
This article was downloaded by: [Universidad de Chile]
On: 17 May 2012, At: 14:00
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Finding common quadratic Lyapunov functions
for switched linear systems using particle swarm
optimisation
R.H. Ordóñez-Hurtado a & M.A. Duarte-Mermoud a
a Department of Electrical Engineering and Advanced Mining Technology Center (AMTC),
University of Chile, Avda. Tupper 2007, Casilla 412-3, Santiago, Chile

Available online: 07 Dec 2011

To cite this article: R.H. Ordóñez-Hurtado & M.A. Duarte-Mermoud (2012): Finding common quadratic Lyapunov functions for
switched linear systems using particle swarm optimisation, International Journal of Control, 85:1, 12-25

To link to this article:  http://dx.doi.org/10.1080/00207179.2011.637133

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tcon20
http://dx.doi.org/10.1080/00207179.2011.637133
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control
Vol. 85, No. 1, January 2012, 12–25

Finding common quadratic Lyapunov functions for switched linear systems using

particle swarm optimisation
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It is undoubtedly important to be able to ensure the existence of a common quadratic Lyapunov function
(CQLF) for a given switched system because this is proof of its asymptotic stability, but equally important is the
ability to calculate it in order to obtain more specific information about the behaviour of the switched system
under analysis. This article describes the development of a new methodology for calculating a CQLF based on
particle swarm optimisation (PSO) once the existence of a CQLF has been assured. Several comparative analyses
are presented to show the strengths and advantages of the proposed methodology.

Keywords: common quadratic Lyapunov function; particle Swarm optimisation; switched linear systems;
computation of CQLF

1. Introduction

Switched linear systems (SLS) are the type of linear
dynamic systems whose evolution matrix evolves over
time depending on a signal called commutation signal
�(t), as follows:

_x tð Þ ¼ A� tð Þx tð Þ, A� tð Þ 2 A :¼ A1,A2, . . . ,ANf g: ð1Þ

Their mathematical models very accurately repre-
sent the dynamics of various types of systems in
different application areas (Liberzon 2003; Lin and
Antsaklis 2009). However, unlike the stability analysis
for linear LTI systems, stability analysis of such
systems is not limited to dealing only with stable
subsystems, since, on the one hand, a certain commu-
tation rule may result in instability of the whole system
despite it being made up of stable systems and, on the
other hand, a switched system with unstable subsys-
tems can be stabilised by an appropriate switching rule.

Within the research on the stability of switched
systems, Lyapunov stability-based approaches are
highlighted and important lines of analysis have been
derived, such as the ones based on inverse Lyapunov
theorem, switched quadratic Lyapunov functions and
common quadratic Lyapunov functions (CQLFs).
Among the above, the existence of a CQLF has been
widely explored, directing the efforts to both the
determination of conditions of existence/non-existence
of a CQLF (Lin and Antsaklis 2009) and the design of
a method for finding a CQLF given its existence, being
the resolution of linear matrix inequalities (LMI)

(Boyd, El-Ghaoui, Feron, and Balakrishnan 1994)

and gradient-based method (Liberzon and Tempo

2004), the two most popular finding methods.
In general, from the statement of the CQLF

approach (referred here as the CQLF Problem), the

process of finding a CQLF was addressed earlier using

LMIs and appropriate resolution tools (LMI solvers)

(e.g. Shorten and Narendra 2003). However, although

quite efficient tools exist (e.g. Matlab LMI Toolbox,

Matlab Robust Control Toolbox), their algorithms are

strongly affected by the order and the number of

matrices to analyse (Liberzon and Tempo 2004). Later,

other methods for finding a CQLF was developed with

the aim of improving the limitations of LMI tools, and

the most outstanding is the gradient-based method

(Liberzon and Tempo 2004). Although a methodology

with a solid analytical support is developed there, and

all its advantages over the LMI tools are highlighted,

the results of the methodology suggest that improve-

ments in the respect of computing time consumed can

be made. Other calculation techniques have been

reported in the literature, but most cases are quite

restrictive such as those presented in: Cheng, Martin,

and Xiang (2000), with high computational complexity

because of performing calculations with matrices of

dimensionality N� n2, with N the number of n-th order

matrices to be analysed; Nguyen, Mori, Mori, and

Kuroe (2003) and Yanami and Anai (2005), with

algorithmic and computational complexity that

restricts the application of the methodology to systems
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of second-order; Paul, Akar, Safonov, and Mitra
(2004), which requires some kind of second-order
systems; Chen and Gao (2007), whose area of
application is limited to triangular matrices and Ibeas
and De la Sen (2009), that requires simultaneously
triangularisable matrices.

As a direct consequence of analysing the scenario
described above, it is clear that a new methodology for
the calculation of a CQLF, more efficient and less
restrictive, must be developed. Then in this article, a
new general methodology based on the global optimi-
sation technique, particle swarm optimisation (PSO), is
proposed. For its development, we use stability theory
for switched linear systems as analytical support, and
Matlab as main software tool. The rest of this
document includes: Section 2 which present the
CQLF problem statement and the theoretical frame-
work of both the existing solutions for finding a CQLF
and the PSO technique; Section 3 which presents the
proposed methodology; Section 4 with the analysis of
the methodology and Section 5 for the presentation of
relevant conclusions.

2. Preliminaries

This section presents the theoretical basis necessary for
understanding the development of the methodology
proposed in Section 3.

2.1 The CQLF problem

Let the switched linear system (1) be in continuous
time (Lin and Antsaklis 2009), where x(t)2Rn is the
state vector, A is a set of N Hurwitz matrices in Rn�n

and � is an arbitrary signal that define commutation
among elements in A. We define a quadratic Lyapunov
function candidate as

V xð Þ ¼ xTPx, P4 0, P 2 <n�n, ð2Þ

which is positive definite, whose time derivative along
any non-zero system trajectory of (1) is required to be
negative definite, i.e.

