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demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.
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In this article, a hybrid predictive control (HPC) strategy is formulated for the
real-time optimisation of a public transport system operation run using buses.
For this problem, the hybrid predictive controller corresponds to the bus
dispatcher, who dynamically provides the optimal control actions to the bus
system to minimise users’ total travel time (on-vehicle ride time plus waiting time
at stops). The HPC framework includes a dynamic objective function and a
predictive model of the bus system, written in discrete time, where events are
triggered when a bus arrives at a bus stop. Upon these events, the HPC controller
makes decisions based on two well-known real-time transit control actions,
holding and expressing. Additionally, the uncertain passenger demand is included
in the model as a disturbance and then predicted based on both offline and online
information of passenger behaviour. The resulting optimisation problem of the
HPC strategy at every event is Np-hard and needs an efficient algorithm to solve it
in terms of computation time and accuracy. We chose an ad hoc implementation
of a Genetic Algorithm that permits the proper management of the trade-off
between these two aspects. For real-time implementation, the design of this HPC
strategy considers newly available transport technology such as the availability of
automatic passenger counters (APCs) and automatic vehicle location (AVL)
devices. Illustrative simulations at 2, 5 and 10 steps ahead are conducted, and
promising results showing the advantages of the real-time control schemes are
reported and discussed.

Keywords: hybrid predictive control; public transport; holding; station skipping

1. Introduction

The basic design variables required to set up a public transport system using buses are the
number of lines and their associated routes, the fleet composition of each line and the
optimal frequency associated with each line. These factors should all be strongly related to
passenger demand intensity and distribution, according to the most demanding periods for
a typical day of operation (peak periods). Moreover, the frequency of operation and the
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associated pre-planned schedule must be set differently for various established periods,
while still assuming an average behaviour (deterministic) over each period. Unfortunately,
in most cases the movement of buses is affected by different disruptions as the day
progresses, such as traffic congestion, unexpected delays, randomness in passenger
demand (both spatial and temporal), irregular vehicle dispatching times, incidents and so
on. These events hinder the dispatch of buses as well as in-route bus operations when
following a pre-planned schedule defined at an aggregated level (average) over each period
of operation. As an attempt to reduce the negative effects of service disturbance,
researchers have devoted significant effort to developing flexible control strategies, either
in real-time or offline, depending on the specific features of the problem.

Historically, the literature in this field was evolved from the study of pre-planned fleet
assignment and scheduling strategies, to the analysis of real-time control strategies,
assuming that real-time information is available through on-vehicle equipment such as
automatic passenger counters (APCs) and automatic vehicle location (AVL) devices. The
first group of strategies works as a complement to a properly pre-planned bus schedule,
since they are defined to deal with well-known demand imbalances at an aggregated level,
in specific route sections and periods (for a deep description of these strategies, such as
short turning, restricted zonal service and deadheading, amongst others, see Furth and
Day (1984)). The second group of strategies has been designed to allow the operator to
react dynamically to real-time system disturbances. The most studied strategy of this type
in recent years is the holding strategy, in which vehicles are held at specific stations for a
certain time, in most cases oriented to keep the headway between successive buses as close
as possible to a predefined value.

In terms of the spatial configuration of the different control strategies, Eberlein (1995)
classified them into three categories: station control, inter-station control and other
strategies. Station control strategies are of two types: holding and station-skipping
(deadheading, expressing, short-turning, etc.). Inter-station control strategies include
speed control and transit signal priority, amongst others. Other strategies include, for
example, train-splitting, which is more oriented to the rail systems control literature.

With regard to the most remarkable contributions in the study of the holding strategy,
we can mention Barnett (1974), Turnquist and Blume (1980), Eberlein (1995), Eberlein
et al. (2001), Hickman (2001), Sun and Hickman (2004), Zolfaghari et al. (2004) and Yu
and Yang (2007). Barnett (1974) developed a simple holding model at a given control
station, where the sum of total waiting time plus the extra delay of passengers on board
deadheaded vehicles is minimised. Turnquist and Blume (1980) identified conditions under
which holding results are attractive. The study of Hickman (2001) presented a stochastic
holding model at a given control station. The author formulated a convex quadratic
program in a single variable corresponding to the time lapse during which buses are held.
More recent research has explored holding models that rely on real-time information,
mainly referring to vehicle location (Eberlein 1995, Eberlein et al. 2001, Hickman 2001,
Sun and Hickman 2004). Eberlein (1995) and Eberlein et al. (1999, 2001) postulated
deterministic quadratic programs under a rolling horizon scheme, in which the holding
decision for a specific vehicle affected the operation of a specific subset of the precedent
vehicles. The authors concluded that having two or more holding stations over a corridor
is not necessary. These results contradicted those of Sun and Hickman (2004). Their paper
concluded that holding multiple vehicles at multiple control stations would be better than
having a single holding station. Most of these models propose heuristics to solve the
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problems due to the mathematical complexity of the formulations. Zolfaghari et al. (2004)
developed a mathematical control model for holding using real-time information of
locations of buses along a specified route. Waiting times are computed based on the
difference of departure times of buses and the optimisation problem is finally solved with
simulated annealing. Finally, Yu and Yang (2007) present a dynamic holding strategy, in
which the on-time performance of the early bus operation at the next stop is considered
and the holding times of the held bus at the stop is optimised. A model based on support
vector machine (SVM) for forecasting the early bus departure times from the next stop is
also developed. Furthermore, in order to determine the optimal holding times, a model
aiming to minimise the total user costs is developed. Genetic algorithms are proposed to
optimise holding times.

The operation of express services (expressing) has been studied as a pre-planned
strategy (Jordan and Turnquist 1979, Furth 1986) and, more extensively, as a real-time
control strategy (Eberlein 1995, Lin et al. 1995, Eberlein et al. 1999, Fu et al. 2003, Sun and
Hickman 2005). In the latter case, the approach consists of speeding up buses by skipping
stations (one or more) to recover their pre-planned schedule after a disruption or
unexpected delay, in order to reduce the impact on the level of service measured by total
waiting time of users at stations plus the extra waiting time of passengers whose station has
been skipped. In general, a station-skipping decision is made before the buses depart from
the terminal, except in the model by Sun and Hickman (2005), who allowed the control
action to be taken once the vehicle is moving. The authors consider the first and last
stations of the skipped segment as variables, finding many situations in which a strategy
that allows buses to stop at a skipped station if there are passengers who need to get off
there (allowing some passengers to get on the bus as well) outperforms the basic strategy,
where passengers whose destination is inside the skipped segment are forced to get off
before their desired station.

Eberlein (1995) formulated an integrated model, which encompassed holding,
deadheading and expressing. Additionally, Adamski and Turnau (1998) and Adamski
(1996) developed a simulation decision-support tool for dynamic optimal dispatching
control, including punctuality control (which compensates for deviations from the
schedule), regularity control (which compensates for deviations from regular headway)
and synchronising control based on the Linear Quadratic feedback control, while
considering system state constraints. They also performed a Linear Quadratic stochastic
control with real-time estimation of the model parameters and presented the results using
numerical examples.

