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Abstract. In the present article a framework for the robust detection of mo-
bile robots using nested cascades of boosted classifiers is proposed. The
boosted classifiers are trained using Adaboost and domain-partitioning
weak hypothesis. The most interesting aspect of this framework is its capa-
bility of building robot detection systems with high accuracy in dynamical
environments (RoboCup scenario), which achieve, at the same time, high
processing and training speed. Using the proposed framework we have built
robust AIBO and humanoid robot detectors, which are analyzed and evalu-
ated using real-world video sequences.

1. Introduction

In robot soccer scenarios, the detection of teammates and opponent robots is a key
skill for good playing (e.g. passing, robot avoidance, goal kicking). However, most
existing systems are not robust enough in the detection of other players, mainly be-
cause they are based on pure color analysis, which is very dependent on the illumina-
tion. To revert this, we have adapted our previously developed framework for face
analysis system [8] to the task of building fast robot detector systems. This frame-
work uses nested cascades of classifiers [10], the Adaboost boosting algorithm [6],
and domain-partitioning based classifiers [6]. To our knowledge these statistical learn-
ing techniques have not been used before in robot detection applications.

Using the proposed framework we have built three AIBO robot detectors (ERS7
model), each one tuned for a different pose (frontal, profile and back), and also a hu-
manoid robot detector. The main strengths of the developed robot detection systems
are: the ability of working at multiple scales, being illumination invariant to a larger
degree (they work in grey scale images and no preprocessing is needed for photomet-
ric normalization), and being near real-time.

The article is structured as follows. In section 2 some related work is outlined. In
section 3 the robot detection framework is described. The training procedures for
building AIBO and Humanoid robot detectors are described in section 4. In section 5
an evaluation of the developed robot detectors is presented. Finally, in section 6,
some conclusions of this work are given.
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2. Related Work

Several approaches have been proposed to tackle the object detection problem. In
the case of the RoboCup competition, most approaches for detecting robots are based
on pure color segmentation and on the detection of contrast changes using scan lines
(see for example [3][4]). These simple approaches are not robust enough; they are
highly dependent on the illumination and background. In [2] is proposed a detection
system for AIBO robots based on the use of local image descriptors and SIFT fea-
tures, but its main limitations are its low processing speed and its reduced perform-
ance when highlights are present in the image, which are common in AIBO robots.
However, if we consider other object detection problems, there are many robust ap-
proaches that are based on statistical classifiers [1], including systems based on neural
networks, PCA projections, decision trees, SVM classifiers, and cascades of boosted
classifiers.

Generally, one of the main drawbacks of detection systems based on statistical
classifiers is that they are not real-time. The systems based on cascades of boosted
classifiers, however, are an exception; they are very fast and accurate at the same time.
The Viola&Jones classifier [9] use a cascade of filters for a fast classification, where
each filter is trained using Adaboost, and the integral image for fast computation of
the features, which are based on simple, rectangular features (a kind of Haar wavelets).
This kind of classifier allows obtaining fast processing speed and high detection rates.
These ideas are further improved in [10], where nested cascades are introduced.
Nested cascades reuse the confidence output of a given layer, in the next layer of the
cascade, which allows obtaining more compact (faster) cascades and more accurate
classifications. It also uses domain-partitioning weak classifiers [6], which, compared
to [9], achieves an improvement in the representation power of the weak classifiers
and reduces the processing and training time. In [8] a procedure to train nested cas-
cades of boosted classifiers that allows to considerably reduce the training time (from
months in [9] to a few days) is proposed. A second improvement proposed in [8] is
the use of both internal and external bootstrap for the training of the cascade. A third
improvement corresponds to a criterion to automatically select the number of weak
classifiers in each layer of the cascades, which aims to minimize the processing time
and at the same time assures a high detection rate and a very low false positive rate.
This learning framework [8] has been extended in this work to the task of robot detec-
tion.

3. Robot Detection Framework

We briefly describe the developed multiscale robot detection framework (see block
diagram in figure 1). First, to detect the robots at different scales, a multiresolution
analysis of the images is performed, by downscaling the input image by a fixed scal-
ing factor --e.g. 1.2-- (Multiresolution Analysis module). This scaling is performed
until images of about 24x24 pixels are obtained. Afterwards, windows of 24x24 pix-
els are extracted in the Window Extraction module for each of the scaled versions of
the input image. The extracted windows could then be pre-processed to obtain invari-
ance against changing illumination, but thanks to the used of illumination invariant
features we do not perform any kind of preprocessing. Afterwards, the windows are



analyzed by a nested cascade classifier (Cascade Classification Module). Finally, in
the Overlapping Detection Processing module, the windows classified as positive
(they contain a robot) are fused (normally a robot will be detected at different scales
and positions) to obtain the size and position of the final detections.