_V xð Þ ¼ xT PAi þAT
i P

� �
x50, 8x 6¼ 0, 8i 2 1, . . . ,Nf g,

ð3Þ

for which it is necessary that

PAi þ AT
i P5 0, 8i 2 1, . . . ,Nf g: ð4Þ

Then, if a matrix P4 0 satisfying (2) and (4)
8Ai2A exists, function V(x) is a CQLF for all systems

�Ai
: _x tð Þ ¼ Aix tð Þ, i ¼ 1, 2, . . . ,N, ð5Þ

and its existence is a guarantee of uniform asymptotic

stability of system (1) (Liberzon 2003; Lin and

Antsaklis 2009). Hereafter, and as abuse of notation,

a CQLF will be referred to as such (2) as will the

respective P matrix associated with it, as well.
Finally, Lemma 2.1, which will be used to develop

the proposed methodology, is provided below.

Lemma 2.1 (Horn and Johnson 1985): Let A be an

arbitrary matrix in Rn�n. Then it follows that (i)

A4 0,�A5 0 and (ii) A4 0, (AþAT)4 0.

2.2 Methodologies for finding a CQLF

From the numerical point of view, there are several

methodologies for finding a CQLF in the literature,

with LMI being the most traditional technique used.

For this approach, the LMI system (4) is called feasible

if it is satisfied for some P4 0 8i, and unfeasible

otherwise. Although there have been efficient methods

for solving system’s LMI for a couple of decades (Boyd

et al. 1994; Shorten and Narendra 2003), the CQLF

problem remains an open problem because such

methods impose strong conditions for finding solu-

tions, resulting in this methodology becoming ineffec-

tive to the extent that it increases the dimensionality of

the problem (order and number of subsystems).

Needless to say, it is unthinkable to apply methods

for solving LMIs in the case of infinite families of

subsystems, except in specific cases such as a convex

combination of a finite family, and this is where

gridding techniques (Tempo, Calafiore, and Dabbene

2004) become important. However, gridding techni-

ques require a number of grid points exponentially

growing with the dimensionality of the problem, and a

solution is not assured if they were located among the

grid points, since it is impossible to access it.
An example of an analytical method for finding a

CQLF is the classic (Narendra–Balakrishnan) NB

Algorithm, based on the results of these authors

presented in Narendra and Balakrishnan (1994). This

method has the advantage of guaranteeing a feasible

solution as long as certain conditions on the tested

systems are met. Such conditions are quite restrictive

because they require that the matrices commute under

multiplication, and an extension of the NB Algorithm

requires that the matrices meet certain condition on the

Lie bracket (Zhu, Cheng, and Qin 2007). The concept

of this algorithm is based on the fact that N matrices,

fulfilling the condition, they share a CQLF PN that can

be calculated with the formula

PiAi þ AT
i Pi ¼ �Pi�1, i ¼ 1, . . . ,N, ð6Þ
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all this regardless of the order in which matrices are

taken or which initial matrix P04 0 is chosen.
Another analytical method for finding a CQLF is

the one proposed in Cheng, Hu, and Martin (2006),

based on the calculation of the smallest ball that

contains a finite number of points p1, . . . , pn2Rn.

Although the method was not developed directly to

calculate a CQLF, one of the examples of application

shows that possibility. Thus, the authors propose

assimilating each matrix as a point in a multidimen-

sional space, and then the smallest ball that includes all

points (matrices) is calculated. If the centre of this

enclosing smallest ball represents an unstable matrix,

then it follows that the set of matrices does not share a

CQLF. On the other hand, if the centre leads to a

stable matrix then a Lyapunov function P for that

centre (matrix) is calculated, and in this way P becomes

a CQLF candidate. The last step in the method is to

check the Lyapunov equations one by one to confirm

that P is a CQLF. The process of finding such a CQLF

candidate P using this method is called the Enclosing

Balls (EB) algorithm in this work.
Despite the above methods, among the most

important method for calculating a CQLF is the

Liberzon and Tempo (2004) approach, which raises the

appropriate minimisation of a pair of functionals using

the gradient method. This is based on the traditional

formula (Liberzon and Tempo 2004)

f Rþ DRð Þ � f Rð Þ þ @R f,DR
� �

, ð7Þ

where DR denotes a small perturbation with respect to

R, @Rf denotes the gradient of f with respect to R,

and� denotes equality up to terms of the first-order in

DR. From this, a function v(P,A) is generated in the

form

v P,Að Þ :¼ f PAþ ATPþQ
� �

, ð8Þ

where f is a suitable functional to solve the CQLF

problem, with Q4 0 arbitrary and given. The generic

formulas for finding a CQLF are summarised in the

following algorithm:

Pkþ1 ¼
Pk � �k@Pv Pk,Ah kð Þ

� �� �þ
v Pk,Ah kð Þ

� �
4 0

Pk in other case

(

ð9Þ

�k :¼
�v Pk,Ah kð Þ

� �
þ r @Pv Pk,Ah kð Þ

� ��� ��
@Pv Pk,Ah kð Þ

� ��� ��2 , ð10Þ

h kð Þ :¼ kmodNð Þ þ 1 ¼ k�N
k

N

	 

þ 1, ð11Þ

where [�]þ denotes the projection into space of positive
semi-definite matrices, b�c denotes approximation to
the lower nearest integer, �k is the step forward with
0��� 2, r4 0 and k�k being the Frobenius norm. In
Liberzon and Tempo (2004) two functionals are
proposed, the respective partial derivatives @Pv are
calculated, and their continuity and differentiability
are demonstrated in an elegant way. Results obtained
are compared with LMI techniques, adding the
respective analysis of deterministic and probabilistic
convergence based on the proper tuning of parameters
r and �.