In the present article, we develop a model integrating two of the aforementioned
strategies (holding and expressing) to solve a real-time public transport control problem
with uncertain passenger demand, relying on online information of system behaviour. In a
way similar to Sun and Hickman (2005), in our model the decision of skipping stations is
made in real-time, which makes the proposed framework more adaptable and responsive
to real-time delays. The model is formulated as a hybrid predictive control (HPC)
problem, since the underlying theory fit nicely into the dynamic conditions of typical
public transport problems. Predictive models permit the estimation of future effects of the
control actions on the behaviour of the bus system and also allow the inclusion of complex
system constraints. They also have the capability of optimising system performance in
real-time based on a properly chosen objective function (Hegyi 2004, Hegyi et al. 2005,
Karer et al. 2007a,b). Moreover, predictive approaches are suitable for dynamic
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environments with high uncertainty of future events, which can become relevant for the
decision making process that has to be performed in real-time (Cortés et al. 2008, Sáez
et al. 2008).

Specifically in this research, we propose to design and evaluate a predictive control
strategy for a bus system with uncertain passenger arrival at bus stops, under a real-time
framework. For this problem, the predictive controller corresponds to the bus dispatcher,
who dynamically provides the optimal control actions to the bus system in order to
optimise the performance according to an assumed objective function that takes into
account the future evolution of the public transport system. In this particular case, the
dynamic objective function is mostly oriented to minimising users’ total travel time
(including waiting time as well as in-vehicle ride time). A more complex model would also
include operational cost; however, for the kind of strategies we are considering in this
approach (holding and expressing), it seems that the dynamic operator component is not
as important as if we had not included strategies involving injection of additional buses in
certain route sections; this component is part of ongoing research.

The real-time passenger demand, which is unknown and uncertain, is modelled as a
disturbance for the predictive scheme, because different passenger arrival patterns could
significantly affect the estimated in-vehicle ride time from longer passenger transfer
operations at bus stops. The control strategies will allow us to incorporate into the design
the future behaviour of the whole system associated with the operation of the buses, by
using a prediction system for the disturbances (demand). The methodology for predicting
the demand needs a good estimation of the origin–destination real-time matrix to properly
predict the future number of passengers at stops, bus loads and passenger transference
time lapses, based on both offline and online data.

Several authors in the public transport real-time control literature designed their
strategies based on a typical objective function of regularising the headway between buses,
which is found on a total users’ waiting time minimisation objective, since the waiting time
linearly increases with headway variance (Welding 1957, Osuna and Newell 1972). As
discussed before, for the design of the predictive controller, a proper objective function
is defined considering the in-vehicle travel and waiting time spent by all users affected by
the implementation of the strategies during their trip. Thus, the waiting time component is
explicitly included in our formulation, along with a component oriented to maintain the
headway as close as possible to the design headway (see Section 2.4 for details).

In the next section, the design of the HPC is described. As explained in Section 3, we
propose to use Genetic Algorithms (GA) for efficiently solving the resulting HPC
optimisation problem. Next, in Section 4 we describe illustrative simulations at 2, 5 and 10
steps ahead. Finally, in Section 5 the major conclusions of the work are presented.

2. HPC design for a dynamic public transport system

2.1. Problem statement

The optimisation of the real-time operations associated with a bus system is formulated
under a HPC approach. Both the objective function and the predictive model are essential
for HPC design. For the sake of simplicity, in this work the HPC framework is constructed
for a single loop bus system, although it could be extended to more complex systems
according to a similar modelling framework. The system is represented in Figure 1.
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The network is a one-way loop route, with P equidistant stops and b buses running around
the loop, under the control of the dispatcher.

Passengers arrive at each station at a certain rate by following a negative exponential
distribution, with destinations randomly chosen among the stations ahead of the station
where the passenger is boarding. Then, every passenger is characterised by origin and
destination bus stops and by the time the passenger arrives at the stop, without including
the time spent by the passenger in getting to the bus stop. From historical data, a
representative stop-to-stop demand matrix can be estimated for each modelling period;
this is crucial for adding the predictive feature in the real-time model of the system. Online
demand data can also be used as a complement to the offline demand matrix to improve
this predictive aspect.

In our approach, there are discrete (number of passengers on buses) as well as
continuous (bus position and speed) variables. For this reason, we decided to use a HPC
approach, in which the optimisation of the control actions considering both kinds of
variables can be performed (Bemporad and Morari 1999). The problem is then formulated
as a hybrid system, where events are triggered by specific actions. Unlike traditional HPC
formulations written for a fixed step-size, this formulation results in a variable step-size,
since the problem scheme is based on relevant system events (corresponding to the
instants at which control actions must be taken). The events are triggered when a bus
arrives at a bus stop, which determines a variable time-step. Hereafter, we denote t as the
continuous time, k as the event and tk as the continuous time at which event k occurs.
Note that an event k is always associated with the arrival of a specific bus i to a specific bus
stop p.

One major feature of this particular HPC approach, different from typical HPC
schemes, is the double dimensionality of this specific dynamic modelling framework:
spatial and temporal. Figure 2 shows the closed loop of the bus system and the
corresponding main variables, which are functions of continuous and discrete time. When
an event k occurs, the hybrid predictive controller generates control actions and then, the
outputs are obtained. The variables defined in continuous time, such as bus position and

Figure 1. Public transport system.
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speed, are required to keep track of some system characteristics when an event is triggered

(e.g. position of all vehicles when one specific bus arrives at a bus stop).
For every bus i belonging to the fleet, its position at any continuous instant t, xi(t), and

the remaining time for the bus i to reach the next stop, Ti(t), are defined in order to check

the buses’ status and consequently trigger the events. A new event k is triggered by bus i at

any stop p when xi(t) matches the position of this stop at t¼ tk. Therefore, the remaining

time for the bus i to reach this stop is equal to zero (Ti(tk)¼ 0).
The manipulated variables are the holding hi(k) and the station-skipping Sui(k) actions

associated with bus i and event k. Thus, hi(k) is the lapse during which bus i is held at the

stop associated with event k, while Sui(k) is a binary variable that is equal to one if

passengers are allowed to board bus i at the stop associated with event k, zero otherwise.

The discrete time output variables correspond to the passenger load Li(kþ1) and the

departure time Tdi(kþ1) once the bus departs from its current stop, associated with the bus

i that triggered event k.
In Figure 2, the variable �pðkÞ is the number of passengers waiting for a bus at stop p

and corresponds to a system disturbance. By means of a demand estimator, the variables

ÂiðkÞ, B̂iðkÞ and �̂pðkþ 1Þ are estimated and incorporated to the dynamic model. �̂pðkþ 1Þ

is the prediction of the number of passengers when bus i departure from stop p, B̂iðkÞ is the

expected number of passengers that will board bus i at event k and ÂiðkÞ represents the

estimated number of passenger alighting from bus i at event k.
With regard to the inputs of the dynamic model, these correspond to the control action

variables, and are analytically defined as follows:

. Sui(k): Passenger boarding action of bus i, at instant k (associated with

expressing),

SuiðkÞ ¼
1 if �ði, kÞ

0 otherwise
,

�
where condition �ði, kÞ is true if either passengers are allowed to board bus i or

any passenger on board bus i reaches his/her destination at event k.
. hi(k): Holding action of bus i at instant k. Where hiðkÞ ¼ ni�, ni 2 Zþ, �4 0:

Estimator

Hybrid predictive
controller 

Public transport
system 

hi(k)

Sui(k)
xi(t), Ti(t)

Demand

( 1)iL k +

( 1)iTd k +

ˆ ( 1)p kΓ +

ˆ ˆ( ), ( )iA k B k
( )p kΓ

i

Figure 2. HPC for the public transport system.
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These expressions mean that the holding periods are multiples of a fixed step �. This
assumption is applied to simplify both the formulation and the application of the solution
algorithm (Section 3). In the numerical example (Section 4), �¼ 30 s and ni 2 0, 1, 2, 3f g.
The reason for choosing discrete holding lapses was first, from an operational standpoint,
to facilitate the bus drivers to follow the instructions by the central dispatcher. Moreover,
having differences of less than 30 s in holding values is not practical, mainly due to
constraints given by real driving conditions (unexpected traffic, flexibility to the driver to
start operating, communication with the central, etc.).