Using the described framework it is also possible to detect the robots pose. To
achieve this, detectors tuned to different robot poses/views (e.g. frontal, profile and
back) should be trained and applied. In general terms there are two possible forms of
applying the detectors. The first one consists in applying the detectors in parallel.
Then, the robot pose will be given by the detector having the largest confidence
value. The second form consists in applying first a generic detector (not tuned to any
pose) and then, in the pose classification module, verifying the detection, and also
obtaining the pose of the robot applying the pose-specific detectors in parallel.
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Figure 1. Block diagram of the detection system.

3.1 Learning using Nested Cascades of Classifiers

A nested cascade of boosted classifiers is composed by integrated layers, each one
containing a boosted classifier. The cascade works as a single classifier that integrates
the classifiers of every layer H¢ , defined as:

Tk
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with H2x)=0, h,k the weak classifiers, 7, the number of weak classifiers in layer &,
and by a threshold (bias) value that defines the operation point of the strong classifier.
The class assigned to the output corresponds to the sign of H(x). The output of H é

is a real value that corresponds to the confidence of the classifier, and its computation
makes use of the already evaluated confidence value of the previous layers. For details
on the handling of the tradeoff between the speed and the accuracy of the cascade clas-
sifier see [8].

Domain-partitioning weak hypotheses make their predictions based on a parti-
tioning of the domain X into disjoint blocks Xj,...,X,, which cover all X, and for
which h(x)=h(x’) for all x, x '€ X;. Thus, the weak classifiers prediction depends only
on which block X; a given sample instance falls into. Herein the weak classifiers are
applied over features, with each feature domain F being partitioned into disjoint



blocks F, ..., F,, and a weak classifier # having an output for each partition block of
its associated feature f: hf(x)=c; > f(x)EF;

For each classifier, the value associated to each partition block (c;) is set to
minimize a loss function on the margin [6]. This value depends on the number of
times that the corresponding feature, computed on the training samples (x;), fall into
this partition block (histograms), and on the class of these samples (y;) and their
weight D(i):
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where € is a regularization parameter. The outputs, ¢;, from each of the weak classifi-

ers, obtained during training, are stored in a LUT to speed up its evaluation. The

Adaboost learning algorithm is employed to select the features and the weak
classifiers h,k (x) . We use simple, rectangular features (a kind of Haar wavelets) [9].

3.2. Selection of the training examples

Every window of any size in any image that does not contain an object (e.g. an
AIBO robot) is a valid non-object training example. Obviously, to include all possi-
ble non-object patterns in the training database is not an alternative, therefore non-
object patterns that look similar to the object are selected using the bootstrap proce-
dure [7]. This procedure corresponds to iteratively train the classifier, each time
adding to the negative training set, negative examples that were incorrectly classified.
According to our experience, it is important to use bootstrap in both situations: be-
fore starting the training of a new layer and for re-training a layer that was just
trained. The external bootstrap is applied just one time for each layer, before starting
its training, while the internal bootstrap can be applied several times during the train-
ing of the layer. The bootstrap procedure in both cases is the same with only one dif-
ference, before starting an external bootstrap all negative samples collected for the
training of the previous layer are discarded (see [8] for details).

4. Training of the AIBO and Humanoid Robot Detectors

During the training of the cascades, validation and training sets are used. The proce-
dure to obtain both sets is analogous, so only the training dataset is explained. To
obtain the training set used at each layer of the cascade classifier, two types of data-
bases are needed: one of cropped windows of positive examples (e.g frontal AIBOs)
and one of images not containing the object to be detected. The second type of data-
base is used during the bootstrap procedure to obtain the negative examples. The
training dataset is used to train the weak classifiers, and the validation database is
used to decide when to stop the training of a layer and to select the bias values of the
layer. To obtain positive examples (cropped windows) a rectangle bounding the robot
was annotated and a square of size equal to the largest size of the rectangle was
cropped and downscaled to 24x24 pixels. In the case of the humanoid robots, two
windows were cropped from each robot used during training, one corresponding to the
upper half of the robot (torso and head) and the other to the lower part (mostly legs).