2.3 PSO technique

PSO (Eberhart and Kennedy 1995a; Del Valle,
Venayagamoorthy, Mohagheghi, Hernandez, and
Harley 2008) is an heuristic global optimisation
technique that is part of the category called swarm
intelligence (SI), which in turn is a subcategory of
evolutionary computation (EC). This technique allows
solving optimisation problems using cumuli (swarms)
of particles, which computationally simulate the
behaviour of social groups in nature (flocks, banks,
crowds, etc.) in their search for a common benefit.
Thus the potential solutions are constituted by
populations of individuals (particles) that evolve
iteratively using strategies and operations related to
the movement in a �-dimensional space, where � is the
number of unknowns in the function to optimise. As
was proposed since its statement in 1995 (Eberhart and
Kennedy 1995a,b), PSO retains the best individual
solution pi and global solution g throughout the
iterative process, and in its basic version combines
these values in its two equations of evolution

vi,d kþ 1ð Þ ¼ vi,d kð Þ þ r1 kð Þc1 pi,d kð Þ � xi,d kð Þ
� �

þ r2 kð Þc2 gd kð Þ � xi,d kð Þ
� �

ð12Þ

xi,d kþ 1ð Þ ¼ xi,d kð Þ þ vi,d kþ 1ð Þ ð13Þ

pi kð Þ ¼
pi k� 1ð Þ, if f pi k� 1ð Þ

� �
� f xi kð Þð Þ

xi kð Þ, if f pi k� 1ð Þ
� �

4 f xi kð Þð Þ

(
ð14Þ

g kð Þ ¼ argmin f p1 kð Þ
� �

, . . . , f ps kð Þ
� �� �

, ð15Þ

where d2 {1, 2, . . . , �} is the dimension of the ith
particle with i2 {1, 2, . . . , s}, v(k) and x(k) represent the
velocity and position of the particle in the iteration
k2 {1, 2, . . . , itermax}, c1 and c2 are the social and
cognitive acceleration coefficients, r1(k) and r2(k) are a
pair of random numbers uniformly distributed in the
interval [0, 1] representing the stochastic element of any
swarm, and f is the fitness function to be optimised.

14 R.H. Ordóñez-Hurtado and M.A. Duarte-Mermoud
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However, it is not practical to use the basic version of
PSO because stability and convergence of the algo-
rithm are strongly limited. Therefore, shortly after its
creation the two variants of PSO most widely known
and used because of their simplicity of implementation
and computational complexity are formulated: (1) PSO
with inertia weight (PSOiw) (Shi and Eberhart 1998)
and (2) PSO with constriction factor (PSOcf)
(Clerc 1999).

PSOiw incorporates the parameter ! (inertia
weight) in the velocity Equation (12), so that a new
equation for speed is obtained as

vi,d kþ 1ð Þ ¼ !vi,d kð Þ þ c1r1 kð Þ pi,d kð Þ � xi,d kð Þ
� �

þ c2r2 kð Þ gd kð Þ � xi,d kð Þ
� �

, ð16Þ

with !2 [0, 1] that serves to limit the particle
velocities, and consequently achieve convergence to
an equilibrium point. For its part, PSOcf incorporates
the term � called the factor of constriction, which
operates similarly to the inertia weight but multi-
plying the entire right-hand side of (12), rather than
only vi,d(k). Nevertheless, in Eberhart and Shi (2000)
it is shown that both versions of the algorithm are
equivalent. Although PSOcf and PSOiw are the first
and best known variants of original PSO, many other
variations and/or hybrids of PSO (e.g. Reyes-Sierra
and Coello 2006; Del Valle et al. 2008; Kameyama
2009; Oca, Sttzle, Birattari, and Dorigo 2009) have
emerged as the result of the incorporation of various
approaches to technique, each of which eventually
may come to have an outstanding performance in
some search spaces but do poorly in others. Because
of this, in Bratton and Kennedy (2007) the possibility
of establishing a technical standard by defining a
baseline is raised for issues including topology,
equations of speed upgrade, size and initialisation of
the swarm and edge conditions, providing a means
of comparison in future developments and
improvements.

Although PSO has been shown to be effective and
efficient in many practical problems of diverse nature
(Poli 2008), PSO benefits are not only the result of a
detailed tuning of its parameters, but also of the choice
of an appropriate fitness function to qualify the
benefits of potential solutions. As an heuristic techni-
que, PSO has the advantage of being able to drive most
versatile fitness functions in the case of a deterministic
technique, being able to deploy non-differentiable,
nonlinear and/or discontinuous functions without any
problems.

Finally, it should be noted that PSO in its different
variants and/or modifications is a very good alter-
native solution, compared with techniques such as
genetic algorithms (GA) (Rahmat-Samii 2003;

Habib and Al-kazemi 2005) and differential

evolution (DE) (Dong 2009; Semnani, Kamyab, and
Rekanos 2009), to global optimisation problems with
multiple maximum/minimum, discontinuities and
deterministic solutions in no-polynomial time. This
can also be reflected in the increase (close to
exponential) of successful applications based on PSO
(Poli 2008).

3. New PSO-based methodology for finding CQLFs

The design process for the new CQLF calculation
methodology proposed in this article is introduced in
this section, which involves the next three steps:

(1) Design suitable fitness function(s) to optimise
with PSO.

(2) Define how particles represent potential feasi-
ble solutions of the problem to be solved.

(3) Establish appropriate implementation for good
performance of PSO. This includes: setting

PSO parameters, debugging in programming to
minimise processing times and identifying best
initial conditions, among others.

The first two points of the above-mentioned
method are explicated in the following subsections,
with the purpose of describing the theoretical steps
involved in developing the new methodology for

finding a CQLF for a set of stable matrices
A¼ {A1, . . . ,AN}2Rn�n based in PSO.

3.1 Fitness functional

Based on the second functional presented in Liberzon
and Tempo (2004), which is here called fg and
defined as

fg Rð Þ :¼ max eig RAi þ AT
i R

� �� �
ð17Þ

with

@Pv P,Aið Þ ¼ Aixx
T þ xxTAT

i , ð18Þ

a generic functional f(R) is proposed. However, this

proposed functional is not used in the same way as fg
(minimise with respect to one matrix and iterate the
process for the other matrices), but permits the
minimisation with respect to all matrices in each
iteration. Additionally, two specific functionals fi(R)
are defined beginning with a pair of given representa-
tions for a potential feasible solution R.