Next, we analytically define the predictive model, including state space variables and
model outputs. In Section 2.3, the operational constraints are described. In Section 2.4,
we complete the HPC strategy definition by specifying the proposed dynamic objective
function along with the definition of variables specified above.

2.2. Predictive model

The predictive model will describe the dynamic behaviour of the aforementioned main
variables as a function of the control actions.

First, the expected bus position at instant t, x̂iðtÞ, is described as a function of the
bus’s instantaneous speed viðtÞ that depends on the continuous time and the applied
control actions. Let us start computing the position of the bus i in continuous time t as
follows:

x̂iðtÞ ¼ xiðtkÞ þ

Z t

tk

v̂ið#Þd#, ð1Þ

where tk is the continuous instant at which the event k is triggered and xi(tk) the position of
bus i at instant tk. The instantaneous speed v̂iðtÞ is modelled by assuming a constant speed
v0 whenever the vehicle is moving, and the speed is equal to zero otherwise, which implies
that the processes of acceleration and deceleration of the buses are ignored. Figure 3 shows
the speed function of bus i while it is travelling from the station it reaches at instant k until
the bus arrives at the next stop along its route (which is associated with future instant
kþ d ). Notice that d corresponds to the time lapses (intervals) triggered by other buses of
the fleet arriving at different bus stops, taking place while bus i is travelling between its
current stop and the next (including the time it is at its current stop). In the figure, T̂riðkÞ
is the estimated time associated with passenger transference (maximum between the

ˆ ( )iv t

ˆ ( )i iTr k ˆ ( )iTv k
+

Figure 3. Example of bus speed between consecutive stops.
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boarding and alighting times) and T̂viðkÞ is the estimated travel time between two

consecutive stations, namely station p and the next station. As defined above, the

controller decides the holding time of bus i at event k, denoted hiðkÞ. Clearly, when a bus is

at a bus stop, its velocity equals zero while the bus is transferring passengers and also

during the holding period (if the bus is held there), which means that the instant speed

actually depend on those variables.
In this context and based on Figure 3, an estimation of the instantaneous speed can be

computed as follows:

v̂iðtÞ ¼
0 tk � t � tk þ T̂riðkÞ þ hiðkÞ

v0 tk þ T̂riðkÞ þ hiðkÞ � t � tkþd

(
ð2Þ

In order to trigger the next event of the dynamic model, the expected remaining time

(measured from instant t) for the bus i to reach the next stop is required; it can be

computed as follows:

T̂iðtÞ ¼ tk þ SuiðkÞ � hiðkÞ þ T̂riðkÞ
� �

þ T̂viðkÞ � t, tk � t � tkþd: ð3Þ

Estimations of the continuous state space variables of our proposed scheme are given by

Equations (1) and (3). Next, the prediction of discrete output variables of the dynamic

model, required for the HPC strategy ðL̂iðkþ 1Þ and T̂diðkþ 1ÞÞ, are defined and

analytically computed.
First, let us define the predicted passenger load L̂iðkþ 1Þ, as the estimated number of

passengers on bus i once it departs from the station. Analytically,

L̂iðkþ 1Þ ¼
min �L,LiðkÞ þ SuiðkÞ B̂i ðkÞ � ÂiðkÞ

� �n o
if bus i triggered event k

LiðkÞ otherwise

,

8<
: ð4Þ

where �L is the bus capacity, LiðkÞ is the load of bus i at instant k, B̂iðkÞ corresponds to the

expected number of passengers that will board bus i, constrained by the available capacity

of the bus and ÂiðkÞ represents the estimated number of passengers alighting from bus i at

event k.
Note that ÂiðkÞ and B̂iðkÞ are obtained through a statistical analysis of data collected

from sensors that should be located at stops and buses. In our approach, these estimations

are obtained from data of both a set of previous similar days (offline historical data) and

dynamic information occurring in the same day (online data).
Based on offline data, we are able to estimate ÂiðkÞ using the most frequent

destination patterns from previous days over the same period; then, those estimations

are corrected with online destination data obtained from observed preferences from

passengers already in the system. B̂iðkÞ is computed based on both the estimated bus

stop load �pðkÞ at instant k and the bus capacity; it is estimated using autoregressive

moving average models for the arrival time of passengers at stops. Moreover, the

estimated transference time defined before is T̂riðkÞ ¼ Maxfta � ÂiðkÞ, tb � B̂iðkÞg where ta
and tb are the marginal rate of boarding and alighting, respectively, in seconds per

passenger.
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In addition, the estimated departure time T̂diðkþ 1Þ once bus i departs from its current
stop can be computed as

T̂diðkþ 1Þ ¼
tk þ SuiðkÞ � hiðkÞ þ T̂riðkÞ

� �
if bus i triggered event k

TdiðkÞ otherwise

(
ð5Þ

The prediction of the bus stop load �̂pðkþ 1Þ (when bus i departs from stop p), defined as
the number of passengers waiting at bus stop (station) p associated with the bus i that
triggered event k; it can be computed as follows:

�̂pðkþ 1Þ ¼
�pðkÞ þ �̂pðkÞ � B̂iðkÞ if bus i triggered event k

�pðkÞ þ �̂pðkÞ otherwise

(
, ð6Þ

where �pðkÞ is the bus stop load at the same stop p at instant k; �̂pðkÞ provides the number
of passengers that arrive at the bus stop between instants k and the instant of the bus
departure from this stop; �̂pðkÞ is generated based on the statistical analysis of the data in
both the previous similar days and the same day (both offline and online historical data)
and is estimated considering autoregressive moving average models for the arrival time of
passengers to stops.

By using the prediction of the departure time as in Equation (5), it is possible to predict
the headway Ĥiðkþ 1Þ of bus i that triggers the event k, with respect to its precedent bus
i� 1 when it reaches the same stop, which corresponds to event kþ 1� zi�1. Analytically,

Ĥiðkþ 1Þ ¼ T̂diðkþ 1Þ � T̂di�1ðkþ 1� zi�1Þ, ð7Þ

where T̂diðkþ 1Þ is associated with the bus i that triggers the event k, and
T̂di�1ðkþ 1� zi�1Þ represents the predicted departure time of precedent bus i� 1 that
triggers the event k� zi�1, at the same stop. The variable zi�1 represents the number of
events between the arrival of the precedent bus i� 1 and the bus i, both reaching the
same stop.