This was made to allow the detection of either the upper or the lower part of the robot
independently (using only one detector). This information should be sufficient for a
successful detection under partial occlusions.

In the case of the databases used to train the AIBO detectors, the positive exam-
ples were obtained from videos captured using the AIBOs cameras and using external
cameras. The videos were acquired under real-world playing conditions (variable illu-
mination, occlusions, etc.). The sources used to build the humanoids training and
validation sets were videos obtained using the same camera employed in our human-
oid robots (Philips ToUCam III - SPC900NC), and videos from other humanoids
obtained from the the RoboCup Humanoid league website (Hajime, Artisti, BreDo
Brothers, DarmstadtDribbler and ToinPhoenix). The number of images used in each
database is shown in Table 1.

Table 1. Summary of the databases used for training

Class # Positive examples # Negative images
(Training) (Validation) (Training) (Validation)
Frontal AIBOs 3115 3115 5946 2550
Left AIBOs 4263 3624 5946 2550
Back AIBOs 1528 1528 5958 2562
Humanoids 3506 3500 5958 2562

5 Evaluation of the Detectors

The detection results are presented in terms of Detection Rate (DR) versus Number of
False Positives (FP) in the form of ROC curves (Receiver Operation Characteristic
curves) and tables, while the pose estimation results are presented using the confusion
matrix. An analysis of the processing speed of the system is also presented. To evalu-
ate the proposed system, two databases were used: one for the AIBOs (called Al-
BODetUChileEval) and one for the Humanoids (called HDetUChileEval). These data-
bases were made available in http://vision.die.uchile.cl for future comparisons. No
image of the training or the validation set are part of these databases. The Al-
BODetUChileEval database contains AIBOs in three poses (frontal, profile, back),
while the HDetUChileEval database consists of images containing humanoids (from
videos dribblers2006communication and dribblers2006Kicktrick). These images are
from real world scenarios; containing changes in illumination, contrast, and back-
ground (see Table 2 for datils).

The performance of the proposed robot detection systems are presented in terms of
DR versus FP (se Table 3 and Figure 2), and percentage of correct pose classification
(Table 4). In figure 3 selected images with detection results are shown. In the AIBOs
database, the first test consisted in evaluating each detector independently on the spe-
cific class it was trained to detect (e.g. “Frontal” detecting “Frontal” AIBOs). In this
evaluation, AIBOs appearing under poses different to the ones being detected were not
counted as false positives or correct detections. The best performing detector was the
profile detector with a 90.7% DR and 70 FP (from all 724 images). The second test
consisted in evaluating the performance of a particular detector when detecting all
poses, including the ones they were not trained to detect. In this case the detectors
were able to find AIBOs in all poses, showing a reasonably good detection rate; e.g.



the Frontal detector obtained a 90% DR of AIBOs under all poses with 392 FP. The
third test (Multiple detectors in all AIBOs) consisted in running all AIBOs detectors
(Frontal, Profile and Back) in parallel. Given that in some cases the three detectors
detected the same AIBOs, the final detections were obtained by selecting all non-
overlaying detections, and merging overlaying detections by choosing the one with
highest confidence. It is important to notice that in this case the number of false posi-
tives slightly increased, e.g. a DR of 94.8% was obtained with 392 FP. In other
words, it is possible to arbitrate among the output of the detectors without increasing
considerably the number of FP, although it is about 3 times slower than the individ-
ual detectors. The humanoid detector also shows high detection rates. A 92.2% detec-
tion rate was obtained with 123 false positive in a total of 244 images. This is quite
high considering that the system was training using examples corresponding to differ-
ent humanoid robot models than the ones used in the evaluation.

The last test made was a pose classification of the AIBOs. For this, the frontal de-
tector was used as a generic detector (using the same parameters that obtained a 90%
DR 392 FP), followed by a verification of the detections using the specific detectors.
Afterwards, the pose was estimated by taking the output of the specific detector that
gave the largest confidence value. Out of the 912 detected AIBOs, 657 were “pose
estimated”, from which 519 were correctly estimated (79% correct classification rate).
Table 4 shows the confusion matrix of the pose estimation for these AIBOs. The
“Frontal” and “Profile” classifiers show the best results, classifying correctly 90% and
80% of the “Frontal” and “Profile” AIBOs, respectively.

Table 2. Summary of the evaluation databases.