Without loss of generality, let R be a symmetric
matrix in Rn�n candidate to solve simultaneously the N
Lyapunov equations generated by N systems (see (4)),

International Journal of Control 15
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i.e. candidate to be a CQLF. Then the generic

functional is defined as

f Rð Þ :¼ maxi eig RAi þ AT
i R

� �� �
, 8i ¼ 1, . . . ,N,

ð19Þ

with eig(�) the function that gives the eigenvalues of

a matrix. It is clear that although R is a symmetric

matrix, it does not imply that it is a positive definite

matrix, which is an essential prerequisite for R to

produce a CQLF of the form V(x)¼ xTRx. For this

reason, the search space must be restricted to positive

definite matrices in order to improve the convergence

of the optimisation process, by not having to evaluate

unfeasible solutions.
One way to restrict the search space is based on the

representation R¼V�1DV, where V is the matrix that

diagonalises R, and D a diagonal matrix similar to R

with entries d1, . . . , dn, i.e. D¼ diag(d1, . . . , dn). Then

(19) is used but unfeasible solutions are repaired

through the projection

~R ¼ V�1 ~DV, ð20Þ

with

~D ¼ diag d1j j, . . . , dnj jð Þ, ð21Þ

and d1, . . . , dn obtained from D. Considering a

diagonalisable R is reasonable since R is symmetric

and this kind of matrix has that property (Horn and

Johnson 1985). Note that (20) is a modified version of

the matrix projection on the cone of non-negative

definite matrices presented in Liberzon and Tempo

(2004), having that for a symmetric matrix R, V�1¼VT

is valid, and using ~D instead of the diagonal matrix

Dþ¼ diag(max(d1, 0), . . . , max(dn, 0)). With this projec-

tion, we can define from generic fitness (19) a first

specific fitness

f1 :¼ f ~R1

� �
ð22Þ

with

~R1 ¼ V�1 ~DV ð23Þ

and D, V obtained from a symmetric matrix

R1¼V�1DV to be evolved.
A second way to restrict the search space of a

generic functional (19) is obtained from Proposition 3.1

stated below, which is an alternate and original

equivalent of the CQLF problem.

Proposition 3.1: Let (1) be a switched system with

x2Rn, and let A be a set of Hurwitz matrices in Rn�n.

Then, the existence of a CQLF for A is equivalent to

the existence of an upper (lower) triangular

matrix B2Rn�n, such that

B�1AT
i B5 0, 8i 2 1, 2, . . . ,Nf g: ð24Þ

Note that B is a common similarity transformation for
all Ai, and the CQLF is given by P¼BBT.

Proof:

Part 1: First, the implication B!CQLF will be
shown. Suppose that (24) is fulfilled. By extension
(Lemma 2.1), it is also true that

B�1AT
i Bþ B�1AT

i B
� �T

5 0, 8i 2 1, . . . ,Nf g,

and hence

AT
i BB

T þ BBTAi 5 0, 8i 2 1, . . . ,Nf g: ð25Þ

By defining P¼BBT4 0, inequality (4) is obtained,
and thus satisfies the conditions so that P is a CQLF.

Part 2: Now the implication CQLF!B will be
shown. Assume that there exists a CQLF P for A,
and without loss of generality, assume P¼PT. Since
P4 0, by Cholesky factorisation (Horn and Johnson
1985) P¼BBT is obtained for some upper (lower)
triangular matrix B, and thereby satisfies (25). Finally,
after a reverse procedure to that submitted in Part 1
(right multiplying by the term B�T and using
Lemma 2.1), (24) is reached. œ

Thus, based on Proposition 3.1 and set from
generic fitness (19), we have the second specific fitness

f2 :¼ f ~R2

� �
ð26Þ

with

~R2 ¼ R2R
T
2 , ð27Þ

where R2 is an upper (lower) triangular matrix to be
evolved in Rn�n.

After the fitness functions to be used are defined,
we proceeded to design how the particles would
represent the different matrices to evolve, i.e. R1

and R2.

3.2 Particles representation

Since two fitness functionals will be used, the design of
two ways in which the s particles represent matrices
R

ið Þ
1,2 i¼ 1, . . . , s, (and consequently ~R

ið Þ
1,2 through (21)

and (27)) to evolve is needed. Initially, it is convenient
to redefine the position of the particles as

xi ¼ C
ið Þ
j

h i
, j ¼ 1, 2, . . . , �, i ¼ 1, 2, . . . , s: ð28Þ

Up to this point it seemed intuitive to relate each
component j of the particles to each element of R

ið Þ
1 or

16 R.H. Ordóñez-Hurtado and M.A. Duarte-Mermoud
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R
ið Þ
2 , but this is not very helpful for the optimisation

process due to the nature of the CQLF problem: if a
matrix P is an arbitrary CQLF, then �P is also CQLF
for all �4 0 (see Equation (4)). Then again it is
necessary to restrict the search space limiting the norm
of vectors ½C

ið Þ
j �. This requires defining a vector

Mi ¼ ½m
ið Þ
k � for k¼ 1, 2, . . . , np, with

m
ið Þ
k ¼

sin C
ið Þ

1


 �
, k¼ 1:

sin C
ið Þ
k


 �Qk�1
h¼1 cos C

ið Þ
h


 �
, k¼ 2, 3, . . . ,np� 1,Q2N�1

h¼1 cos C
ið Þ
h


 �
, k¼ np,

8>>>><
>>>>:

ð29Þ

so that np is the freedom degree of R
ið Þ
1 or R

ið Þ
2 as

appropriate, imposing �¼ np� 1. It is now necessary to
define a pair of functions g1,2: <

np �!<n�n so that
R

ið Þ
1,2 ¼ g1,2 Mið Þ are the matrices that will be evolved

with PSO, in order to match f1,2: Rn�n
!R. However,

both R
ið Þ
1 and R

ið Þ
2 have np ¼

n nþ1ð Þ

2 , since R
ið Þ
1 are

symmetric matrices in Rn�n and R
ið Þ
2 are upper

(lower) triangular matrices in Rn�n. Then, matrices
R

ið Þ
1 used with f1 are defined by

R
ið Þ
1 ¼

m
ið Þ
1 m

ið Þ
2 m

ið Þ
3 � � � m ið Þ

n

m
ið Þ
2 m

ið Þ
nþ1 m

ið Þ
nþ2 � � � m

ið Þ
2n�1

m
ið Þ
3 m

ið Þ
nþ2 m

ið Þ
2n � � � m

ið Þ
3n�3

..