2.3. Operational constraints

The predictive model of the public transport system must satisfy some physical and
operational constraints. The first constraint corresponds to the capacity constraint
(already stated in Equation (4)). This is a physical constraint as the bus cannot transport
more passengers than its maximum capacity. We can also apply a service policy by setting
such a capacity differently in order to avoid overcrowding.

Both the precedence constraint and the demand consistency are relevant, because every
passenger has a specific origin and destination. Precedence constraints avoid passengers
getting off before they get on any bus. With regard to the demand, it is assumed that there
are no transfer nodes, and therefore, once a passenger is on board a bus, he (she) will alight
from the same bus at his (her) destination stop. Also, once a passenger arrives at their
destination, he (she) will always get off the bus there (passengers want to minimise their
travel time, so we assume that passengers do not stay on buses in loops).

Regarding bus operation, the model is constrained to stop at a station if there is
any passenger requesting to get off, even though the model recommends performing a
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station-skipping action, similar to what is suggested by Sun and Hickman (2005). Thus, if
the next stop is the destination of even one passenger then the skipping action cannot be
applied and the bus must stop and the passengers waiting can board. This strategy seems
to work better than including that aspect as a penalty in the objective function, in which
case some of the passengers could end up getting off at a station different from their
planned destination. On the other hand, if the model determines a holding action at a
certain stop, which is not physically appropriated for such an operation, then the bus just
stops during a lapse required for a normal passenger transfer operation.

As a physical constraint, and also for practical purposes, the control action holding can
be applied just at specific stops, properly equipped to perform such an action. On the other
hand, station-skipping could be applied at any bus stop. Each bus is identified by a unique
internal label. However, the model allows the indices to be updated when a bus arrives at
its next stop, sorted in such a way that bus i� 1 always precedes bus i. One important issue
is that overtaking is allowed in the model as the indices associated with buses (i and i� 1
for two consecutive buses) are set each time an event occurs and a control action is applied;
in such cases the indices are properly updated and sorted.

2.4. Objective function

The next step is to properly define a predictive objective function in order to make the
real-time decisions and optimise the dynamic system. In this case, we will pursue the
minimisation of expression (8), which comprises five components, all of them definitely
oriented to user cost through total in-vehicle ride and waiting times. Analytically,

min
uðkÞ,uðkþ1Þ,...,uðkþNp�1Þf g

XNp

‘¼1

�1 � Ĥiðkþ ‘ Þ�̂pðkþ ‘ Þþ �2 � ðĤiðkþ ‘ Þ� �H Þ2
h
þ �3 � L̂iðkþ ‘ Þhiðkþ ‘� 1Þþ �4 � L̂iðkþ ‘ ÞT̂riðkþ ‘� 1Þ

þ�5 � �̂pðkþ ‘ ÞĤiþ1ðkþ ‘þ ziþ1Þð1�Suiðkþ ‘� 1ÞÞ
i���

i¼iðkþ‘�1Þ
p¼pðkþ‘�1Þ

,

ð8Þ

where uðkÞ, . . . , uðkþNp� 1Þ
� �

is the control action sequence with uðkþ ‘� 1Þ ¼
hiðkþ‘�1Þ
Suiðkþ‘�1Þ

h i
when bus i triggers event kþ ‘� 1;Np is the prediction horizon and b is the

number of buses in the fleet.

Note that i ¼ iðkþ ‘� 1Þ 2 1, . . . , bf g, p ¼ pðkþ ‘� 1Þ 2 1, . . . ,Pf g, if we consider that
the future event kþ ‘� 1 is triggered by one bus iðkþ ‘� 1Þ arriving to a specific station
downstream pðkþ ‘� 1Þ. In expression (8), �j, j ¼ 1, . . . , 5, are weighting parameters, and
have to be tuned depending on the specific problem to be treated and on the physical
interpretation of the different components as well.

�H corresponds to the desired headway (set-point) designed for servicing the system
demand during a certain time period. Normally, the design headway is related to the
design frequency that directly depends on the segment loads, and can be determined, for
example, as the minimum required for moving the passengers on the most loaded segment
along the bus route. In more sophisticated systems, the design frequency is computed by
minimising a static objective function involving operator as well as user costs, in which
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case the optimal frequency is in most cases larger than the minimum frequency able to
carry all passengers at an aggregated level.

The first term in Equation (8) quantifies the total passenger waiting time at stops and
depends on the predicted headway along with the bus stop load. The second term captures
the regularisation of bus headways, to maintain the headway as close as possible to the
design headway. The third component measures the delay associated with passengers
on-board a vehicle when they are held at a control station due to the application of the
holding strategy. The fourth component corresponds to the extra travel time incurred by
the passengers on board due to the transference of passenger process. The longer the
transference is, the higher this component becomes. This component was included mainly
for the evaluation of station-skipping (apart from the fifth terms explained next) as every
time the controller decides to skip a stop, there is an extra benefit for all passengers on
board since they will save time because the bus is not going to decelerate and stop for a
while to board and alight new passengers. Finally, the fifth component is the extra waiting
time of passengers whose station is skipped by an expressed vehicle, associated with the
station-skipping strategy.

Note that the proposed objective function is oriented to the satisfaction of users
through travel and waiting time because we are proposing an operational level scheme.
Therefore, assuming a fixed fleet size obtained from the design frequency, which is the
inverse of the design headway defined in Equation (8), the only relevant benefit of applying
the proposed real-time control strategies, is on passengers’ level of service. Given these
considerations, operational cost components were not considered in the objective function
specification, although under other conditions they could become important in the
real-time decisions.

In the next section we describe the solution algorithm proposed and implemented in
order to dynamically solve the formulation in Equation (8) using the predictive model
described in Section 2.2 and the operational constraints presented in Section 2.3.

3. HPC solution based on genetic algorithms (HPC-GA)

Genetic algorithms are used to solve the optimisation of the objective function, since they
can efficiently cope with mixed-integer non-linear problems. Another advantage is that the
objective function gradient does not need to be calculated, reducing computational effort.
The GA approach in HPC provides a sub-optimal discrete control law close to the optimal
one. When the best solution is maintained in the population, it can be shown that the GA
converges to the optimal solution (Rudolph 1994). However, due to the limited time
between the sampling instances, reaching the global optimum is not guaranteed.
Nevertheless, the probabilistic nature of the algorithm ensures that it finds an
approximately optimal solution. In contrast with this, the application of traditional
optimisation techniques to solve the same problem cannot guarantee even the calculation
of a feasible solution, because of the complexity of the optimisation problem and the time
required to make the real-time decision. Since in this case we are dealing with a complex
mixed-integer and non-linear programming (MINLP), using the GA optimisation is
justified.

A potential solution of the GA is called individual. The individual can be represented
by a set of parameters related to the genes of a chromosome and can be described in a
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binary or integer form. The individual represents a possible control action sequence

uðkÞ, . . . , uðkþNp� 1Þ
� �

, where each element is a gene, and the individual length

corresponds to the prediction horizon Np.
Using genetic evolution, the fittest chromosome is selected to assure the best offspring.

