(a,b)

n
− (Nn(a,b)

n
)2| is typically on the order of

0.06, we conjecture that truncating the covariance estimators at the point where the sums
composing the estimators change by less than 1% of V̂ar([ab]0) is reasonable.

Finally, some numerical experimentation leads us to conjecture that the test is highly
powerful. Markov chains constitute a subset of the Gibbsian processes. Simulating genomic
sequences from Markov chains which fail to comply with CSPR yields a rejection rate of
100% at the 5% significance level. Performing the same experiments on Markov chains
that do satisfy CSPR results in a rejection rate close to the α chosen for the test, as one
would expect. We obtained similar results for genomic sequences generated as realizations
of Markov random fields. A Markov random field with maximal clique size k is equivalent
to a Gibbs measure whose energy � takes the form

�(x) =
k∑

j=1

n−1∑

i=0

ψ(j)(xi, . . . , xi+j−1). (23)

In other words, the energy is a linear sum of functions �(j), each of which depends on
cliques of size j , that is, sets of j mutually neighboring sites. Simulations of such sequences
can be produced using the Gibbs sampler and � will be � ◦ I -invariant if �(j) is � ◦ I -
invariant for all j = 1, . . . , k. In our numerical experiments, we simulated sequences from
Markov random fields having maximal clique sizes of 3 and 4, using an energy which is not
� ◦ I -invariant.

4.4 Application of the Test

Although successful tests of CSPR in genomic sequences have already been conducted using
both empirical and rigorous methods (for instance, see [1, 7, 10, 12]), we would like to test
for CSPR for R = 2 under a Gibbsian hypothesis.
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Table 1 Summary statistics for the lengths and GC-contents of a collection of 1049 complete bacterial
genome sequences obtained from the GenBank repository

Property First Quartile Median Third Quartile Mean Std Deviation

Length 1906322 2976212 4603746 3317355 1759175

GC-content 0.3769 0.4753 0.6035 0.4839 0.1326

We considered a set of 1049 complete bacterial genome sequences obtained from the
GenBank ‘genomes’ repository. Length and GC-content statistics for the set of genomes
are shown in Table 1.

To correct for multiple testing of a large number of genomes, we used the Holm-
Bonferroni method, whose application posed no difficulties since p-values for the test
statistic are readily obtainable from the χ2

5 distribution. Of the 1049 genomes tested at the
α = 0.01 level of significance, the null was accepted in 410 cases and was rejected in the re-
maining 639 genomes. We found no relationship between GC-content, genome length and
rejection of the null.

Note that the Gibbsian assumption determines the form of the covariance matrix 
ϕ ,
which exists as a consequence of the exponential cluster property. Any genomic sequence
that departs significantly from exponential clustering will give rise to an η̂n far out in the tail
of the χ2

5 distribution, since 
ϕ is likely to be near singular in such cases. A caveat with the
test proposed here is that when a sequence is rejected, the reason for its rejection is unclear.
Rejection could be due to either violation of CSPR or lack of compliance with the Gibb-
sian or translation invariance assumptions. In any case, further examination is warranted in
order to discover why a particular sequence is rejected. On the other hand, given the test’s
apparently high sensitivity to departures from a Gibbsian structure, sequences for which the
null hypothesis is accepted must comply much more closely to CSPR and exhibit a much
stronger Gibbsian-like structure than those that are rejected.
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