. ..
. ..

. . .
. ..

.

m ið Þ
n m

ið Þ
2n�1 m

ið Þ
3n�3 � � � m ið Þ

np

2
666666664

3
777777775
, ð30Þ

and without loss of generality R
ið Þ
2 matrices used with f2

are defined by

R
ið Þ
2 ¼

m
ið Þ
1 m

ið Þ
2 m

ið Þ
3 � � � m ið Þ

n

0 m
ið Þ
nþ1 m ið Þnþ2 � � � m

ið Þ
2n�1

0 0 m
ið Þ
2n � � � m

ið Þ
3n�3

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � m ið Þ
np

2
666666664

3
777777775
: ð31Þ

Finally, since ~R
ið Þ
1,2, R

ið Þ
1,2, xi and Mi represent the

same element, it follows that f1,2ðR
ið Þ
1,2Þ ¼

:
f1,2 xið Þ. In this

way, and once the analytical part of the design was
defined, the stage of implementation and performance
analysis was then faced.

4. Performance analysis of the proposed

methodology

In this section the implementation of the PSO-based
methodology for finding CQLFs is shown, and results
of tests to evaluate the performance of the proposed

methodology are presented. Among other issues, the

implementation involved the development of two main

programs in Matlab to define f1 and f2 as designed in

Section 3. The PSO ToolBox (a set of Matlab files

implementing the PSO algorithm for systems optimisa-

tion) developed by Jagatpreet Singh PSO (Singh 2003)

was used as a software tool. Programs developed

required the implementation of an auxiliary file in

which the corresponding fitness functions are defined,

and an amendment to the PSO Toolbox main file

(PSO.m) to define the initial population appropriately.
The following subsections present PSOiw settings

to use in the validation tests, and a set of experimental

results used in comparisons with other methodologies

is shown.

4.1 Choice of PSO parameters

For practical purposes related to the analysis of the

applicability of PSO to the problem of finding a CQLF,

it was decided to use one of the simplest versions of

PSO: the PSOiw version. Moreover, the linearly

decreasing variation with respect to the progress of

the iterations was chosen among the different variation

schemes of !(k) (Hu, Xu, Wang, and Xu 2009), because

it is a scheme typically used (Del Valle et al. 2008) and

defined by

! kð Þ ¼ !max � !max � !min½ �
k

itermax

ð32Þ

with !max¼ 0.9, !min¼ 0.4 and a maximum number of

iterations equal to itermax. It should be noted that the

advantage of using the linearly decreasing inertia

weight scheme is offering a balance between explora-

tion and exploitation, for which c1¼ c2¼ 2 (Del Valle

et al. 2008) are also commonly chosen as acceleration

constants.
In relation to the number of particles to be used, it

is known that the proper choice is directly related to

the complexity of the optimisation problem that seeks

to solve, complexity that is usually determined by the

size of the particles or the definition of fitness

functional. Choosing the size s of the population to

evolve in an automatic way (Particle Swarm Central

2007) is presented, which depends on the size of the

particles and is calculated as

s ¼ 10þ 2
ffiffiffi
�
p

, ð33Þ

which was used by default for the tests developed in

this work, with � defined by

� ¼
n nþ 1ð Þ

2
� 1, ð34Þ
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n being the order of the matrices Ai. As a termination
criterion, it was decided to operate two simultaneously:
(1) the crossing of a threshold defined by f(xi)5 0 and
(2) reaching a maximum number of iterations defined
by default for itermax¼ 200.

Test data used are not from databases, but are from
sets of matrices that a priori are known to share a
CQLF, such as commuting matrices (Narendra and
Balakrishnan 1994), and triangular matrices (Shorten
and Narendra 1998), among others. Finally, the
initialization of xi may be chosen randomly (uniform
distribution) or predefined (solving s individual
Lyapunov equations).

4.2 Comparative analysis: computing time for the first
feasible solution

In the comparative analysis of the time of calculation,
NB and EB methods are not taken into account
because they are deterministic algorithms that use a

fixed time (number of iterations) to find the solution.
Besides this, it makes no sense to use the methodology
NB in the general case since it does not always meet the
conditions for its use. Moreover, although the EB
methodology can be applied to the general case
without any problem, this is a methodology that
analytically becomes unable to find a CQLF although
it exists, which is reflected in a quite low success rate.
Finally, as in Liberzon and Tempo (2004) in which a
comparison of gradient with the LMI approach and
demonstration of the advantages of gradient over LMI
is made, this article will compare the proposed
methodology (based on PSO) with respect to the
methodology of Liberzon and Tempo (2004) based on
gradient technique.