The best parental genes are selected, mixed and recombined for the production of offspring

in the next generation. For the recombination of genetic populations, two fundamental

operators are used: crossover and mutation. For the crossover mechanism, the portions

of two chromosomes are exchanged with a certain probability in order to produce the

offspring. The mutation operator alters each portion randomly with a certain probability

(Man et al. 1999).
In this work, there are two manipulated variables: holding action and station-skipping.

The holding action takes integer values at the selected bus stops. Station-skipping is

defined with ‘0’ value when the bus skips the stop and ‘1’ otherwise. Both manipulated

variables are exclusive to a bus stop, as when the station-skipping is applied, the holding

action cannot be applied.
Considering these definitions, the following states of the manipulated variables are

defined:

uðkþ ‘� 1Þ ¼
hiðkþ ‘� 1Þ
Suiðkþ ‘� 1Þ

� 	
2 U1,U2, . . . ,Uj, . . . ,UQ
� �

,

where Uj corresponds to one of the Q specific control actions.
Considering these definitions and using four integer values for the holding action: 0,

30, 60 and 90 s at the selected bus stops, the following states of the manipulated variables

are defined:

uðkþ ‘� 1Þ 2
0

1

� 	
,

30

1

� 	
,

60

1

� 	
,

90

1

� 	
,

0

0

� 	� 

,

where the first row represents the holding action and the second one represents

station-skipping. In order to apply GA, the following codification is proposed:

U1 ¼
0

1

� 	
, U2 ¼

30

1

� 	
, U3 ¼

60

1

� 	
, U4 ¼

90

1

� 	
, U5 ¼

0

0

� 	
:

Also, as mentioned in Section 2.3, the following constraints for the control actions should

be satisfied:

. If the passenger needs to get off, the bus should be stopped, and therefore

station-skipping action cannot be applied.
. The holding action is defined for some specified bus stops.

The complete procedure for the GA applied to this control problem corresponds to an

efficient adaptation of the GA proposed by Man et al. (1999). The major modifications

with respect to the original GA are the proposed mutation operator and the way we avoid

repeating the computation of future states already computed in previous steps of the GA

implementation. The algorithm is as follows.

(1) Initialise a random population of individuals, i.e., create random integer feasible

solutions of manipulated variables (control action sequence) for the HPC problem.
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For example, let us take a prediction horizon equals to 4 (Np¼ 4); then, there are

54 possible individuals (QNp) not all feasible because of the constraints explained

above. In the next example, the size of the population is n individuals per

generation.

Population i,

Individual 1

Individual 2

..

.

Individual n

0
BBBB@

1
CCCCA,

U1,U1,U2,U5

U2,U1,U3,U4

..

.

U4,U5,U1,U3

0
BBBB@

1
CCCCA

For example, Individual 1 means that the vector of the future control action is

Individual 1¼ ½uðkÞuðkþ 1Þuðkþ 2Þuðkþ 3Þ�T ¼ ½U1,U1,U2,U5�
T
¼

0 0 30 0

1 1 1 0

� 	T
:

Thus, in this example the future control actions u(k) and u(kþ 1) indicate no holding at the

bus stops for passengers transferring. At instant (kþ 2), holdings of 30 s is proposed. At

instant (kþ 3), station-skipping is applied.

(2) Evaluate the fitness function for all initial individuals in the population using (8). If

the individual is not feasible, penalise it (pro-life strategy). In this step, we suggest

to sort the individuals according to their first element corresponding to future

control actions in order to evaluate and record the predictive variables for each

control sequence. So, if we evaluate the fitness of individual U1,U1,U2,U5
� �T

, the

computation of other individuals with the same initial control actions such as

U1,X,X,X
� �T

, U1,U1,X,X
� �T

, U1,U1,U2,X
� �T

will be less expensive computa-

tionally as the recursion for the predictions will not be performed again. Moreover,

if the same individual U1,U1,U2,U5
� �T

appears in new generations, its fitness, as it

was obtained before, will not be calculated again.
(3) Select random parents from the population (different vectors of the future control

actions). For example, Individual 2 and Individual 6 are chosen as the parents.

U2,U1|fflfflffl{zfflfflffl}
2A

, U3,U4|fflfflffl{zfflfflffl}
2B

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Individual 2

U4,U5|fflfflffl{zfflfflffl}
6A

, U2,U1|fflfflffl{zfflfflffl}
6B

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Individual 6

(4) Generate a random number between 0 and 1. If the number is less than the

probability pc, choose a random integer in the range 05 cp 5Np (cp denotes the

crossover point) and apply the crossover to the selected individuals in order to

generate an offspring.

After the crossover step:

U2,U1,|fflfflfflffl{zfflfflfflffl}
2A

U2,U1|fflfflffl{zfflfflffl}
6B

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{New Individual 1

U4,U5,|fflfflfflffl{zfflfflfflffl}
6A

U3,U4|fflfflffl{zfflfflffl}
2B

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{New Individual 2
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(5) For each gene of all the individuals in the offspring, generate a random number
between 0 and 1. If the number is less than the probability pm, apply the modified
mutation operator to the gene. The modified mutation considers that the gene will
change to a possible control action belonging to the set U1,U2, . . . ,Uj, . . . ,UQ

� �
with a different probability. So, the probability for mutation from any gene, to
the control action Ui equals pUi , where

PQ
i¼1 pUi ¼ 1. By doing this, some control

actions that are very common will be analysed with a higher probability. For
example, the probability for the mutation to a station-skipping U5 ¼ 0

0

� �� �
or not

holding U1 ¼ 0
1

� �� �
control actions will be larger, as it is allowed doing those

control actions in all stops.

After the mutation step in the third gene and fourth gene, respectively,

U2,U1,U5,U1
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{New Individual 1

U4,U5,U3,U1
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{New Individual 2

" "

(6) Evaluate the fitness given by the objective function (8) of all the individuals in the
offspring population. If the individual is not feasible, penalise its corresponding
fitness. We recommend the same time savings procedure used in step 2.

(7) Select the best individuals according to the objective function (8). To record the
best individual obtained so far, as it could be the optimal control action sequence
to be applied.

(8) Replace the weakest individuals from the previous generation with the strongest
individuals of the new generation selected in step 6.

(9) If the objective function value reaches the defined tolerance or the maximum
generation number is reached (stopping criteria), then stop. Otherwise, go to step 2.

Since we proposed a real-time control strategy, the best stopping algorithm criterion
corresponds to the number of generations, which is associated with the maximum
computational time available to solve this problem.

The genetic algorithm approach in HPC provides a sub-optimal discrete control law
close to the optimal one. The tuning parameters of the GA method are the number of
individuals (Nind ), number of generations (Ngen), crossover probability (pc) and mutation
probabilities ð pm, pUiÞ.