Test database #Images#Frontal AIBOs| #Profile AIBOs| #Back AIBOs| #Humanoids |Image size
AIBODetUChileEval | 724 344 489 180 - 208x160
HDetUChileEval 244 - - - 493 640x480

Table 3. Selected operation points (Detection Rate versus Number of False Positives) of
the evaluated AIBO and Humanoids detectors.

[Detector / Target DR % |FP [DR% [FP |DR % | FP |DR % |FP |DR % |FP
Frontal /Frontal AIBOs 89.4 254 84.4 57 745 18
Profile / Profile AIBOs 94.7 98 90.4 70 81.3 42
Back / Back AIBOs 89.9 166 85.6 76 79.8 27
Frontal / All AIBOs 90.0 392 829 183 | 734 95
Multiple / All AIBOs 94.8 392 | 88.6 183 84.3 114 | 80.1 52
[Humanoids 94.8 590 | 92.2 123 75.9 3
Table 4. Confusion Matrix: AIBO pose estimation using the detection system.
True Class / Predicted Class | Frontal AIBOs | Profile AIBOs | Back AIBOs
Frontal AIBOs 91.63 % 11.64 % 33.87 %
Profile AIBOs 3.72 % 81.45 % 15.32 %
Back AIBOs 4.65 % 6.92 % 50.81 %

The processing time of the proposed detectors in the AIBO ERS7 robots was
evaluated. ERS7 robots have a 64bit RISC Processor (MIPS R7000) from 576 MHz,
64MB RAM, and a color-camera of 208x160 pixels that delivers 30fps. Table 5
shows the average frame rate delivered by the “Frontal” AIBO detector in an ERS7
robot running the full four-legged Uchilel control library [5], and in a 1.73 GHz Intel



Core Duo laptop with 1GB of RAM, running Windows XP. The frame rate depends
mainly on the scaling factor, and the number scales skipped by the detection system.
The detector still works fine with a scaling factor of 1.2 and skipping 1 or 2 of the
first scales, which allows obtaining 6.3 fps in the AIBOs. This allows using the de-
tector in our four-legged team, considering that it is not necessary to detect the robots
in each frame, but every 3-7 for frames (every 90-210 milliseconds).

Table 5. Processing time of the frontal AIBO detector.

Configuration Frame Rate (in fps) in Lap?op PC Framg Rate (in fps) in AIBQ CPU
scaling 1.15 scaling 1.2 Scaling 1.15 scaling 1.2
no scale skipped 3.4 4.8 1.7 2.1
skip 1st scale 6.7 9.1 3.5 4.9
skip 1st,2nd scale 9.1 12.5 4.9 6.3
skip 1st,2nd,3rd scale 11.1 16.7 6.1 7.8
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Figure 2. ROC curves (Detection Rate versus Number of False Positives) on the Al-
BODetUChileEval database for the Frontal, Back and Profile detectors. See text for details.

6. Conclusions

A framework for the robust detection of mobile robots using nested cascades of
boosted classifiers was proposed. This framework was used to build robot detectors
(Humanoids, and Frontal-, Profile- and Back-AIBOs). The main module of the sys-
tem corresponds to a nested cascade of boosted classifiers, which is designed to per-
form fast detections with high DR and very low FPR. Using this cascade classifier,
an exhaustive multiscale search is performed to be able to detect the robots appearing
at different scales and positions. The detection rate of the obtained systems is quite
high; for example a 90% DR with an average of 0.1 false positives per frame
(208x160 pixels) is obtained for the “profile” AIBO detector, and a 92.2% DR with
123 false positives in 244 images (640x480 pixels) is obtained for the Humanoid
detector. This shows that the detectors are working with high performance in difficult



environment, and still maintain good results. Even thought the detection system was
not designed to estimate the pose of the AIBO robots, it was possible to estimate it
with a good accuracy in the case of the AIBOs. For example, the system correctly
estimated the pose in 79% percent of the detected and verified AIBOs.

The main disadvantage of the detectors is that they achieve relatively low frame
rates (e.g. 6.3 fps running in the AIBO robots). Nevertheless they can be improved in
several ways. First, it is not necessary to detect the robots in each frame, but every 3-
7 for frames (every 90-210 milliseconds). The processing time and the number of
false positives can be greatly reduced by adding the use of color-based methods and
information about the location of the robot in the field (by reducing the search region
area). The system can be further improved by performing a tracking of the robots.
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Figure 3. Detection results of both detectors on the HDetUChileEval database are shown.
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