As a first set of comparative testing, each metho-
dology is validated in groups of upper triangular
matrices (that are known to share a CQLF (Shorten
and Narendra 1998)) of orders 2, 3, 4 and 5. Figure 1
shows the results of these tests.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5(a) (b)

(d)(c)

80% 69% 65%
59% 50%

48%

46%

40%

40%

36%

N

t
(s

)

f1

f2

fg

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

11

12

13

65%
59%
28%

21%

11%

10%

N

f1

f2

fg

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

22

24

26

32%

24%

N

t 
(s

)

t 
(s

)
t 
(s

)

f1

f2

fg

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

55

2%

1%

N

f1

f2

fg

Figure 1. Average computing time up to the first feasible solution for sets of N upper triangular matrices. (a) Matrices of 2�2,
(b) matrices of 3�3, (c) matrices of 4�4 and (d) matrices of 5�5. (Each mark: average of 20 measurements; dashed lines:
projections because of complexity in collecting data; percentages: success rates; no-percentages: 100% success rates; initial
conditions for PSO: Random).
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Two kinds of conclusions can be extracted from
Figure 1: the first comes from a comparison of f1 and
f2, and the second comparison is between the PSO and
gradient methodologies. With respect to the first
analysis, a marked improvement in the computing
time and success rates of f2 on f1 is shown in Figure 1,
which is supported by the type of search space that is
used. While the compensation in f1 (see (20)) projects
potential solutions on a search space restricted to
positive definite matrices, f2 always manages potential
solutions within that space, without having to resort to
any kind of repair. Another important aspect to be
highlighted is the linear trend in the consumption of
time taken to compute an initial feasible solution
versus the number of matrices analysed, with a steeper
slope for f1 than for f2.

As for the comparison between the methodologies,
the fact that f2 is generally much more efficient than
gradient is highlighted, but not so with f1 that is more
efficient than gradient only after a certain number of
matrices. These aspects are justifiable because gradient
exhibits a roughly exponential trend in the consump-
tion of time used up to the first feasible solution versus
the number of matrices, and the previously mentioned
linear trend with PSO reaches a point where the time
consumed by a gradient is greater than one consumed
by f1.

An important element to be noticed is that for each
realisation of PSO the same configuration (same set of
parameters) was used, which was not so for the case
of the gradient, because every time the number of
matrices to analyse was increased, a new scan to
determine the best experimental values of the para-
meters r and � to be used was needed. The consequence
is that a larger number of matrices needs a smaller
value of r and �, which directly slows down the
optimisation process and gives the characteristic
exponential curve to the relationship computation
time versus the number of matrices. However, it is
clear that each PSO setting must have an upper bound
of effectiveness, but expandable by increasing itermax

and/or s.
Although PSO shows a marked advantage over

gradient using triangular matrices, it is interesting to
observe the behaviour of the proposed methodology
on other kinds of matrices, preferring to use f2 because
of the advantages described with respect to f1. Thus
tests on other sets of matrices also known a priori to
share a CQLF were run: commuting matrices
(Narendra and Balakrishnan 1994), simultaneously
triangularisable matrices (Ibeas and De la Sen 2009),
negative definite matrices (Shorten, Wirth, Mason,
Wulff, and King 2007), diagonal matrices (are com-
muting and negative definite) and a set of generic
matrices obtained from an arbitrary symmetric positive

definite matrix P and a random search looking for
stable matrices for which P solves their individual
Lyapunov Equation (4). The results of applying both
methods in these four kinds of matrices are shown in
Figure 2.

By analysing Figure 2, it is interesting to note the
fact that PSO does not always have superior perfor-
mance than gradient. Indeed, we find that PSO has
better performance than gradient in the case of
diagonal and simultaneously triangularisable matrices,
which is not so in the case of generic matrices and
matrices that commute.

Another interesting aspect to analyse is the success
rate (percentage of success in seeking feasible solutions)
of methodologies. While gradient ensures obtaining a
CQLF in a given number of steps for a given optimal
values for r and �, such optimal values are unknown
and consequently each gradient settings has a certain
success rate. It was found in tests that increasing the
number of matrices analysed with gradient requires a
detailed reconfiguration of its parameters, for main-
taining at least the same rate of effectiveness. By using
PSO the latter usually is not required, and the same
initial configuration allows to maintain high success
rates even in large sets of matrices. Unlike gradient,
PSO convergence is not analytically assured, yet
experiments showed that it is much easier to get a
proper tuning of its two parameters, the population size
s and the maximum number of iterations itermax,
through which feasible solutions are obtained. It is
important to note that although PSO has many more
tuning parameters, the choice of variables such as c1, c2
and w(k) is supported by previous researches for
general use (Del Valle et al. 2008), but itermax and s
are problem-dependent parameters.

However, beyond the partial conclusion on the
effective applicability of PSO to the calculation of a
CQLF, it is interesting to analyse a factor which is
much more important: the robustness of the solutions
obtained by PSO (specifically f2) over other methodol-
ogies. Therefore, the next section is devoted to
this issue.

4.3 Comparative analysis: robustness of the best
solution

The purpose of this analysis is to obtain both
quantitative and qualitative measures of robustness
for the best solutions (CQLFs) obtained by different
methodologies. For this type of analysis it is necessary
to note that graphical comparison is possible only for
sets of second-order matrices, because of the freedom
degrees of the solutions. Therefore, the comparison for
sets of matrices of order greater than 2 is only possible
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by defining a performance index. This index is defined
here as the maximum percentage of change that any
element of a matrix may endure, so while a previously
calculated CQLF remains despite such variations.

As a base experiment, finding a CQLF for the same
set of three matrices by using different methodologies
is proposed, and then evaluating the tolerance of the
best solution found for a possible parametric variation
in some parameters of the matrices under analysis
(matrices given as defined in the previous section, with
the analytical or experimental support that a CQLF is
shared). The methodologies chosen to compare are:
gradient ( fg) LMI, EB Algorithm, PSO ( f2), and as a
special case the NB Algorithm although it is not
applicable in general.