4. Simulation results

4.1. Experiment description

The proposed strategy is applied over a bus corridor of 8000m with a fleet of b¼ 6 buses,
of capacity for 72 passengers. The system comprises P¼ 10 stations evenly distributed over
the bus route (station spacing of 800m). The holding control action is applied at bus stops
3 and 7, while the skipping actions can be applied at all stations. The simulation assumes
uncertain online demand for the arrival of passengers to stations, which follows a Poisson
process with demand rates differentiated by station and period (Figure 4). The marginal
boarding and alighting rates are ta¼ 3 s pax�1 and tb¼ 5 s pax�1, respectively, in seconds
per passenger. The desired headway (set-point) is �H ¼ 6min. Moreover, we assume that
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buses moves at a constant speed v0 ¼ 25 kmh�1 when they are not at a stop. The total
simulation period was 2 h, including a warm-up period (discarded for statistics) of 15min
at the beginning and at the end of the simulation. All processes were run on a Computer
Pentium Core 2 duo, 2� 2.4GHz with 3GB RAM.

The demand distribution corresponds to the behaviour of the passengers along a linear
corridor, in which the first five stations are evenly distributed over one direction of the
route, while the last five stops are evenly distributed over the opposite direction of the
route. Thus, Station 2, for example, is in front of the physical location of Station 8. In this
example, there are some origin–destination pairs with no demand, as shown in Figure 4.
However, the modelling approach described in the previous section can be extended to any
demand configuration.

For the proposed genetic algorithm, the chosen parameters are pc ¼ 0:8, pm ¼ 0:1,
pU1 ¼ 0:26, pU2 ¼ 0:2, pU3 ¼ 0:13, pU4 ¼ 0:07 and pU5 ¼ 0:34: The available period set for
solving the real-time optimisation problem before the expected occurrence of an event is
30 s. This lapse considers the running time of the algorithm plus a preparation period to
give instructions to the driver. Therefore, the number of individuals (Nind ) and
generations (Ngen) are set in a fixed value such that the controller is able to solve the
optimisation problem in less than 20 s assuming a preparation time for drivers of around
10 s additionally. Note that Ngen and Nind must be set differently for different prediction
horizons to fulfil the computation time constraint. In numbers, for Np¼ 2 Ngen¼ 5
Nind¼ 5, for Np¼ 5 Ngen¼ 20 Nind¼ 40 and for Np¼ 10 Ngen¼ 20 Nind¼ 40.
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Figure 4. Demand configuration for a specific day (number of passengers per O–D pair).
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Next, we propose an analysis of the objective function weighting parameters of
expression (8) for being used in the experiments described in Section 4.4.

4.2. Analysis of the weighting parameters in the objective function

We analyse the weighting parameters of the objective function (8) for the Hybrid
Predictive Controller. The aim of this study is to set the weights that provide not only
optimal total travel times (in-vehicle ride times as well as waiting times) but also a
minimum standard deviation when different demand patterns are considered on different
days. The weighting parameters could reproduce existing values of waiting and in-vehicle
times savings for public transport users, which can be estimated using stated or revealed
preferences techniques; for example, Australian Transport Council (2006) provides a
survey of several studies on valuation of time. This study shows that the users value
waiting time savings between 1.17 and 2.88 times as much as in-vehicle time savings,
depending on several factors such as perceived waiting conditions, length of the waiting
time, bus arrival reliability, etc. Nevertheless, for illustrative purposes, in this simulation
we decide to evaluate all combinations of weights �i of magnitude 1, 0.01, 0.0001 and 0
(81 possible combinations) for 25 days of data, as a useful way to analyse the performance
of the different components of the objective function (obtaining significant variation in the
mean performance values – waiting time plus in-vehicle travel time – for different
combinations of weighting parameters), instead of attempting to reproduce reported user’s
perceptions of time costs.

Next, the criterion for choosing the weights is to minimise the following expressions:

Ei ¼ �xi þ
2�xiffiffiffi

n
p , i ¼ 1, . . . , 1024 ð9Þ

�xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 ðxij � �xiÞ

2

n

s
, i ¼ 1, . . . , 1024 ð10Þ

where xij is the mean time (waiting and in-vehicle ride times) for the weights’ combination i
during day j, with n¼ 25 days. �xi is the mean value of xij for j¼ 1, . . . , 25 days.

In Table 1, the results for the best combinations in terms of Ei and �xi are reported for
two prediction horizons: Np¼ 2 and Np¼ 5.

All cases presented in Table 1 provide a reasonable waiting time and standard
deviation. Using those parameters in the HPC, the level of service remains almost
constant. In cases like those, a more accurate prediction of the total time required for
going from one stop to another could be provided to customers in advance.

In the next section we present a heuristic based on an expert control algorithm, which
was designed to keep the bus headways as regular as possible. The goal of this procedure is
to provide a benchmark for the HPC algorithm performance.

4.3. Expert control algorithm

The aim of this expert control strategy is to regularise the headway between the arrivals
of consecutive buses to stops and then to avoid bus bunching. In order to achieve this
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objective, the strategies aim at keeping each group of three consecutive buses equidistant.

In Figure 5, we depict the relative position of three consecutive buses i� 1 (precedent bus),

i (current bus), iþ 1 (next bus). Let us define xi�1(k) as the position of the precedent bus

i� 1, xi (k) the position of the current bus i and xiþ1(k) the position of the next bus iþ 1,

measured at event k when bus i arrives at a stop. Then, the distance di(k) of bus i with

respect to the centre of the distance between the precedent and the next bus is given by

diðkÞ ¼ xiðkÞ �
xi�1ðkÞ � xiþ1ðkÞ

2

� �
: ð11Þ

Figure 6 shows a generic closed loop diagram for a control strategy, in which the control

actions are triggered when a bus i reaches a stop (event k). The same control strategies

associated with event k proposed for the HPC, which are holding hiðkÞ and stop-skipping

SuiðkÞ, are considered for this static control heuristic. As seen in Figure 6, one advantage

of this method is its simplicity, since it does not require prediction of the demand (myopic

strategy). In this application, we chose the discrete values for the holding lapse, namely

hiðkÞ equals to 0 s, �¼ 30 s, 2�¼ 60 s and 3�¼ 90 s, like in the HPC strategy. Assuming at

least six people on an average getting on buses at each bus stop, and considering 5 s as the

marginal boarding time dominating alighting, we finally use a reasonable value of �¼ 30 s

between the discrete values for the holding. On the other hand, stop-skipping is defined

as SuiðkÞ ¼ 0 when the bus skips the stop and SuiðkÞ ¼ 1 otherwise. Both manipulated

variables are excluding at every bus stop; then, when the station-skipping is decided, the

holding action cannot be applied, and vice versa.
In simple terms, the expert control strategy consists of moving forward the bus i, if it is

late with respect to the central position of the trajectory between the precedent bus i� 1

and the next bus iþ 1; otherwise, the bus i is delayed.

Demand 

Expert
controller 

Public
transport
system 

di(k+1)

( )ih k

( )iSu k

Figure 6. Expert control for the public transport system.