4.3.1 Case Order¼ 2: graphical analysis

The fact that the P matrix associated with a
second-order CQLF can be assumed to be symmetric

without loss of generality, permits that areas of feasible

solutions for a second-order system can be represented

as an ellipsoid cap on a sphere of radio equal to one

(also without loss of generality). Thus, to the extent

that two caps associated with two systems (matrices)

have an intersection, it follows that these two systems

share a CQLF area, and this fact can be extended

directly to a set of N matrices.
A set of graphical results as outlined above,

obtained from the best solution calculated with each

methodology is shown in Figure 3, in which the

following matrices were used:

(1) Commuting matrices

A�
�5:3788 4:5974

�0:7009 �1:4067

� �
B�

�6:9024 �2:4484

0:37327 �9:0178

� �

C�
�0:7287 �7:6940

1:1730 �7:3760

� �
,
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Figure 2. Average computing time up to the first feasible solution for other kind sets of N matrices in R5�5. (a) Commuting
matrice, (b) diagonal matrices, (c) commonly triangularizable matrices and (d) generic matrices. (Each mark: average of 20
measurements; dashed lines: projections because of complexity in collecting data; percentages: success rates; no-percentages:
100% success rates; R.I.C.: Random Initial Conditions; P.I.C.: Predefined Initial Conditions).
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(2) Triangular matrices

A ¼
�3:74 �10:06

0 �13:71

� �
B ¼

�15:53 25:43

0 �9:90

� �

C ¼
�5:37 10:98

0 �21:21

� �
,

(3) Definite negative matrices

A ¼
�9:62 5:65

�6:88 �0:73

� �
B ¼

�4:48 3:22

�11:17 �6:39

� �

C ¼
�10:83 1:61

1:05 �11:76

� �
,

(4) Generic matrices

A ¼
�9:83 �5:56

4:85 �4:21

� �
B ¼

�2:47 �7:70

1:47 �4:45

� �

C ¼
�8:69 1:16

8:84 �5:27

� �
:

In Figure 3, each ellipsoid cap represents the space

of feasible solutions to an individual Lyapunov

equation for each system. Therefore, through the

intersection of areas it can easily be verified that

matrices under analysis share a CQLF, and likewise

the area of feasible solutions to the CQLF problem

can be define. Although Figure 3 shows the result of

specific realisations for a particular set of matrices, an

approach to the robustness of the solutions obtained

with different methodologies compared can be made.
To begin with, it is clearly seen that as a solution is

further away from the edges of the CQLF area, it will

be more robust to parametric variations on the
matrices analysed, variations that make the caps

change their shape, orientation and location. By
analysing the location of the best PSO solution

obtained, it is seen that it is located towards what

might be called the centre of mass of the CQLF area,
unlike what happens with the other solutions in which

the solution is usually located near the edges of that

area. Therefore, the solutions obtained by PSO are
more robust compared to other methods for para-

metric variations in the matrices tested (which can be
checked graphically) because a small change in some

matrix can reduce the CQLF area causing that a

feasible solution near the edges ceases to be.

4.3.2 Case order4 2: performance index analysis

For this case a performance index is defined, to
quantify the level of parametric variation that may

occur in a parameter of the matrices for which a CQLF

was calculated, so that such CQLF remains as such
despite such variations. The two maximum possible

variation, defined as Varþ and Var�, are the max-
imum/minimum absolute percentage of change that

Figure 3. Graphic comparison for CQLF calculation in a set of three matrices of second-order that share a CQLF.
(a) Commuting matrices, (b) triangular matrices, (c) negative definite matrices and (d) generic matrices.
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can be added/subtracted to or from the parameter with

respect to its original magnitude, i.e.

Var� ai, j,P
� �
¼ Max

N%

ai, j �N%abs ai, j
� �� �

jP remains CQLF

� �
:

ð35Þ

As an illustrative example, a group of three stable

matrices in R4�4 was chosen, consisting of the following

randomly calculated matrices with generic structure:

A ¼

�1 �3 2 0

�1:8 0 �0:9 2

�1 6 �5 1

4:8 �3:2 2:9 �5:1

2
6664

3
7775

B ¼

�1:65 �4 2:85 �0:3

�3 0:15 �1:4 3:1

�1:35 9:6 �7:35 2:1

7:5 �4:65 4:3 �7:65

2
6664

3
7775

C ¼

�2:2 �6:5 3:8 0:5

�4 0:2 �1:9 4:2

�1:8 13 �9:8 3

10 �6:2 �5:8 �10:2

2
6664

3
7775:

Using fg (gradient-based methodology) and f2 with

predefined initial conditions (PSO-based methodol-

ogy), it was possible to achieve two types of Lyapunov

functions, which depend on whether the P matrix is

associated with the first feasible solution (Pfirst) or the

best feasible solution (Pbest). The respective Lyapunov

functions obtained for the above set matrices are:

Pfirst
G ¼

0:2919 �0:1773 0:1365 �0:1944

�0:1773 0:6055 �0:3181 0:2619

0:1365 �0:3181 0:3613 �0:2020

�0:1944 0:2619 �0:2020 0:3452

2
6664

3
7775

Pbest
G ¼

0:3090 �0:1976 0:1550 �0:1936

�0:1976 0:5909 �0:3173 0:2601

0:1550 �0:3173 0:3501 �0:2153

�0:1936 0:2601 �0:2153 0:3430

2
6664

3
7775

Pfirst
PSO ¼

0:8673 0:3741 0:0819 �0:1429

0:3741 0:2415 �0:0277 0:1046

0:0819 �0:0277 0:0706 0:0336

�0:1429 0:1046 0:0336 0:0681

2
6664

3
7775

Pbest
PSO ¼

0:6452 �0:1355 0:1545 �0:1854

�0:1355 0:5835 �0:0752 0:1015

0:1545 �0:0752 0:1787 0:0915

�0:1854 0:1015 0:0915 0:3322

2
6664

3
7775:

The analysis of the robustness for Pfirst
G , Pfirst

PSO, P
best
G

and Pbest
PSO against parametric variations of certain

parameters of A, B and C was developed using the
performance index defined by (35), and the results are
shown in Tables 1 and 2, where the boldface values
indicate for which method the maximum upper limit
(Varþ) and the minimum lower limit (Var�) for
parameter variation are obtained.

When analysing Tables 1 and 2 two important
aspects are noticed. The first aspect is if a CQLF
calculated from the first feasible solution is used
(Table 1), the gradient-based method offers better
results in terms of robustness than the PSO-based
method. However, usually one of the two indexes of
performance is very low when using gradient and thus
eventually PSO becomes better. The second aspect is
that when using a CQLF calculated from the best
feasible solution (Table 2), it is seen that the PSO-
based method provides more robust solutions com-
pared to gradient. It should also be noted that when
PSO does not improve the index with respect to
gradient, it is because the latter offered rates well above
those obtained with PSO.

Table 1. Comparison of the robustness for first solution.

Pfirst
G (%) Pfirst

PSO (%)

Varþ Var� Varþ Var�

a1,1 6 1733 2.5 31
a2,1 55.6 4.28 4.83 27.22

a1,2 99.7 3.33 1.9 1.2
b1,1 0.42 1363 3.03 50.3
b2,1 53.33 13 0.2 23.33

b1,2 89.58 0.19 7.08 0.625
c1,1 2.73 1318 1.68 55.09
c2,1 55 1.23 8.25 25

c1,2 87.69 1.07 8.2 0.41

Table 2. Comparison of the robustness for best solution.

Pbest
G (%) Pbest

PSO (%)

Varþ Var� Varþ Var�

a1,1 16.7 1935 70 1022
a2,1 73.44 9.77 94.44 38.89

a1,2 86.67 10.07 73.6 21.67

b1,1 7.27 1575 51.51 799.39
b2,1 69.33 3.27 70 25
b1,2 83.33 2.9 63.46 12.5

c1,1 9.11 795.45 50 792.18
c2,1 69.2 3.98 70 22.5

c1,2 80 3.37 60.92 11.54
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4.4 Convergence analysis

While the functional (19) is convex for each individual
matrix Ai, this is no longer true when all matrices Ai are
analysed simultaneously. The feasible solution space is
the intersection of convex spaces associated to each
individual solution (and therefore convex), but the
search space is the union of the individual search
spaces, making the functional (19) not convex when
considering multiple minima. Moreover, the complex-
ity of the search space increases as the number of
matrices to be analysed increases.

Since PSO has a non-zero probability of getting
stuck at a point that could not even be a local
minimum, the convergence to the feasible solution
space cannot always be assured (Jiang, Luo, and Yang
2007). However, that probability is very small, and
with a good exploration and exploitation character-
istics obtained through a suitable choice of the PSO
settings, high success rates with moderate execution
times can be achieved.

Nevertheless, there is a way to assure convergence
to the feasible solution space with probability 1, but
this is achieved in detriment of the computation time
demanded by the methodology. The idea is to employ a
modified version of PSO proposed by Van den Bergh
(2002), called guaranteed convergence PSO (GCPSO)
because it is used to get guaranteed local convergence,
and once the local minimum is attained to start a new
search, storing the best solution ever reached and
randomly reinitialising the swarm. Using this modified
version of PSO, there is an increase in computing time
due to the incorporation of more updating equations
(with more tuning parameters specifics of GCPSO) and
the linkage of the new searches, but the convergence is
always assured.

5. Conclusions

In this article a new methodology for finding a CQLF
based on a functional proposed by Liberzon and
Tempo, but using the PSO technique instead of
gradient as a tool for optimising, is presented. One of
the main conclusions reached is that PSO is a
successful technique for finding a CQLF with com-
parative advantages over other techniques including
LMI, gradient, NB and EB algorithms. Advantages
obtained are related to the computing time of a CQLF
with for certain types of matrices, and the robustness
of the CQLF with respect to parametric variations.
Although it was shown that the computing time can be
improved in large proportions in certain cases by using
PSO, the robustness of the best solution obtained with
each methodology under certain configurations regard-
less of the time necessary to obtain it was also

analysed. In light of this analysis, it was possible to

conclude that a PSO-based methodology has a

tendency to find CQLFs that are a more robust

solution (with respect to parameter variations of the

matrices under analysis) than gradient-based metho-

dology, both qualitatively and quantitatively, making

the proposed methodology one that offers more

reliability in ensuring stability of a switched system

through the CQLF approach.
As for limitations, two points of interest that affect

the effectiveness and efficiency of the proposed

methodology were detected: (1) the nature of the

matrices under analysis and (2) the dimensionality of

the problem. For the first limitation, by analysing

triangular and diagonal matrices, and matrices with

properties such as simultaneous triangularisation/

diagonalisation, the PSO-based methodology showed

significant advantages over gradient-based methodol-

ogy, but this was not so in the case of commuting

matrices, generic matrices or defined negative matrices.

However, it is important to note that precisely in cases

where PSO is not efficient, the gradient is, and

therefore it must be said that the two methodologies

are complementary rather than exclusionary.

Regarding the dimensionality of the problem, the

increase in the order of the systems is the variable that

most affects the PSO-based methodology, making the

calculation time increase greatly because, among other

things, the size of the population depends directly on

that variable. For its part, the increase in the number

of systems to be analysed using PSO showed no effects

as occurred in the case of gradient. An illustrative

example is the case of triangular matrices, where the

relationship of number-of-systems versus calculation-

time is linear with a small slope when using PSO, but

about exponential when using gradient. However,

regardless of computing time, PSO achieves feasible

solutions that appear to be more robust to parametric

variations of the matrices analysed.
While two options for optimising the fitness

functional with PSO were shown, other functional

and/or representations of matrices could be chosen for

improving convergence times, which is also affected by

the type of initialisation of the population. It was

found that the PSO search process is benefited by

including in the initial conditions, for example, a

particle with position representing the identity matrix

(which is CQLF for every set of negative definite

matrices), or a lot of solutions to individual Lyapunov

equations. For gradient-based methodology, some

improvements could also be added, such as making �
and r time-variant parameters to enhance convergence.

However, these additions are outside the scope of this

article.
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Finally, through the above results it can be
established that the proposed methodology is a new
alternative solution to the CQLF Problem, with boldly
marked advantages and strengths over the methodol-
ogies most commonly used today.
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