Figure 5. Relative positions of three consecutive buses.
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Next, we define the expert controller as a set of heuristic rules. We assume that buses

move at an average speed of v0 ¼ 25 kmh�1, that is, 6.94m s�1. Therefore, if we design

2g as the distance that a bus refrains from travelling due to a holding control action

equivalent to �, then we can show that 2g ¼ v0 � � ¼ 208:2m. As a consequence, if the bus

is held a lapse of 2� – it will refrain from travelling a distance of 4g. Similarly, if the bus is

held a lapse of 3� – it will refrain from travelling 6g. Moreover, 208.2m is approximately

the same distance that the bus would travel additionally as the effect of a station-skipping

control action, assuming an average lapse for transference of passengers around 30 s.
Therefore, if the holding control action takes a value �, we can define a neighbourhood

radius g around di(k)¼ 2g ðnamely g5 diðkÞ5 3gÞ, where this control action will be

applied.
Following the same reasoning, within the range 3g5 diðkÞ5 5g, the holding control

action will take a value 2� ðhiðkÞ ¼ 2�Þ and for 5g5 diðkÞ5 7g the holding control action

will take a value 3�ðhiðkÞ ¼ 3�Þ. Instead, if �g5 diðkÞ5 g, the holding and station-

skipping control actions are not necessary ðSuiðkÞ ¼ 0, hiðkÞ ¼ 0Þ. Finally, if diðkÞ5�g,
the recommended control action will be station-skipping only ðhiðkÞ ¼ 0,SuiðkÞ ¼ 1Þ.

Thus, adding the limit cases (equalities), we can formulate the expert control strategy

(holding and station-skipping based on rules) as the following five heuristic rules:

If di(k)��g then hiðkÞ ¼ 0,SuiðkÞ ¼ 0
If �g5di(k)� g then hiðkÞ ¼ 0,SuiðkÞ ¼ 1
If g5di(k)� 3g then hiðkÞ ¼ �,SuiðkÞ ¼ 1
If 3g5di(k)� 5g then hiðkÞ ¼ 2�,SuiðkÞ ¼ 1
If 5g5di(k) then hiðkÞ ¼ 3�,SuiðkÞ ¼ 1

If station-skipping is not possible due to operational constraints (namely, a passenger

wants to get off there), then hiðkÞ ¼ 0 and SuiðkÞ ¼ 1 regardless of the Expert Controller

recommendation.

4.4. Illustrative results

Below, we report the simulations of the public transport operation for two randomly

chosen days (namely, days 15 and 18) to illustrate the behaviour of the system controlled

by HPC-GA for a time horizon Np¼ 2 in comparison with two operational schemes: (1) an

open-loop (OL) system, which does not consider any type of real-time control, and (2) a

Simple Expert Controller as described above, without considering demand prediction

features in the control decisions.
Tables 2 and 3 report the average waiting time, the in-vehicle ride time and total travel

time per passenger for different weighting factors of the objective function, as in

Equation (8). These experiments were run by considering a two-step ahead prediction

(Cases 3–8). In the same tables, the open-loop response (Case 1) and the Expert System

(Case 2) response are also reported. The open-loop control strategy implies no feedback

from both, the output variables and the disturbances; in this case, the holding and skipping

control actions are not applied whatsoever. Also, Tables 2 and 3 show the percentage of

passengers affected by the holding strategy (%Ph) as well as by station-skipping (%PSu).

Besides, in the last column we report Av(h), accounting for the average time that
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passengers are held on buses (in minutes per passenger) considering only those passengers

affected by the holding strategy somewhere in their journey.
We observe a 20% and 10% savings in total travel time for users when using the

HPC-GA strategy in comparison with the open-loop system and the proposed Expert

controller, respectively. The most significant benefits are associated with a reduction in
waiting time for the HPC-GA case (around 38%) while keeping in-vehicle ride times
almost constant. These results validate the predictive capabilities of the proposed HPC
strategy.

In Tables 2 and 3, note that when in the objective function, the component that
measures the additional in-vehicle time due to holding becomes relevant (Case 3, �3 ¼ 1),
then the HPC-GA strategy generate almost no holding control action (%Ph¼ 4 and 2 for

days 15 and 18, respectively). However, as this weighting factor begins to reduce (Case 4),
the HPC strategy proposes more holding actions (for Case 4 %Ph¼ 7 and 20 for days 15
and 18, respectively). As a consequence the average values of holding per passenger
(represented in Av(h)) start increasing. Such results are reasonable, since the HPC-GA
strategy begins to benefit those passengers waiting at stations (through the regularisation

Table 3. Comparison of HPC-GA, open-loop and expert system for day 18.

Case
Control
strategy

Weight factors Waiting
time
(min)

In-vehicle
ride time
(min)

Total
time
(min) %Ph %Psu

Av(h)
(min)�1–�2–�3–�4–�5

1 Open loop – 12.23 9.40 21.64 – – –
2 Expert system – 7.34 9.80 17.14 29 23 0.85
3 HPC-GA 1–1–1–0–1 6.75 9.96 16.71 2 4 1.07
4 HPC-GA 1–1–0.0001–0–1 6.01 10.5 16.51 20 3 1.68
5 HPC-GA 1–1–0.01–0–0.0001 6.56 9.97 16.53 2 8 1.34
6 HPC-GA 1–1–1–1–1 6.85 9.99 16.84 7 5 1.41
7 HPC-GA 1–1–0.01–0.01–1 6.78 9.99 16.77 5 7 2.34
8 HPC-GA 0.01–0.01–1–1–0.01 6.98 9.89 16.87 6 3 1.17

Note: Np¼ 2.

Table 2. Comparison of HPC-GA, open-loop and expert system for day 15.

Case
Control
strategy

Weight actors Waiting
time
(min)

In-vehicle
ride time
(min)

Total
time
(min) %Ph %Psu

Av(h)
(min)�1–�2–�3–�4–�5

1 Open loop – 10.54 9.61 20.16 – – –
2 Expert system – 7.98 9.85 17.83 23 16 0.87
3 HPC-GA 1–1–1–0–1 7.33 9.91 17.24 4 2 1.23
4 HPC-GA 1–1–0.0001–0–1 7.28 10.01 17.29 7 5 1.70
5 HPC-GA 1–1–0.01–0–0.0001 7.61 9.71 17.32 1 7 1.10
6 HPC-GA 1–1–1–1–1 7.35 9.88 17.23 3 5 1.11
7 HPC-GA 1–1–0.01–0.01–1 7.34 9.95 17.29 7 5 1.25
8 HPC-GA 0.01–0.01–1–1–0.01 7.01 9.98 16.70 5 7 1.54

Note: Np¼ 2.
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of the headways) at the expense of those passengers stopped because of the application of
holding. Notice also that as the weight factor �5 increases, the number of passengers
affected by station-skipping (%PSu) decreases, which consequently produces a slight
reduction in waiting time.

To get a better idea of what is happening at the station level, in Figures 7 and 8 we
show the headway responses (measured through the standard deviation) for all bus stops,
in cases where the system is operated without applying any control strategy (open-loop),
by an Expert System (without prediction), and when the HPC-GA strategy is applied
(Np¼ 2).

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

(a) (b)
Headway standard deviation (min)

Stop

Open Loop
Expert System
HPC

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
Headway standard deviation (min)

Stop

Open Loop
Expert System
HPC

Figure 8. HPC-GA case 4 (weights 1–1–0.0001–0–1): (a) headway standard deviation, day 15 and
(b) headway standard deviation, day 18.
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Figure 7. HPC-GA case 3 (weights 1–1–1–0–1): (a) headway standard deviation, day 15 and
(b) headway standard deviation, day 18.
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In Figures 7 and 8, we note that although the Expert System strategy shows a

reasonable performance, mainly in terms of waiting time, it is not as good as HPC-GA in

terms of the stability of headways at bus stations. From Figures 7 and 8, we also observe

that HPC-GA provides the best performance in terms of minimising the standard

deviation at practically all bus stops. The open-loop case results in the largest standard

deviations, which is reasonable since no objective function is minimised. Note that in the

open-loop case as well as the Expert System approach, the probability of having some

passengers experiencing very long waiting times while others experience very short ones is

larger than in the HPC-GA scheme. Therefore, at least from these experiments, HPC-GA

improves the system performance in terms of operation and the image of the bus system

the passengers have, because of the regularisation of the headways. This also has some

practical advantages for the implementation of a scheduled system in which the operator

could promise some headways to users (bus departure times from stops) with a high level

of certainty.
In Tables 4 and 5, we show the HPC-GA results for three prediction horizons (Np¼ 2,

5 and 10), for Case 3 ð�1 ¼ �2 ¼ �3 ¼ �5 ¼ 1, �4 ¼ 0Þ.
From such tables, we note differences in performance based on changing the prediction

horizon, and therefore, in most cases Np¼ 2, appears to be a good prediction horizon for

this system configuration with its specific features in terms of supply and demand. Overall,

for larger than Np¼ 2 time-horizons (Np¼ 5 and Np¼ 10) the resulting waiting times

become larger. This phenomenon can be explained by the deterioration of the prediction

capabilities as the time horizon gets longer due to the high uncertainty associated with

future demand.
In order to verify the quality of the proposed GA algorithm for the HPC scheme

(explained in detail in Section 3) in terms of both computation effort and accuracy of the

solutions, selected tests were conducted applying explicit enumeration of all feasible

solutions (HPC-EE). To measure the performance of HPC-GA, the following indices

Table 4. HPC-GA performance for day 15.

Prediction
horizon (Np)

Waiting
time (min)

In-vehicle
ride time (min)

Total
time (min) %Ph %PSu

Av(h)
(min)

2 6.93 9.61 16.54 0 2 1.16
5 6.97 9.91 16.88 0 3 1.21
10 7.00 10.10 17.10 0 3 1.19

Table 5. HPC-GA performance for day 18.

Prediction
horizon (Np)

Waiting
time (min)

In-vehicle ride
time (min)

Total time
(min) %Ph %PSu

Av(h)
(min)

2 5.83 9.78 15.61 1 2 1.03
5 6.22 10.22 16.44 1 3 1.10
10 6.04 10.00 16.04 0 2 1.12
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are defined:

PCT ¼ 1�
Computation time ðHPC-GAÞ

Computation time ðHPC-EEÞ

� 	
� 100%,

PWT ¼
Waiting time ðHPC-GAÞ �Waiting time ðHPC-EEÞ

Waiting time ðHPC-EEÞ

� 	
� 100%,

PTT ¼
Total time ðHPC-GAÞ � Total time ðHPC-EEÞ½ �

Total time ðHPC-EEÞ
� 100%:

The three indices are defined as a comparison between the HPC-GA and HPC-EE
algorithms for the same time horizon, to provide a consistent comparison of algorithms’
performance. PCT shows a measure of savings (in percentage) associated with compu-
tation time between GA and EE. PWT and PTT represent measures of the accuracy of GA
when compared with EE (in percentage) for waiting and total travel time, respectively.
A summary of the conducted experiments in terms of these indices is shown in Table 6.

GA shows considerable savings in computational effort (by means of PCT) when
compared with EE. These savings get larger as the prediction horizon increases, providing
high-quality results (by means of PWT and PTT), with errors smaller than 3% in all cases.
On the other hand, the Expert System used as benchmark reports very small computation

time, but a significantly worse quality of the solution in the order of magnitude. These
results are promising and open the door for further improvements in the GA
implementation to tackle real-size systems with more complex configurations and
implemented for longer time horizons. The computation time of GA for solving the
optimisation problem with different prediction horizon (Np¼ 2, 5 and 10) is considerably
smaller than the explicit enumeration, mainly when the prediction horizon is long as
explicit enumeration explodes with Np. Under these conditions, explicit enumeration can
be applied only for short prediction horizons as it takes 53 and 1197 s for Np¼ 5 and 10,

respectively.
Note that in case of GA all the proposed strategies can be applied in a real-time setting

as computation times are all less than the threshold of 20 s explained before. Moreover, the
problem for Np¼ 10 implies a much larger solutions-search space than that of the problem
for Np¼ 5. Given that the computation times reported in Table 6 are quite similar
(to satisfy the constraint of 20 s maximum), then the quality of the final solution obtained
for GA Np¼ 10 is worse than that obtained in the case Np¼ 5.

Table 6. Performance comparison – HPC based on EE, GA and expert system.

Control
strategy

Computation
total time (s)

Computation per
event time (s) PCT (%) PWT (%) PTT (%)

Expert system 0.97 0.0039 – 14 8
HPC-EE Np¼ 2 2500 9.9601 – – –
HPC-EE Np¼ 5 13,200 52.5896 – – –
HPC-EE Np¼ 10 300,330 1196.5338 – – –
HPC-GA Np¼ 2 1750 6.9721 30 1.8 0.5
HPC-GA Np¼ 5 3565 14.2031 73 1.4 0.3
HPC-GA Np¼ 10 4450 17.7290 98.5 2.7 0.4
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5. Conclusions

In this article, we have shown a HPC model to optimise in real-time the performance of a
public transport system along a linear corridor with uncertain demand at bus stops. The
optimisation is conducted by applying, holding and expressing (station-skipping). The
proposed HPC strategy was formulated under a discrete event simulation environment and
solved by GA tools to efficiently make optimal real-time decisions based on the proposed
framework, in terms of both accuracy and computation time. The proposed strategy is
compared with a benchmark algorithm (Expert System Control), which does not consider
prediction in the decision-making process.

Several objective function options were tested, obtaining very intuitive and reasonable
results in all cases, when compared to the benchmark Expert System, and both greatly
outperformed the case without any control of real-time decisions. These results support the
structure and design conditions of the HPC controller. For example, when the holding
penalisation becomes high, the controller avoids applying holding and prefers to
implement expressing instead to optimise the dynamic objective function. This flexibility
in the formulation allows the controller to accommodate his (her) actions to different
service policies, depending on the case. However, from the different results and tests
conducted, we recommend developing detailed sensitivity analyses with respect to both
prediction horizon and weight parameters in order to obtain optimal policy strategies.

For future research, we plan to work on more complex system configurations, such as
trunk schemes combined with feeder transit lines connected with transfer points.
Moreover, we plan to test a modified version of the station-skipping action in our
model by relaxing the constraint that does not allow a bus to skip a stop if anybody on
board requests to get off. This indeed will force us to change the objective function to be
consistent with the extra penalty due to either transferring to another bus or walking to the
final destination.

As part of ongoing research, we are studying other type of strategies, such as real-time
injection of buses where the extra operational cost becomes relevant due to the extra fleet
acquisition and operation, and in that case the objective function could require other
terms.

In addition, we are working on fine-tuning the weight parameters, under a dynamic
multi-objective optimisation scheme also using GA. Finally, we will also test our schemes
under a microscopic simulation environment in order to properly capture the dynamic
effects of such a transit system.
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